code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder A__ : Dict ='''base_with_context''' def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) _lowerCAmelCase = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCAmelCase = weights[f"layers_{lyr_num}"] _lowerCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _lowerCAmelCase = ly_weight["""attention"""] _lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCAmelCase = weights[f"layers_{lyr_num}"] _lowerCAmelCase = ly_weight["""attention"""] _lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=lowerCAmelCase ) _lowerCAmelCase = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _lowerCAmelCase = weights[f"layers_{lyr_num}"] _lowerCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) _lowerCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _lowerCAmelCase = ly_weight["""self_attention"""] _lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowerCAmelCase = ly_weight["""MultiHeadDotProductAttention_0"""] _lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _lowerCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) _lowerCAmelCase = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _lowerCAmelCase = jnp.tree_util.tree_map(onp.array , lowerCAmelCase ) _lowerCAmelCase = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] _lowerCAmelCase = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) _lowerCAmelCase = inference.parse_training_gin_file(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = inference.InferenceModel(args.checkpoint_path , lowerCAmelCase ) _lowerCAmelCase = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) _lowerCAmelCase = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) _lowerCAmelCase = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) _lowerCAmelCase = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _lowerCAmelCase = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , lowerCAmelCase ) _lowerCAmelCase = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , lowerCAmelCase ) _lowerCAmelCase = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , lowerCAmelCase ) _lowerCAmelCase = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) _lowerCAmelCase = SpectrogramDiffusionPipeline( notes_encoder=lowerCAmelCase , continuous_encoder=lowerCAmelCase , decoder=lowerCAmelCase , scheduler=lowerCAmelCase , melgan=lowerCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": A__ : str =argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=F"""{MODEL}/checkpoint_500000""", type=str, required=False, help='''Path to the original jax model checkpoint.''', ) A__ : List[str] =parser.parse_args() main(args)
207
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: A__ : Any =None A__ : Optional[int] =logging.get_logger(__name__) A__ : Union[str, Any] ={'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} A__ : List[str] ={ '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''', }, } A__ : List[str] ={ '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } A__ : List[str] ='''▁''' # Segments (not really needed) A__ : str =0 A__ : str =1 A__ : List[Any] =2 A__ : str =3 A__ : Optional[Any] =4 class UpperCAmelCase ( snake_case_ ): _lowercase: Optional[int] = VOCAB_FILES_NAMES _lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowercase: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase: Optional[Any] = '''left''' _lowercase: Dict = XLNetTokenizer def __init__( self : List[str] , __snake_case : Optional[Any]=None , __snake_case : str=None , __snake_case : Union[str, Any]=False , __snake_case : str=True , __snake_case : Union[str, Any]=False , __snake_case : List[Any]="<s>" , __snake_case : List[Any]="</s>" , __snake_case : str="<unk>" , __snake_case : int="<sep>" , __snake_case : int="<pad>" , __snake_case : Dict="<cls>" , __snake_case : int="<mask>" , __snake_case : Optional[int]=["<eop>", "<eod>"] , **__snake_case : List[str] , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( vocab_file=__snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) _lowerCAmelCase = 3 _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = False if not self.vocab_file else True def lowercase__ ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase__ ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase__ ( self : Optional[Any] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
207
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( lowercase__ , unittest.TestCase): UpperCamelCase__ : Dict =DiTPipeline UpperCamelCase__ : Tuple =CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS UpperCamelCase__ : Tuple =PipelineTesterMixin.required_optional_params - { """latents""", """num_images_per_prompt""", """callback""", """callback_steps""", } UpperCamelCase__ : List[str] =CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS UpperCamelCase__ : int =False def A__ ( self : int ): torch.manual_seed(0 ) lowercase__ = TransformeraDModel( sample_size=16, num_layers=2, patch_size=4, attention_head_dim=8, num_attention_heads=2, in_channels=4, out_channels=8, attention_bias=__lowercase, activation_fn="gelu-approximate", num_embeds_ada_norm=1000, norm_type="ada_norm_zero", norm_elementwise_affine=__lowercase, ) lowercase__ = AutoencoderKL() lowercase__ = DDIMScheduler() lowercase__ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def A__ ( self : Optional[int], __lowercase : Dict, __lowercase : Optional[int]=0 ): if str(__lowercase ).startswith("mps" ): lowercase__ = torch.manual_seed(__lowercase ) else: lowercase__ = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) lowercase__ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def A__ ( self : List[Any] ): lowercase__ = "cpu" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) lowercase__ = self.get_dummy_inputs(__lowercase ) lowercase__ = pipe(**__lowercase ).images lowercase__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 16, 16, 3) ) lowercase__ = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowercase, 1e-3 ) def A__ ( self : Optional[int] ): self._test_inference_batch_single_identical(relax_max_difference=__lowercase, expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def A__ ( self : List[Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _snake_case ( unittest.TestCase): def A__ ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self : Any ): lowercase__ = torch.manual_seed(0 ) lowercase__ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) lowercase__ = ["vase", "umbrella", "white shark", "white wolf"] lowercase__ = pipe.get_label_ids(__lowercase ) lowercase__ = pipe(__lowercase, generator=__lowercase, num_inference_steps=40, output_type="np" ).images for word, image in zip(__lowercase, __lowercase ): lowercase__ = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def A__ ( self : Dict ): lowercase__ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) lowercase__ = ["vase", "umbrella"] lowercase__ = pipe.get_label_ids(__lowercase ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe(__lowercase, generator=__lowercase, num_inference_steps=25, output_type="np" ).images for word, image in zip(__lowercase, __lowercase ): lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
718
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
37
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
496
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case__(_UpperCamelCase ): """simple docstring""" @require_torch def snake_case ( self : int ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched lowercase__ : Optional[int] = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " lowercase__ : Any = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " lowercase__ : List[Any] = "\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache lowercase__ : Optional[Any] = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(SCREAMING_SNAKE_CASE ) BertModel.from_pretrained(SCREAMING_SNAKE_CASE ) BertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) pipeline(task="fill-mask" , model=SCREAMING_SNAKE_CASE ) # baseline - just load from_pretrained with normal network lowercase__ : List[Any] = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed lowercase__ : Tuple = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase__ : str = "1" lowercase__ : Tuple = subprocess.run(SCREAMING_SNAKE_CASE , env=SCREAMING_SNAKE_CASE , check=SCREAMING_SNAKE_CASE , capture_output=SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def snake_case ( self : Dict ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched lowercase__ : Any = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " lowercase__ : Dict = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " lowercase__ : Tuple = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache lowercase__ : Tuple = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(SCREAMING_SNAKE_CASE ) BertModel.from_pretrained(SCREAMING_SNAKE_CASE ) BertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) pipeline(task="fill-mask" , model=SCREAMING_SNAKE_CASE ) # baseline - just load from_pretrained with normal network lowercase__ : List[Any] = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed lowercase__ : Dict = self.get_env() lowercase__ : Any = subprocess.run(SCREAMING_SNAKE_CASE , env=SCREAMING_SNAKE_CASE , check=SCREAMING_SNAKE_CASE , capture_output=SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def snake_case ( self : Any ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched lowercase__ : Union[str, Any] = "\nfrom transformers import BertConfig, BertModel, BertTokenizer\n " lowercase__ : Optional[int] = "\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n " lowercase__ : List[str] = "\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " # baseline - just load from_pretrained with normal network lowercase__ : int = [sys.executable, "-c", "\n".join([load, run] )] # should succeed lowercase__ : Optional[Any] = self.get_env() lowercase__ : Tuple = subprocess.run(SCREAMING_SNAKE_CASE , env=SCREAMING_SNAKE_CASE , check=SCREAMING_SNAKE_CASE , capture_output=SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # next emulate no network lowercase__ : str = [sys.executable, "-c", "\n".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase__ : int = "1" lowercase__ : Dict = subprocess.run(SCREAMING_SNAKE_CASE , env=SCREAMING_SNAKE_CASE , check=SCREAMING_SNAKE_CASE , capture_output=SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def snake_case ( self : Tuple ): lowercase__ : Optional[int] = "\nfrom transformers import pipeline\n " lowercase__ : Optional[int] = "\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n " lowercase__ : int = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " lowercase__ : Any = self.get_env() lowercase__ : Dict = "1" lowercase__ : List[str] = [sys.executable, "-c", "\n".join([load, mock, run] )] lowercase__ : int = subprocess.run(SCREAMING_SNAKE_CASE , env=SCREAMING_SNAKE_CASE , check=SCREAMING_SNAKE_CASE , capture_output=SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( "You cannot infer task automatically within `pipeline` when using offline mode" , result.stderr.decode().replace("\n" , "" ) , ) @require_torch def snake_case ( self : Union[str, Any] ): lowercase__ : str = "\nfrom transformers import AutoModel\n " lowercase__ : int = "\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n " # baseline - just load from_pretrained with normal network lowercase__ : str = [sys.executable, "-c", "\n".join([load, run] )] # should succeed lowercase__ : Dict = self.get_env() lowercase__ : Optional[Any] = subprocess.run(SCREAMING_SNAKE_CASE , env=SCREAMING_SNAKE_CASE , check=SCREAMING_SNAKE_CASE , capture_output=SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase__ : Optional[int] = "1" lowercase__ : Optional[int] = subprocess.run(SCREAMING_SNAKE_CASE , env=SCREAMING_SNAKE_CASE , check=SCREAMING_SNAKE_CASE , capture_output=SCREAMING_SNAKE_CASE ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() )
496
1
'''simple docstring''' def lowerCAmelCase( a__ : int , a__ : int , a__ : int ): '''simple docstring''' lowerCamelCase__ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowerCAmelCase( ): '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
426
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class snake_case_ ( A__ ): """simple docstring""" __lowerCAmelCase : BigBirdConfig __lowerCAmelCase : jnp.dtype =jnp.floataa __lowerCAmelCase : bool =True def __UpperCAmelCase ( self): super().setup() lowerCamelCase__ = nn.Dense(5 , dtype=self.dtype) def __call__( self , *UpperCamelCase , **UpperCamelCase): lowerCamelCase__ = super().__call__(*UpperCamelCase , **UpperCamelCase) lowerCamelCase__ = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class snake_case_ ( A__ ): """simple docstring""" __lowerCAmelCase : Optional[int] =FlaxBigBirdForNaturalQuestionsModule def lowerCAmelCase( a__ : List[str] , a__ : Dict , a__ : Optional[Any] , a__ : List[str] , a__ : str , a__ : Optional[int] ): '''simple docstring''' def cross_entropy(a__ : Union[str, Any] , a__ : Any , a__ : List[Any]=None ): lowerCamelCase__ = logits.shape[-1] lowerCamelCase__ = (labels[..., None] == jnp.arange(a__ )[None]).astype("f4" ) lowerCamelCase__ = jax.nn.log_softmax(a__ , axis=-1 ) lowerCamelCase__ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowerCamelCase__ = reduction(a__ ) return loss lowerCamelCase__ = partial(a__ , reduction=jnp.mean ) lowerCamelCase__ = cross_entropy(a__ , a__ ) lowerCamelCase__ = cross_entropy(a__ , a__ ) lowerCamelCase__ = cross_entropy(a__ , a__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class snake_case_ : """simple docstring""" __lowerCAmelCase : str ="google/bigbird-roberta-base" __lowerCAmelCase : int =3_0_0_0 __lowerCAmelCase : int =1_0_5_0_0 __lowerCAmelCase : int =1_2_8 __lowerCAmelCase : int =3 __lowerCAmelCase : int =1 __lowerCAmelCase : int =5 # tx_args __lowerCAmelCase : float =3e-5 __lowerCAmelCase : float =0.0 __lowerCAmelCase : int =2_0_0_0_0 __lowerCAmelCase : float =0.0095 __lowerCAmelCase : str ="bigbird-roberta-natural-questions" __lowerCAmelCase : str ="training-expt" __lowerCAmelCase : str ="data/nq-training.jsonl" __lowerCAmelCase : str ="data/nq-validation.jsonl" def __UpperCAmelCase ( self): os.makedirs(self.base_dir , exist_ok=UpperCamelCase) lowerCamelCase__ = os.path.join(self.base_dir , self.save_dir) lowerCamelCase__ = self.batch_size_per_device * jax.device_count() @dataclass class snake_case_ : """simple docstring""" __lowerCAmelCase : int __lowerCAmelCase : int =4_0_9_6 # no dynamic padding on TPUs def __call__( self , UpperCamelCase): lowerCamelCase__ = self.collate_fn(UpperCamelCase) lowerCamelCase__ = jax.tree_util.tree_map(UpperCamelCase , UpperCamelCase) return batch def __UpperCAmelCase ( self , UpperCamelCase): lowerCamelCase__ , lowerCamelCase__ = self.fetch_inputs(features["input_ids"]) lowerCamelCase__ = { "input_ids": jnp.array(UpperCamelCase , dtype=jnp.intaa), "attention_mask": jnp.array(UpperCamelCase , dtype=jnp.intaa), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa), } return batch def __UpperCAmelCase ( self , UpperCamelCase): lowerCamelCase__ = [self._fetch_inputs(UpperCamelCase) for ids in input_ids] return zip(*UpperCamelCase) def __UpperCAmelCase ( self , UpperCamelCase): lowerCamelCase__ = [1 for _ in range(len(UpperCamelCase))] while len(UpperCamelCase) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def lowerCAmelCase( a__ : List[Any] , a__ : Tuple , a__ : Any=None ): '''simple docstring''' if seed is not None: lowerCamelCase__ = dataset.shuffle(seed=a__ ) for i in range(len(a__ ) // batch_size ): lowerCamelCase__ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(a__ ) @partial(jax.pmap , axis_name="batch" ) def lowerCAmelCase( a__ : List[Any] , a__ : Tuple , **a__ : Union[str, Any] ): '''simple docstring''' def loss_fn(a__ : str ): lowerCamelCase__ = model_inputs.pop("start_labels" ) lowerCamelCase__ = model_inputs.pop("end_labels" ) lowerCamelCase__ = model_inputs.pop("pooled_labels" ) lowerCamelCase__ = state.apply_fn(**a__ , params=a__ , dropout_rng=a__ , train=a__ ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = outputs return state.loss_fn( a__ , a__ , a__ , a__ , a__ , a__ , ) lowerCamelCase__ , lowerCamelCase__ = jax.random.split(a__ ) lowerCamelCase__ = jax.value_and_grad(a__ ) lowerCamelCase__ , lowerCamelCase__ = grad_fn(state.params ) lowerCamelCase__ = jax.lax.pmean({"loss": loss} , axis_name="batch" ) lowerCamelCase__ = jax.lax.pmean(a__ , "batch" ) lowerCamelCase__ = state.apply_gradients(grads=a__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def lowerCAmelCase( a__ : int , **a__ : Tuple ): '''simple docstring''' lowerCamelCase__ = model_inputs.pop("start_labels" ) lowerCamelCase__ = model_inputs.pop("end_labels" ) lowerCamelCase__ = model_inputs.pop("pooled_labels" ) lowerCamelCase__ = state.apply_fn(**a__ , params=state.params , train=a__ ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = outputs lowerCamelCase__ = state.loss_fn(a__ , a__ , a__ , a__ , a__ , a__ ) lowerCamelCase__ = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class snake_case_ ( train_state.TrainState ): """simple docstring""" __lowerCAmelCase : Callable =struct.field(pytree_node=A__ ) @dataclass class snake_case_ : """simple docstring""" __lowerCAmelCase : Args __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : wandb __lowerCAmelCase : Callable =None def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None): lowerCamelCase__ = model.params lowerCamelCase__ = TrainState.create( apply_fn=model.__call__ , params=UpperCamelCase , tx=UpperCamelCase , loss_fn=UpperCamelCase , ) if ckpt_dir is not None: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = restore_checkpoint(UpperCamelCase , UpperCamelCase) lowerCamelCase__ = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } lowerCamelCase__ , lowerCamelCase__ = build_tx(**UpperCamelCase) lowerCamelCase__ = train_state.TrainState( step=UpperCamelCase , apply_fn=model.__call__ , params=UpperCamelCase , tx=UpperCamelCase , opt_state=UpperCamelCase , ) lowerCamelCase__ = args lowerCamelCase__ = data_collator lowerCamelCase__ = lr lowerCamelCase__ = params lowerCamelCase__ = jax_utils.replicate(UpperCamelCase) return state def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = self.args lowerCamelCase__ = len(UpperCamelCase) // args.batch_size lowerCamelCase__ = jax.random.PRNGKey(0) lowerCamelCase__ = jax.random.split(UpperCamelCase , jax.device_count()) for epoch in range(args.max_epochs): lowerCamelCase__ = jnp.array(0 , dtype=jnp.floataa) lowerCamelCase__ = get_batched_dataset(UpperCamelCase , args.batch_size , seed=UpperCamelCase) lowerCamelCase__ = 0 for batch in tqdm(UpperCamelCase , total=UpperCamelCase , desc=f"""Running EPOCH-{epoch}"""): lowerCamelCase__ = self.data_collator(UpperCamelCase) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.train_step_fn(UpperCamelCase , UpperCamelCase , **UpperCamelCase) running_loss += jax_utils.unreplicate(metrics["loss"]) i += 1 if i % args.logging_steps == 0: lowerCamelCase__ = jax_utils.unreplicate(state.step) lowerCamelCase__ = running_loss.item() / i lowerCamelCase__ = self.scheduler_fn(state_step - 1) lowerCamelCase__ = self.evaluate(UpperCamelCase , UpperCamelCase) lowerCamelCase__ = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(UpperCamelCase)) self.logger.log(UpperCamelCase , commit=UpperCamelCase) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"""-e{epoch}-s{i}""" , state=UpperCamelCase) def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = get_batched_dataset(UpperCamelCase , self.args.batch_size) lowerCamelCase__ = len(UpperCamelCase) // self.args.batch_size lowerCamelCase__ = jnp.array(0 , dtype=jnp.floataa) lowerCamelCase__ = 0 for batch in tqdm(UpperCamelCase , total=UpperCamelCase , desc="Evaluating ... "): lowerCamelCase__ = self.data_collator(UpperCamelCase) lowerCamelCase__ = self.val_step_fn(UpperCamelCase , **UpperCamelCase) running_loss += jax_utils.unreplicate(metrics["loss"]) i += 1 return running_loss / i def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = jax_utils.unreplicate(UpperCamelCase) print(f"""SAVING CHECKPOINT IN {save_dir}""" , end=" ... ") self.model_save_fn(UpperCamelCase , params=state.params) with open(os.path.join(UpperCamelCase , "opt_state.msgpack") , "wb") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(UpperCamelCase , "args.joblib")) joblib.dump(self.data_collator , os.path.join(UpperCamelCase , "data_collator.joblib")) with open(os.path.join(UpperCamelCase , "training_state.json") , "w") as f: json.dump({"step": state.step.item()} , UpperCamelCase) print("DONE") def lowerCAmelCase( a__ : str , a__ : Optional[int] ): '''simple docstring''' print(f"""RESTORING CHECKPOINT FROM {save_dir}""" , end=" ... " ) with open(os.path.join(a__ , "flax_model.msgpack" ) , "rb" ) as f: lowerCamelCase__ = from_bytes(state.params , f.read() ) with open(os.path.join(a__ , "opt_state.msgpack" ) , "rb" ) as f: lowerCamelCase__ = from_bytes(state.opt_state , f.read() ) lowerCamelCase__ = joblib.load(os.path.join(a__ , "args.joblib" ) ) lowerCamelCase__ = joblib.load(os.path.join(a__ , "data_collator.joblib" ) ) with open(os.path.join(a__ , "training_state.json" ) , "r" ) as f: lowerCamelCase__ = json.load(a__ ) lowerCamelCase__ = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def lowerCAmelCase( a__ : Union[str, Any] , a__ : List[str] , a__ : Tuple , a__ : Optional[int] ): '''simple docstring''' lowerCamelCase__ = num_train_steps - warmup_steps lowerCamelCase__ = optax.linear_schedule(init_value=a__ , end_value=a__ , transition_steps=a__ ) lowerCamelCase__ = optax.linear_schedule(init_value=a__ , end_value=1E-7 , transition_steps=a__ ) lowerCamelCase__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def lowerCAmelCase( a__ : Any , a__ : Union[str, Any] , a__ : Optional[int] , a__ : List[str] , a__ : Union[str, Any] ): '''simple docstring''' def weight_decay_mask(a__ : str ): lowerCamelCase__ = traverse_util.flatten_dict(a__ ) lowerCamelCase__ = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(a__ ) lowerCamelCase__ = scheduler_fn(a__ , a__ , a__ , a__ ) lowerCamelCase__ = optax.adamw(learning_rate=a__ , weight_decay=a__ , mask=a__ ) return tx, lr
426
1
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _lowerCamelCase : Dict = logging.get_logger(__name__) class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__ )
184
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase__ , lowercase__=7 , lowercase__=3 , lowercase__=1_8 , lowercase__=3_0 , lowercase__=4_0_0 , lowercase__=True , lowercase__=None , lowercase__=True , ): '''simple docstring''' __A =size if size is not None else {'''height''': 1_8, '''width''': 1_8} __A =parent __A =batch_size __A =num_channels __A =image_size __A =min_resolution __A =max_resolution __A =do_resize __A =size __A =apply_ocr def __UpperCamelCase ( self ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowercase_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __UpperCamelCase ( self ): '''simple docstring''' __A =LayoutLMvaImageProcessingTester(self ) @property def __UpperCamelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self ): '''simple docstring''' __A =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowercase__ , '''size''' ) ) self.assertTrue(hasattr(lowercase__ , '''apply_ocr''' ) ) def __UpperCamelCase ( self ): '''simple docstring''' __A =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8} ) __A =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2} ) def __UpperCamelCase ( self ): '''simple docstring''' pass def __UpperCamelCase ( self ): '''simple docstring''' __A =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input __A =image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , lowercase__ ) self.assertIsInstance(encoding.boxes , lowercase__ ) # Test batched __A =image_processing(lowercase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __UpperCamelCase ( self ): '''simple docstring''' __A =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray ) # Test not batched input __A =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __A =image_processing(lowercase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __UpperCamelCase ( self ): '''simple docstring''' __A =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase__ , torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor ) # Test not batched input __A =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __A =image_processing(lowercase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __UpperCamelCase ( self ): '''simple docstring''' __A =LayoutLMvaImageProcessor() from datasets import load_dataset __A =load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) __A =Image.open(ds[0]['''file'''] ).convert('''RGB''' ) __A =image_processing(lowercase__ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __A =[['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 __A =[[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowercase__ ) self.assertListEqual(encoding.boxes , lowercase__ ) # with apply_OCR = False __A =LayoutLMvaImageProcessor(apply_ocr=lowercase__ ) __A =image_processing(lowercase__ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
184
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. UpperCamelCase__ : Tuple = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _A : Union[str, Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _A : Union[str, Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _A : int = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) __SCREAMING_SNAKE_CASE : str = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_04}] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_04}, {"""label""": """LABEL_1""", """score""": 0.4_96}] ) __SCREAMING_SNAKE_CASE : str = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [{"""label""": """LABEL_0""", """score""": 0.5_04}, {"""label""": """LABEL_1""", """score""": 0.4_96}], [{"""label""": """LABEL_0""", """score""": 0.5_04}, {"""label""": """LABEL_1""", """score""": 0.4_96}], ] , ) __SCREAMING_SNAKE_CASE : List[str] = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_04}] ) # Legacy behavior __SCREAMING_SNAKE_CASE : Optional[int] = text_classifier("""This is great !""" , return_all_scores=lowerCAmelCase__ ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_04}] ) __SCREAMING_SNAKE_CASE : Tuple = text_classifier("""This is great !""" , return_all_scores=lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [[{"""label""": """LABEL_0""", """score""": 0.5_04}, {"""label""": """LABEL_1""", """score""": 0.4_96}]] ) __SCREAMING_SNAKE_CASE : Optional[int] = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [{"""label""": """LABEL_0""", """score""": 0.5_04}, {"""label""": """LABEL_1""", """score""": 0.4_96}], [{"""label""": """LABEL_0""", """score""": 0.5_04}, {"""label""": """LABEL_1""", """score""": 0.4_96}], ] , ) __SCREAMING_SNAKE_CASE : Dict = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ {"""label""": """LABEL_0""", """score""": 0.5_04}, {"""label""": """LABEL_0""", """score""": 0.5_04}, ] , ) @require_torch def UpperCamelCase__ ( self : str ): """simple docstring""" import torch __SCREAMING_SNAKE_CASE : Dict = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) __SCREAMING_SNAKE_CASE : List[str] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_04}] ) @require_tf def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) __SCREAMING_SNAKE_CASE : List[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"""label""": """LABEL_0""", """score""": 0.5_04}] ) @slow @require_torch def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = pipeline("""text-classification""" ) __SCREAMING_SNAKE_CASE : List[str] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __SCREAMING_SNAKE_CASE : int = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __SCREAMING_SNAKE_CASE : int = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"""label""": """POSITIVE""", """score""": 0.9_88}] ) @slow @require_tf def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = pipeline("""text-classification""" , framework="""tf""" ) __SCREAMING_SNAKE_CASE : Dict = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __SCREAMING_SNAKE_CASE : Optional[int] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"""label""": """POSITIVE""", """score""": 0.9_88}] ) def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = TextClassificationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __SCREAMING_SNAKE_CASE : Dict = """HuggingFace is in""" __SCREAMING_SNAKE_CASE : int = text_classifier(lowerCAmelCase__ ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"""label""": ANY(lowerCAmelCase__ ), """score""": ANY(lowerCAmelCase__ )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) __SCREAMING_SNAKE_CASE : List[Any] = ["""HuggingFace is in """, """Paris is in France"""] __SCREAMING_SNAKE_CASE : int = text_classifier(lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{"""label""": ANY(lowerCAmelCase__ ), """score""": ANY(lowerCAmelCase__ )}, {"""label""": ANY(lowerCAmelCase__ ), """score""": ANY(lowerCAmelCase__ )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __SCREAMING_SNAKE_CASE : Any = text_classifier(lowerCAmelCase__ , top_k=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [[{"""label""": ANY(lowerCAmelCase__ ), """score""": ANY(lowerCAmelCase__ )}] * N, [{"""label""": ANY(lowerCAmelCase__ ), """score""": ANY(lowerCAmelCase__ )}] * N] , ) __SCREAMING_SNAKE_CASE : Any = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} __SCREAMING_SNAKE_CASE : int = text_classifier(lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , {"""label""": ANY(lowerCAmelCase__ ), """score""": ANY(lowerCAmelCase__ )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __SCREAMING_SNAKE_CASE : Dict = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(lowerCAmelCase__ ): text_classifier(lowerCAmelCase__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __SCREAMING_SNAKE_CASE : List[Any] = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{"""label""": ANY(lowerCAmelCase__ ), """score""": ANY(lowerCAmelCase__ )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
720
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets UpperCamelCase__ : Optional[Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' UpperCamelCase__ : List[str] = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' UpperCamelCase__ : Dict = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Optional[int]="uniform_average" , lowerCAmelCase__ : int=True ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = mean_squared_error( lowerCAmelCase__ , lowerCAmelCase__ , sample_weight=lowerCAmelCase__ , multioutput=lowerCAmelCase__ , squared=lowerCAmelCase__ ) return {"mse": mse}
178
0
"""simple docstring""" class lowercase__ : """simple docstring""" def __init__( self ): '''simple docstring''' UpperCamelCase : dict[str, TrieNode] = {} # Mapping from char to TrieNode UpperCamelCase : int = False def _a ( self , _A ): '''simple docstring''' for word in words: self.insert(_A ) def _a ( self , _A ): '''simple docstring''' UpperCamelCase : Tuple = self for char in word: if char not in curr.nodes: UpperCamelCase : List[Any] = TrieNode() UpperCamelCase : List[str] = curr.nodes[char] UpperCamelCase : List[Any] = True def _a ( self , _A ): '''simple docstring''' UpperCamelCase : Optional[Any] = self for char in word: if char not in curr.nodes: return False UpperCamelCase : List[str] = curr.nodes[char] return curr.is_leaf def _a ( self , _A ): '''simple docstring''' def _delete(_A , _A , _A ) -> bool: if index == len(_A ): # If word does not exist if not curr.is_leaf: return False UpperCamelCase : Optional[Any] = False return len(curr.nodes ) == 0 UpperCamelCase : Tuple = word[index] UpperCamelCase : int = curr.nodes.get(_A ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCamelCase : Dict = _delete(_A , _A , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _A , 0 ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if node.is_leaf: print(SCREAMING_SNAKE_CASE , end=""" """ ) for key, value in node.nodes.items(): print_words(SCREAMING_SNAKE_CASE , word + key ) def UpperCamelCase (): UpperCamelCase : Union[str, Any] = """banana bananas bandana band apple all beast""".split() UpperCamelCase : List[Any] = TrieNode() root.insert_many(SCREAMING_SNAKE_CASE ) # print_words(root, "") assert all(root.find(SCREAMING_SNAKE_CASE ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): print(str(SCREAMING_SNAKE_CASE ) , """works!""" if passes else """doesn't work :(""" ) def UpperCamelCase (): assert test_trie() def UpperCamelCase (): print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
102
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __magic_name__ : str = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=_A , speech_processor=_A , vae=_A , text_encoder=_A , tokenizer=_A , unet=_A , scheduler=_A , feature_extractor=_A , ) def _a ( self , _A = "auto" ): '''simple docstring''' if slice_size == "auto": UpperCamelCase : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_A ) def _a ( self ): '''simple docstring''' self.enable_attention_slicing(_A ) @torch.no_grad() def __call__( self , _A , _A=1_6_0_0_0 , _A = 5_1_2 , _A = 5_1_2 , _A = 5_0 , _A = 7.5 , _A = None , _A = 1 , _A = 0.0 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , **_A , ): '''simple docstring''' UpperCamelCase : str = self.speech_processor.feature_extractor( _A , return_tensors="""pt""" , sampling_rate=_A ).input_features.to(self.device ) UpperCamelCase : List[Any] = self.speech_model.generate(_A , max_length=4_8_0_0_0_0 ) UpperCamelCase : Optional[int] = self.speech_processor.tokenizer.batch_decode(_A , skip_special_tokens=_A , normalize=_A )[ 0 ] if isinstance(_A , _A ): UpperCamelCase : Tuple = 1 elif isinstance(_A , _A ): UpperCamelCase : List[Any] = len(_A ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_A )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_A )}.""" ) # get prompt text embeddings UpperCamelCase : Dict = self.tokenizer( _A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) UpperCamelCase : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) UpperCamelCase : int = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase : List[str] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = text_embeddings.shape UpperCamelCase : Optional[int] = text_embeddings.repeat(1 , _A , 1 ) UpperCamelCase : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , _A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase : Optional[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase : List[str] if negative_prompt is None: UpperCamelCase : str = [""""""] * batch_size elif type(_A ) is not type(_A ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(_A )} !=""" f""" {type(_A )}.""" ) elif isinstance(_A , _A ): UpperCamelCase : Tuple = [negative_prompt] elif batch_size != len(_A ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(_A )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: UpperCamelCase : Any = negative_prompt UpperCamelCase : Optional[int] = text_input_ids.shape[-1] UpperCamelCase : List[str] = self.tokenizer( _A , padding="""max_length""" , max_length=_A , truncation=_A , return_tensors="""pt""" , ) UpperCamelCase : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase : List[Any] = uncond_embeddings.shape[1] UpperCamelCase : Dict = uncond_embeddings.repeat(1 , _A , 1 ) UpperCamelCase : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase : str = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase : Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase : Tuple = torch.randn(_A , generator=_A , device="""cpu""" , dtype=_A ).to( self.device ) else: UpperCamelCase : Any = torch.randn(_A , generator=_A , device=self.device , dtype=_A ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) UpperCamelCase : Optional[Any] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase : Tuple = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase : List[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase : str = {} if accepts_eta: UpperCamelCase : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase : str = self.scheduler.scale_model_input(_A , _A ) # predict the noise residual UpperCamelCase : Optional[Any] = self.unet(_A , _A , encoder_hidden_states=_A ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase : str = noise_pred.chunk(2 ) UpperCamelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase : Any = self.scheduler.step(_A , _A , _A , **_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) UpperCamelCase : Optional[Any] = 1 / 0.1_82_15 * latents UpperCamelCase : Union[str, Any] = self.vae.decode(_A ).sample UpperCamelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase : Optional[Any] = self.numpy_to_pil(_A ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_A , nsfw_content_detected=_A )
102
1
'''simple docstring''' def lowerCamelCase_ ( lowercase__): if not isinstance(lowercase__ , lowercase__): raise ValueError("Input must be an integer") if input_num <= 0: raise ValueError("Input must be positive") return sum( divisor for divisor in range(1 , input_num // 2 + 1) if input_num % divisor == 0) if __name__ == "__main__": import doctest doctest.testmod()
714
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Tuple = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase ( _lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = "mobilenet_v1" def __init__( self : Union[str, Any] , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Any=224 , __lowerCamelCase : Tuple=1.0 , __lowerCamelCase : Optional[int]=8 , __lowerCamelCase : str="relu6" , __lowerCamelCase : Any=True , __lowerCamelCase : Union[str, Any]=0.9_9_9 , __lowerCamelCase : List[Any]=0.0_2 , __lowerCamelCase : str=0.0_0_1 , **__lowerCamelCase : str , ) -> Dict: '''simple docstring''' super().__init__(**__lowerCamelCase ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCamelCase__ = num_channels lowerCamelCase__ = image_size lowerCamelCase__ = depth_multiplier lowerCamelCase__ = min_depth lowerCamelCase__ = hidden_act lowerCamelCase__ = tf_padding lowerCamelCase__ = classifier_dropout_prob lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps class lowercase ( _lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = version.parse("1.11" ) @property def a__ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def a__ ( self : List[Any] ) -> float: '''simple docstring''' return 1E-4
187
0
def lowerCamelCase ( a_ , a_ ) -> list[int]: lowerCAmelCase_ = int(a_ ) # Initialize Result lowerCAmelCase_ = [] # Traverse through all denomination for denomination in reversed(a_ ): # Find denominations while int(a_ ) >= int(a_ ): total_value -= int(a_ ) answer.append(a_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": lowerCamelCase_ = [] lowerCamelCase_ = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): lowerCamelCase_ = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) lowerCamelCase_ = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter lowerCamelCase_ = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] lowerCamelCase_ = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(f'''Following is minimal change for {value}: ''') lowerCamelCase_ = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
318
def lowerCamelCase ( ) -> List[Any]: for n in range(1 , 1_000_000 ): yield n * (n + 1) // 2 def lowerCamelCase ( a_ ) -> str: lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 while i * i <= n: lowerCAmelCase_ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCamelCase ( ) -> Optional[Any]: return next(i for i in triangle_number_generator() if count_divisors(a_ ) > 500 ) if __name__ == "__main__": print(solution())
318
1
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests a__ = open # noqa: we just need to have a builtin inside this module to test it properly
706
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) a__ = logging.getLogger() def _UpperCAmelCase ( ): snake_case__ = argparse.ArgumentParser() parser.add_argument("""-f""" ) snake_case__ = parser.parse_args() return args.f class _lowerCAmelCase ( lowercase_ ): """simple docstring""" def __magic_name__ ( self : int): '''simple docstring''' snake_case__ = logging.StreamHandler(sys.stdout) logger.addHandler(UpperCamelCase__) def __magic_name__ ( self : Union[str, Any] , UpperCamelCase__ : List[str]): '''simple docstring''' snake_case__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""") with patch.object(UpperCamelCase__ , """argv""" , UpperCamelCase__): snake_case__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(UpperCamelCase__ , 0.6_66) @slow @require_torch_non_multi_gpu def __magic_name__ ( self : str): '''simple docstring''' snake_case__ = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(UpperCamelCase__) snake_case__ = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(UpperCamelCase__) snake_case__ = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(UpperCamelCase__)
99
0
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __snake_case : List[Any] =get_tests_dir('fixtures/test_sentencepiece_bpe.model') class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =BartphoTokenizer snake_case_ =False snake_case_ =True def lowerCAmelCase__ (self ) -> int: """simple docstring""" super().setUp() lowerCAmelCase__ : Optional[int] = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] lowerCAmelCase__ : int = dict(zip(__lowerCamelCase ,range(len(__lowerCamelCase ) ) ) ) lowerCAmelCase__ : Union[str, Any] = {'''unk_token''': '''<unk>'''} lowerCAmelCase__ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) lowerCAmelCase__ : Tuple = BartphoTokenizer(__lowerCamelCase ,self.monolingual_vocab_file ,**self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ (self ,**__lowerCamelCase ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase__ : int = '''This is a là test''' lowerCAmelCase__ : Optional[Any] = '''This is a<unk><unk> test''' return input_text, output_text def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : str = BartphoTokenizer(__lowerCamelCase ,self.monolingual_vocab_file ,**self.special_tokens_map ) lowerCAmelCase__ : int = '''This is a là test''' lowerCAmelCase__ : Optional[Any] = '''▁This ▁is ▁a ▁l à ▁t est'''.split() lowerCAmelCase__ : List[str] = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Any = tokens + [tokenizer.unk_token] lowerCAmelCase__ : int = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) ,__lowerCamelCase )
647
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , lowerCamelCase__ , ) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =RobertaConfig snake_case_ ="""roberta""" def __init__(self ,__lowerCamelCase ) -> int: """simple docstring""" super().__init__(__lowerCamelCase ) lowerCAmelCase__ : Any = RobertaEmbeddings(__lowerCamelCase ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , lowerCamelCase__ , ) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =RobertaConfig snake_case_ ="""roberta""" def __init__(self ,__lowerCamelCase ) -> List[Any]: """simple docstring""" super().__init__(__lowerCamelCase ) lowerCAmelCase__ : Any = config.num_labels lowerCAmelCase__ : List[Any] = config.num_hidden_layers lowerCAmelCase__ : int = DeeRobertaModel(__lowerCamelCase ) lowerCAmelCase__ : Any = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase__ : Dict = nn.Linear(config.hidden_size ,self.config.num_labels ) @add_start_docstrings_to_model_forward(__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=-1 ,__lowerCamelCase=False ,) -> Any: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.num_layers try: lowerCAmelCase__ : Union[str, Any] = self.roberta( __lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,position_ids=__lowerCamelCase ,head_mask=__lowerCamelCase ,inputs_embeds=__lowerCamelCase ,) lowerCAmelCase__ : Optional[int] = outputs[1] lowerCAmelCase__ : str = self.dropout(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = self.classifier(__lowerCamelCase ) lowerCAmelCase__ : Dict = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowerCAmelCase__ : Union[str, Any] = e.message lowerCAmelCase__ : Tuple = e.exit_layer lowerCAmelCase__ : str = outputs[0] if not self.training: lowerCAmelCase__ : Optional[int] = entropy(__lowerCamelCase ) lowerCAmelCase__ : Any = [] lowerCAmelCase__ : List[Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowerCAmelCase__ : Dict = MSELoss() lowerCAmelCase__ : List[Any] = loss_fct(logits.view(-1 ) ,labels.view(-1 ) ) else: lowerCAmelCase__ : Any = CrossEntropyLoss() lowerCAmelCase__ : str = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) # work with highway exits lowerCAmelCase__ : Dict = [] for highway_exit in outputs[-1]: lowerCAmelCase__ : Optional[int] = highway_exit[0] if not self.training: highway_logits_all.append(__lowerCamelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowerCAmelCase__ : int = MSELoss() lowerCAmelCase__ : int = loss_fct(highway_logits.view(-1 ) ,labels.view(-1 ) ) else: lowerCAmelCase__ : Union[str, Any] = CrossEntropyLoss() lowerCAmelCase__ : Dict = loss_fct(highway_logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) highway_losses.append(__lowerCamelCase ) if train_highway: lowerCAmelCase__ : Dict = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowerCAmelCase__ : Tuple = (loss,) + outputs if not self.training: lowerCAmelCase__ : Union[str, Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowerCAmelCase__ : Tuple = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
647
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : List[str] = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __snake_case ( lowerCAmelCase__ ): __lowerCAmelCase : Any = 'biogpt' def __init__( self , _A=42384 , _A=1024 , _A=24 , _A=16 , _A=4096 , _A="gelu" , _A=0.1 , _A=0.1 , _A=1024 , _A=0.0_2 , _A=1E-12 , _A=True , _A=True , _A=0.0 , _A=0.0 , _A=1 , _A=0 , _A=2 , **_A , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = scale_embedding SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = layerdrop SCREAMING_SNAKE_CASE_ = activation_dropout super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A)
620
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self , _A , _A=7 , _A=3 , _A=18 , _A=30 , _A=400 , _A=True , _A=None , _A=True , _A=None , _A=True , _A=[0.5, 0.5, 0.5] , _A=[0.5, 0.5, 0.5] , _A=False , ): SCREAMING_SNAKE_CASE_ = size if size is not None else {'height': 20, 'width': 20} SCREAMING_SNAKE_CASE_ = crop_size if crop_size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = min_resolution SCREAMING_SNAKE_CASE_ = max_resolution SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = do_center_crop SCREAMING_SNAKE_CASE_ = crop_size SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = image_mean SCREAMING_SNAKE_CASE_ = image_std SCREAMING_SNAKE_CASE_ = do_reduce_labels def lowerCAmelCase__ ( self): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def _UpperCAmelCase ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) SCREAMING_SNAKE_CASE_ = Image.open(dataset[0]['file'] ) SCREAMING_SNAKE_CASE_ = Image.open(dataset[1]['file'] ) return image, map def _UpperCAmelCase ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) SCREAMING_SNAKE_CASE_ = Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE_ = Image.open(ds[1]['file'] ) SCREAMING_SNAKE_CASE_ = Image.open(ds[2]['file'] ) SCREAMING_SNAKE_CASE_ = Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __snake_case ( lowerCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = BeitImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = BeitImageProcessingTester(self) @property def lowerCAmelCase__ ( self): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_A , 'do_resize')) self.assertTrue(hasattr(_A , 'size')) self.assertTrue(hasattr(_A , 'do_center_crop')) self.assertTrue(hasattr(_A , 'center_crop')) self.assertTrue(hasattr(_A , 'do_normalize')) self.assertTrue(hasattr(_A , 'image_mean')) self.assertTrue(hasattr(_A , 'image_std')) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'height': 20, 'width': 20}) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18}) self.assertEqual(image_processor.do_reduce_labels , _A) SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_A) self.assertEqual(image_processor.size , {'height': 42, 'width': 42}) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84}) self.assertEqual(image_processor.do_reduce_labels , _A) def lowerCAmelCase__ ( self): pass def lowerCAmelCase__ ( self): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A) for image in image_inputs: self.assertIsInstance(_A , Image.Image) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCAmelCase__ ( self): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A) for image in image_inputs: self.assertIsInstance(_A , np.ndarray) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCAmelCase__ ( self): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCAmelCase__ ( self): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A) SCREAMING_SNAKE_CASE_ = [] for image in image_inputs: self.assertIsInstance(_A , torch.Tensor) maps.append(torch.zeros(image.shape[-2:]).long()) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , maps[0] , return_tensors='pt') self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long) self.assertTrue(encoding['labels'].min().item() >= 0) self.assertTrue(encoding['labels'].max().item() <= 255) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_A , _A , return_tensors='pt') self.assertEqual( encoding['pixel_values'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long) self.assertTrue(encoding['labels'].min().item() >= 0) self.assertTrue(encoding['labels'].max().item() <= 255) # Test not batched input (PIL images) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = prepare_semantic_single_inputs() SCREAMING_SNAKE_CASE_ = image_processing(_A , _A , return_tensors='pt') self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long) self.assertTrue(encoding['labels'].min().item() >= 0) self.assertTrue(encoding['labels'].max().item() <= 255) # Test batched input (PIL images) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = prepare_semantic_batch_inputs() SCREAMING_SNAKE_CASE_ = image_processing(_A , _A , return_tensors='pt') self.assertEqual( encoding['pixel_values'].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long) self.assertTrue(encoding['labels'].min().item() >= 0) self.assertTrue(encoding['labels'].max().item() <= 255) def lowerCAmelCase__ ( self): # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = prepare_semantic_single_inputs() SCREAMING_SNAKE_CASE_ = image_processing(_A , _A , return_tensors='pt') self.assertTrue(encoding['labels'].min().item() >= 0) self.assertTrue(encoding['labels'].max().item() <= 150) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = image_processing(_A , _A , return_tensors='pt') self.assertTrue(encoding['labels'].min().item() >= 0) self.assertTrue(encoding['labels'].max().item() <= 255)
620
1
def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), F"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: lowercase__ : int = F"""The input value of [n={number}] has to be > 0""" raise ValueError(lowerCamelCase__ ) else: lowercase__ : Union[str, Any] = sylvester(number - 1 ) lowercase__ : str = num - 1 lowercase__ : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
496
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
496
1
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE__ = namedtuple("covid_data", "cases deaths recovered") def lowerCAmelCase__ ( _UpperCamelCase : Union[str, Any] = "https://www.worldometers.info/coronavirus/" ) -> covid_data: """simple docstring""" snake_case = '//div[@class = \"maincounter-number\"]/span/text()' return covid_data(*html.fromstring(requests.get(SCREAMING_SNAKE_CASE_ ).content ).xpath(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE__ = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
700
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" @require_torch def snake_case ( self ): """simple docstring""" snake_case = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' snake_case = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' snake_case = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache snake_case = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowerCAmelCase ) BertModel.from_pretrained(lowerCAmelCase ) BertTokenizer.from_pretrained(lowerCAmelCase ) pipeline(task='fill-mask' , model=lowerCAmelCase ) # baseline - just load from_pretrained with normal network snake_case = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed snake_case = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files snake_case = '1' snake_case = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def snake_case ( self ): """simple docstring""" snake_case = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' snake_case = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' snake_case = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache snake_case = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowerCAmelCase ) BertModel.from_pretrained(lowerCAmelCase ) BertTokenizer.from_pretrained(lowerCAmelCase ) pipeline(task='fill-mask' , model=lowerCAmelCase ) # baseline - just load from_pretrained with normal network snake_case = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed snake_case = self.get_env() snake_case = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def snake_case ( self ): """simple docstring""" snake_case = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' snake_case = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' snake_case = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network snake_case = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed snake_case = self.get_env() snake_case = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # next emulate no network snake_case = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files snake_case = '1' snake_case = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) @require_torch def snake_case ( self ): """simple docstring""" snake_case = '\nfrom transformers import pipeline\n ' snake_case = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' snake_case = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' snake_case = self.get_env() snake_case = '1' snake_case = [sys.executable, '-c', '\n'.join([load, mock, run] )] snake_case = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '' ) , ) @require_torch def snake_case ( self ): """simple docstring""" snake_case = '\nfrom transformers import AutoModel\n ' snake_case = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network snake_case = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed snake_case = self.get_env() snake_case = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files snake_case = '1' snake_case = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('success' , result.stdout.decode() )
104
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ : Optional[int] = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : int = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowercase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
64
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def A__ ( ): SCREAMING_SNAKE_CASE__: Union[str, Any]= argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=snake_case_ , default=snake_case_ , required=snake_case_ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=snake_case_ , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=snake_case_ , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=snake_case_ , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=snake_case_ , default=0 , help='''cuda_id.''' , ) SCREAMING_SNAKE_CASE__: Any= parser.parse_args() return args def A__ ( snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : List[str] ): if not len(snake_case_ ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: str= imgs[0].size SCREAMING_SNAKE_CASE__: Optional[Any]= Image.new('''RGB''' , size=(cols * w, rows * h) ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Union[str, Any]= grid.size for i, img in enumerate(snake_case_ ): grid.paste(snake_case_ , box=(i % cols * w, i // cols * h) ) return grid def A__ ( snake_case_ : Tuple , snake_case_ : str="robotic cat with wings" , snake_case_ : Optional[Any]=7.5 , snake_case_ : Dict=50 , snake_case_ : Union[str, Any]=1 , snake_case_ : Tuple=42 , ): SCREAMING_SNAKE_CASE__: List[Any]= torch.Generator(pipeline.device ).manual_seed(snake_case_ ) SCREAMING_SNAKE_CASE__: Optional[int]= pipeline( snake_case_ , guidance_scale=snake_case_ , num_inference_steps=snake_case_ , generator=snake_case_ , num_images_per_prompt=snake_case_ , ).images SCREAMING_SNAKE_CASE__: str= int(math.sqrt(snake_case_ ) ) SCREAMING_SNAKE_CASE__: Optional[Any]= image_grid(snake_case_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images lowercase_ : List[str] = parse_args() # Load models and create wrapper for stable diffusion lowercase_ : List[str] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') lowercase_ : List[Any] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') lowercase_ : Tuple = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') lowercase_ : List[Any] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') lowercase_ : Dict = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowercase_ : str = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): lowercase_ : Union[str, Any] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: lowercase_ : Any = unet.to(torch.device('cuda', args.cuda_id)) lowercase_ : str = pipeline.to(unet.device) lowercase_ , lowercase_ : Dict = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) lowercase_ : List[Any] = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
64
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase : Tuple = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __lowerCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , ): """simple docstring""" __UpperCAmelCase = {} if train_file is not None: __UpperCAmelCase = [train_file] if eval_file is not None: __UpperCAmelCase = [eval_file] if test_file is not None: __UpperCAmelCase = [test_file] __UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=UpperCamelCase__ ) __UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase = features_name.pop(UpperCamelCase__ ) __UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase = {label: i for i, label in enumerate(UpperCamelCase__ )} __UpperCAmelCase = tokenizer.model_input_names __UpperCAmelCase = {} if len(UpperCamelCase__ ) == 1: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' ) , batched=UpperCamelCase__ , ) elif len(UpperCamelCase__ ) == 2: for k in files.keys(): __UpperCAmelCase = ds[k].map( lambda UpperCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='''max_length''' , ) , batched=UpperCamelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase = ( tf.data.Dataset.from_generator( UpperCamelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCAmelCase : List[Any] = logging.getLogger(__name__) @dataclass class A : a_ = field(metadata={'''help''': '''Which column contains the label'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the training file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the development file'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''The path of the test file'''} ) a_ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : a_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a_ = field(default=UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ = field( default=UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def lowerCAmelCase ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCamelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCamelCase__ : EvalPrediction ) -> Dict: __UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase = TFTrainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCAmelCase = trainer.evaluate() __UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(UpperCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(UpperCamelCase__ ) return results if __name__ == "__main__": main()
654
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ : List[Any] = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Any = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __magic_name__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
102
"""simple docstring""" from math import ceil, sqrt def UpperCamelCase (SCREAMING_SNAKE_CASE = 100_0000 ): UpperCamelCase : int = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: UpperCamelCase : Optional[Any] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: UpperCamelCase : str = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
102
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=10 , lowerCAmelCase_=3 , lowerCAmelCase_=2 , lowerCAmelCase_=2 , lowerCAmelCase_=2 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=10 , lowerCAmelCase_=0.0_2 , lowerCAmelCase_=0.9 , lowerCAmelCase_=None , ): _lowercase =parent _lowercase =batch_size _lowercase =image_size _lowercase =num_channels _lowercase =patch_size _lowercase =tubelet_size _lowercase =num_frames _lowercase =is_training _lowercase =use_labels _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =type_sequence_label_size _lowercase =initializer_range _lowercase =mask_ratio _lowercase =scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _lowercase =(image_size // patch_size) ** 2 _lowercase =(num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _lowercase =int(mask_ratio * self.seq_length ) def __lowerCAmelCase ( self ): _lowercase =floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase =self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase =VideoMAEModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _lowercase =model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase =VideoMAEForPreTraining(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _lowercase =torch.ones((self.num_masks,) ) _lowercase =torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _lowercase =mask.expand(self.batch_size , -1 ).bool() _lowercase =model(lowerCAmelCase_ , lowerCAmelCase_ ) # model only returns predictions for masked patches _lowercase =mask.sum().item() _lowercase =3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def __lowerCAmelCase ( self ): _lowercase =self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase =config_and_inputs _lowercase ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class _a ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCAmelCase ( self ): _lowercase =VideoMAEModelTester(self ) _lowercase =ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ): _lowercase =copy.deepcopy(lowerCAmelCase_ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _lowercase =torch.ones((self.model_tester.num_masks,) ) _lowercase =torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _lowercase =mask.expand(self.model_tester.batch_size , -1 ).bool() _lowercase =bool_masked_pos.to(lowerCAmelCase_ ) if return_labels: if model_class in [ *get_values(lowerCAmelCase_ ), ]: _lowercase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def __lowerCAmelCase ( self ): pass def __lowerCAmelCase ( self ): _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowercase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def __lowerCAmelCase ( self ): _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(lowerCAmelCase_ ) _lowercase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase =[*signature.parameters.keys()] _lowercase =["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __lowerCAmelCase ( self ): _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __lowerCAmelCase ( self ): _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase_ ) @slow def __lowerCAmelCase ( self ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase =VideoMAEModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def __lowerCAmelCase ( self ): if not self.has_attentions: pass else: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =True for model_class in self.all_model_classes: _lowercase =self.model_tester.seq_length - self.model_tester.num_masks _lowercase =( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _lowercase =True _lowercase =False _lowercase =True _lowercase =model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _lowercase =model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _lowercase =outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowercase =True _lowercase =model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _lowercase =model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _lowercase =outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _lowercase =len(lowerCAmelCase_ ) # Check attention is always last and order is fine _lowercase =True _lowercase =True _lowercase =model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _lowercase =model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase_ ) ) _lowercase =outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __lowerCAmelCase ( self ): def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase =model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _lowercase =model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _lowercase =outputs.hidden_states _lowercase =self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _lowercase =self.model_tester.seq_length - self.model_tester.num_masks _lowercase =num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase =True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __lowerCAmelCase ( self ): pass def __lowerCamelCase ( ) -> Tuple: _lowercase =hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) _lowercase =np.load(__a ) return list(__a ) @require_torch @require_vision class _a ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ): _lowercase =VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( lowerCAmelCase_ ) _lowercase =self.default_image_processor _lowercase =prepare_video() _lowercase =image_processor(lowerCAmelCase_ , return_tensors="pt" ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _lowercase =model(**lowerCAmelCase_ ) # verify the logits _lowercase =torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _lowercase =torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def __lowerCAmelCase ( self ): _lowercase =VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(lowerCAmelCase_ ) _lowercase =self.default_image_processor _lowercase =prepare_video() _lowercase =image_processor(lowerCAmelCase_ , return_tensors="pt" ).to(lowerCAmelCase_ ) # add boolean mask, indicating which patches to mask _lowercase =hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) _lowercase =torch.load(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _lowercase =model(**lowerCAmelCase_ ) # verify the logits _lowercase =torch.Size([1, 1408, 1536] ) _lowercase =torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=lowerCAmelCase_ ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _lowercase =torch.tensor([0.5_1_4_2] , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _lowercase =VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=lowerCAmelCase_ ).to( lowerCAmelCase_ ) with torch.no_grad(): _lowercase =model(**lowerCAmelCase_ ) _lowercase =torch.tensor(torch.tensor([0.6_4_6_9] ) , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase_ , atol=1e-4 ) )
594
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class _a : """simple docstring""" __SCREAMING_SNAKE_CASE = None def __lowerCAmelCase ( self ): _lowercase =self.feature_extraction_class(**self.feat_extract_dict ) _lowercase =json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , lowerCAmelCase_ ) def __lowerCAmelCase ( self ): _lowercase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =os.path.join(lowerCAmelCase_ , "feat_extract.json" ) feat_extract_first.to_json_file(lowerCAmelCase_ ) _lowercase =self.feature_extraction_class.from_json_file(lowerCAmelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __lowerCAmelCase ( self ): _lowercase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =feat_extract_first.save_pretrained(lowerCAmelCase_ )[0] check_json_file_has_correct_format(lowerCAmelCase_ ) _lowercase =self.feature_extraction_class.from_pretrained(lowerCAmelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __lowerCAmelCase ( self ): _lowercase =self.feature_extraction_class() self.assertIsNotNone(lowerCAmelCase_ )
594
1
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () lowercase_ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). lowercase_ = [0, 25, 50] lowercase_ = [25, 50, 75] lowercase_ = fuzz.membership.trimf(X, abca) lowercase_ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. lowercase_ = np.ones(75) lowercase_ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) lowercase_ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) lowercase_ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) lowercase_ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) lowercase_ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] lowercase_ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) lowercase_ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] lowercase_ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] lowercase_ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("Young") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("Middle aged") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("union") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("intersection") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("complement_a") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("difference a/b") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("alg_sum") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("alg_product") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("bdd_sum") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("bdd_difference") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
11
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowercase_ = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __A : '''simple docstring''' def __init__(self , A = 14 ) -> None: """simple docstring""" if group not in primes: raise ValueError('''Unsupported Group''' ) _a = primes[group]['''prime'''] _a = primes[group]['''generator'''] _a = int(hexlify(urandom(32 ) ) , base=16 ) def a__ (self ) -> str: """simple docstring""" return hex(self.__private_key )[2:] def a__ (self ) -> str: """simple docstring""" _a = pow(self.generator , self.__private_key , self.prime ) return hex(A )[2:] def a__ (self , A ) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(A , (self.prime - 1) // 2 , self.prime ) == 1 ) def a__ (self , A ) -> str: """simple docstring""" _a = int(A , base=16 ) if not self.is_valid_public_key(A ): raise ValueError('''Invalid public key''' ) _a = pow(A , self.__private_key , self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def a__ (A , A ) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(A , (prime - 1) // 2 , A ) == 1 ) @staticmethod def a__ (A , A , A = 14 ) -> str: """simple docstring""" _a = int(A , base=16 ) _a = int(A , base=16 ) _a = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(A , A ): raise ValueError('''Invalid public key''' ) _a = pow(A , A , A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
11
1
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowerCAmelCase : Any = logging.get_logger(__name__) class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : Any , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : str ) -> None: """simple docstring""" warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
76
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def a__ ( A_ ): '''simple docstring''' __magic_name__ = botoa.client("""iam""" ) __magic_name__ = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=A_, AssumeRolePolicyDocument=json.dumps(A_, indent=2 ) ) __magic_name__ = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=A_, PolicyName=f'''{role_name}_policy_permission''', PolicyDocument=json.dumps(A_, indent=2 ), ) except iam_client.exceptions.EntityAlreadyExistsException: print(f'''role {role_name} already exists. Using existing one''' ) def a__ ( A_ ): '''simple docstring''' __magic_name__ = botoa.client("""iam""" ) return iam_client.get_role(RoleName=A_ )["Role"]["Arn"] def a__ ( ): '''simple docstring''' __magic_name__ = _ask_options( """How do you want to authorize?""", ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """], A_, ) __magic_name__ = None if credentials_configuration == 0: __magic_name__ = _ask_field("""Enter your AWS Profile name: [default] """, default="""default""" ) __magic_name__ = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) __magic_name__ = _ask_field("""AWS Access Key ID: """ ) __magic_name__ = aws_access_key_id __magic_name__ = _ask_field("""AWS Secret Access Key: """ ) __magic_name__ = aws_secret_access_key __magic_name__ = _ask_field("""Enter your AWS Region: [us-east-1]""", default="""us-east-1""" ) __magic_name__ = aws_region __magic_name__ = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""", ["""Provide IAM Role name""", """Create new IAM role using credentials"""], A_, ) if role_management == 0: __magic_name__ = _ask_field("""Enter your IAM role name: """ ) else: __magic_name__ = """accelerate_sagemaker_execution_role""" print(f'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(A_ ) __magic_name__ = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """, _convert_yes_no_to_bool, default=A_, error_message="""Please enter yes or no.""", ) __magic_name__ = None if is_custom_docker_image: __magic_name__ = _ask_field("""Enter your Docker image: """, lambda A_ : str(A_ ).lower() ) __magic_name__ = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """, _convert_yes_no_to_bool, default=A_, error_message="""Please enter yes or no.""", ) __magic_name__ = None if is_sagemaker_inputs_enabled: __magic_name__ = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """, lambda A_ : str(A_ ).lower(), ) __magic_name__ = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """, _convert_yes_no_to_bool, default=A_, error_message="""Please enter yes or no.""", ) __magic_name__ = None if is_sagemaker_metrics_enabled: __magic_name__ = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """, lambda A_ : str(A_ ).lower(), ) __magic_name__ = _ask_options( """What is the distributed mode?""", ["""No distributed training""", """Data parallelism"""], _convert_sagemaker_distributed_mode, ) __magic_name__ = {} __magic_name__ = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""", _convert_yes_no_to_bool, default=A_, error_message="""Please enter yes or no.""", ) if use_dynamo: __magic_name__ = """dynamo_""" __magic_name__ = _ask_options( """Which dynamo backend would you like to use?""", [x.lower() for x in DYNAMO_BACKENDS], _convert_dynamo_backend, default=2, ) __magic_name__ = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """, _convert_yes_no_to_bool, default=A_, error_message="""Please enter yes or no.""", ) if use_custom_options: __magic_name__ = _ask_options( """Which mode do you want to use?""", A_, lambda A_ : TORCH_DYNAMO_MODES[int(A_ )], default="""default""", ) __magic_name__ = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """, _convert_yes_no_to_bool, default=A_, error_message="""Please enter yes or no.""", ) __magic_name__ = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """, _convert_yes_no_to_bool, default=A_, error_message="""Please enter yes or no.""", ) __magic_name__ = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: __magic_name__ = _ask_options( A_, A_, lambda A_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(A_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __magic_name__ = _ask_field(A_, lambda A_ : str(A_ ).lower(), default="""ml.p3.2xlarge""" ) __magic_name__ = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __magic_name__ = _ask_field( """How many machines do you want use? [1]: """, A_, default=1, ) __magic_name__ = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""", ["""no""", """fp16""", """bf16""", """fp8"""], _convert_mixed_precision, ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=A_, compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER, distributed_type=A_, use_cpu=A_, dynamo_config=A_, eca_instance_type=A_, profile=A_, region=A_, iam_role_name=A_, mixed_precision=A_, num_machines=A_, sagemaker_inputs_file=A_, sagemaker_metrics_file=A_, )
76
1
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _UpperCAmelCase: def __init__( self , __a , __a=2 , __a=32 , __a=16 , __a=3 , __a=True , __a=True , __a=32 , __a=4 , __a=[0, 1, 2, 3] , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.02 , __a=3 , __a=[1, 3_84, 24, 24] , __a=True , __a=None , ) -> int: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = backbone_out_indices _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = backbone_featmap_shape _UpperCamelCase = scope _UpperCamelCase = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase = (image_size // patch_size) ** 2 _UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 1_92, 3_84, 7_68], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__a , backbone_featmap_shape=self.backbone_featmap_shape , ) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = DPTModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = DPTForDepthEstimation(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = DPTForSemanticSegmentation(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowercase__ = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = DPTModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''') def UpperCAmelCase ( self) -> str: '''simple docstring''' pass def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = True if model_class in get_values(__a): continue _UpperCamelCase = model_class(__a) model.to(__a) model.train() _UpperCamelCase = self._prepare_for_class(__a , __a , return_labels=__a) _UpperCamelCase = model(**__a).loss loss.backward() def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = False _UpperCamelCase = True if model_class in get_values(__a) or not model_class.supports_gradient_checkpointing: continue _UpperCamelCase = model_class(__a) model.to(__a) model.gradient_checkpointing_enable() model.train() _UpperCamelCase = self._prepare_for_class(__a , __a , return_labels=__a) _UpperCamelCase = model(**__a).loss loss.backward() def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) # Skip the check for the backbone _UpperCamelCase = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _UpperCamelCase = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _UpperCamelCase = DPTModel.from_pretrained(__a) self.assertIsNotNone(__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = '''add''' with self.assertRaises(__a): _UpperCamelCase = DPTForDepthEstimation(__a) def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''') _UpperCamelCase = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''').to(__a) _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) _UpperCamelCase = outputs.predicted_depth # verify the predicted depth _UpperCamelCase = torch.Size((1, 3_84, 3_84)) self.assertEqual(predicted_depth.shape , __a) _UpperCamelCase = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]]).to(__a) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , __a , atol=1e-4))
19
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): lowerCamelCase : Optional[int] =( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase : Tuple =( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase : Any =False lowerCamelCase : str =False def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Any: a : Dict = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): a : str = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> List[str]: a : Union[str, Any] = parent a : str = batch_size a : Optional[int] = seq_length a : Tuple = is_training a : int = use_input_mask a : Union[str, Any] = use_token_type_ids a : List[str] = use_labels a : str = vocab_size a : List[Any] = hidden_size a : Any = num_hidden_layers a : List[Any] = num_attention_heads a : Tuple = intermediate_size a : str = hidden_act a : List[Any] = hidden_dropout_prob a : Optional[Any] = attention_probs_dropout_prob a : Union[str, Any] = max_position_embeddings a : Tuple = type_vocab_size a : Union[str, Any] = type_sequence_label_size a : Optional[int] = initializer_range a : Any = num_labels a : str = num_choices a : List[Any] = scope a : str = embedding_size def __a ( self ) -> Dict: a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : Optional[int] = None if self.use_input_mask: a : int = random_attention_mask([self.batch_size, self.seq_length] ) a : int = None if self.use_token_type_ids: a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a : Optional[Any] = None a : List[str] = None a : str = None if self.use_labels: a : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a : str = ids_tensor([self.batch_size] , self.num_choices ) a : Tuple = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: a : List[Any] = TFMobileBertModel(config=lowerCAmelCase__ ) a : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a : List[Any] = model(lowerCAmelCase__ ) a : List[str] = [input_ids, input_mask] a : Dict = model(lowerCAmelCase__ ) a : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: a : List[Any] = TFMobileBertForMaskedLM(config=lowerCAmelCase__ ) a : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a : Optional[int] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: a : int = TFMobileBertForNextSentencePrediction(config=lowerCAmelCase__ ) a : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: a : Dict = TFMobileBertForPreTraining(config=lowerCAmelCase__ ) a : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: a : List[str] = self.num_labels a : List[str] = TFMobileBertForSequenceClassification(config=lowerCAmelCase__ ) a : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: a : Optional[int] = self.num_choices a : Tuple = TFMobileBertForMultipleChoice(config=lowerCAmelCase__ ) a : Dict = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) a : Optional[Any] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) a : Optional[int] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) a : Dict = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } a : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: a : Any = self.num_labels a : Union[str, Any] = TFMobileBertForTokenClassification(config=lowerCAmelCase__ ) a : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a : Any = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: a : Dict = TFMobileBertForQuestionAnswering(config=lowerCAmelCase__ ) a : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ) -> List[str]: a : Dict = self.prepare_config_and_inputs() ( ( a ), ( a ), ( a ), ( a ), ( a ), ( a ), ( a ), ) : Dict = config_and_inputs a : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def __a ( self ) -> List[str]: a : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) a : str = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def __a ( self ) -> Any: self.config_tester.run_common_tests() def __a ( self ) -> List[str]: a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCAmelCase__ ) def __a ( self ) -> Dict: a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCAmelCase__ ) def __a ( self ) -> Any: a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCAmelCase__ ) def __a ( self ) -> List[str]: a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCAmelCase__ ) def __a ( self ) -> int: a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCAmelCase__ ) def __a ( self ) -> int: a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCAmelCase__ ) def __a ( self ) -> Dict: a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCAmelCase__ ) def __a ( self ) -> Optional[Any]: a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCAmelCase__ ) @slow def __a ( self ) -> Any: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: a : Union[str, Any] = TFMobileBertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def __a ( self ) -> Optional[int]: a : Optional[int] = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" ) a : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) a : int = model(lowerCAmelCase__ )[0] a : Optional[int] = [1, 6, 3_0522] self.assertEqual(output.shape , lowerCAmelCase__ ) a : Optional[Any] = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 )
633
0
"""simple docstring""" def A__ ( UpperCamelCase = 1_000 ): return sum(e for e in range(3 , __UpperCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
711
"""simple docstring""" import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( lowercase_ , unittest.TestCase ): UpperCamelCase = ProphetNetTokenizer UpperCamelCase = False def lowerCamelCase ( self :Any ): super().setUp() A = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCamelCase ( self :Any , __UpperCamelCase :List[str] ): A = "UNwant\u00E9d,running" A = "unwanted, running" return input_text, output_text def lowerCamelCase ( self :Optional[Any] ): A = self.tokenizer_class(self.vocab_file ) A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__UpperCamelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [9, 6, 7, 12, 10, 11] ) def lowerCamelCase ( self :Optional[int] ): A = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def lowerCamelCase ( self :List[Any] ): A = BasicTokenizer(do_lower_case=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def lowerCamelCase ( self :Any ): A = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def lowerCamelCase ( self :Tuple ): A = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def lowerCamelCase ( self :Optional[int] ): A = BasicTokenizer(do_lower_case=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def lowerCamelCase ( self :Dict ): A = BasicTokenizer(do_lower_case=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCamelCase ( self :List[Any] ): A = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCamelCase ( self :Optional[Any] ): A = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCamelCase ( self :Dict ): A = BasicTokenizer(do_lower_case=__UpperCamelCase , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def lowerCamelCase ( self :List[Any] ): A = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] A = {} for i, token in enumerate(__UpperCamelCase ): A = i A = WordpieceTokenizer(vocab=__UpperCamelCase , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def lowerCamelCase ( self :Optional[Any] ): A = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) A = ["A long paragraph for summarization.", "Another paragraph for summarization."] A = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] A = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors="pt" ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) A = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def lowerCamelCase ( self :Optional[Any] ): self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def lowerCamelCase ( self :Any ): self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def lowerCamelCase ( self :List[Any] ): self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def lowerCamelCase ( self :Dict ): A = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) A = tokenizer.encode("sequence builders" , add_special_tokens=__UpperCamelCase ) A = tokenizer.encode("multi-sequence build" , add_special_tokens=__UpperCamelCase ) A = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ) A = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase , __UpperCamelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
524
0
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
332
def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : Any = [0 for i in range(r + 1 )] # nc0 = 1 A_ : List[Any] = 1 for i in range(1 ,n + 1 ): # to compute current row from previous row. A_ : Tuple = min(_lowerCAmelCase ,_lowerCAmelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
569
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _lowercase ( lowerCAmelCase ): _a : Tuple = (UniPCMultistepScheduler,) _a : Optional[Any] = (('''num_inference_steps''', 25),) def _UpperCamelCase ( self : List[Any] , **a : List[Any] ): """simple docstring""" __snake_case : List[str] ={ '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**a ) return config def _UpperCamelCase ( self : Any , a : Union[str, Any]=0 , **a : List[Any] ): """simple docstring""" __snake_case : Optional[int] =dict(self.forward_default_kwargs ) __snake_case : str =kwargs.pop('''num_inference_steps''' , a ) __snake_case : str =self.dummy_sample __snake_case : Optional[Any] =0.1 * sample __snake_case : List[str] =[residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __snake_case : Union[str, Any] =self.get_scheduler_config(**a ) __snake_case : List[Any] =scheduler_class(**a ) scheduler.set_timesteps(a ) # copy over dummy past residuals __snake_case : Union[str, Any] =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a ) __snake_case : Optional[Any] =scheduler_class.from_pretrained(a ) new_scheduler.set_timesteps(a ) # copy over dummy past residuals __snake_case : Union[str, Any] =dummy_past_residuals[: new_scheduler.config.solver_order] __snake_case : Union[str, Any] =sample, sample for t in range(a , time_step + scheduler.config.solver_order + 1 ): __snake_case : Optional[Any] =scheduler.step(a , a , a , **a ).prev_sample __snake_case : str =new_scheduler.step(a , a , a , **a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _UpperCamelCase ( self : Optional[int] , a : Optional[Any]=0 , **a : Optional[int] ): """simple docstring""" __snake_case : Tuple =dict(self.forward_default_kwargs ) __snake_case : Union[str, Any] =kwargs.pop('''num_inference_steps''' , a ) __snake_case : Tuple =self.dummy_sample __snake_case : Optional[Any] =0.1 * sample __snake_case : Union[str, Any] =[residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __snake_case : Tuple =self.get_scheduler_config() __snake_case : Tuple =scheduler_class(**a ) scheduler.set_timesteps(a ) # copy over dummy past residuals (must be after setting timesteps) __snake_case : str =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a ) __snake_case : str =scheduler_class.from_pretrained(a ) # copy over dummy past residuals new_scheduler.set_timesteps(a ) # copy over dummy past residual (must be after setting timesteps) __snake_case : int =dummy_past_residuals[: new_scheduler.config.solver_order] __snake_case : Optional[Any] =scheduler.step(a , a , a , **a ).prev_sample __snake_case : Dict =new_scheduler.step(a , a , a , **a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _UpperCamelCase ( self : str , a : List[Any]=None , **a : List[str] ): """simple docstring""" if scheduler is None: __snake_case : List[str] =self.scheduler_classes[0] __snake_case : int =self.get_scheduler_config(**a ) __snake_case : List[str] =scheduler_class(**a ) __snake_case : Any =self.scheduler_classes[0] __snake_case : List[str] =self.get_scheduler_config(**a ) __snake_case : Tuple =scheduler_class(**a ) __snake_case : str =1_0 __snake_case : str =self.dummy_model() __snake_case : Optional[Any] =self.dummy_sample_deter scheduler.set_timesteps(a ) for i, t in enumerate(scheduler.timesteps ): __snake_case : Union[str, Any] =model(a , a ) __snake_case : Any =scheduler.step(a , a , a ).prev_sample return sample def _UpperCamelCase ( self : Dict ): """simple docstring""" __snake_case : List[str] =dict(self.forward_default_kwargs ) __snake_case : Tuple =kwargs.pop('''num_inference_steps''' , a ) for scheduler_class in self.scheduler_classes: __snake_case : int =self.get_scheduler_config() __snake_case : Any =scheduler_class(**a ) __snake_case : List[str] =self.dummy_sample __snake_case : Dict =0.1 * sample if num_inference_steps is not None and hasattr(a , '''set_timesteps''' ): scheduler.set_timesteps(a ) elif num_inference_steps is not None and not hasattr(a , '''set_timesteps''' ): __snake_case : Optional[Any] =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __snake_case : str =[residual + 0.2, residual + 0.1_5, residual + 0.1_0] __snake_case : int =dummy_past_residuals[: scheduler.config.solver_order] __snake_case : Any =scheduler.timesteps[5] __snake_case : int =scheduler.timesteps[6] __snake_case : int =scheduler.step(a , a , a , **a ).prev_sample __snake_case : Optional[int] =scheduler.step(a , a , a , **a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _UpperCamelCase ( self : Optional[int] ): """simple docstring""" __snake_case : str =UniPCMultistepScheduler(**self.get_scheduler_config() ) __snake_case : Optional[Any] =self.full_loop(scheduler=a ) __snake_case : Tuple =torch.mean(torch.abs(a ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 __snake_case : List[Any] =DPMSolverSinglestepScheduler.from_config(scheduler.config ) __snake_case : Dict =DEISMultistepScheduler.from_config(scheduler.config ) __snake_case : Tuple =DPMSolverMultistepScheduler.from_config(scheduler.config ) __snake_case : Optional[int] =UniPCMultistepScheduler.from_config(scheduler.config ) __snake_case : Any =self.full_loop(scheduler=a ) __snake_case : Optional[int] =torch.mean(torch.abs(a ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def _UpperCamelCase ( self : str ): """simple docstring""" for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=a ) def _UpperCamelCase ( self : Optional[Any] ): """simple docstring""" self.check_over_configs(thresholding=a ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=a , prediction_type=a , sample_max_value=a , solver_order=a , solver_type=a , ) def _UpperCamelCase ( self : Optional[Any] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def _UpperCamelCase ( self : Optional[int] ): """simple docstring""" for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=a , solver_type=a , prediction_type=a , ) __snake_case : Optional[int] =self.full_loop( solver_order=a , solver_type=a , prediction_type=a , ) assert not torch.isnan(a ).any(), "Samples have nan numbers" def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" self.check_over_configs(lower_order_final=a ) self.check_over_configs(lower_order_final=a ) def _UpperCamelCase ( self : List[str] ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=a , time_step=0 ) def _UpperCamelCase ( self : Optional[Any] ): """simple docstring""" __snake_case : int =self.full_loop() __snake_case : str =torch.mean(torch.abs(a ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def _UpperCamelCase ( self : Optional[Any] ): """simple docstring""" __snake_case : Dict =self.full_loop(prediction_type='''v_prediction''' ) __snake_case : List[Any] =torch.mean(torch.abs(a ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3 def _UpperCamelCase ( self : List[Any] ): """simple docstring""" __snake_case : str =self.scheduler_classes[0] __snake_case : Tuple =self.get_scheduler_config(thresholding=a , dynamic_thresholding_ratio=0 ) __snake_case : Union[str, Any] =scheduler_class(**a ) __snake_case : Optional[int] =1_0 __snake_case : int =self.dummy_model() __snake_case : int =self.dummy_sample_deter.half() scheduler.set_timesteps(a ) for i, t in enumerate(scheduler.timesteps ): __snake_case : str =model(a , a ) __snake_case : List[Any] =scheduler.step(a , a , a ).prev_sample assert sample.dtype == torch.floataa def _UpperCamelCase ( self : int , **a : Optional[int] ): """simple docstring""" for scheduler_class in self.scheduler_classes: __snake_case : Tuple =self.get_scheduler_config(**a ) __snake_case : str =scheduler_class(**a ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
715
"""simple docstring""" from __future__ import annotations def __lowercase ( a : int , a : int ) -> list[str]: if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) __snake_case : List[str] =number_of_bytes // partitions __snake_case : str =[] for i in range(a ): __snake_case : Optional[Any] =i * bytes_per_partition + 1 __snake_case : Any =( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
497
0
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase = None ): '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse('''0.11.0''' ).release: # old versions of hfh don't url-encode the file path UpperCAmelCase_ : int = quote(_lowercase ) return hfh.hf_hub_url(_lowercase , _lowercase , repo_type='''dataset''' , revision=_lowercase )
30
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = { '''configuration_jukebox''': [ '''JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''JukeboxConfig''', '''JukeboxPriorConfig''', '''JukeboxVQVAEConfig''', ], '''tokenization_jukebox''': ['''JukeboxTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''JukeboxModel''', '''JukeboxPreTrainedModel''', '''JukeboxVQVAE''', '''JukeboxPrior''', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class lowerCamelCase__ : lowerCAmelCase = field( metadata={"""help""": """The output directory where the model will be written."""} , ) lowerCAmelCase = field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don't set if you want to train an encoder model from scratch.""" ) } , ) lowerCAmelCase = field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don't set if you want to train a decoder model from scratch.""" ) } , ) lowerCAmelCase = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) lowerCAmelCase = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def __snake_case ( ) -> Any: """simple docstring""" A = HfArgumentParser((ModelArguments,) ) ((A) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: A = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: A = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: A = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: A = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed A = True A = True A = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=UpperCamelCase__ , decoder_config=UpperCamelCase__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens A = decoder_config.decoder_start_token_id A = decoder_config.pad_token_id if decoder_start_token_id is None: A = decoder_config.bos_token_id if pad_token_id is None: A = decoder_config.eos_token_id # This is necessary to make Flax's generate() work A = decoder_config.eos_token_id A = decoder_start_token_id A = pad_token_id A = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) A = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) A = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
91
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ] ) class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : int ): if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=_lowercase , ) assert hasattr(self , 'env' ) def __a ( self : Optional[int] , _lowercase : int ): A = f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings A = {'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_lowercase , instance_count=_lowercase , instance_type=self.instance_type , debugger_hook_config=_lowercase , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_lowercase , py_version='py36' , ) def __a ( self : Tuple , _lowercase : List[str] ): TrainingJobAnalytics(_lowercase ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def __a ( self : List[Any] , _lowercase : Union[str, Any] ): # create estimator A = self.create_estimator(_lowercase ) # run training estimator.fit() # result dataframe A = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis A = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) A = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping A = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , _lowercase )
91
1
"""simple docstring""" from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __SCREAMING_SNAKE_CASE : Tuple = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCAmelCase_( lowercase_ : Dict , lowercase_ : int=None ) -> Dict: require_version(deps[pkg] , snake_case_ )
661
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCamelCase_ ( snake_case_ : Dict , snake_case_ : str=1 ) -> str: '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def UpperCamelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any]=0 ) -> Union[str, Any]: '''simple docstring''' __lowerCAmelCase = [] for old_item in old_list: __lowerCAmelCase = old_item.replace("""in_layers.0""" , """norm1""" ) __lowerCAmelCase = new_item.replace("""in_layers.2""" , """conv1""" ) __lowerCAmelCase = new_item.replace("""out_layers.0""" , """norm2""" ) __lowerCAmelCase = new_item.replace("""out_layers.3""" , """conv2""" ) __lowerCAmelCase = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) __lowerCAmelCase = new_item.replace("""skip_connection""" , """conv_shortcut""" ) __lowerCAmelCase = shave_segments(snake_case_ , n_shave_prefix_segments=snake_case_ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCamelCase_ ( snake_case_ : List[Any] , snake_case_ : int=0 ) -> int: '''simple docstring''' __lowerCAmelCase = [] for old_item in old_list: __lowerCAmelCase = old_item __lowerCAmelCase = new_item.replace("""norm.weight""" , """group_norm.weight""" ) __lowerCAmelCase = new_item.replace("""norm.bias""" , """group_norm.bias""" ) __lowerCAmelCase = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) __lowerCAmelCase = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) __lowerCAmelCase = shave_segments(snake_case_ , n_shave_prefix_segments=snake_case_ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCamelCase_ ( snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : List[str]=None , snake_case_ : List[Any]=None , snake_case_ : List[Any]=None ) -> Any: '''simple docstring''' assert isinstance(snake_case_ , snake_case_ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): __lowerCAmelCase = old_checkpoint[path] __lowerCAmelCase = old_tensor.shape[0] // 3 __lowerCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) __lowerCAmelCase = old_tensor.shape[0] // config["""num_head_channels"""] // 3 __lowerCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) __lowerCAmelCase = query.reshape(snake_case_ ) __lowerCAmelCase = key.reshape(snake_case_ ) __lowerCAmelCase = value.reshape(snake_case_ ) for path in paths: __lowerCAmelCase = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here __lowerCAmelCase = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) __lowerCAmelCase = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) __lowerCAmelCase = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: __lowerCAmelCase = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: __lowerCAmelCase = old_checkpoint[path["""old"""]][:, :, 0] else: __lowerCAmelCase = old_checkpoint[path["""old"""]] def UpperCamelCase_ ( snake_case_ : Dict , snake_case_ : List[str] ) -> Tuple: '''simple docstring''' __lowerCAmelCase = {} __lowerCAmelCase = checkpoint["""time_embed.0.weight"""] __lowerCAmelCase = checkpoint["""time_embed.0.bias"""] __lowerCAmelCase = checkpoint["""time_embed.2.weight"""] __lowerCAmelCase = checkpoint["""time_embed.2.bias"""] __lowerCAmelCase = checkpoint["""input_blocks.0.0.weight"""] __lowerCAmelCase = checkpoint["""input_blocks.0.0.bias"""] __lowerCAmelCase = checkpoint["""out.0.weight"""] __lowerCAmelCase = checkpoint["""out.0.bias"""] __lowerCAmelCase = checkpoint["""out.2.weight"""] __lowerCAmelCase = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only __lowerCAmelCase = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) __lowerCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(snake_case_ ) } # Retrieves the keys for the middle blocks only __lowerCAmelCase = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) __lowerCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(snake_case_ ) } # Retrieves the keys for the output blocks only __lowerCAmelCase = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) __lowerCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(snake_case_ ) } for i in range(1 , snake_case_ ): __lowerCAmelCase = (i - 1) // (config["""num_res_blocks"""] + 1) __lowerCAmelCase = (i - 1) % (config["""num_res_blocks"""] + 1) __lowerCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] __lowerCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: __lowerCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] __lowerCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue __lowerCAmelCase = renew_resnet_paths(snake_case_ ) __lowerCAmelCase = {"""old""": f"""input_blocks.{i}.0""", """new""": f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} __lowerCAmelCase = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path, resnet_op] , config=snake_case_ ) if len(snake_case_ ): __lowerCAmelCase = renew_attention_paths(snake_case_ ) __lowerCAmelCase = { """old""": f"""input_blocks.{i}.1""", """new""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } __lowerCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { """key""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", """query""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", """value""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { """key""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", """query""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", """value""": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , attention_paths_to_split=snake_case_ , config=snake_case_ , ) __lowerCAmelCase = middle_blocks[0] __lowerCAmelCase = middle_blocks[1] __lowerCAmelCase = middle_blocks[2] __lowerCAmelCase = renew_resnet_paths(snake_case_ ) assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , config=snake_case_ ) __lowerCAmelCase = renew_resnet_paths(snake_case_ ) assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , config=snake_case_ ) __lowerCAmelCase = renew_attention_paths(snake_case_ ) __lowerCAmelCase = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( snake_case_ , snake_case_ , snake_case_ , attention_paths_to_split=snake_case_ , config=snake_case_ ) for i in range(snake_case_ ): __lowerCAmelCase = i // (config["""num_res_blocks"""] + 1) __lowerCAmelCase = i % (config["""num_res_blocks"""] + 1) __lowerCAmelCase = [shave_segments(snake_case_ , 2 ) for name in output_blocks[i]] __lowerCAmelCase = {} for layer in output_block_layers: __lowerCAmelCase , __lowerCAmelCase = layer.split(""".""" )[0], shave_segments(snake_case_ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(snake_case_ ) else: __lowerCAmelCase = [layer_name] if len(snake_case_ ) > 1: __lowerCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] __lowerCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] __lowerCAmelCase = renew_resnet_paths(snake_case_ ) __lowerCAmelCase = renew_resnet_paths(snake_case_ ) __lowerCAmelCase = {"""old""": f"""output_blocks.{i}.0""", """new""": f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): __lowerCAmelCase = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) __lowerCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] __lowerCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(snake_case_ ) == 2: __lowerCAmelCase = [] if len(snake_case_ ): __lowerCAmelCase = renew_attention_paths(snake_case_ ) __lowerCAmelCase = { """old""": f"""output_blocks.{i}.1""", """new""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } __lowerCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { """key""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", """query""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", """value""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { """key""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", """query""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", """value""": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=snake_case_ , ) else: __lowerCAmelCase = renew_resnet_paths(snake_case_ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: __lowerCAmelCase = """.""".join(["""output_blocks""", str(snake_case_ ), path["""old"""]] ) __lowerCAmelCase = """.""".join(["""up_blocks""", str(snake_case_ ), """resnets""", str(snake_case_ ), path["""new"""]] ) __lowerCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _A : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') _A : Tuple = parser.parse_args() _A : Optional[int] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _A : Optional[int] = json.loads(f.read()) _A : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _A : Dict = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _A : Any = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) _A : Optional[Any] = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) _A : List[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
427
0
'''simple docstring''' def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = 0 while b > 0: if b & 1: __lowerCAmelCase = ((res % c) + (a % c)) % c a += a b >>= 1 return res
474
'''simple docstring''' from manim import * class a__ ( __A ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = Rectangle(height=0.5 , width=0.5 ) __lowerCAmelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) __lowerCAmelCase = [mem.copy() for i in range(6 )] __lowerCAmelCase = [mem.copy() for i in range(6 )] __lowerCAmelCase = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __lowerCAmelCase = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __lowerCAmelCase = VGroup(__lowercase , __lowercase ).arrange(__lowercase , buff=0 ) __lowerCAmelCase = Text('''CPU''' , font_size=24 ) __lowerCAmelCase = Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowercase ) __lowerCAmelCase = [mem.copy() for i in range(1 )] __lowerCAmelCase = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __lowerCAmelCase = Text('''GPU''' , font_size=24 ) __lowerCAmelCase = Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) gpu.align_to(__lowercase , __lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(__lowercase ) __lowerCAmelCase = [mem.copy() for i in range(6 )] __lowerCAmelCase = VGroup(*__lowercase ).arrange(__lowercase , buff=0 ) __lowerCAmelCase = Text('''Model''' , font_size=24 ) __lowerCAmelCase = Group(__lowercase , __lowercase ).arrange(__lowercase , buff=0.5 , aligned_edge=__lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(__lowercase , run_time=1 ) , Create(__lowercase , run_time=1 ) , Create(__lowercase , run_time=1 ) , ) __lowerCAmelCase = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) __lowerCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowerCAmelCase = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowercase , run_time=2.5 ) , Write(__lowercase ) , Write(__lowercase ) ) self.add(__lowercase ) __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = [] for i, rect in enumerate(__lowercase ): __lowerCAmelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(__lowercase , opacity=0.7 ) cpu_target.move_to(__lowercase ) cpu_target.generate_target() __lowerCAmelCase = 0.4_6 / 4 __lowerCAmelCase = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=__lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=__lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=__lowercase , buff=0.0 ) cpu_targs.append(__lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(__lowercase ) ) second_animations.append(MoveToTarget(__lowercase , run_time=1.5 ) ) self.play(*__lowercase ) self.play(*__lowercase ) self.wait()
474
1
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=13 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=24 ,SCREAMING_SNAKE_CASE__=16 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=5 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=37 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=10 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=2 ,) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = parent __SCREAMING_SNAKE_CASE :Any = batch_size __SCREAMING_SNAKE_CASE :Dict = patch_size __SCREAMING_SNAKE_CASE :List[Any] = max_length __SCREAMING_SNAKE_CASE :str = num_mel_bins __SCREAMING_SNAKE_CASE :Optional[Any] = is_training __SCREAMING_SNAKE_CASE :Optional[int] = use_labels __SCREAMING_SNAKE_CASE :List[Any] = hidden_size __SCREAMING_SNAKE_CASE :str = num_hidden_layers __SCREAMING_SNAKE_CASE :Any = num_attention_heads __SCREAMING_SNAKE_CASE :Union[str, Any] = intermediate_size __SCREAMING_SNAKE_CASE :List[str] = hidden_act __SCREAMING_SNAKE_CASE :str = hidden_dropout_prob __SCREAMING_SNAKE_CASE :Tuple = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :List[Any] = type_sequence_label_size __SCREAMING_SNAKE_CASE :Any = initializer_range __SCREAMING_SNAKE_CASE :str = scope __SCREAMING_SNAKE_CASE :List[str] = frequency_stride __SCREAMING_SNAKE_CASE :Union[str, Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __SCREAMING_SNAKE_CASE :List[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __SCREAMING_SNAKE_CASE :List[str] = (self.max_length - self.patch_size) // self.time_stride + 1 __SCREAMING_SNAKE_CASE :Tuple = frequency_out_dimension * time_out_dimension __SCREAMING_SNAKE_CASE :List[str] = num_patches + 2 def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) __SCREAMING_SNAKE_CASE :List[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE :str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE :List[str] = self.get_config() return config, input_values, labels def _UpperCamelCase ( self ) -> str: """simple docstring""" return ASTConfig( patch_size=self.patch_size ,max_length=self.max_length ,num_mel_bins=self.num_mel_bins ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase__ ,initializer_range=self.initializer_range ,frequency_stride=self.frequency_stride ,time_stride=self.time_stride ,) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = ASTModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __SCREAMING_SNAKE_CASE :Dict = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = self.prepare_config_and_inputs() ( __SCREAMING_SNAKE_CASE ) :Optional[int] = config_and_inputs __SCREAMING_SNAKE_CASE :List[Any] = {"input_values": input_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE( A__ , A__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[Any] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Tuple = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : Optional[int] = False def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :str = ASTModelTester(self ) __SCREAMING_SNAKE_CASE :Any = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ,hidden_size=37 ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> str: """simple docstring""" pass def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :Any = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) __SCREAMING_SNAKE_CASE :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ ,nn.Linear ) ) def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :Dict = model_class(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE :Optional[int] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE :Optional[Any] = ["input_values"] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) @slow def _UpperCamelCase ( self ) -> int: """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE :Union[str, Any] = ASTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __lowerCamelCase ( ) -> Any: __SCREAMING_SNAKE_CASE :Optional[int] = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) __SCREAMING_SNAKE_CASE :List[str] = torchaudio.load(__a ) return audio, sampling_rate @require_torch @require_torchaudio class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @cached_property def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = self.default_feature_extractor __SCREAMING_SNAKE_CASE :Optional[Any] = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :Any = self.default_feature_extractor __SCREAMING_SNAKE_CASE :Dict = prepare_audio() __SCREAMING_SNAKE_CASE :str = audio.squeeze().numpy() __SCREAMING_SNAKE_CASE :Any = feature_extractor(lowerCamelCase__ ,sampling_rate=lowerCamelCase__ ,return_tensors='''pt''' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE :Any = model(**lowerCamelCase__ ) # verify the logits __SCREAMING_SNAKE_CASE :Union[str, Any] = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :List[str] = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1E-4 ) )
498
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Dict = logging.get_logger(__name__) def UpperCamelCase_ ( __a ) -> Union[str, Any]: a__ : Tuple = R"\w+[.]\d+" a__ : List[Any] = re.findall(__a , __a ) for pat in pats: a__ : Union[str, Any] = key.replace(__a , "_".join(pat.split("." ) ) ) return key def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: a__ : List[str] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): a__ : Any = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: a__ : Optional[Any] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: a__ : Union[str, Any] = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer a__ : List[str] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: a__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer a__ : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": a__ : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight a__ : Optional[Any] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias a__ : Union[str, Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase_ ( __a , __a , __a=42 ) -> str: # Step 1: Convert pytorch tensor to numpy a__ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params a__ : Tuple = flax_model.init_weights(PRNGKey(__a ) ) a__ : Optional[Any] = flatten_dict(__a ) a__ : Union[str, Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): a__ : Optional[int] = rename_key(__a ) a__ : Optional[int] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters a__, a__ : Union[str, Any] = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown a__ : str = jnp.asarray(__a ) return unflatten_dict(__a )
37
0
from __future__ import annotations def a__ ( __UpperCamelCase ): # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(__UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(__UpperCamelCase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
721
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Optional[Any] = 16 A : Optional[Any] = 32 def a__ ( __UpperCamelCase , __UpperCamelCase = 1_6 ): SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_ = load_dataset("glue" , "mrpc" ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_ = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_ = 1_6 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_ = 8 else: SCREAMING_SNAKE_CASE_ = None return tokenizer.pad( __UpperCamelCase , padding="longest" , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader( tokenized_datasets["train"] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = DataLoader( tokenized_datasets["validation"] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : Tuple = mocked_dataloaders # noqa: F811 def a__ ( __UpperCamelCase , __UpperCamelCase ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , __UpperCamelCase ) == "1": SCREAMING_SNAKE_CASE_ = 2 # New Code # SCREAMING_SNAKE_CASE_ = int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__UpperCamelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_ = config["lr"] SCREAMING_SNAKE_CASE_ = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_ = int(config["seed"] ) SCREAMING_SNAKE_CASE_ = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_ = evaluate.load("glue" , "mrpc" ) set_seed(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_ = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_ = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_ = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_0_0 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = output.loss accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) SCREAMING_SNAKE_CASE_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __UpperCamelCase ) def a__ ( ): SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=__UpperCamelCase , default=__UpperCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=__UpperCamelCase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
356
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Dict ) -> Any: '''simple docstring''' a__ : Dict = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() a__ : List[Any] = dict(zip(A__ , range(len(A__ ) ) ) ) a__ : List[Any] = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } a__ : Dict = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_6_0_0_0, '''return_attention_mask''': False, '''do_normalize''': True, } a__ : Dict = tempfile.mkdtemp() a__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a__ : Optional[Any] = os.path.join(self.tmpdirname , A__ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A__ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A__ ) + '''\n''' ) # load decoder from hub a__ : List[str] = '''hf-internal-testing/ngram-beam-search-decoder''' def __lowerCAmelCase ( self : Optional[int] , **A__ : Any ) -> List[Any]: '''simple docstring''' a__ : List[str] = self.add_kwargs_tokens_map.copy() kwargs.update(A__ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **A__ ) def __lowerCAmelCase ( self : str , **A__ : Tuple ) -> int: '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **A__ ) def __lowerCAmelCase ( self : Any , **A__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **A__ ) def __lowerCAmelCase ( self : Any ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' a__ : Optional[Any] = self.get_tokenizer() a__ : Dict = self.get_feature_extractor() a__ : Optional[Any] = self.get_decoder() a__ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=A__ , feature_extractor=A__ , decoder=A__ ) processor.save_pretrained(self.tmpdirname ) a__ : Any = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A__ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A__ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , A__ ) def __lowerCAmelCase ( self : Tuple ) -> str: '''simple docstring''' a__ : Optional[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match a__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(A__ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=A__ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __lowerCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' a__ : Optional[int] = self.get_feature_extractor() a__ : Any = self.get_tokenizer() a__ : Tuple = self.get_decoder() a__ : List[Any] = WavaVecaProcessorWithLM(tokenizer=A__ , feature_extractor=A__ , decoder=A__ ) a__ : List[str] = floats_list((3, 1_0_0_0) ) a__ : List[str] = feature_extractor(A__ , return_tensors='''np''' ) a__ : Dict = processor(A__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[Any] = self.get_feature_extractor() a__ : List[Any] = self.get_tokenizer() a__ : Any = self.get_decoder() a__ : int = WavaVecaProcessorWithLM(tokenizer=A__ , feature_extractor=A__ , decoder=A__ ) a__ : Optional[Any] = '''This is a test string''' a__ : Optional[int] = processor(text=A__ ) a__ : Optional[int] = tokenizer(A__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self : List[Any] , A__ : int=(2, 1_0, 1_6) , A__ : Union[str, Any]=7_7 ) -> int: '''simple docstring''' np.random.seed(A__ ) return np.random.rand(*A__ ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' a__ : Optional[int] = self.get_feature_extractor() a__ : int = self.get_tokenizer() a__ : Optional[int] = self.get_decoder() a__ : List[Any] = WavaVecaProcessorWithLM(tokenizer=A__ , feature_extractor=A__ , decoder=A__ ) a__ : List[str] = self._get_dummy_logits(shape=(1_0, 1_6) , seed=1_3 ) a__ : List[Any] = processor.decode(A__ ) a__ : Union[str, Any] = decoder.decode_beams(A__ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def __lowerCAmelCase ( self : Optional[int] , A__ : str ) -> Any: '''simple docstring''' a__ : str = self.get_feature_extractor() a__ : List[Any] = self.get_tokenizer() a__ : List[str] = self.get_decoder() a__ : Any = WavaVecaProcessorWithLM(tokenizer=A__ , feature_extractor=A__ , decoder=A__ ) a__ : str = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: a__ : str = processor.batch_decode(A__ ) else: with get_context(A__ ).Pool() as pool: a__ : Optional[Any] = processor.batch_decode(A__ , A__ ) a__ : Dict = list(A__ ) with get_context('''fork''' ).Pool() as p: a__ : Any = decoder.decode_beams_batch(A__ , A__ ) a__ , a__ , a__ : Union[str, Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A__ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(A__ , decoded_processor.logit_score ) self.assertListEqual(A__ , decoded_processor.lm_score ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' a__ : Dict = self.get_feature_extractor() a__ : List[str] = self.get_tokenizer() a__ : Tuple = self.get_decoder() a__ : Any = WavaVecaProcessorWithLM(tokenizer=A__ , feature_extractor=A__ , decoder=A__ ) a__ : Optional[Any] = self._get_dummy_logits() a__ : Dict = 1_5 a__ : Optional[Any] = -20.0 a__ : Tuple = -4.0 a__ : str = processor.batch_decode( A__ , beam_width=A__ , beam_prune_logp=A__ , token_min_logp=A__ , ) a__ : List[Any] = decoded_processor_out.text a__ : int = list(A__ ) with get_context('''fork''' ).Pool() as pool: a__ : Tuple = decoder.decode_beams_batch( A__ , A__ , beam_width=A__ , beam_prune_logp=A__ , token_min_logp=A__ , ) a__ : List[Any] = [d[0][0] for d in decoded_decoder_out] a__ : str = [d[0][2] for d in decoded_decoder_out] a__ : str = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A__ , A__ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , A__ ) self.assertTrue(np.array_equal(A__ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , A__ , atol=1E-3 ) ) self.assertTrue(np.array_equal(A__ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , A__ , atol=1E-3 ) ) def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' a__ : List[Any] = self.get_feature_extractor() a__ : List[Any] = self.get_tokenizer() a__ : str = self.get_decoder() a__ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=A__ , feature_extractor=A__ , decoder=A__ ) a__ : List[str] = self._get_dummy_logits() a__ : Tuple = 2.0 a__ : Optional[Any] = 5.0 a__ : Optional[int] = -20.0 a__ : Tuple = True a__ : int = processor.batch_decode( A__ , alpha=A__ , beta=A__ , unk_score_offset=A__ , lm_score_boundary=A__ , ) a__ : Any = decoded_processor_out.text a__ : Dict = list(A__ ) decoder.reset_params( alpha=A__ , beta=A__ , unk_score_offset=A__ , lm_score_boundary=A__ , ) with get_context('''fork''' ).Pool() as pool: a__ : Optional[int] = decoder.decode_beams_batch( A__ , A__ , ) a__ : str = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A__ , A__ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , A__ ) a__ : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , A__ ) def __lowerCAmelCase ( self : Tuple ) -> Optional[Any]: '''simple docstring''' a__ : str = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) a__ : str = processor.decoder.model_container[processor.decoder._model_key] a__ : int = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() a__ : Tuple = os.listdir(A__ ) a__ : List[str] = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A__ , A__ ) def __lowerCAmelCase ( self : Any ) -> int: '''simple docstring''' a__ : List[Any] = snapshot_download('''hf-internal-testing/processor_with_lm''' ) a__ : List[Any] = WavaVecaProcessorWithLM.from_pretrained(A__ ) a__ : List[Any] = processor.decoder.model_container[processor.decoder._model_key] a__ : Optional[int] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() a__ : List[Any] = os.listdir(A__ ) a__ : int = os.listdir(A__ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A__ , A__ ) def __lowerCAmelCase ( self : Any ) -> Tuple: '''simple docstring''' a__ : str = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) a__ : Tuple = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) a__ : Optional[int] = floats_list((3, 1_0_0_0) ) a__ : Any = processor_wavaveca(A__ , return_tensors='''np''' ) a__ : List[Any] = processor_auto(A__ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) a__ : int = self._get_dummy_logits() a__ : Optional[int] = processor_wavaveca.batch_decode(A__ ) a__ : List[Any] = processor_auto.batch_decode(A__ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __lowerCAmelCase ( self : List[str] ) -> Any: '''simple docstring''' a__ : Tuple = self.get_feature_extractor() a__ : Optional[int] = self.get_tokenizer() a__ : List[str] = self.get_decoder() a__ : Any = WavaVecaProcessorWithLM(tokenizer=A__ , feature_extractor=A__ , decoder=A__ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def __lowerCAmelCase ( A__ : List[str] , A__ : List[str] ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = [d[key] for d in offsets] return retrieved_list def __lowerCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' a__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) a__ : List[str] = self._get_dummy_logits()[0] a__ : Optional[Any] = processor.decode(A__ , output_word_offsets=A__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A__ , A__ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def __lowerCAmelCase ( self : Optional[int] ) -> Any: '''simple docstring''' a__ : Any = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) a__ : Optional[Any] = self._get_dummy_logits() a__ : str = processor.batch_decode(A__ , output_word_offsets=A__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(A__ , A__ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(A__ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __lowerCAmelCase ( self : str ) -> Optional[int]: '''simple docstring''' import torch a__ : Optional[int] = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=A__ ) a__ : Dict = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_6_0_0_0 ) ) a__ : str = iter(A__ ) a__ : Any = next(A__ ) a__ : Dict = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) a__ : Optional[Any] = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train a__ : Optional[Any] = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): a__ : Optional[Any] = model(A__ ).logits.cpu().numpy() a__ : Tuple = processor.decode(logits[0] , output_word_offsets=A__ ) a__ : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate a__ : Optional[int] = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] a__ : Optional[Any] = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(A__ , '''word''' ) ) , A__ ) self.assertEqual(''' '''.join(self.get_from_offsets(A__ , '''word''' ) ) , output.text ) # output times a__ : List[Any] = torch.tensor(self.get_from_offsets(A__ , '''start_time''' ) ) a__ : Optional[Any] = torch.tensor(self.get_from_offsets(A__ , '''end_time''' ) ) # fmt: off a__ : List[str] = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) a__ : Union[str, Any] = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(A__ , A__ , atol=0.01 ) ) self.assertTrue(torch.allclose(A__ , A__ , atol=0.01 ) )
688
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file a__ : Dict = TapasConfig.from_json_file(lowerCAmelCase__ ) # set absolute/relative position embeddings parameter a__ : List[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": a__ : Optional[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "WTQ": # run_task_main.py hparams a__ : List[str] = 4 a__ : Optional[int] = True # hparam_utils.py hparams a__ : List[Any] = 0.664694 a__ : List[Any] = 0.207951 a__ : Union[str, Any] = 0.121194 a__ : Optional[Any] = True a__ : Optional[int] = True a__ : List[str] = False a__ : Union[str, Any] = 0.0352513 a__ : Any = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams a__ : Tuple = 4 a__ : Dict = False # hparam_utils.py hparams a__ : str = 36.4519 a__ : str = 0.903421 a__ : Optional[Any] = 222.088 a__ : Dict = True a__ : Dict = True a__ : Dict = True a__ : str = 0.763141 a__ : List[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "TABFACT": a__ : List[str] = TapasForSequenceClassification(config=lowerCAmelCase__ ) elif task == "MLM": a__ : Tuple = TapasForMaskedLM(config=lowerCAmelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": a__ : List[str] = TapasModel(config=lowerCAmelCase__ ) else: raise ValueError(F'Task {task} not supported.' ) print(F'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model (weights and configuration) print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowerCAmelCase__ ) # Save tokenizer files print(F'Save tokenizer files to {pytorch_dump_path}' ) a__ : Optional[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 ) tokenizer.save_pretrained(lowerCAmelCase__ ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
1
import random def UpperCamelCase ( _a , _a ) -> tuple: '''simple docstring''' lowercase_ :int = [], [], [] for element in data: if element < pivot: less.append(_a ) elif element > pivot: greater.append(_a ) else: equal.append(_a ) return less, equal, greater def UpperCamelCase ( _a , _a ) -> List[str]: '''simple docstring''' if index >= len(_a ) or index < 0: return None lowercase_ :Optional[Any] = items[random.randint(0 , len(_a ) - 1 )] lowercase_ :str = 0 lowercase_ :List[Any] = _partition(_a , _a ) lowercase_ :Union[str, Any] = len(_a ) lowercase_ :List[Any] = len(_a ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_a , _a ) # must be in larger else: return quick_select(_a , index - (m + count) )
708
from torch import nn def UpperCamelCase ( _a ) -> str: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"Unsupported activation function: {act_fn}" )
441
0
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } lowerCamelCase__ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" for attribute in key.split(""".""" ): __a = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if weight_type is not None: __a = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).shape else: __a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __a = value elif weight_type == "weight_g": __a = value elif weight_type == "weight_v": __a = value elif weight_type == "bias": __a = value else: __a = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = [] __a = fairseq_model.state_dict() __a = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __a = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , hf_model.config.feat_extract_norm == """group""" , ) __a = True else: for key, mapped_key in MAPPING.items(): __a = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue __a = True if "*" in mapped_key: __a = name.split(SCREAMING_SNAKE_CASE_ )[0].split(""".""" )[-2] __a = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE_ ) if "weight_g" in name: __a = """weight_g""" elif "weight_v" in name: __a = """weight_v""" elif "bias" in name: __a = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __a = """weight""" else: __a = None set_recursively(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE_ ) logger.warning(f"Unused weights: {unused_weights}" ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" __a = full_name.split("""conv_layers.""" )[-1] __a = name.split(""".""" ) __a = int(items[0] ) __a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __a = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __a = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) __a = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __a = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : Union[str, Any]=True ): """simple docstring""" if config_path is not None: __a = UniSpeechSatConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: __a = UniSpeechSatConfig() __a = """""" if is_finetuned: __a = UniSpeechSatForCTC(SCREAMING_SNAKE_CASE_ ) else: __a = UniSpeechSatForPreTraining(SCREAMING_SNAKE_CASE_ ) __a , __a , __a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) __a = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCamelCase__ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
225
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : str = logging.get_logger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"encoder.deit.blocks.{i}.norm1.weight", F"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.norm1.bias", F"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.weight", F"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.bias", F"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.norm2.weight", F"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.norm2.bias", F"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.weight", F"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.bias", F"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc2.weight", F"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.mlp.fc2.bias", F"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _SCREAMING_SNAKE_CASE = state_dict.pop(F"encoder.deit.blocks.{i}.attn.qkv.weight" ) _SCREAMING_SNAKE_CASE = in_proj_weight[ : encoder_config.hidden_size, : ] _SCREAMING_SNAKE_CASE = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _SCREAMING_SNAKE_CASE = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = dct.pop(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = val def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Any: """simple docstring""" if "handwritten" in checkpoint_url: _SCREAMING_SNAKE_CASE = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _SCREAMING_SNAKE_CASE = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" _SCREAMING_SNAKE_CASE = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = ViTConfig(image_size=3_84 , qkv_bias=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _SCREAMING_SNAKE_CASE = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = 40_96 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 10_24 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = """relu""" _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False # load HuggingFace model _SCREAMING_SNAKE_CASE = ViTModel(SCREAMING_SNAKE_CASE_ , add_pooling_layer=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = TrOCRForCausalLM(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = VisionEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) model.eval() # load state_dict of original model, rename some keys _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" , check_hash=SCREAMING_SNAKE_CASE_ )["""model"""] _SCREAMING_SNAKE_CASE = create_rename_keys(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _SCREAMING_SNAKE_CASE = state_dict.pop(SCREAMING_SNAKE_CASE_ ) if key.startswith("""decoder""" ) and "output_projection" not in key: _SCREAMING_SNAKE_CASE = val else: _SCREAMING_SNAKE_CASE = val # load state dict model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image _SCREAMING_SNAKE_CASE = ViTImageProcessor(size=encoder_config.image_size ) _SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained("""roberta-large""" ) _SCREAMING_SNAKE_CASE = TrOCRProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = processor(images=prepare_img(SCREAMING_SNAKE_CASE_ ) , return_tensors="""pt""" ).pixel_values # verify logits _SCREAMING_SNAKE_CASE = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _SCREAMING_SNAKE_CASE = model(pixel_values=SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = outputs.logits _SCREAMING_SNAKE_CASE = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ), "First elements of logits not as expected" Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCamelCase__ : Dict = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) UpperCamelCase__ : Dict = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
591
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : str = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class _UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__): _lowerCAmelCase : List[Any] = 'resnet' _lowerCAmelCase : List[str] = ['basic', 'bottleneck'] def __init__( self : List[Any] , lowercase_ : Union[str, Any]=3 , lowercase_ : str=64 , lowercase_ : Optional[int]=[256, 512, 1024, 2048] , lowercase_ : str=[3, 4, 6, 3] , lowercase_ : Any="bottleneck" , lowercase_ : List[str]="relu" , lowercase_ : str=False , lowercase_ : Optional[Any]=None , lowercase_ : Union[str, Any]=None , **lowercase_ : str , ): super().__init__(**lowercase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) snake_case_ : List[str] = num_channels snake_case_ : Dict = embedding_size snake_case_ : int = hidden_sizes snake_case_ : Tuple = depths snake_case_ : Tuple = layer_type snake_case_ : List[str] = hidden_act snake_case_ : Optional[int] = downsample_in_first_stage snake_case_ : int = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(lowercase_ ) + 1 )] snake_case_, snake_case_ : List[Any] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names ) class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Optional[int] = version.parse("""1.11""") @property def _snake_case ( self : Any ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self : Optional[int] ): return 1E-3
701
"""simple docstring""" from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __lowercase ( _a ): return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __lowercase ( ): snake_case_ : List[str] = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a ) snake_case_ : List[Any] = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_a ) EnvironmentCommand.register_subcommand(_a ) TestCommand.register_subcommand(_a ) RunBeamCommand.register_subcommand(_a ) DummyDataCommand.register_subcommand(_a ) # Parse args snake_case_, snake_case_ : Optional[Any] = parser.parse_known_args() if not hasattr(_a , '''func''' ): parser.print_help() exit(1 ) snake_case_ : Optional[int] = parse_unknown_args(_a ) # Run snake_case_ : Optional[int] = args.func(_a , **_a ) service.run() if __name__ == "__main__": main()
485
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : str = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowercase__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline UpperCamelCase__ = 'path-to-your-trained-model' UpperCamelCase__ = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('cuda') UpperCamelCase__ = 'A photo of sks dog in a bucket' UpperCamelCase__ = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('dog-bucket.png')
110
0
"""simple docstring""" from importlib import import_module from .logging import get_logger lowercase__ = get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=None ): _lowerCamelCase : str = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__' ): setattr(self , lowercase , getattr(lowercase , lowercase ) ) _lowerCamelCase : List[Any] = module._original_module if isinstance(lowercase , _PatchedModuleObj ) else module class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = [] def __init__( self , lowercase , lowercase , lowercase , lowercase=None ): _lowerCamelCase : Any = obj _lowerCamelCase : List[str] = target _lowerCamelCase : str = new _lowerCamelCase : Optional[Any] = target.split('.' )[0] _lowerCamelCase : Optional[Any] = {} _lowerCamelCase : Union[str, Any] = attrs or [] def __enter__( self ): *_lowerCamelCase, _lowerCamelCase : List[Any] = self.target.split('.' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowercase ) ): try: _lowerCamelCase : int = import_module('.'.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _lowerCamelCase : Optional[Any] = getattr(self.obj , lowercase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowercase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _lowerCamelCase : Any = obj_attr # patch at top level setattr(self.obj , lowercase , _PatchedModuleObj(lowercase , attrs=self.attrs ) ) _lowerCamelCase : List[Any] = getattr(self.obj , lowercase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowercase , lowercase , _PatchedModuleObj(getattr(lowercase , lowercase , lowercase ) , attrs=self.attrs ) ) _lowerCamelCase : int = getattr(lowercase , lowercase ) # finally set the target attribute setattr(lowercase , lowercase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _lowerCamelCase : Optional[int] = getattr(import_module('.'.join(lowercase ) ) , lowercase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowercase ) is attr_value: _lowerCamelCase : str = getattr(self.obj , lowercase ) setattr(self.obj , lowercase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _lowerCamelCase : Union[str, Any] = globals()['__builtins__'][target_attr] setattr(self.obj , lowercase , self.new ) else: raise RuntimeError(F'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self , *lowercase ): for attr in list(self.original ): setattr(self.obj , lowercase , self.original.pop(lowercase ) ) def A_ ( self ): self.__enter__() self._active_patches.append(self ) def A_ ( self ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
492
"""simple docstring""" from math import pow, sqrt def _snake_case ( *lowercase__ ): _lowerCamelCase : Dict = len(lowercase__ ) > 0 and all(value > 0.0 for value in values ) return result def _snake_case ( lowercase__ , lowercase__ ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowercase__ , lowercase__ ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowercase__ , lowercase__ , lowercase__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(lowercase__ , lowercase__ , lowercase__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(lowercase__ , lowercase__ , lowercase__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(lowercase__ , lowercase__ , lowercase__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
492
1
'''simple docstring''' def _UpperCamelCase (_lowerCamelCase : List[str] = 10_00 )-> int: '''simple docstring''' __snake_case , __snake_case = 1, 1 __snake_case = 2 while True: __snake_case = 0 __snake_case = fa + fa __snake_case , __snake_case = fa, f index += 1 for _ in str(lowerCAmelCase__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
24
import math def a (lowerCAmelCase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a (lowerCAmelCase__ = 10_001 ): try: __a = int(lowerCAmelCase__ ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) __a = [] __a = 2 while len(lowerCAmelCase__ ) < nth: if is_prime(lowerCAmelCase__ ): primes.append(lowerCAmelCase__ ) num += 1 else: num += 1 return primes[len(lowerCAmelCase__ ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
99
0
"""simple docstring""" import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[int] , snake_case : List[Any] , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : int = 32 , snake_case : bool = True , snake_case : Union[int, float] = 1 / 255 , snake_case : bool = True , snake_case : bool = True , snake_case : Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073] , snake_case : Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711] , snake_case : bool = True , snake_case : Union[str, Any]=7 , snake_case : Tuple=30 , snake_case : Union[str, Any]=400 , snake_case : Optional[Any]=3 , ) -> Union[str, Any]: '''simple docstring''' A = parent A = do_resize A = size if size is not None else {'shortest_edge': 288} A = size_divisor A = do_rescale A = rescale_factor A = do_normalize A = do_center_crop A = image_mean A = image_std A = do_pad A = batch_size A = num_channels A = min_resolution A = max_resolution def A_ ( self : int ) -> List[Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def A_ ( self : int , snake_case : str , snake_case : Union[str, Any]=False ) -> List[Any]: '''simple docstring''' if not batched: A = self.size['shortest_edge'] A = image_inputs[0] if isinstance(snake_case , Image.Image ): A , A = image.size else: A , A = image.shape[1], image.shape[2] A = size / min(snake_case , snake_case ) if h < w: A , A = size, scale * w else: A , A = scale * h, size A = int((1_333 / 800) * size ) if max(snake_case , snake_case ) > max_size: A = max_size / max(snake_case , snake_case ) A = newh * scale A = neww * scale A , A = int(newh + 0.5 ), int(neww + 0.5 ) A , A = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: A = [] for image in image_inputs: A , A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A = max(snake_case , key=lambda snake_case : item[0] )[0] A = max(snake_case , key=lambda snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase__ ( UpperCamelCase ,unittest.TestCase ): lowerCAmelCase_ : Tuple = BridgeTowerImageProcessor if is_vision_available() else None def A_ ( self : Dict ) -> Dict: '''simple docstring''' A = BridgeTowerImageProcessingTester(self ) @property def A_ ( self : Any ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self : str ) -> Union[str, Any]: '''simple docstring''' A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'image_mean' ) ) self.assertTrue(hasattr(snake_case , 'image_std' ) ) self.assertTrue(hasattr(snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case , 'do_resize' ) ) self.assertTrue(hasattr(snake_case , 'size' ) ) self.assertTrue(hasattr(snake_case , 'size_divisor' ) ) def A_ ( self : Any ) -> Optional[int]: '''simple docstring''' pass def A_ ( self : Tuple ) -> Dict: '''simple docstring''' A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values A , A = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A = image_processing(snake_case , return_tensors='pt' ).pixel_values A , A = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : Union[str, Any] ) -> int: '''simple docstring''' A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values A , A = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A = image_processing(snake_case , return_tensors='pt' ).pixel_values A , A = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values A , A = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A = image_processing(snake_case , return_tensors='pt' ).pixel_values A , A = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
714
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase__ ( UpperCamelCase ): lowerCAmelCase_ : Tuple = """decision_transformer""" lowerCAmelCase_ : Tuple = ["""past_key_values"""] lowerCAmelCase_ : Dict = { """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Optional[Any] , snake_case : int=17 , snake_case : int=4 , snake_case : Union[str, Any]=128 , snake_case : Optional[Any]=4_096 , snake_case : List[Any]=True , snake_case : str=1 , snake_case : str=1_024 , snake_case : List[str]=3 , snake_case : str=1 , snake_case : Any=None , snake_case : Optional[int]="relu" , snake_case : List[Any]=0.1 , snake_case : str=0.1 , snake_case : Tuple=0.1 , snake_case : Union[str, Any]=1E-5 , snake_case : Optional[int]=0.02 , snake_case : List[Any]=True , snake_case : Tuple=True , snake_case : Optional[Any]=50_256 , snake_case : List[Any]=50_256 , snake_case : List[str]=False , snake_case : Any=False , **snake_case : List[str] , ) -> List[Any]: '''simple docstring''' A = state_dim A = act_dim A = hidden_size A = max_ep_len A = action_tanh A = vocab_size A = n_positions A = n_layer A = n_head A = n_inner A = activation_function A = resid_pdrop A = embd_pdrop A = attn_pdrop A = layer_norm_epsilon A = initializer_range A = scale_attn_weights A = use_cache A = scale_attn_by_inverse_layer_idx A = reorder_and_upcast_attn A = bos_token_id A = eos_token_id super().__init__(bos_token_id=snake_case , eos_token_id=snake_case , **snake_case )
109
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class lowercase_ : '''simple docstring''' def __init__( self , a_ , a_=1_3 , a_=7 , a_=False , a_=True , a_=False , a_=False , a_=1_9 , a_=3_2 , a_=5 , a_=4 , a_=3_7 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_1_2 , a_=1_6 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ) -> Any: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def snake_case_ ( self ) -> str: """simple docstring""" UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = EsmConfig( vocab_size=3_3 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=a_ , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def snake_case_ ( self , a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = EsmForProteinFolding(config=a_ ).float() model.to(a_ ) model.eval() UpperCAmelCase = model(a_ , attention_mask=a_ ) UpperCAmelCase = model(a_ ) UpperCAmelCase = model(a_ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 1_4, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase_ ( a , a , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase : Optional[int] = False __lowerCAmelCase : Dict = (EsmForProteinFolding,) if is_torch_available() else () __lowerCAmelCase : int = () __lowerCAmelCase : Optional[Any] = {} if is_torch_available() else {} __lowerCAmelCase : Optional[Any] = False def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = EsmFoldModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a_ , hidden_size=3_7 ) def snake_case_ ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) @unittest.skip('Does not support attention outputs' ) def snake_case_ ( self ) -> Optional[int]: """simple docstring""" pass @unittest.skip def snake_case_ ( self ) -> str: """simple docstring""" pass @unittest.skip('Esm does not support embedding resizing' ) def snake_case_ ( self ) -> Tuple: """simple docstring""" pass @unittest.skip('Esm does not support embedding resizing' ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('ESMFold does not support passing input embeds!' ) def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> str: """simple docstring""" pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> List[str]: """simple docstring""" pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Any: """simple docstring""" pass @unittest.skip('ESMFold does not support head pruning.' ) def snake_case_ ( self ) -> Tuple: """simple docstring""" pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def snake_case_ ( self ) -> List[str]: """simple docstring""" pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def snake_case_ ( self ) -> Dict: """simple docstring""" pass @unittest.skip('ESMFold only has one output format.' ) def snake_case_ ( self ) -> Optional[int]: """simple docstring""" pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def snake_case_ ( self ) -> Any: """simple docstring""" pass @unittest.skip('ESMFold does not support input chunking.' ) def snake_case_ ( self ) -> List[str]: """simple docstring""" pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def snake_case_ ( self ) -> Optional[int]: """simple docstring""" pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def snake_case_ ( self ) -> List[str]: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case_ ( self ) -> Any: """simple docstring""" pass @require_torch class lowercase_ ( a ): '''simple docstring''' @slow def snake_case_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() UpperCAmelCase = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) UpperCAmelCase = model(a_ )['positions'] UpperCAmelCase = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , a_ , atol=1E-4 ) )
447
'''simple docstring''' import qiskit def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): UpperCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register UpperCAmelCase = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator UpperCAmelCase = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
447
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase = """▁""" UpperCAmelCase = {"""vocab_file""": """spiece.model"""} UpperCAmelCase = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""} } UpperCAmelCase = { """google/pegasus-xsum""": 512, } UpperCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ["input_ids", "attention_mask"] def __init__( self , _UpperCAmelCase , _UpperCAmelCase="<pad>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<mask_2>" , _UpperCAmelCase="<mask_1>" , _UpperCAmelCase=None , _UpperCAmelCase=1_03 , _UpperCAmelCase = None , **_UpperCAmelCase , ): snake_case_ = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError( F'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is''' F''' {type(_UpperCAmelCase )}''' ) snake_case_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) , self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) snake_case_ = additional_special_tokens_extended else: snake_case_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2 , self.offset )] snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) snake_case_ = mask_token_sent snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) # add special tokens to encoder dict snake_case_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) snake_case_ = {v: k for k, v in self.encoder.items()} @property def UpperCamelCase__ ( self ): return len(self.sp_model ) + self.offset def UpperCamelCase__ ( self ): snake_case_ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self , _UpperCAmelCase ): snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase__ ( self , _UpperCAmelCase ): return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def UpperCamelCase__ ( self , _UpperCAmelCase ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] snake_case_ = self.sp_model.piece_to_id(_UpperCAmelCase ) return sp_id + self.offset def UpperCamelCase__ ( self , _UpperCAmelCase ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: snake_case_ = self.sp_model.IdToPiece(index - self.offset ) return token def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = [] snake_case_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_UpperCAmelCase ) + token snake_case_ = [] else: current_sub_tokens.append(_UpperCAmelCase ) out_string += self.sp_model.decode(_UpperCAmelCase ) return out_string.strip() def UpperCamelCase__ ( self , _UpperCAmelCase=False ): return 1 def UpperCamelCase__ ( self , _UpperCAmelCase ): snake_case_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,)
531
def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> int: """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def __lowerCAmelCase ()-> None: """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
531
1
"""simple docstring""" from __future__ import annotations __SCREAMING_SNAKE_CASE : int = '''Muhammad Umer Farooq''' __SCREAMING_SNAKE_CASE : Optional[Any] = '''MIT''' __SCREAMING_SNAKE_CASE : Any = '''1.0.0''' __SCREAMING_SNAKE_CASE : Any = '''Muhammad Umer Farooq''' __SCREAMING_SNAKE_CASE : List[Any] = '''contact@muhammadumerfarooq.me''' __SCREAMING_SNAKE_CASE : List[str] = '''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__ ): super().__init__() _lowerCamelCase = [] _lowerCamelCase = domain def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _lowerCamelCase = parse.urljoin(self.domain , lowerCamelCase__ ) self.urls.append(lowerCamelCase__ ) def lowerCAmelCase_( lowercase_ : str ) -> str: return ".".join(get_sub_domain_name(lowercase_ ).split('''.''' )[-2:] ) def lowerCAmelCase_( lowercase_ : str ) -> str: return parse.urlparse(lowercase_ ).netloc def lowerCAmelCase_( lowercase_ : str = "https://github.com" ) -> list[str]: _lowerCamelCase = get_domain_name(lowercase_ ) # Initialize the parser _lowerCamelCase = Parser(lowercase_ ) try: # Open URL _lowerCamelCase = requests.get(lowercase_ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _lowerCamelCase = set() for link in parser.urls: # open URL. # read = requests.get(link) try: _lowerCamelCase = requests.get(lowercase_ ) # Get the valid email. _lowerCamelCase = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(lowercase_ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(lowercase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : str = emails_from_url('''https://github.com''') print(F"""{len(emails)} emails found:""") print('''\n'''.join(sorted(emails)))
661
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=3 , lowerCamelCase__=3_2 , lowerCamelCase__=3 , lowerCamelCase__=1_0 , lowerCamelCase__=[8, 1_6, 3_2, 6_4] , lowerCamelCase__=[1, 1, 2, 1] , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="relu" , lowerCamelCase__=3 , lowerCamelCase__=None , lowerCamelCase__=["stage2", "stage3", "stage4"] , lowerCamelCase__=[2, 3, 4] , lowerCamelCase__=1 , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = image_size _lowerCamelCase = num_channels _lowerCamelCase = embeddings_size _lowerCamelCase = hidden_sizes _lowerCamelCase = depths _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = hidden_act _lowerCamelCase = num_labels _lowerCamelCase = scope _lowerCamelCase = len(lowerCamelCase__ ) _lowerCamelCase = out_features _lowerCamelCase = out_indices _lowerCamelCase = num_groups def snake_case__ ( self ): _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) _lowerCamelCase = self.get_config() return config, pixel_values, labels def snake_case__ ( self ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = BitModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = self.num_labels _lowerCamelCase = BitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCamelCase = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = BitBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCamelCase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _lowerCamelCase = None _lowerCamelCase = BitBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCamelCase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def snake_case__ ( self ): _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_( A__, A__, unittest.TestCase ): '''simple docstring''' lowercase__ : Dict = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowercase__ : Any = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) lowercase__ : Union[str, Any] = False lowercase__ : List[Any] = False lowercase__ : Any = False lowercase__ : List[str] = False lowercase__ : Any = False def snake_case__ ( self ): _lowerCamelCase = BitModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def snake_case__ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self ): return @unittest.skip(reason='''Bit does not output attentions''' ) def snake_case__ ( self ): pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def snake_case__ ( self ): pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def snake_case__ ( self ): pass def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(lowerCamelCase__ ) _lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(config=lowerCamelCase__ ) for name, module in model.named_modules(): if isinstance(lowerCamelCase__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def snake_case__ ( self ): def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCamelCase = layer_type _lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def snake_case__ ( self ): pass def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def snake_case__ ( self ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = BitModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase_( ) -> List[Any]: _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def snake_case__ ( self ): _lowerCamelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase__ ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits _lowerCamelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) _lowerCamelCase = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) ) @require_torch class lowerCamelCase_( A__, unittest.TestCase ): '''simple docstring''' lowercase__ : Optional[Any] = (BitBackbone,) if is_torch_available() else () lowercase__ : Tuple = BitConfig lowercase__ : Any = False def snake_case__ ( self ): _lowerCamelCase = BitModelTester(self )
661
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging a_ = logging.get_logger(__name__) a_ = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[Any] = """bloom""" _A : Union[str, Any] = ["""past_key_values"""] _A : List[str] = { """num_hidden_layers""": """n_layer""", """num_attention_heads""": """n_head""", } def __init__(self , lowercase__=25_08_80 , lowercase__=64 , lowercase__=2 , lowercase__=8 , lowercase__=1e-5 , lowercase__=0.02 , lowercase__=True , lowercase__=1 , lowercase__=2 , lowercase__=False , lowercase__=0.0 , lowercase__=0.0 , lowercase__=1 , lowercase__=False , **lowercase__ , ): snake_case_ : Any = vocab_size # Backward compatibility with n_embed kwarg snake_case_ : Union[str, Any] = kwargs.pop("""n_embed""" , lowercase__ ) snake_case_ : Any = hidden_size if n_embed is None else n_embed snake_case_ : Optional[Any] = n_layer snake_case_ : Any = n_head snake_case_ : Optional[int] = layer_norm_epsilon snake_case_ : Optional[Any] = initializer_range snake_case_ : Any = use_cache snake_case_ : str = pretraining_tp snake_case_ : Dict = apply_residual_connection_post_layernorm snake_case_ : Tuple = hidden_dropout snake_case_ : str = attention_dropout snake_case_ : Union[str, Any] = bos_token_id snake_case_ : Any = eos_token_id snake_case_ : Any = slow_but_exact super().__init__(bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = version.parse("""1.12""") def __init__(self , lowercase__ , lowercase__ = "default" , lowercase__ = None , lowercase__ = False , ): super().__init__(lowercase__ , task=lowercase__ , patching_specs=lowercase__ , use_past=lowercase__ ) if not getattr(self._config , """pad_token_id""" , lowercase__ ): # TODO: how to do that better? snake_case_ : Optional[Any] = 0 @property def __UpperCamelCase (self ): snake_case_ : Any = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowercase__ , direction="""inputs""" , inverted_values_shape=lowercase__ ) snake_case_ : Tuple = {0: """batch""", 1: """past_sequence + sequence"""} else: snake_case_ : int = {0: """batch""", 1: """sequence"""} return common_inputs @property def __UpperCamelCase (self ): return self._config.n_layer @property def __UpperCamelCase (self ): return self._config.n_head @property def __UpperCamelCase (self ): return 1e-3 def __UpperCamelCase (self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ): snake_case_ : Any = super(lowercase__ , self ).generate_dummy_inputs( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ ) # We need to order the input in the way they appears in the forward() snake_case_ : Any = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case_ , snake_case_ : Dict = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values snake_case_ : str = seqlen + 2 snake_case_ : List[Any] = self._config.hidden_size // self.num_attention_heads snake_case_ : int = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) snake_case_ : Any = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) snake_case_ : List[Any] = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(self.num_layers ) ] snake_case_ : int = common_inputs["""attention_mask"""] if self.use_past: snake_case_ : List[str] = ordered_inputs["""attention_mask"""].dtype snake_case_ : int = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowercase__ , lowercase__ , dtype=lowercase__ )] , dim=1 ) return ordered_inputs @property def __UpperCamelCase (self ): return 13
48
"""simple docstring""" from copy import deepcopy class __lowercase : """simple docstring""" def __init__(self , lowercase__ = None , lowercase__ = None ): if arr is None and size is not None: snake_case_ : str = size snake_case_ : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def __UpperCamelCase (self , lowercase__ ): snake_case_ : Optional[Any] = len(lowercase__ ) snake_case_ : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): snake_case_ : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCamelCase (self ): snake_case_ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case_ : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCamelCase (lowercase__ ): return index + (index & (-index)) @staticmethod def __UpperCamelCase (lowercase__ ): return index - (index & (-index)) def __UpperCamelCase (self , lowercase__ , lowercase__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case_ : Tuple = self.next_(lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCamelCase (self , lowercase__ ): if right == 0: return 0 snake_case_ : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case_ : Optional[int] = self.prev(lowercase__ ) return result def __UpperCamelCase (self , lowercase__ , lowercase__ ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCamelCase (self , lowercase__ ): return self.query(lowercase__ , index + 1 ) def __UpperCamelCase (self , lowercase__ ): value -= self.tree[0] if value < 0: return -1 snake_case_ : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
48
1
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : List[str] )-> Union[str, Any]: '''simple docstring''' try: with open(_lowerCamelCase , '''rb''' ) as flax_state_f: __snake_case = from_bytes(_lowerCamelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(_lowerCamelCase ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(_lowerCamelCase , _lowerCamelCase ) def _UpperCamelCase (_lowerCamelCase : str , _lowerCamelCase : Union[str, Any] )-> Any: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights __snake_case = flatten_dict(jax.tree_util.tree_map(lambda _lowerCamelCase : x.dtype == jnp.bfloataa , _lowerCamelCase ) ).values() if any(_lowerCamelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) __snake_case = jax.tree_util.tree_map( lambda _lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _lowerCamelCase ) __snake_case = '''''' __snake_case = flatten_dict(_lowerCamelCase , sep='''.''' ) __snake_case = pt_model.state_dict() # keep track of unexpected & missing keys __snake_case = [] __snake_case = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __snake_case = flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __snake_case = flax_key_tuple_array[:-1] + ['''weight'''] __snake_case = jnp.transpose(_lowerCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __snake_case = flax_key_tuple_array[:-1] + ['''weight'''] __snake_case = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __snake_case = flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(_lowerCamelCase ): __snake_case = ( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) __snake_case = '''.'''.join(_lowerCamelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' f'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict __snake_case = np.asarray(_lowerCamelCase ) if not isinstance(_lowerCamelCase , np.ndarray ) else flax_tensor __snake_case = torch.from_numpy(_lowerCamelCase ) # remove from missing keys missing_keys.remove(_lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_lowerCamelCase ) pt_model.load_state_dict(_lowerCamelCase ) # re-transform missing_keys to list __snake_case = list(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' f''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(_lowerCamelCase ) > 0: logger.warning( f'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' f''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' ''' use it for predictions and inference.''' ) return pt_model
24
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a : def __init__( self : Any ,lowerCamelCase : Any ,lowerCamelCase : int=3 ,lowerCamelCase : Optional[int]=32 ,lowerCamelCase : Any=3 ,lowerCamelCase : Dict=10 ,lowerCamelCase : Union[str, Any]=[10, 20, 30, 40] ,lowerCamelCase : Any=[1, 1, 2, 1] ,lowerCamelCase : int=True ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : Dict="relu" ,lowerCamelCase : str=3 ,lowerCamelCase : Union[str, Any]=None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embeddings_size __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = len(lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.num_labels ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : int ,lowerCamelCase : List[str] ,lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = RegNetModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : int ,lowerCamelCase : Dict ,lowerCamelCase : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = RegNetForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCamelCase ,labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( _snake_case, _snake_case, unittest.TestCase ): __UpperCamelCase : List[str] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () __UpperCamelCase : Optional[int] = ( {'feature-extraction': RegNetModel, 'image-classification': RegNetForImageClassification} if is_torch_available() else {} ) __UpperCamelCase : Dict = False __UpperCamelCase : str = False __UpperCamelCase : Any = False __UpperCamelCase : Tuple = False def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = RegNetModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase ,has_text_modality=lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) __SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(config=lowerCamelCase ) for name, module in model.named_modules(): if isinstance(lowerCamelCase ,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) self.assertTrue( torch.all(module.bias == 0 ) ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : Union[str, Any] ,lowerCamelCase : Tuple ,lowerCamelCase : Optional[int] ): __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCamelCase ,lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase ) ,expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 2, self.model_tester.image_size // 2] ,) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __SCREAMING_SNAKE_CASE = layer_type __SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = RegNetModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def __magic_name__ ( ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=lowerCamelCase ,return_tensors="""pt""" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**lowerCamelCase ) # verify the logits __SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = torch.tensor([-0.4_180, -1.5_051, -3.4_836] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase ,atol=1E-4 ) )
109
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class _snake_case ( unittest.TestCase ): def __init__( self ,UpperCamelCase ,UpperCamelCase=13 ,UpperCamelCase=7 ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=99 ,UpperCamelCase=32 ,UpperCamelCase=5 ,UpperCamelCase=4 ,UpperCamelCase=37 ,UpperCamelCase="gelu" ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=512 ,UpperCamelCase=16 ,UpperCamelCase=2 ,UpperCamelCase=0.02 ,UpperCamelCase=4 ,) -> Optional[int]: snake_case__ :Optional[Any] = parent snake_case__ :Tuple = batch_size snake_case__ :Tuple = seq_length snake_case__ :Optional[int] = is_training snake_case__ :str = use_attention_mask snake_case__ :Dict = use_token_type_ids snake_case__ :int = use_labels snake_case__ :Optional[Any] = vocab_size snake_case__ :Dict = hidden_size snake_case__ :List[str] = num_hidden_layers snake_case__ :Tuple = num_attention_heads snake_case__ :Optional[int] = intermediate_size snake_case__ :Optional[int] = hidden_act snake_case__ :Optional[int] = hidden_dropout_prob snake_case__ :List[str] = attention_probs_dropout_prob snake_case__ :Any = max_position_embeddings snake_case__ :List[Any] = type_vocab_size snake_case__ :List[Any] = type_sequence_label_size snake_case__ :Optional[int] = initializer_range snake_case__ :List[Any] = num_choices def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ :List[Any] = None if self.use_attention_mask: snake_case__ :Tuple = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ :List[str] = None if self.use_token_type_ids: snake_case__ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) snake_case__ :Tuple = AlbertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=UpperCamelCase ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Union[str, Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ :Any = config_and_inputs snake_case__ :Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _snake_case ( _A , unittest.TestCase ): _A = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase_ ( self ) -> str: for model_class_name in self.all_model_classes: snake_case__ :Union[str, Any] = model_class_name.from_pretrained("albert-base-v2" ) snake_case__ :Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase ) @require_flax class _snake_case ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self ) -> int: snake_case__ :Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" ) snake_case__ :Tuple = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) snake_case__ :List[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) snake_case__ :Tuple = model(UpperCamelCase ,attention_mask=UpperCamelCase )[0] snake_case__ :Optional[int] = (1, 11, 768) self.assertEqual(output.shape ,UpperCamelCase ) snake_case__ :Tuple = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,UpperCamelCase ,atol=1E-4 ) )
57
def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = "" for i in table: res += inp[i - 1] return res def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Union[str, Any] = "" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = int("0b" + data[0] + data[-1] , 2 ) snake_case__ :Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = message[:4] snake_case__ :int = message[4:] snake_case__ :int = apply_table(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = xor(__snake_case , __snake_case ) snake_case__ :Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 snake_case__ :List[str] = apply_sbox(__snake_case , temp[4:] ) snake_case__ :int = "0" * (2 - len(__snake_case )) + l # noqa: E741 snake_case__ :int = "0" * (2 - len(__snake_case )) + r snake_case__ :Optional[Any] = apply_table(l + r , __snake_case ) snake_case__ :Tuple = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase : Dict = input("Enter 10 bit key: ") __UpperCAmelCase : Tuple = input("Enter 8 bit message: ") __UpperCAmelCase : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __UpperCAmelCase : Tuple = [2, 4, 3, 1] __UpperCAmelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase : int = apply_table(key, paa_table) __UpperCAmelCase : Dict = temp[:5] __UpperCAmelCase : Optional[int] = temp[5:] __UpperCAmelCase : Optional[int] = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : int = apply_table(left + right, pa_table) __UpperCAmelCase : Tuple = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : Dict = left_shift(left) __UpperCAmelCase : Optional[Any] = left_shift(right) __UpperCAmelCase : Optional[int] = apply_table(left + right, pa_table) # encryption __UpperCAmelCase : Tuple = apply_table(message, IP) __UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : List[Any] = temp[4:] + temp[:4] __UpperCAmelCase : int = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase : List[Any] = apply_table(CT, IP) __UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : int = temp[4:] + temp[:4] __UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
57
1
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : Union[str, Any] = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } A_ : List[Any] = { "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } A_ : List[str] = { "vinai/phobert-base": 256, "vinai/phobert-large": 256, } def UpperCamelCase__ ( __magic_name__ : str ) -> str: '''simple docstring''' snake_case__ : int = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : Dict = char snake_case__ : int = set(__magic_name__ ) return pairs class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , **__SCREAMING_SNAKE_CASE , ): super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) snake_case__ : Dict = vocab_file snake_case__ : Optional[Any] = merges_file snake_case__ : Dict = {} snake_case__ : Any = 0 snake_case__ : int = 1 snake_case__ : int = 2 snake_case__ : List[Any] = 3 self.add_from_file(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(__SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as merges_handle: snake_case__ : Any = merges_handle.read().split("""\n""" )[:-1] snake_case__ : int = [tuple(merge.split()[:-1] ) for merge in merges] snake_case__ : List[str] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) snake_case__ : List[str] = {} def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : int = [self.cls_token_id] snake_case__ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __UpperCamelCase ( self ): return len(self.encoder ) def __UpperCamelCase ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if token in self.cache: return self.cache[token] snake_case__ : List[Any] = tuple(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) snake_case__ : Any = get_pairs(__SCREAMING_SNAKE_CASE ) if not pairs: return token while True: snake_case__ : Optional[Any] = min(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : self.bpe_ranks.get(__SCREAMING_SNAKE_CASE , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break snake_case__ , snake_case__ : Tuple = bigram snake_case__ : Dict = [] snake_case__ : str = 0 while i < len(__SCREAMING_SNAKE_CASE ): try: snake_case__ : Tuple = word.index(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : List[str] = j if word[i] == first and i < len(__SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : Dict = tuple(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = new_word if len(__SCREAMING_SNAKE_CASE ) == 1: break else: snake_case__ : Union[str, Any] = get_pairs(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = """@@ """.join(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = word[:-4] snake_case__ : Dict = word return word def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[int] = [] snake_case__ : Any = re.findall(R"""\S+\n?""" , __SCREAMING_SNAKE_CASE ) for token in words: split_tokens.extend(list(self.bpe(__SCREAMING_SNAKE_CASE ).split(""" """ ) ) ) return split_tokens def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): return self.decoder.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = """ """.join(__SCREAMING_SNAKE_CASE ).replace("""@@ """ , """""" ).strip() return out_string def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return snake_case__ : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Any = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) if os.path.abspath(self.merges_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.merges_file , __SCREAMING_SNAKE_CASE ) return out_vocab_file, out_merge_file def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): try: with open(__SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" ) return snake_case__ : Tuple = f.readlines() for lineTmp in lines: snake_case__ : Any = lineTmp.strip() snake_case__ : Optional[Any] = line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) snake_case__ : Optional[int] = line[:idx] snake_case__ : Union[str, Any] = len(self.encoder )
38
'''simple docstring''' def lowercase_ ( __A : int , __A : int ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def lowercase_ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
94
0
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __magic_name__ ( __UpperCAmelCase ): """simple docstring""" def __init__( self , a__ = "▁" , a__ = True , a__ = "<unk>" , a__ = "</s>" , a__ = "<pad>" , ): _lowerCamelCase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } _lowerCamelCase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): _lowerCamelCase = token_dict['''token'''] _lowerCamelCase = Tokenizer(Unigram() ) _lowerCamelCase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) , ''' ''' ), normalizers.Lowercase(), ] ) _lowerCamelCase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ), pre_tokenizers.Digits(individual_digits=__SCREAMING_SNAKE_CASE ), pre_tokenizers.Punctuation(), ] ) _lowerCamelCase = decoders.Metaspace(replacement=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) _lowerCamelCase = TemplateProcessing( single=f'''$A {self.special_tokens['eos']['token']}''' , special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] , ) _lowerCamelCase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self , a__ , a__ = 80_00 , a__ = True , ): _lowerCamelCase = trainers.UnigramTrainer( vocab_size=__SCREAMING_SNAKE_CASE , special_tokens=self.special_tokens_list , show_progress=__SCREAMING_SNAKE_CASE , ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _lowerCamelCase = [files] self._tokenizer.train(__SCREAMING_SNAKE_CASE , trainer=__SCREAMING_SNAKE_CASE ) self.add_unk_id() def _UpperCAmelCase ( self , a__ , a__ = 80_00 , a__ = True , ): _lowerCamelCase = trainers.UnigramTrainer( vocab_size=__SCREAMING_SNAKE_CASE , special_tokens=self.special_tokens_list , show_progress=__SCREAMING_SNAKE_CASE , ) self._tokenizer.train_from_iterator(__SCREAMING_SNAKE_CASE , trainer=__SCREAMING_SNAKE_CASE ) self.add_unk_id() def _UpperCAmelCase ( self ): _lowerCamelCase = json.loads(self._tokenizer.to_str() ) _lowerCamelCase = self.special_tokens['''unk''']['''id'''] _lowerCamelCase = Tokenizer.from_str(json.dumps(__SCREAMING_SNAKE_CASE ) )
716
import math import qiskit def _lowerCamelCase ( _a = 1 , _a = 1 , _a = 1 ): """simple docstring""" if ( isinstance(_a , _a ) or isinstance(_a , _a ) or isinstance(_a , _a ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(_a ) != input_a) or (math.floor(_a ) != input_a) or (math.floor(_a ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers _lowerCamelCase = qiskit.QuantumRegister(4 , '''qr''' ) _lowerCamelCase = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries _lowerCamelCase = [input_a, input_a, carry_in] _lowerCamelCase = qiskit.QuantumCircuit(_a , _a ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(_a ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(_a ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(_a ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , _a ) # measure the last two qbits _lowerCamelCase = qiskit.Aer.get_backend('''aer_simulator''' ) _lowerCamelCase = qiskit.execute(_a , _a , shots=1_0_0_0 ) return job.result().get_counts(_a ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
297
0
"""simple docstring""" from math import pi, sqrt def __UpperCAmelCase ( __UpperCamelCase ): if num <= 0: raise ValueError('''math domain error''' ) if num > 171.5: raise OverflowError('''math range error''' ) elif num - int(__UpperCamelCase ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(__UpperCamelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __UpperCAmelCase ( ): assert gamma(0.5 ) == sqrt(__UpperCamelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() a_ = 1.0 while num: a_ = float(input('Gamma of: ')) print(F"gamma({num}) = {gamma(num)}") print('\nEnter 0 to exit...')
76
"""simple docstring""" from math import pi, sqrt, tan def __UpperCAmelCase ( __UpperCamelCase ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __UpperCAmelCase ( __UpperCamelCase ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def __UpperCAmelCase ( __UpperCamelCase ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) __lowercase : List[str] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(__UpperCamelCase , 2 ) * torus_radius * tube_radius def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def __UpperCAmelCase ( __UpperCamelCase ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) __lowercase : int = (sidea + sidea + sidea) / 2 __lowercase : List[Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def __UpperCAmelCase ( __UpperCamelCase ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if not isinstance(__UpperCamelCase , __UpperCamelCase ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(F"Rectangle: {area_rectangle(1_0, 2_0) = }") print(F"Square: {area_square(1_0) = }") print(F"Triangle: {area_triangle(1_0, 1_0) = }") print(F"Triangle: {area_triangle_three_sides(5, 1_2, 1_3) = }") print(F"Parallelogram: {area_parallelogram(1_0, 2_0) = }") print(F"Rhombus: {area_rhombus(1_0, 2_0) = }") print(F"Trapezium: {area_trapezium(1_0, 2_0, 3_0) = }") print(F"Circle: {area_circle(2_0) = }") print(F"Ellipse: {area_ellipse(1_0, 2_0) = }") print('\nSurface Areas of various geometric shapes: \n') print(F"Cube: {surface_area_cube(2_0) = }") print(F"Cuboid: {surface_area_cuboid(1_0, 2_0, 3_0) = }") print(F"Sphere: {surface_area_sphere(2_0) = }") print(F"Hemisphere: {surface_area_hemisphere(2_0) = }") print(F"Cone: {surface_area_cone(1_0, 2_0) = }") print(F"Conical Frustum: {surface_area_conical_frustum(1_0, 2_0, 3_0) = }") print(F"Cylinder: {surface_area_cylinder(1_0, 2_0) = }") print(F"Torus: {surface_area_torus(2_0, 1_0) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 1_0) = }") print(F"Square: {area_reg_polygon(4, 1_0) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 1_0) = }")
76
1
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase: Optional[Any] = TapasConfig.from_json_file(_UpperCamelCase ) # set absolute/relative position embeddings parameter _lowercase: str = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _lowercase: List[Any] = TapasForQuestionAnswering(config=_UpperCamelCase ) elif task == "WTQ": # run_task_main.py hparams _lowercase: List[str] = 4 _lowercase: Any = True # hparam_utils.py hparams _lowercase: Dict = 0.664_694 _lowercase: List[str] = 0.207_951 _lowercase: Optional[int] = 0.121_194 _lowercase: int = True _lowercase: Optional[Any] = True _lowercase: Any = False _lowercase: int = 0.0_352_513 _lowercase: Optional[Any] = TapasForQuestionAnswering(config=_UpperCamelCase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _lowercase: List[str] = 4 _lowercase: Tuple = False # hparam_utils.py hparams _lowercase: Union[str, Any] = 36.4_519 _lowercase: Dict = 0.903_421 _lowercase: Optional[int] = 222.088 _lowercase: Optional[Any] = True _lowercase: List[str] = True _lowercase: Any = True _lowercase: Union[str, Any] = 0.763_141 _lowercase: Any = TapasForQuestionAnswering(config=_UpperCamelCase ) elif task == "TABFACT": _lowercase: Tuple = TapasForSequenceClassification(config=_UpperCamelCase ) elif task == "MLM": _lowercase: List[str] = TapasForMaskedLM(config=_UpperCamelCase ) elif task == "INTERMEDIATE_PRETRAINING": _lowercase: Optional[Any] = TapasModel(config=_UpperCamelCase ) else: raise ValueError(f'''Task {task} not supported.''' ) print(f'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model (weights and configuration) print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(_UpperCamelCase ) # Save tokenizer files print(f'''Save tokenizer files to {pytorch_dump_path}''' ) _lowercase: str = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 ) tokenizer.save_pretrained(_UpperCamelCase ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A__ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
721
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ : str = logging.get_logger(__name__) A__ : Tuple = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } A__ : List[Any] = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } A__ : Any = { 'vinai/phobert-base': 2_5_6, 'vinai/phobert-large': 2_5_6, } def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" _lowercase: Optional[int] = set() _lowercase: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowercase: Tuple = char _lowercase: Optional[Any] = set(_UpperCamelCase ) return pairs class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A_ , A_ , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , **A_ , ) -> Dict: """simple docstring""" super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , **A_ , ) _lowercase: List[Any] = vocab_file _lowercase: Union[str, Any] = merges_file _lowercase: int = {} _lowercase: Optional[int] = 0 _lowercase: Optional[Any] = 1 _lowercase: List[str] = 2 _lowercase: List[Any] = 3 self.add_from_file(A_ ) _lowercase: Tuple = {v: k for k, v in self.encoder.items()} with open(A_ , encoding='''utf-8''' ) as merges_handle: _lowercase: int = merges_handle.read().split('''\n''' )[:-1] _lowercase: Optional[int] = [tuple(merge.split()[:-1] ) for merge in merges] _lowercase: List[str] = dict(zip(A_ , range(len(A_ ) ) ) ) _lowercase: Union[str, Any] = {} def lowercase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase: Optional[Any] = [self.cls_token_id] _lowercase: Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self , A_ , A_ = None , A_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def lowercase_ ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" _lowercase: Tuple = [self.sep_token_id] _lowercase: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase_ ( self ) -> int: """simple docstring""" return len(self.encoder ) def lowercase_ ( self ) -> int: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self , A_ ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] _lowercase: List[Any] = tuple(A_ ) _lowercase: Tuple = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _lowercase: List[Any] = get_pairs(A_ ) if not pairs: return token while True: _lowercase: List[str] = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _lowercase , _lowercase: Optional[int] = bigram _lowercase: Tuple = [] _lowercase: List[str] = 0 while i < len(A_ ): try: _lowercase: Tuple = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowercase: List[Any] = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowercase: Union[str, Any] = tuple(A_ ) _lowercase: int = new_word if len(A_ ) == 1: break else: _lowercase: List[Any] = get_pairs(A_ ) _lowercase: Tuple = '''@@ '''.join(A_ ) _lowercase: Dict = word[:-4] _lowercase: Tuple = word return word def lowercase_ ( self , A_ ) -> List[Any]: """simple docstring""" _lowercase: Dict = [] _lowercase: str = re.findall(R'''\S+\n?''' , A_ ) for token in words: split_tokens.extend(list(self.bpe(A_ ).split(''' ''' ) ) ) return split_tokens def lowercase_ ( self , A_ ) -> List[str]: """simple docstring""" return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def lowercase_ ( self , A_ ) -> Tuple: """simple docstring""" return self.decoder.get(A_ , self.unk_token ) def lowercase_ ( self , A_ ) -> Union[str, Any]: """simple docstring""" _lowercase: Union[str, Any] = ''' '''.join(A_ ).replace('''@@ ''' , '''''' ).strip() return out_string def lowercase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase: List[Any] = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _lowercase: str = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(A_ ): copyfile(self.merges_file , A_ ) return out_vocab_file, out_merge_file def lowercase_ ( self , A_ ) -> str: """simple docstring""" if isinstance(A_ , A_ ): try: with open(A_ , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(A_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return _lowercase: Dict = f.readlines() for lineTmp in lines: _lowercase: List[Any] = lineTmp.strip() _lowercase: Optional[Any] = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) _lowercase: List[str] = line[:idx] _lowercase: List[str] = len(self.encoder )
272
0
def UpperCAmelCase ( )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] SCREAMING_SNAKE_CASE_ = 6 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 1901 SCREAMING_SNAKE_CASE_ = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 SCREAMING_SNAKE_CASE_ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 SCREAMING_SNAKE_CASE_ = day - 29 else: if day > days_per_month[month - 1]: month += 1 SCREAMING_SNAKE_CASE_ = day - days_per_month[month - 2] if month > 12: year += 1 SCREAMING_SNAKE_CASE_ = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
393
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def UpperCAmelCase ( UpperCAmelCase )-> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = int(UpperCAmelCase ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = t // 3600, (t // 60) % 60, t % 60 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=300 )-> Optional[Any]: '''simple docstring''' return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def UpperCAmelCase ( UpperCAmelCase )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_ = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: SCREAMING_SNAKE_CASE_ = f'''{elt:.6f}''' if isinstance(UpperCAmelCase ,UpperCAmelCase ) else str(UpperCAmelCase ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class snake_case : '''simple docstring''' UpperCAmelCase : Tuple = 5 UpperCAmelCase : Any = 0.2 def __init__( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional["NotebookTrainingTracker"] = None , lowerCAmelCase_ : int = 300 , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = total SCREAMING_SNAKE_CASE_ = '''''' if prefix is None else prefix SCREAMING_SNAKE_CASE_ = leave SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = width SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None def _lowercase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : str = None ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = value if comment is not None: SCREAMING_SNAKE_CASE_ = comment if self.last_value is None: SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = self.warmup SCREAMING_SNAKE_CASE_ = 1 self.update_bar(lowerCAmelCase_ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: SCREAMING_SNAKE_CASE_ = self.elapsed_time / (value - self.start_value) else: SCREAMING_SNAKE_CASE_ = None if value >= self.total: SCREAMING_SNAKE_CASE_ = self.total SCREAMING_SNAKE_CASE_ = None if not self.leave: self.close() elif self.average_time_per_item is not None: SCREAMING_SNAKE_CASE_ = self.average_time_per_item * (self.total - value) self.update_bar(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = current_time if self.average_time_per_item is None: SCREAMING_SNAKE_CASE_ = 1 else: SCREAMING_SNAKE_CASE_ = max(int(self.update_every / self.average_time_per_item ) , 1 ) def _lowercase ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int=None ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = ''' ''' * (len(str(self.total ) ) - len(str(lowerCAmelCase_ ) )) + str(lowerCAmelCase_ ) if self.elapsed_time is None: SCREAMING_SNAKE_CASE_ = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: SCREAMING_SNAKE_CASE_ = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: SCREAMING_SNAKE_CASE_ = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def _lowercase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: SCREAMING_SNAKE_CASE_ = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase_ ) else: self.output.update(disp.HTML(self.html_code ) ) def _lowercase ( self : Optional[int] ) -> int: """simple docstring""" if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class snake_case ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int]=None ) -> Union[str, Any]: """simple docstring""" super().__init__(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = None if column_names is None else [column_names] SCREAMING_SNAKE_CASE_ = None def _lowercase ( self : Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: SCREAMING_SNAKE_CASE_ = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase_ ) else: self.output.update(disp.HTML(self.html_code ) ) def _lowercase ( self : List[str] , lowerCAmelCase_ : int ) -> List[str]: """simple docstring""" if self.inner_table is None: SCREAMING_SNAKE_CASE_ = [list(values.keys() ), list(values.values() )] else: SCREAMING_SNAKE_CASE_ = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = columns self.inner_table.append([values[c] for c in columns] ) def _lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=300 ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ = NotebookProgressBar(lowerCAmelCase_ , prefix=lowerCAmelCase_ , parent=self , width=lowerCAmelCase_ ) return self.child_bar def _lowercase ( self : Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = None self.display() class snake_case ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self : List[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = False def _lowercase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) SCREAMING_SNAKE_CASE_ = NotebookTrainingTracker(state.max_steps , lowerCAmelCase_ ) def _lowercase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , **lowerCAmelCase_ : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) SCREAMING_SNAKE_CASE_ = False def _lowercase ( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" if not has_length(lowerCAmelCase_ ): return if self.prediction_bar is None: if self.training_tracker is not None: SCREAMING_SNAKE_CASE_ = self.training_tracker.add_child(len(lowerCAmelCase_ ) ) else: SCREAMING_SNAKE_CASE_ = NotebookProgressBar(len(lowerCAmelCase_ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def _lowercase ( self : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , **lowerCAmelCase_ : int ) -> Any: """simple docstring""" if self.prediction_bar is not None: self.prediction_bar.close() SCREAMING_SNAKE_CASE_ = None def _lowercase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : Tuple ) -> List[str]: """simple docstring""" if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: SCREAMING_SNAKE_CASE_ = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy SCREAMING_SNAKE_CASE_ = state.global_step self.training_tracker.write_line(lowerCAmelCase_ ) def _lowercase ( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : str ) -> str: """simple docstring""" if self.training_tracker is not None: SCREAMING_SNAKE_CASE_ = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: SCREAMING_SNAKE_CASE_ = log['''loss'''] break if self.first_column == "Epoch": SCREAMING_SNAKE_CASE_ = int(state.epoch ) else: SCREAMING_SNAKE_CASE_ = state.global_step SCREAMING_SNAKE_CASE_ = '''eval''' for k in metrics: if k.endswith('''_loss''' ): SCREAMING_SNAKE_CASE_ = re.sub(r'''\_loss$''' , '''''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = metrics.pop('''total_flos''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = metrics.pop('''epoch''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = metrics.pop(F'''{metric_key_prefix}_runtime''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , lowerCAmelCase_ ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': SCREAMING_SNAKE_CASE_ = v else: SCREAMING_SNAKE_CASE_ = k.split('''_''' ) SCREAMING_SNAKE_CASE_ = ''' '''.join([part.capitalize() for part in splits[1:]] ) SCREAMING_SNAKE_CASE_ = v self.training_tracker.write_line(lowerCAmelCase_ ) self.training_tracker.remove_child() SCREAMING_SNAKE_CASE_ = None # Evaluation takes a long time so we should force the next update. SCREAMING_SNAKE_CASE_ = True def _lowercase ( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Dict ) -> Optional[Any]: """simple docstring""" self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = None
393
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''CLIPImageProcessor''' UpperCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self : List[Any] , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Any=None , **_UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _UpperCAmelCase , ) UpperCAmelCase_ = kwargs.pop("feature_extractor" ) UpperCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : List[str] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : int=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: UpperCAmelCase_ = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: UpperCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def lowercase__ ( self : List[Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : str , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.model_input_names UpperCAmelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
703
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) == 0: return [] UpperCAmelCase_ , UpperCAmelCase_ = min(lowerCAmelCase__ ), max(lowerCAmelCase__ ) UpperCAmelCase_ = int(max_value - min_value ) + 1 UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )] for i in my_list: buckets[int(i - min_value )].append(lowerCAmelCase__ ) return [v for bucket in buckets for v in sorted(lowerCAmelCase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
14
0
SCREAMING_SNAKE_CASE = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} SCREAMING_SNAKE_CASE = ["a", "b", "c", "d", "e"] def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = start # add current to visited visited.append(lowercase__ ) UpperCAmelCase_ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: UpperCAmelCase_ = topological_sort(lowercase__ , lowercase__ , lowercase__ ) # if all neighbors visited add current to sort sort.append(lowercase__ ) # if all vertices haven't been visited select a new one to visit if len(lowercase__ ) != len(lowercase__ ): for vertice in vertices: if vertice not in visited: UpperCAmelCase_ = topological_sort(lowercase__ , lowercase__ , lowercase__ ) # return sort return sort if __name__ == "__main__": SCREAMING_SNAKE_CASE = topological_sort("a", [], []) print(sort)
579
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) A = logging.getLogger() A = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) snake_case_ = {'source': 'What is love ?', 'target': 'life'} snake_case_ = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: snake_case_ = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(__UpperCamelCase , f"""{split}.{field}""" ) , 'w' ) as f: f.write(__UpperCamelCase ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = "pytorch" ): """simple docstring""" snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = os.path.join(__UpperCamelCase , 'output' ) snake_case_ = os.path.join(__UpperCamelCase , 'data' ) self._create_dummy_data(data_dir=__UpperCamelCase ) snake_case_ = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) snake_case_ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__UpperCamelCase , env=self.get_env() ) snake_case_ = os.path.join(__UpperCamelCase , 'metrics.json' ) with open(__UpperCamelCase ) as f: snake_case_ = json.load(__UpperCamelCase ) return result @require_torch_gpu def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
187
0
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = None __UpperCamelCase : Optional[int] = BloomTokenizerFast __UpperCamelCase : Optional[int] = BloomTokenizerFast __UpperCamelCase : List[str] = True __UpperCamelCase : int = False __UpperCamelCase : List[str] = """tokenizer_file""" __UpperCamelCase : Optional[Any] = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def lowerCAmelCase__ ( self : Tuple ): super().setUp() UpperCamelCase_: Union[str, Any] = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : str , **snake_case_ : Dict ): kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: int = self.get_rust_tokenizer() UpperCamelCase_: List[str] = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] UpperCamelCase_: Optional[int] = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] UpperCamelCase_: Optional[int] = tokenizer.batch_encode_plus(snake_case_ )["input_ids"] self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[Any] = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Dict , snake_case_ : List[str]=6 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_: List[Any] = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input UpperCamelCase_: Dict = "This is a simple input" UpperCamelCase_: Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] UpperCamelCase_: List[str] = ("This is a simple input", "This is a pair") UpperCamelCase_: Any = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(snake_case_ , max_length=snake_case_ ) tokenizer_r.encode_plus(snake_case_ , max_length=snake_case_ ) tokenizer_r.batch_encode_plus(snake_case_ , max_length=snake_case_ ) tokenizer_r.encode(snake_case_ , max_length=snake_case_ ) tokenizer_r.batch_encode_plus(snake_case_ , max_length=snake_case_ ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) UpperCamelCase_: str = None # Hotfixing padding = None self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Simple input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Simple input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" , ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Pair input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" , ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Optional[Any] = self.get_rust_tokenizer() UpperCamelCase_: List[str] = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=snake_case_ ) UpperCamelCase_: Optional[Any] = next(iter(snake_case_ ) )["premise"] # pick up one data UpperCamelCase_: Any = list(sample_data.values() ) UpperCamelCase_: List[str] = list(map(tokenizer.encode , snake_case_ ) ) UpperCamelCase_: Optional[Any] = [tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_ ) for x in output_tokens] self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
704
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
0
'''simple docstring''' import torch def _lowercase ( ) -> Tuple: """simple docstring""" if torch.cuda.is_available(): __UpperCAmelCase : List[Any] = torch.cuda.device_count() else: __UpperCAmelCase : Any = 0 print(f"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
168
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : str = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class __A (__magic_name__ ): snake_case :Optional[int] = "xlm-roberta" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_="absolute" , UpperCamelCase_=True , UpperCamelCase_=None , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : Dict = vocab_size __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : List[str] = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : str = initializer_range __UpperCAmelCase : Dict = layer_norm_eps __UpperCAmelCase : Dict = position_embedding_type __UpperCAmelCase : str = use_cache __UpperCAmelCase : int = classifier_dropout class __A (__magic_name__ ): @property def _snake_case ( self ): if self.task == "multiple-choice": __UpperCAmelCase : int = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
168
1
import re def _A ( _UpperCamelCase ): _UpperCAmelCase : Dict = re.compile( R'''^(?:0|94|\+94|0{2}94)''' R'''7(0|1|2|4|5|6|7|8)''' R'''(-| |)''' R'''\d{7}$''' ) return bool(re.search(A__ , A__ ) ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = '0094702343221' print(is_sri_lankan_phone_number(phone))
714
# Algorithm for the pigeonhole sorting def _A ( _UpperCamelCase ): _UpperCAmelCase : int = min(_UpperCamelCase ) # min() finds the minimum value _UpperCAmelCase : Any = max(_UpperCamelCase ) # max() finds the maximum value _UpperCAmelCase : str = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _UpperCAmelCase : Union[str, Any] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_UpperCamelCase , _UpperCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _UpperCAmelCase : Tuple = 0 for count in range(_UpperCamelCase ): while holes[count] > 0: holes[count] -= 1 _UpperCAmelCase : List[str] = count + min_val i += 1 def _A ( ): _UpperCAmelCase : Union[str, Any] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_UpperCamelCase ) print('''Sorted order is:''' , ''' '''.join(_UpperCamelCase ) ) if __name__ == "__main__": main()
416
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''MobileNetV2FeatureExtractor'''] _lowercase = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
659
from ....configuration_utils import PretrainedConfig from ....utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''Visual-Attention-Network/van-base''': ( '''https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json''' ), } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'van' def __init__( self : List[str] ,lowerCAmelCase__ : int=2_24 ,lowerCAmelCase__ : Optional[int]=3 ,lowerCAmelCase__ : Dict=[7, 3, 3, 3] ,lowerCAmelCase__ : List[str]=[4, 2, 2, 2] ,lowerCAmelCase__ : Union[str, Any]=[64, 1_28, 3_20, 5_12] ,lowerCAmelCase__ : Union[str, Any]=[3, 3, 12, 3] ,lowerCAmelCase__ : Any=[8, 8, 4, 4] ,lowerCAmelCase__ : Optional[int]="gelu" ,lowerCAmelCase__ : List[str]=0.02 ,lowerCAmelCase__ : Optional[Any]=1e-6 ,lowerCAmelCase__ : Dict=1e-2 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Optional[Any]=0.0 ,**lowerCAmelCase__ : List[str] ,) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = image_size lowerCAmelCase_ : List[str] = num_channels lowerCAmelCase_ : str = patch_sizes lowerCAmelCase_ : Optional[Any] = strides lowerCAmelCase_ : List[Any] = hidden_sizes lowerCAmelCase_ : int = depths lowerCAmelCase_ : int = mlp_ratios lowerCAmelCase_ : str = hidden_act lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : Dict = layer_norm_eps lowerCAmelCase_ : str = layer_scale_init_value lowerCAmelCase_ : Tuple = drop_path_rate lowerCAmelCase_ : Dict = dropout_rate
659
1
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] lowercase_ = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def __lowerCAmelCase ( __lowerCamelCase : Union[str, Any] ) -> Dict: __lowerCAmelCase =torch.load(snake_case__ , map_location="""cpu""" ) return sd def __lowerCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int=rename_keys_prefix ) -> Optional[Any]: __lowerCAmelCase =OrderedDict() __lowerCAmelCase =torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __lowerCAmelCase =key for name_pair in rename_keys_prefix: __lowerCAmelCase =new_key.replace(name_pair[0] , name_pair[1] ) __lowerCAmelCase =d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __lowerCAmelCase =new_d["""cls.predictions.bias"""] return new_d @torch.no_grad() def __lowerCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ) -> int: assert ( checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: __lowerCAmelCase ="""pretraining""" if "vcr" in checkpoint_path: __lowerCAmelCase ={"""visual_embedding_dim""": 512} elif "vqa_advanced" in checkpoint_path: __lowerCAmelCase ={"""visual_embedding_dim""": 2048} elif "vqa" in checkpoint_path: __lowerCAmelCase ={"""visual_embedding_dim""": 2048} elif "nlvr" in checkpoint_path: __lowerCAmelCase ={"""visual_embedding_dim""": 1024} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: __lowerCAmelCase ={"""visual_embedding_dim""": 512} __lowerCAmelCase ="""multichoice""" elif "vqa_advanced" in checkpoint_path: __lowerCAmelCase ={"""visual_embedding_dim""": 2048} __lowerCAmelCase ="""vqa_advanced""" elif "vqa" in checkpoint_path: __lowerCAmelCase ={"""visual_embedding_dim""": 2048, """num_labels""": 3129} __lowerCAmelCase ="""vqa""" elif "nlvr" in checkpoint_path: __lowerCAmelCase ={ """visual_embedding_dim""": 1024, """num_labels""": 2, } __lowerCAmelCase ="""nlvr""" __lowerCAmelCase =VisualBertConfig(**snake_case__ ) # Load State Dict __lowerCAmelCase =load_state_dict(snake_case__ ) __lowerCAmelCase =get_new_dict(snake_case__ , snake_case__ ) if model_type == "pretraining": __lowerCAmelCase =VisualBertForPreTraining(snake_case__ ) elif model_type == "vqa": __lowerCAmelCase =VisualBertForQuestionAnswering(snake_case__ ) elif model_type == "nlvr": __lowerCAmelCase =VisualBertForVisualReasoning(snake_case__ ) elif model_type == "multichoice": __lowerCAmelCase =VisualBertForMultipleChoice(snake_case__ ) model.load_state_dict(snake_case__ ) # Save Checkpoints Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') lowercase_ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
717
import os from typing import Dict, List, Tuple, TypeVar, Union lowercase_ = TypeVar('''T''') lowercase_ = Union[List[T], Tuple[T, ...]] lowercase_ = Union[T, List[T], Dict[str, T]] lowercase_ = Union[str, bytes, os.PathLike]
456
0
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def UpperCAmelCase_ ( A ): '''simple docstring''' if num <= 0: raise ValueError('math domain error' ) return quad(A , 0 , A , args=(A) )[0] def UpperCAmelCase_ ( A , A ): '''simple docstring''' return math.pow(A , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
120
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' _a : List[Any] = tau * frequency / samplerate _a : Tuple = sin(A ) _a : List[Any] = cos(A ) _a : Union[str, Any] = _sin / (2 * q_factor) _a : Dict = (1 - _cos) / 2 _a : Any = 1 - _cos _a : Any = 1 + alpha _a : int = -2 * _cos _a : str = 1 - alpha _a : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' _a : int = tau * frequency / samplerate _a : int = sin(A ) _a : Union[str, Any] = cos(A ) _a : int = _sin / (2 * q_factor) _a : Dict = (1 + _cos) / 2 _a : int = -1 - _cos _a : Optional[int] = 1 + alpha _a : str = -2 * _cos _a : Dict = 1 - alpha _a : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' _a : str = tau * frequency / samplerate _a : Dict = sin(A ) _a : int = cos(A ) _a : Dict = _sin / (2 * q_factor) _a : List[Any] = _sin / 2 _a : List[str] = 0 _a : Dict = -ba _a : List[Any] = 1 + alpha _a : Union[str, Any] = -2 * _cos _a : List[Any] = 1 - alpha _a : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' _a : Optional[Any] = tau * frequency / samplerate _a : Tuple = sin(A ) _a : Tuple = cos(A ) _a : Dict = _sin / (2 * q_factor) _a : List[Any] = 1 - alpha _a : int = -2 * _cos _a : List[Any] = 1 + alpha _a : str = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A , A = 1 / sqrt(2 ) , ): '''simple docstring''' _a : Union[str, Any] = tau * frequency / samplerate _a : str = sin(A ) _a : str = cos(A ) _a : List[Any] = _sin / (2 * q_factor) _a : Optional[Any] = 1_0 ** (gain_db / 4_0) _a : Dict = 1 + alpha * big_a _a : str = -2 * _cos _a : Tuple = 1 - alpha * big_a _a : Tuple = 1 + alpha / big_a _a : str = -2 * _cos _a : Union[str, Any] = 1 - alpha / big_a _a : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A , A = 1 / sqrt(2 ) , ): '''simple docstring''' _a : Optional[int] = tau * frequency / samplerate _a : List[str] = sin(A ) _a : Tuple = cos(A ) _a : Union[str, Any] = _sin / (2 * q_factor) _a : str = 1_0 ** (gain_db / 4_0) _a : Optional[Any] = (big_a + 1) - (big_a - 1) * _cos _a : List[str] = (big_a + 1) + (big_a - 1) * _cos _a : List[Any] = (big_a - 1) - (big_a + 1) * _cos _a : Dict = (big_a - 1) + (big_a + 1) * _cos _a : Tuple = 2 * sqrt(A ) * alpha _a : Any = big_a * (pmc + aaa) _a : Optional[int] = 2 * big_a * mpc _a : Dict = big_a * (pmc - aaa) _a : List[str] = ppmc + aaa _a : int = -2 * pmpc _a : Tuple = ppmc - aaa _a : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A , A = 1 / sqrt(2 ) , ): '''simple docstring''' _a : Dict = tau * frequency / samplerate _a : Tuple = sin(A ) _a : Any = cos(A ) _a : int = _sin / (2 * q_factor) _a : str = 1_0 ** (gain_db / 4_0) _a : List[Any] = (big_a + 1) - (big_a - 1) * _cos _a : Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos _a : List[Any] = (big_a - 1) - (big_a + 1) * _cos _a : List[str] = (big_a - 1) + (big_a + 1) * _cos _a : Union[str, Any] = 2 * sqrt(A ) * alpha _a : Optional[Any] = big_a * (ppmc + aaa) _a : List[str] = -2 * big_a * pmpc _a : Any = big_a * (ppmc - aaa) _a : List[Any] = pmc + aaa _a : Tuple = 2 * mpc _a : List[Any] = pmc - aaa _a : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
120
1
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =PriorTransformer UpperCAmelCase_ ="hidden_states" @property def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 8 SCREAMING_SNAKE_CASE_ = 7 SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, embedding_dim) ).to(_A ) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, embedding_dim) ).to(_A ) SCREAMING_SNAKE_CASE_ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_A ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _UpperCamelCase ( self , _A=0 ) -> List[str]: torch.manual_seed(_A ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 8 SCREAMING_SNAKE_CASE_ = 7 SCREAMING_SNAKE_CASE_ = torch.randn((batch_size, embedding_dim) ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.randn((batch_size, embedding_dim) ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_A ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _UpperCamelCase ( self ) -> Union[str, Any]: return (4, 8) @property def _UpperCamelCase ( self ) -> Union[str, Any]: return (4, 8) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = { '''num_attention_heads''': 2, '''attention_head_dim''': 4, '''num_layers''': 2, '''embedding_dim''': 8, '''num_embeddings''': 7, '''additional_embeddings''': 4, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PriorTransformer.from_pretrained( '''hf-internal-testing/prior-dummy''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) SCREAMING_SNAKE_CASE_ = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = self.model_class(**_A ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''hidden_states''', '''timestep'''] self.assertListEqual(arg_names[:2] , _A ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = PriorTransformer.from_pretrained('''hf-internal-testing/prior-dummy''' ) SCREAMING_SNAKE_CASE_ = model.to(_A ) if hasattr(_A , '''set_default_attn_processor''' ): model.set_default_attn_processor() SCREAMING_SNAKE_CASE_ = self.get_dummy_seed_input() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_A )[0] SCREAMING_SNAKE_CASE_ = output[0, :5].flatten().cpu() print(_A ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. SCREAMING_SNAKE_CASE_ = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(_A , _A , rtol=1E-2 ) ) @slow class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self , _A=1 , _A=768 , _A=77 , _A=0 ) -> int: torch.manual_seed(_A ) SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = embedding_dim SCREAMING_SNAKE_CASE_ = num_embeddings SCREAMING_SNAKE_CASE_ = torch.randn((batch_size, embedding_dim) ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.randn((batch_size, embedding_dim) ).to(_A ) SCREAMING_SNAKE_CASE_ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_A ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _UpperCamelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = PriorTransformer.from_pretrained('''kandinsky-community/kandinsky-2-1-prior''' , subfolder='''prior''' ) model.to(_A ) SCREAMING_SNAKE_CASE_ = self.get_dummy_seed_input(seed=_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_A )[0] assert list(sample.shape ) == [1, 768] SCREAMING_SNAKE_CASE_ = sample[0, :8].flatten().cpu() print(_A ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ) assert torch_all_close(_A , _A , atol=1E-3 )
597
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy __UpperCAmelCase = logging.getLogger(__name__) __UpperCAmelCase = "pytorch_model.bin" @dataclasses.dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase_ =dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) UpperCAmelCase_ =dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase_ =dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) UpperCAmelCase_ =dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) UpperCAmelCase_ =dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "A csv or a json file containing the validation data."} ) UpperCAmelCase_ =dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "The name of the task to train on."} , ) UpperCAmelCase_ =dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase_ =dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) UpperCAmelCase_ =dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) UpperCAmelCase_ =dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) UpperCAmelCase_ =dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) UpperCAmelCase_ =dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) UpperCAmelCase_ =dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) UpperCAmelCase_ =dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) UpperCAmelCase_ =dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) UpperCAmelCase_ =dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) UpperCAmelCase_ =dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) UpperCAmelCase_ =dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Random seed for initialization."} , ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = datasets.concatenate_datasets([infer_input, infer_output], axis=1 ) if args.do_filter_by_confidence: SCREAMING_SNAKE_CASE_ = dataset.filter(lambda __lowerCamelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 SCREAMING_SNAKE_CASE_ = int(eval_result * len(__lowerCamelCase ) ) print(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = dataset.sort('''probability''', reverse=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = dataset.select(range(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = dataset.remove_columns(['''label''', '''probability'''] ) SCREAMING_SNAKE_CASE_ = dataset.rename_column('''prediction''', '''label''' ) SCREAMING_SNAKE_CASE_ = dataset.map(lambda __lowerCamelCase : {"label": idalabel[example["label"]]} ) SCREAMING_SNAKE_CASE_ = dataset.shuffle(seed=args.seed ) SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(__lowerCamelCase, index=__lowerCamelCase ) else: dataset.to_json(__lowerCamelCase ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, **__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() SCREAMING_SNAKE_CASE_ = STModelArguments(model_name_or_path=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = STDataArguments(train_file=__lowerCamelCase, infer_file=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = STTrainingArguments(output_dir=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__lowerCamelCase ).items(): setattr(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) for key, value in kwargs.items(): if hasattr(__lowerCamelCase, __lowerCamelCase ): setattr(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Sanity checks SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None SCREAMING_SNAKE_CASE_ = args.train_file SCREAMING_SNAKE_CASE_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None SCREAMING_SNAKE_CASE_ = args.eval_file for key in data_files: SCREAMING_SNAKE_CASE_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: SCREAMING_SNAKE_CASE_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) SCREAMING_SNAKE_CASE_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format SCREAMING_SNAKE_CASE_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=__lowerCamelCase ) os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) accelerator.wait_for_everyone() SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = False # Show the progress bar SCREAMING_SNAKE_CASE_ = tqdm(range(args.max_selftrain_iterations ), disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0, int(args.max_selftrain_iterations ) ): SCREAMING_SNAKE_CASE_ = data_dir_format(__lowerCamelCase ) assert os.path.exists(__lowerCamelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''stage-1''' ) SCREAMING_SNAKE_CASE_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__lowerCamelCase, __lowerCamelCase ): arguments_dict.update({key: value} ) SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''best-checkpoint''', __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''', __lowerCamelCase, __lowerCamelCase, ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''', __lowerCamelCase ) finetune(**__lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCamelCase ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''', __lowerCamelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''best-checkpoint''' ) SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''stage-2''' ) # Update arguments_dict SCREAMING_SNAKE_CASE_ = model_path SCREAMING_SNAKE_CASE_ = data_files['''train'''] SCREAMING_SNAKE_CASE_ = current_output_dir SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''best-checkpoint''', __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''', __lowerCamelCase, __lowerCamelCase, ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''', __lowerCamelCase ) finetune(**__lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCamelCase ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = iteration SCREAMING_SNAKE_CASE_ = data_dir_format(iteration + 1 ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(os.path.join(__lowerCamelCase, '''best-checkpoint''' ) ) SCREAMING_SNAKE_CASE_ = config.idalabel SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''eval_results_best-checkpoint.json''' ) SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''test_results_best-checkpoint.json''' ) assert os.path.exists(__lowerCamelCase ) with open(__lowerCamelCase, '''r''' ) as f: SCREAMING_SNAKE_CASE_ = float(json.load(__lowerCamelCase )[args.eval_metric] ) SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(__lowerCamelCase ) # Loading the dataset from local csv or json files. SCREAMING_SNAKE_CASE_ = load_dataset(args.data_file_extension, data_files={'''data''': data_files['''infer''']} )['''data'''] SCREAMING_SNAKE_CASE_ = load_dataset('''csv''', data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) shutil.copy(__lowerCamelCase, os.path.join(__lowerCamelCase, F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(__lowerCamelCase ): shutil.copy(__lowerCamelCase, os.path.join(__lowerCamelCase, F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) accelerator.wait_for_everyone() SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: SCREAMING_SNAKE_CASE_ = eval_result if best_iteration is None: SCREAMING_SNAKE_CASE_ = new_iteration SCREAMING_SNAKE_CASE_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: SCREAMING_SNAKE_CASE_ = new_iteration SCREAMING_SNAKE_CASE_ = new_eval_result SCREAMING_SNAKE_CASE_ = 0 else: if new_eval_result == best_eval_result: SCREAMING_SNAKE_CASE_ = new_iteration SCREAMING_SNAKE_CASE_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: SCREAMING_SNAKE_CASE_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''', __lowerCamelCase ) logger.info('''Best evaluation result: %s = %f''', args.eval_metric, __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCamelCase, F'''eval_results_iter-{iteration}.json''' ), os.path.join(__lowerCamelCase, '''eval_results_best-iteration.json''' ), ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''', args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''', args.eval_metric, __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCamelCase, F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ), os.path.join(__lowerCamelCase, '''eval_results_best-iteration.json''' ), )
597
1
from __future__ import annotations from functools import lru_cache from math import ceil _lowerCAmelCase = 100 _lowerCAmelCase = set(range(3, NUM_PRIMES, 2)) primes.add(2) _lowerCAmelCase = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def lowercase ( _a ) -> set[int]: if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} UpperCAmelCase_: set[int] = set() UpperCAmelCase_: int UpperCAmelCase_: int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowercase ( _a = 5000 ) -> int | None: for number_to_partition in range(1 ,_a ): if len(partition(_a ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
137
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> Dict: return x + 2 class snake_case_ ( unittest.TestCase ): def __A ( self ): SCREAMING_SNAKE_CASE_ : Tuple = 'x = 3' SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : Union[str, Any] = evaluate(__lowerCAmelCase , {} , state=__lowerCAmelCase ) assert result == 3 self.assertDictEqual(__lowerCAmelCase , {'x': 3} ) SCREAMING_SNAKE_CASE_ : str = 'x = y' SCREAMING_SNAKE_CASE_ : Tuple = {'y': 5} SCREAMING_SNAKE_CASE_ : str = evaluate(__lowerCAmelCase , {} , state=__lowerCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__lowerCAmelCase , {'x': 5, 'y': 5} ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 'y = add_two(x)' SCREAMING_SNAKE_CASE_ : Optional[int] = {'x': 3} SCREAMING_SNAKE_CASE_ : Any = evaluate(__lowerCAmelCase , {'add_two': add_two} , state=__lowerCAmelCase ) assert result == 5 self.assertDictEqual(__lowerCAmelCase , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: SCREAMING_SNAKE_CASE_ : Tuple = evaluate(__lowerCAmelCase , {} , state=__lowerCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def __A ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'x = 3' SCREAMING_SNAKE_CASE_ : Optional[Any] = {} SCREAMING_SNAKE_CASE_ : Union[str, Any] = evaluate(__lowerCAmelCase , {} , state=__lowerCAmelCase ) assert result == 3 self.assertDictEqual(__lowerCAmelCase , {'x': 3} ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Tuple = 'test_dict = {\'x\': x, \'y\': add_two(x)}' SCREAMING_SNAKE_CASE_ : str = {'x': 3} SCREAMING_SNAKE_CASE_ : Dict = evaluate(__lowerCAmelCase , {'add_two': add_two} , state=__lowerCAmelCase ) self.assertDictEqual(__lowerCAmelCase , {'x': 3, 'y': 5} ) self.assertDictEqual(__lowerCAmelCase , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def __A ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = 'x = 3\ny = 5' SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : Optional[int] = evaluate(__lowerCAmelCase , {} , state=__lowerCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__lowerCAmelCase , {'x': 3, 'y': 5} ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Dict = 'text = f\'This is x: {x}.\'' SCREAMING_SNAKE_CASE_ : Any = {'x': 3} SCREAMING_SNAKE_CASE_ : Tuple = evaluate(__lowerCAmelCase , {} , state=__lowerCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__lowerCAmelCase , {'x': 3, 'text': 'This is x: 3.'} ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' SCREAMING_SNAKE_CASE_ : Optional[Any] = {'x': 3} SCREAMING_SNAKE_CASE_ : List[Any] = evaluate(__lowerCAmelCase , {} , state=__lowerCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__lowerCAmelCase , {'x': 3, 'y': 2} ) SCREAMING_SNAKE_CASE_ : Dict = {'x': 8} SCREAMING_SNAKE_CASE_ : Union[str, Any] = evaluate(__lowerCAmelCase , {} , state=__lowerCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__lowerCAmelCase , {'x': 8, 'y': 5} ) def __A ( self ): SCREAMING_SNAKE_CASE_ : str = 'test_list = [x, add_two(x)]' SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'x': 3} SCREAMING_SNAKE_CASE_ : Optional[Any] = evaluate(__lowerCAmelCase , {'add_two': add_two} , state=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , [3, 5] ) self.assertDictEqual(__lowerCAmelCase , {'x': 3, 'test_list': [3, 5]} ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Dict = 'y = x' SCREAMING_SNAKE_CASE_ : int = {'x': 3} SCREAMING_SNAKE_CASE_ : Any = evaluate(__lowerCAmelCase , {} , state=__lowerCAmelCase ) assert result == 3 self.assertDictEqual(__lowerCAmelCase , {'x': 3, 'y': 3} ) def __A ( self ): SCREAMING_SNAKE_CASE_ : List[str] = 'test_list = [x, add_two(x)]\ntest_list[1]' SCREAMING_SNAKE_CASE_ : Any = {'x': 3} SCREAMING_SNAKE_CASE_ : Tuple = evaluate(__lowerCAmelCase , {'add_two': add_two} , state=__lowerCAmelCase ) assert result == 5 self.assertDictEqual(__lowerCAmelCase , {'x': 3, 'test_list': [3, 5]} ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' SCREAMING_SNAKE_CASE_ : Any = {'x': 3} SCREAMING_SNAKE_CASE_ : List[Any] = evaluate(__lowerCAmelCase , {'add_two': add_two} , state=__lowerCAmelCase ) assert result == 5 self.assertDictEqual(__lowerCAmelCase , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def __A ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = 'x = 0\nfor i in range(3):\n x = i' SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} SCREAMING_SNAKE_CASE_ : Tuple = evaluate(__lowerCAmelCase , {'range': range} , state=__lowerCAmelCase ) assert result == 2 self.assertDictEqual(__lowerCAmelCase , {'x': 2, 'i': 2} )
345
0
'''simple docstring''' import torch def __lowerCamelCase ( ): '''simple docstring''' if torch.cuda.is_available(): UpperCAmelCase_ = torch.cuda.device_count() else: UpperCAmelCase_ = 0 print(F"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
702
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : int = logging.get_logger(__name__) lowercase__ : List[str] = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = '''time_series_transformer''' lowerCAmelCase__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : str = "student_t" , UpperCAmelCase__ : str = "nll" , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , UpperCAmelCase__ : Optional[Union[str, bool]] = "mean" , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 100 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : Union[str, Any]=True , **UpperCAmelCase__ : Tuple , ) ->Optional[int]: # time series specific configuration UpperCAmelCase_ = prediction_length UpperCAmelCase_ = context_length or prediction_length UpperCAmelCase_ = distribution_output UpperCAmelCase_ = loss UpperCAmelCase_ = input_size UpperCAmelCase_ = num_time_features UpperCAmelCase_ = lags_sequence UpperCAmelCase_ = scaling UpperCAmelCase_ = num_dynamic_real_features UpperCAmelCase_ = num_static_real_features UpperCAmelCase_ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) UpperCAmelCase_ = cardinality else: UpperCAmelCase_ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase__ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) UpperCAmelCase_ = embedding_dimension else: UpperCAmelCase_ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase_ = num_parallel_samples # Transformer architecture configuration UpperCAmelCase_ = input_size * len(UpperCAmelCase__ ) + self._number_of_features UpperCAmelCase_ = d_model UpperCAmelCase_ = encoder_attention_heads UpperCAmelCase_ = decoder_attention_heads UpperCAmelCase_ = encoder_ffn_dim UpperCAmelCase_ = decoder_ffn_dim UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = encoder_layerdrop UpperCAmelCase_ = decoder_layerdrop UpperCAmelCase_ = activation_function UpperCAmelCase_ = init_std UpperCAmelCase_ = use_cache super().__init__(is_encoder_decoder=UpperCAmelCase__ , **UpperCAmelCase__ ) @property def lowerCAmelCase__ ( self : List[str] ) ->int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
43
0
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def snake_case (UpperCAmelCase__ ) -> Union[str, Any]: if is_torch_version('<' , '2.0.0' ) or not hasattr(UpperCAmelCase__ , '_dynamo' ): return False return isinstance(UpperCAmelCase__ , torch._dynamo.eval_frame.OptimizedModule ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ = True ) -> Any: UpperCamelCase_: Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase_: int = is_compiled_module(UpperCAmelCase__ ) if is_compiled: UpperCamelCase_: List[str] = model UpperCamelCase_: Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Dict = model.module if not keep_fpaa_wrapper: UpperCamelCase_: int = getattr(UpperCAmelCase__ , 'forward' ) UpperCamelCase_: List[str] = model.__dict__.pop('_original_forward' , UpperCAmelCase__ ) if original_forward is not None: while hasattr(UpperCAmelCase__ , '__wrapped__' ): UpperCamelCase_: Any = forward.__wrapped__ if forward == original_forward: break UpperCamelCase_: Optional[int] = forward if getattr(UpperCAmelCase__ , '_converted_to_transformer_engine' , UpperCAmelCase__ ): convert_model(UpperCAmelCase__ , to_transformer_engine=UpperCAmelCase__ ) if is_compiled: UpperCamelCase_: Union[str, Any] = model UpperCamelCase_: Tuple = compiled_model return model def snake_case () -> List[str]: PartialState().wait_for_everyone() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: if PartialState().distributed_type == DistributedType.TPU: xm.save(UpperCAmelCase__ , UpperCAmelCase__ ) elif PartialState().local_process_index == 0: torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) @contextmanager def snake_case (**UpperCAmelCase__ ) -> Any: for key, value in kwargs.items(): UpperCamelCase_: int = str(UpperCAmelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def snake_case (UpperCAmelCase__ ) -> str: if not hasattr(UpperCAmelCase__ , '__qualname__' ) and not hasattr(UpperCAmelCase__ , '__name__' ): UpperCamelCase_: List[Any] = getattr(UpperCAmelCase__ , '__class__' , UpperCAmelCase__ ) if hasattr(UpperCAmelCase__ , '__qualname__' ): return obj.__qualname__ if hasattr(UpperCAmelCase__ , '__name__' ): return obj.__name__ return str(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: for key, value in source.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase_: Any = destination.setdefault(UpperCAmelCase__ , {} ) merge_dicts(UpperCAmelCase__ , UpperCAmelCase__ ) else: UpperCamelCase_: str = value return destination def snake_case (UpperCAmelCase__ = None ) -> bool: if port is None: UpperCamelCase_: List[str] = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
57
from math import asin, atan, cos, radians, sin, sqrt, tan SCREAMING_SNAKE_CASE = 6_37_81_37.0 SCREAMING_SNAKE_CASE = 6_35_67_52.31_42_45 SCREAMING_SNAKE_CASE = 6378137 def _lowerCamelCase ( __A : float , __A : float , __A : float , __A : float ) -> float: _UpperCAmelCase : Any = (AXIS_A - AXIS_B) / AXIS_A _UpperCAmelCase : str = atan((1 - flattening) * tan(radians(__A ) ) ) _UpperCAmelCase : List[Any] = atan((1 - flattening) * tan(radians(__A ) ) ) _UpperCAmelCase : Dict = radians(__A ) _UpperCAmelCase : List[str] = radians(__A ) # Equation _UpperCAmelCase : Optional[Any] = sin((phi_a - phi_a) / 2 ) _UpperCAmelCase : Optional[Any] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _UpperCAmelCase : Any = sqrt(sin_sq_phi + (cos(__A ) * cos(__A ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__A ) if __name__ == "__main__": import doctest doctest.testmod()
485
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __a ( __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : List[str] = AlbertConfig.from_json_file(__UpperCAmelCase ) print(f"Building PyTorch model from configuration: {config}" ) lowerCamelCase_ : Optional[int] = AlbertForPreTraining(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_albert(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , __UpperCAmelCase ) if __name__ == "__main__": snake_case_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) snake_case_ : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
720
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : List[Any] = logging.get_logger(__name__) snake_case_ : Dict = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class snake_case_ ( __A ): '''simple docstring''' lowerCamelCase = "sew" def __init__( self : Optional[Any] , __magic_name__ : List[Any]=32 , __magic_name__ : str=768 , __magic_name__ : int=12 , __magic_name__ : int=12 , __magic_name__ : Optional[int]=3072 , __magic_name__ : Optional[Any]=2 , __magic_name__ : int="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Tuple=0.1 , __magic_name__ : List[Any]=0.1 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=1e-5 , __magic_name__ : List[Any]="group" , __magic_name__ : List[Any]="gelu" , __magic_name__ : str=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __magic_name__ : Dict=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __magic_name__ : Dict=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __magic_name__ : Union[str, Any]=False , __magic_name__ : List[str]=128 , __magic_name__ : str=16 , __magic_name__ : Tuple=True , __magic_name__ : Optional[int]=0.05 , __magic_name__ : int=10 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : str=0.0 , __magic_name__ : Optional[Any]=10 , __magic_name__ : Optional[Any]=0 , __magic_name__ : int="mean" , __magic_name__ : str=False , __magic_name__ : int=False , __magic_name__ : List[str]=256 , __magic_name__ : List[Any]=0 , __magic_name__ : Tuple=1 , __magic_name__ : Dict=2 , **__magic_name__ : List[Any] , ) -> Tuple: super().__init__(**__magic_name__ , pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ ) lowerCamelCase_ : str = hidden_size lowerCamelCase_ : Union[str, Any] = feat_extract_norm lowerCamelCase_ : List[str] = feat_extract_activation lowerCamelCase_ : int = list(__magic_name__ ) lowerCamelCase_ : List[str] = list(__magic_name__ ) lowerCamelCase_ : Optional[int] = list(__magic_name__ ) lowerCamelCase_ : Optional[Any] = conv_bias lowerCamelCase_ : Union[str, Any] = num_conv_pos_embeddings lowerCamelCase_ : Optional[int] = num_conv_pos_embedding_groups lowerCamelCase_ : Union[str, Any] = len(self.conv_dim ) lowerCamelCase_ : List[str] = num_hidden_layers lowerCamelCase_ : List[Any] = intermediate_size lowerCamelCase_ : List[Any] = squeeze_factor lowerCamelCase_ : Tuple = hidden_act lowerCamelCase_ : Tuple = num_attention_heads lowerCamelCase_ : int = hidden_dropout lowerCamelCase_ : Optional[Any] = attention_dropout lowerCamelCase_ : List[Any] = activation_dropout lowerCamelCase_ : Dict = feat_proj_dropout lowerCamelCase_ : List[str] = final_dropout lowerCamelCase_ : Any = layerdrop lowerCamelCase_ : List[Any] = layer_norm_eps lowerCamelCase_ : Union[str, Any] = initializer_range lowerCamelCase_ : Any = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase_ : Optional[int] = apply_spec_augment lowerCamelCase_ : Union[str, Any] = mask_time_prob lowerCamelCase_ : Optional[int] = mask_time_length lowerCamelCase_ : str = mask_time_min_masks lowerCamelCase_ : List[str] = mask_feature_prob lowerCamelCase_ : List[Any] = mask_feature_length lowerCamelCase_ : List[Any] = mask_feature_min_masks # ctc loss lowerCamelCase_ : str = ctc_loss_reduction lowerCamelCase_ : Union[str, Any] = ctc_zero_infinity # sequence classification lowerCamelCase_ : List[Any] = use_weighted_layer_sum lowerCamelCase_ : Optional[Any] = classifier_proj_size @property def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
253
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE (a_ , a_ , unittest.TestCase ): """simple docstring""" __a =StableDiffusionSAGPipeline __a =TEXT_TO_IMAGE_PARAMS __a =TEXT_TO_IMAGE_BATCH_PARAMS __a =TEXT_TO_IMAGE_IMAGE_PARAMS __a =TEXT_TO_IMAGE_IMAGE_PARAMS __a =False def UpperCamelCase__ ( self : List[Any] ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) _a = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _a = CLIPTextModel(_lowercase ) _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Tuple=0 ): if str(_lowercase ).startswith("mps" ): _a = torch.manual_seed(_lowercase ) else: _a = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) _a = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self : Optional[Any] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : int ): _a = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) _a = sag_pipe.to(_lowercase ) sag_pipe.set_progress_bar_config(disable=_lowercase ) _a = '''.''' _a = torch.manual_seed(0 ) _a = sag_pipe( [prompt] , generator=_lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _a = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def UpperCamelCase__ ( self : List[Any] ): _a = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) _a = sag_pipe.to(_lowercase ) sag_pipe.set_progress_bar_config(disable=_lowercase ) _a = '''.''' _a = torch.manual_seed(0 ) _a = sag_pipe( [prompt] , generator=_lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) _a = output.images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _a = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def UpperCamelCase__ ( self : List[str] ): _a = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) _a = sag_pipe.to(_lowercase ) sag_pipe.set_progress_bar_config(disable=_lowercase ) _a = '''.''' _a = torch.manual_seed(0 ) _a = sag_pipe( [prompt] , width=7_68 , height=5_12 , generator=_lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" , ) _a = output.images assert image.shape == (1, 5_12, 7_68, 3)
692
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : Tuple =logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict ={ 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } SCREAMING_SNAKE_CASE__ : Dict ={ 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } SCREAMING_SNAKE_CASE__ : Dict ={ 'ctrl': 256, } SCREAMING_SNAKE_CASE__ : Optional[Any] ={ 'Pregnancy': 16_8629, 'Christianity': 7675, 'Explain': 10_6423, 'Fitness': 6_3440, 'Saving': 6_3163, 'Ask': 2_7171, 'Ass': 9_5985, 'Joke': 16_3509, 'Questions': 4_5622, 'Thoughts': 4_9605, 'Retail': 5_2342, 'Feminism': 16_4338, 'Writing': 1_1992, 'Atheism': 19_2263, 'Netflix': 4_8616, 'Computing': 3_9639, 'Opinion': 4_3213, 'Alone': 4_4967, 'Funny': 5_8917, 'Gaming': 4_0358, 'Human': 4088, 'India': 1331, 'Joker': 7_7138, 'Diet': 3_6206, 'Legal': 1_1859, 'Norman': 4939, 'Tip': 7_2689, 'Weight': 5_2343, 'Movies': 4_6273, 'Running': 2_3425, 'Science': 2090, 'Horror': 3_7793, 'Confession': 6_0572, 'Finance': 1_2250, 'Politics': 1_6360, 'Scary': 19_1985, 'Support': 1_2654, 'Technologies': 3_2516, 'Teenage': 6_6160, 'Event': 3_2769, 'Learned': 6_7460, 'Notion': 18_2770, 'Wikipedia': 3_7583, 'Books': 6665, 'Extract': 7_6050, 'Confessions': 10_2701, 'Conspiracy': 7_5932, 'Links': 6_3674, 'Narcissus': 15_0425, 'Relationship': 5_4766, 'Relationships': 13_4796, 'Reviews': 4_1671, 'News': 4256, 'Translation': 2_6820, 'multilingual': 12_8406, } def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Tuple: _lowerCamelCase : List[str] = set() _lowerCamelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCamelCase : int = char _lowerCamelCase : List[Any] = set(SCREAMING_SNAKE_CASE_ ) return pairs class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = CONTROL_CODES def __init__( self , _lowercase , _lowercase , _lowercase="<unk>" , **_lowercase ) -> int: super().__init__(unk_token=_lowercase , **_lowercase ) with open(_lowercase , encoding='''utf-8''' ) as vocab_handle: _lowerCamelCase : List[str] = json.load(_lowercase ) _lowerCamelCase : Dict = {v: k for k, v in self.encoder.items()} with open(_lowercase , encoding='''utf-8''' ) as merges_handle: _lowerCamelCase : List[Any] = merges_handle.read().split('''\n''' )[1:-1] _lowerCamelCase : Optional[Any] = [tuple(merge.split() ) for merge in merges] _lowerCamelCase : int = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) _lowerCamelCase : Tuple = {} @property def a__ ( self ) -> List[Any]: return len(self.encoder ) def a__ ( self ) -> Any: return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self , _lowercase ) -> Any: if token in self.cache: return self.cache[token] _lowerCamelCase : str = tuple(_lowercase ) _lowerCamelCase : Any = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _lowerCamelCase : Dict = get_pairs(_lowercase ) if not pairs: return token while True: _lowerCamelCase : str = min(_lowercase , key=lambda _lowercase : self.bpe_ranks.get(_lowercase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _lowerCamelCase, _lowerCamelCase : List[Any] = bigram _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : Union[str, Any] = 0 while i < len(_lowercase ): try: _lowerCamelCase : List[str] = word.index(_lowercase , _lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCamelCase : List[Any] = j if word[i] == first and i < len(_lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCamelCase : Tuple = tuple(_lowercase ) _lowerCamelCase : Any = new_word if len(_lowercase ) == 1: break else: _lowerCamelCase : List[str] = get_pairs(_lowercase ) _lowerCamelCase : Tuple = '''@@ '''.join(_lowercase ) _lowerCamelCase : List[str] = word[:-4] _lowerCamelCase : Dict = word return word def a__ ( self , _lowercase ) -> Any: _lowerCamelCase : Tuple = [] _lowerCamelCase : Any = re.findall(R'''\S+\n?''' , _lowercase ) for token in words: split_tokens.extend(list(self.bpe(_lowercase ).split(''' ''' ) ) ) return split_tokens def a__ ( self , _lowercase ) -> str: return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def a__ ( self , _lowercase ) -> Optional[int]: return self.decoder.get(_lowercase , self.unk_token ) def a__ ( self , _lowercase ) -> Any: _lowerCamelCase : int = ''' '''.join(_lowercase ).replace('''@@ ''' , '''''' ).strip() return out_string def a__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: if not os.path.isdir(_lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCamelCase : List[str] = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : Any = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowercase , ensure_ascii=_lowercase ) + '''\n''' ) _lowerCamelCase : Any = 0 with open(_lowercase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowercase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _lowerCamelCase : List[Any] = token_index writer.write(''' '''.join(_lowercase ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
434
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BILINEAR , __a = True , __a = None , __a = True , __a = 1 / 2_55 , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''shortest_edge''': 2_56} _UpperCamelCase = get_size_dict(__a , default_to_square=__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BICUBIC , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a , default_to_square=__a) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''') _UpperCamelCase = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a) return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a , default_to_square=__a) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a) _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(__a) if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__a) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=__a , size=__a , resample=__a) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=__a , size=__a) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=__a , scale=__a) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=__a , mean=__a , std=__a) for image in images] _UpperCamelCase = [to_channel_dimension_format(__a , __a) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a)
78
"""simple docstring""" import json import sys def lowerCamelCase__ ( __snake_case, __snake_case ) -> Union[str, Any]: """simple docstring""" with open(__snake_case, encoding='''utf-8''' ) as f: _UpperCamelCase = json.load(__snake_case ) _UpperCamelCase = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' '''] for benchmark_name in sorted(__snake_case ): _UpperCamelCase = results[benchmark_name] _UpperCamelCase = benchmark_name.split('''/''' )[-1] output_md.append(F'''### Benchmark: {benchmark_file_name}''' ) _UpperCamelCase = '''| metric |''' _UpperCamelCase = '''|--------|''' _UpperCamelCase = '''| new / old (diff) |''' for metric_name in sorted(__snake_case ): _UpperCamelCase = benchmark_res[metric_name] _UpperCamelCase = metric_vals['''new'''] _UpperCamelCase = metric_vals.get('''old''', __snake_case ) _UpperCamelCase = metric_vals.get('''diff''', __snake_case ) _UpperCamelCase = F''' {new_val:f}''' if isinstance(__snake_case, (int, float) ) else '''None''' if old_val is not None: val_str += F''' / {old_val:f}''' if isinstance(__snake_case, (int, float) ) else "None" if dif_val is not None: val_str += F''' ({dif_val:f})''' if isinstance(__snake_case, (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('''</details>''' ) with open(__snake_case, '''w''', encoding='''utf-8''' ) as f: f.writelines('''\n'''.join(__snake_case ) ) if __name__ == "__main__": _a = sys.argv[1] _a = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
78
1
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( _lowerCAmelCase ): A = (DDPMParallelScheduler,) def __UpperCamelCase ( self : List[str] , **UpperCamelCase_ : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ : Union[str, Any] = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCamelCase_ ) return config def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def __UpperCamelCase ( self : int ) -> int: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCamelCase_ ) def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ : int = self.scheduler_classes[0] lowerCamelCase_ : int = self.get_scheduler_config() lowerCamelCase_ : Tuple = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ : Optional[Any] = self.scheduler_classes[0] lowerCamelCase_ : Any = self.get_scheduler_config() lowerCamelCase_ : List[Any] = scheduler_class(**UpperCamelCase_ ) lowerCamelCase_ : Any = len(UpperCamelCase_ ) lowerCamelCase_ : List[Any] = self.dummy_model() lowerCamelCase_ : List[str] = self.dummy_sample_deter lowerCamelCase_ : Dict = self.dummy_sample_deter + 0.1 lowerCamelCase_ : Optional[int] = self.dummy_sample_deter - 0.1 lowerCamelCase_ : str = samplea.shape[0] lowerCamelCase_ : Optional[int] = torch.stack([samplea, samplea, samplea] , dim=0 ) lowerCamelCase_ : str = torch.arange(UpperCamelCase_ )[0:3, None].repeat(1 , UpperCamelCase_ ) lowerCamelCase_ : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowerCamelCase_ : List[Any] = scheduler.batch_step_no_noise(UpperCamelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) lowerCamelCase_ : Optional[Any] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCamelCase_ : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" lowerCamelCase_ : Optional[Any] = self.scheduler_classes[0] lowerCamelCase_ : Optional[Any] = self.get_scheduler_config() lowerCamelCase_ : str = scheduler_class(**UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = len(UpperCamelCase_ ) lowerCamelCase_ : int = self.dummy_model() lowerCamelCase_ : str = self.dummy_sample_deter lowerCamelCase_ : Tuple = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCamelCase_ : str = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ : Optional[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCamelCase_ : Dict = pred_prev_sample lowerCamelCase_ : Any = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCamelCase_ : List[str] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : Optional[Any] = self.scheduler_classes[0] lowerCamelCase_ : List[Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCamelCase_ : Tuple = scheduler_class(**UpperCamelCase_ ) lowerCamelCase_ : int = len(UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = self.dummy_model() lowerCamelCase_ : str = self.dummy_sample_deter lowerCamelCase_ : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual lowerCamelCase_ : Dict = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowerCamelCase_ : str = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample lowerCamelCase_ : int = pred_prev_sample lowerCamelCase_ : List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowerCamelCase_ : int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __UpperCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Any = self.scheduler_classes[0] lowerCamelCase_ : Optional[Any] = self.get_scheduler_config() lowerCamelCase_ : Dict = scheduler_class(**UpperCamelCase_ ) lowerCamelCase_ : int = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase_ ): if i == len(UpperCamelCase_ ) - 1: lowerCamelCase_ : List[Any] = -1 else: lowerCamelCase_ : List[str] = timesteps[i + 1] lowerCamelCase_ : Optional[Any] = scheduler.previous_timestep(UpperCamelCase_ ) lowerCamelCase_ : Tuple = prev_t.item() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : Optional[int] = self.scheduler_classes[0] lowerCamelCase_ : Dict = self.get_scheduler_config() lowerCamelCase_ : Union[str, Any] = scheduler_class(**UpperCamelCase_ ) lowerCamelCase_ : Optional[int] = [100, 87, 50, 51, 0] with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCamelCase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" lowerCamelCase_ : List[str] = self.scheduler_classes[0] lowerCamelCase_ : List[Any] = self.get_scheduler_config() lowerCamelCase_ : Union[str, Any] = scheduler_class(**UpperCamelCase_ ) lowerCamelCase_ : List[Any] = [100, 87, 50, 1, 0] lowerCamelCase_ : Any = len(UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ ) def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : Tuple = self.scheduler_classes[0] lowerCamelCase_ : Union[str, Any] = self.get_scheduler_config() lowerCamelCase_ : Optional[Any] = scheduler_class(**UpperCamelCase_ ) lowerCamelCase_ : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCamelCase_ )
501
'''simple docstring''' import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowerCamelCase : Optional[int] = 16 __lowerCamelCase : Dict = 32 def __snake_case (__UpperCAmelCase ): """simple docstring""" return int(x / 2**20 ) class lowerCAmelCase__ : def __enter__( self : Optional[Any] ) -> Tuple: """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowerCamelCase_ : str = torch.cuda.memory_allocated() return self def __exit__( self : Any , *UpperCamelCase_ : Dict ) -> List[Any]: """simple docstring""" gc.collect() torch.cuda.empty_cache() lowerCamelCase_ : Dict = torch.cuda.memory_allocated() lowerCamelCase_ : List[str] = torch.cuda.max_memory_allocated() lowerCamelCase_ : Union[str, Any] = bamb(self.end - self.begin ) lowerCamelCase_ : Optional[Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def __snake_case (__UpperCAmelCase , __UpperCAmelCase = 16 , __UpperCAmelCase = "bert-base-cased" , __UpperCAmelCase = 320 , __UpperCAmelCase = 160 , ): """simple docstring""" lowerCamelCase_ : int = AutoTokenizer.from_pretrained(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = load_dataset( '''glue''' , '''mrpc''' , split={'''train''': F"""train[:{n_train}]""", '''validation''': F"""validation[:{n_val}]"""} ) def tokenize_function(__UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase_ : str = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=__UpperCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ : Tuple = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCAmelCase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. lowerCamelCase_ : Optional[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=__UpperCAmelCase ) lowerCamelCase_ : Dict = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=__UpperCAmelCase ) return train_dataloader, eval_dataloader def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" # Initialize accelerator lowerCamelCase_ : List[str] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ : Tuple = config['''lr'''] lowerCamelCase_ : Any = int(config['''num_epochs'''] ) lowerCamelCase_ : str = int(config['''seed'''] ) lowerCamelCase_ : Any = int(config['''batch_size'''] ) lowerCamelCase_ : List[str] = args.model_name_or_path set_seed(__UpperCAmelCase ) lowerCamelCase_ , lowerCamelCase_ : Tuple = get_dataloaders(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(__UpperCAmelCase , return_dict=__UpperCAmelCase ) # Instantiate optimizer lowerCamelCase_ : Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase_ : int = optimizer_cls(params=model.parameters() , lr=__UpperCAmelCase ) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase_ : Optional[int] = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: lowerCamelCase_ : List[Any] = 1 lowerCamelCase_ : int = (len(__UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase_ : List[Any] = get_linear_schedule_with_warmup( optimizer=__UpperCAmelCase , num_warmup_steps=0 , num_training_steps=__UpperCAmelCase , ) else: lowerCamelCase_ : List[Any] = DummyScheduler(__UpperCAmelCase , total_num_steps=__UpperCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[int] = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over lowerCamelCase_ : Tuple = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase_ : Optional[int] = 0 # Now we train the model lowerCamelCase_ : Optional[int] = {} for epoch in range(__UpperCAmelCase , __UpperCAmelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(__UpperCAmelCase ): lowerCamelCase_ : Optional[int] = model(**__UpperCAmelCase ) lowerCamelCase_ : List[str] = outputs.loss lowerCamelCase_ : Dict = loss / gradient_accumulation_steps accelerator.backward(__UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowerCamelCase_ : int = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __snake_case (): """simple docstring""" lowerCamelCase_ : List[Any] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=__UpperCAmelCase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__UpperCAmelCase , ) parser.add_argument( '''--output_dir''' , type=__UpperCAmelCase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--peak_memory_upper_bound''' , type=__UpperCAmelCase , default=__UpperCAmelCase , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , ) parser.add_argument( '''--n_train''' , type=__UpperCAmelCase , default=320 , help='''Number of training examples to use.''' , ) parser.add_argument( '''--n_val''' , type=__UpperCAmelCase , default=160 , help='''Number of validation examples to use.''' , ) parser.add_argument( '''--num_epochs''' , type=__UpperCAmelCase , default=1 , help='''Number of train epochs.''' , ) lowerCamelCase_ : List[Any] = parser.parse_args() lowerCamelCase_ : List[str] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": main()
501
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = jnp.ones((batch_size, length) ) / length return scores def __lowerCAmelCase ( self ): _lowerCAmelCase = None _lowerCAmelCase = 20 _lowerCAmelCase = self._get_uniform_logits(batch_size=2 , length=UpperCAmelCase__ ) # tweak scores to not be uniform anymore _lowerCAmelCase = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch _lowerCAmelCase = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax _lowerCAmelCase = jax.nn.softmax(UpperCAmelCase__ , axis=-1 ) _lowerCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCAmelCase = FlaxTemperatureLogitsWarper(temperature=1.3 ) _lowerCAmelCase = jax.nn.softmax(temp_dist_warper_sharper(UpperCAmelCase__ , scores.copy() , cur_len=UpperCAmelCase__ ) , axis=-1 ) _lowerCAmelCase = jax.nn.softmax(temp_dist_warper_smoother(UpperCAmelCase__ , scores.copy() , cur_len=UpperCAmelCase__ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def __lowerCAmelCase ( self ): _lowerCAmelCase = None _lowerCAmelCase = 10 _lowerCAmelCase = 2 # create ramp distribution _lowerCAmelCase = np.broadcast_to(np.arange(UpperCAmelCase__ )[None, :] , (batch_size, vocab_size) ).copy() _lowerCAmelCase = ramp_logits[1:, : vocab_size // 2] + vocab_size _lowerCAmelCase = FlaxTopKLogitsWarper(3 ) _lowerCAmelCase = top_k_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case _lowerCAmelCase = 5 _lowerCAmelCase = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) _lowerCAmelCase = np.broadcast_to(np.arange(UpperCAmelCase__ )[None, :] , (batch_size, length) ).copy() _lowerCAmelCase = top_k_warp_safety_check(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def __lowerCAmelCase ( self ): _lowerCAmelCase = None _lowerCAmelCase = 10 _lowerCAmelCase = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) _lowerCAmelCase = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) _lowerCAmelCase = FlaxTopPLogitsWarper(0.8 ) _lowerCAmelCase = np.exp(top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 _lowerCAmelCase = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # check edge cases with negative and extreme logits _lowerCAmelCase = np.broadcast_to(np.arange(UpperCAmelCase__ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme _lowerCAmelCase = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept _lowerCAmelCase = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) _lowerCAmelCase = top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def __lowerCAmelCase ( self ): _lowerCAmelCase = 20 _lowerCAmelCase = 4 _lowerCAmelCase = 0 _lowerCAmelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase__ ) # check that min length is applied at length 5 _lowerCAmelCase = ids_tensor((batch_size, 20) , vocab_size=20 ) _lowerCAmelCase = 5 _lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase = min_dist_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 _lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase = 15 _lowerCAmelCase = min_dist_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertFalse(jnp.isinf(UpperCAmelCase__ ).any() ) def __lowerCAmelCase ( self ): _lowerCAmelCase = 20 _lowerCAmelCase = 4 _lowerCAmelCase = 0 _lowerCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__ ) # check that all scores are -inf except the bos_token_id score _lowerCAmelCase = ids_tensor((batch_size, 1) , vocab_size=20 ) _lowerCAmelCase = 1 _lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 _lowerCAmelCase = 3 _lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertFalse(jnp.isinf(UpperCAmelCase__ ).any() ) def __lowerCAmelCase ( self ): _lowerCAmelCase = 20 _lowerCAmelCase = 4 _lowerCAmelCase = 0 _lowerCAmelCase = 5 _lowerCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) # check that all scores are -inf except the eos_token_id when max_length is reached _lowerCAmelCase = ids_tensor((batch_size, 4) , vocab_size=20 ) _lowerCAmelCase = 4 _lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached _lowerCAmelCase = 3 _lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase = logits_processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) self.assertFalse(jnp.isinf(UpperCAmelCase__ ).any() ) def __lowerCAmelCase ( self ): _lowerCAmelCase = 4 _lowerCAmelCase = 10 _lowerCAmelCase = 15 _lowerCAmelCase = 2 _lowerCAmelCase = 1 _lowerCAmelCase = 15 # dummy input_ids and scores _lowerCAmelCase = ids_tensor((batch_size, sequence_length) , UpperCAmelCase__ ) _lowerCAmelCase = input_ids.copy() _lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase = scores.copy() # instantiate all dist processors _lowerCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCAmelCase = FlaxTopKLogitsWarper(3 ) _lowerCAmelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _lowerCAmelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase__ ) _lowerCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__ ) _lowerCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) _lowerCAmelCase = 10 # no processor list _lowerCAmelCase = temp_dist_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = top_k_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = min_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = bos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = eos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # with processor list _lowerCAmelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _lowerCAmelCase = processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def __lowerCAmelCase ( self ): _lowerCAmelCase = 4 _lowerCAmelCase = 10 _lowerCAmelCase = 15 _lowerCAmelCase = 2 _lowerCAmelCase = 1 _lowerCAmelCase = 15 # dummy input_ids and scores _lowerCAmelCase = ids_tensor((batch_size, sequence_length) , UpperCAmelCase__ ) _lowerCAmelCase = input_ids.copy() _lowerCAmelCase = self._get_uniform_logits(UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase = scores.copy() # instantiate all dist processors _lowerCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCAmelCase = FlaxTopKLogitsWarper(3 ) _lowerCAmelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _lowerCAmelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=UpperCAmelCase__ ) _lowerCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCAmelCase__ ) _lowerCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) _lowerCAmelCase = 10 # no processor list def run_no_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = temp_dist_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = top_k_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = top_p_warp(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = min_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = bos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) _lowerCAmelCase = eos_dist_proc(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) return scores # with processor list def run_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _lowerCAmelCase = processor(UpperCAmelCase__ , UpperCAmelCase__ , cur_len=UpperCAmelCase__ ) return scores _lowerCAmelCase = jax.jit(UpperCAmelCase__ ) _lowerCAmelCase = jax.jit(UpperCAmelCase__ ) _lowerCAmelCase = jitted_run_no_processor_list(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase = jitted_run_processor_list(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
721
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase_ = {"UserAgent": UserAgent().random} def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->dict: _lowerCAmelCase = script.contents[0] _lowerCAmelCase = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCAmelCase : def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = F'''https://www.instagram.com/{username}/''' _lowerCAmelCase = self.get_json() def __lowerCAmelCase ( self ): _lowerCAmelCase = requests.get(self.url , headers=_lowerCAmelCase ).text _lowerCAmelCase = BeautifulSoup(_lowerCAmelCase , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __lowerCAmelCase ( self ): return self.user_data["username"] @property def __lowerCAmelCase ( self ): return self.user_data["full_name"] @property def __lowerCAmelCase ( self ): return self.user_data["biography"] @property def __lowerCAmelCase ( self ): return self.user_data["business_email"] @property def __lowerCAmelCase ( self ): return self.user_data["external_url"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_followed_by"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_follow"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCAmelCase ( self ): return self.user_data["profile_pic_url_hd"] @property def __lowerCAmelCase ( self ): return self.user_data["is_verified"] @property def __lowerCAmelCase ( self ): return self.user_data["is_private"] def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "github" )->None: import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions _lowerCAmelCase = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = InstagramUser("github") print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
664
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class UpperCAmelCase : def __init__( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=1_3 , __lowerCamelCase : str=7 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=True , __lowerCamelCase : int=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[int]=9_9 , __lowerCamelCase : str=3_2 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : Optional[Any]=3_7 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Any=5_1_2 , __lowerCamelCase : Any=1_6 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Optional[int]=0.0_2 , __lowerCamelCase : Any=3 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : List[str]=0 , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope _snake_case = projection_dim def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) _snake_case = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Tuple ): """simple docstring""" _snake_case = TFDPRContextEncoder(config=__lowerCamelCase ) _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) _snake_case = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) _snake_case = model(__lowerCamelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : List[str] ): """simple docstring""" _snake_case = TFDPRQuestionEncoder(config=__lowerCamelCase ) _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) _snake_case = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) _snake_case = model(__lowerCamelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] ): """simple docstring""" _snake_case = TFDPRReader(config=__lowerCamelCase ) _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : Any = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) A__ : Optional[int] = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {} A__ : List[Any] = False A__ : Any = False A__ : Optional[int] = False A__ : Optional[Any] = False A__ : str = False def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = TFDPRModelTester(self ) _snake_case = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__lowerCamelCase ) def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__lowerCamelCase ) @slow def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFDPRContextEncoder.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFDPRContextEncoder.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFDPRQuestionEncoder.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFDPRReader.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_tf class UpperCAmelCase ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : str ): """simple docstring""" _snake_case = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) _snake_case = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] _snake_case = model(__lowerCamelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _snake_case = tf.constant( [ [ 0.0_3_2_3_6_2_5_3, 0.1_2_7_5_3_3_3_5, 0.1_6_8_1_8_5_0_9, 0.0_0_2_7_9_7_8_6, 0.3_8_9_6_9_3_3, 0.2_4_2_6_4_9_4_5, 0.2_1_7_8_9_7_1, -0.0_2_3_3_5_2_2_7, -0.0_8_4_8_1_9_5_9, -0.1_4_3_2_4_1_1_7, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1E-4 ) )
103
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase__ ( A_ ,A_ ,unittest.TestCase ): __UpperCAmelCase = StableDiffusionSAGPipeline __UpperCAmelCase = TEXT_TO_IMAGE_PARAMS __UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase = False def UpperCamelCase_ ( self) -> Optional[Any]: torch.manual_seed(0) _lowerCamelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) _lowerCamelCase : int = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=SCREAMING_SNAKE_CASE , set_alpha_to_one=SCREAMING_SNAKE_CASE , ) torch.manual_seed(0) _lowerCamelCase : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0) _lowerCamelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _lowerCamelCase : List[Any] = CLIPTextModel(SCREAMING_SNAKE_CASE) _lowerCamelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""") _lowerCamelCase : List[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0) -> List[Any]: if str(SCREAMING_SNAKE_CASE).startswith("""mps"""): _lowerCamelCase : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE) else: _lowerCamelCase : List[str] = torch.Generator(device=SCREAMING_SNAKE_CASE).manual_seed(SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def UpperCamelCase_ ( self) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : Any = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""") _lowerCamelCase : Union[str, Any] = sag_pipe.to(SCREAMING_SNAKE_CASE) sag_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[int] = """.""" _lowerCamelCase : int = torch.manual_seed(0) _lowerCamelCase : Tuple = sag_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""") _lowerCamelCase : Dict = output.images _lowerCamelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Optional[Any] = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def UpperCamelCase_ ( self) -> List[str]: _lowerCamelCase : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""") _lowerCamelCase : Dict = sag_pipe.to(SCREAMING_SNAKE_CASE) sag_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = """.""" _lowerCamelCase : List[str] = torch.manual_seed(0) _lowerCamelCase : int = sag_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""") _lowerCamelCase : Any = output.images _lowerCamelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def UpperCamelCase_ ( self) -> List[str]: _lowerCamelCase : int = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""") _lowerCamelCase : Optional[Any] = sag_pipe.to(SCREAMING_SNAKE_CASE) sag_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _lowerCamelCase : Dict = """.""" _lowerCamelCase : Union[str, Any] = torch.manual_seed(0) _lowerCamelCase : Optional[int] = sag_pipe( [prompt] , width=768 , height=512 , generator=SCREAMING_SNAKE_CASE , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) _lowerCamelCase : Union[str, Any] = output.images assert image.shape == (1, 512, 768, 3)
88
0
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = 0 @slow def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(lowerCamelCase_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(lowerCamelCase_ ) , 0 ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) # Check that tokenizer_type ≠ model_type lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(lowerCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase_ , tokenizer_type='''bert''' , use_fast=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(lowerCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(lowerCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase_ , tokenizer_type='''gpt2''' , use_fast=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) @require_tokenizers def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(lowerCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase_ , tokenizer_type='''bert''' ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(lowerCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(lowerCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase_ , tokenizer_type='''gpt2''' ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: with pytest.raises(lowerCamelCase_ ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowerCAmelCase__ = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , lowerCamelCase_ ) else: self.assertEqual(tokenizer.do_lower_case , lowerCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_12 ) @require_tokenizers def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( lowerCamelCase_ , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): lowerCAmelCase__ = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai lowerCAmelCase__ = TOKENIZER_MAPPING.values() lowerCAmelCase__ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(lowerCamelCase_ ) @require_tokenizers def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) , lowerCamelCase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , lowerCamelCase_ ) @require_tokenizers def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=lowerCamelCase_ ) lowerCAmelCase__ = '''Hello, world. How are you?''' lowerCAmelCase__ = tokenizer.tokenize(lowerCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) lowerCAmelCase__ = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.tokenize(lowerCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_12 ) self.assertEqual(tokenizer.vocab_size , 3_00_00 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: # Check we can load the tokenizer config of an online model. lowerCAmelCase__ = get_tokenizer_config('''bert-base-cased''' ) lowerCAmelCase__ = config.pop('''_commit_hash''' , lowerCamelCase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(lowerCamelCase_ , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowerCAmelCase__ = get_tokenizer_config(lowerCamelCase_ ) self.assertDictEqual(lowerCamelCase_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = get_tokenizer_config(lowerCamelCase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: try: AutoConfig.register('''custom''' , lowerCamelCase_ ) AutoTokenizer.register(lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoTokenizer.register(lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ ) lowerCAmelCase__ = CustomTokenizer.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def __SCREAMING_SNAKE_CASE ( self ) -> Any: try: AutoConfig.register('''custom''' , lowerCamelCase_ ) # Can register in two steps AutoTokenizer.register(lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(lowerCamelCase_ , fast_tokenizer_class=lowerCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ , fast_tokenizer_class=lowerCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoTokenizer.register(lowerCamelCase_ , fast_tokenizer_class=lowerCamelCase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = BertTokenizerFast.from_pretrained(lowerCamelCase_ ) bert_tokenizer.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = CustomTokenizerFast.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __SCREAMING_SNAKE_CASE ( self ) -> str: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase_ ): lowerCAmelCase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): lowerCAmelCase__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=lowerCamelCase_ ) lowerCAmelCase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=lowerCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: class a__ ( a__ ): '''simple docstring''' lowercase__ : List[str] = False class a__ ( a__ ): '''simple docstring''' lowercase__ : Any = NewTokenizer lowercase__ : Optional[int] = False try: AutoConfig.register('''custom''' , lowerCamelCase_ ) AutoTokenizer.register(lowerCamelCase_ , slow_tokenizer_class=lowerCamelCase_ ) AutoTokenizer.register(lowerCamelCase_ , fast_tokenizer_class=lowerCamelCase_ ) # If remote code is not set, the default is to use local lowerCAmelCase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=lowerCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowerCAmelCase__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=lowerCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowerCAmelCase__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=lowerCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) lowerCAmelCase__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=lowerCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=lowerCamelCase_ , use_fast=lowerCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: with self.assertRaisesRegex( lowerCamelCase_ , '''bert-base is not a local folder and is not a valid model identifier''' ): lowerCAmelCase__ = AutoTokenizer.from_pretrained('''bert-base''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: with self.assertRaisesRegex( lowerCamelCase_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase_ , revision='''aaaaaa''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: # Make sure we have cached the tokenizer. lowerCAmelCase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowerCAmelCase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
98
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCAmelCase = logging.getLogger(__name__) class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None ) -> Dict: super().__init__( lowerCamelCase_ , question_encoder_tokenizer=lowerCamelCase_ , generator_tokenizer=lowerCamelCase_ , index=lowerCamelCase_ , init_retrieval=lowerCamelCase_ , ) lowerCAmelCase__ = None def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> str: logger.info('''initializing retrieval''' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('''dist initialized''' ) # needs to be set manually lowerCAmelCase__ = self._infer_socket_ifname() # avoid clash with the NCCL port lowerCAmelCase__ = str(distributed_port + 1 ) lowerCAmelCase__ = dist.new_group(ranks=lowerCamelCase_ , backend='''gloo''' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('''dist not initialized / main''' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: return dist.get_rank(group=self.process_group ) == 0 def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=torch.floataa ) -> Union[str, Any]: lowerCAmelCase__ = torch.empty(lowerCamelCase_ , dtype=lowerCamelCase_ ) dist.scatter(lowerCamelCase_ , src=0 , scatter_list=lowerCamelCase_ , group=self.process_group ) return target_tensor def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = psutil.net_if_addrs() # a hacky way to deal with varying network interface names lowerCAmelCase__ = next((addr for addr in addrs if addr.startswith('''e''' )) , lowerCamelCase_ ) return ifname def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): lowerCAmelCase__ , lowerCAmelCase__ = self._main_retrieve(lowerCamelCase_ , lowerCamelCase_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCamelCase_ ) # distributed training lowerCAmelCase__ = dist.get_world_size(group=self.process_group ) # gather logic lowerCAmelCase__ = None if self._is_main(): lowerCAmelCase__ = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(lowerCamelCase_ )] dist.gather(torch.tensor(lowerCamelCase_ ) , dst=0 , gather_list=lowerCamelCase_ , group=self.process_group ) # scatter logic lowerCAmelCase__ = question_hidden_states.shape[0] lowerCAmelCase__ = [] lowerCAmelCase__ = [] if self._is_main(): assert len(lowerCamelCase_ ) == world_size lowerCAmelCase__ , lowerCAmelCase__ = self._main_retrieve(torch.cat(lowerCamelCase_ ).numpy() , lowerCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = torch.tensor(lowerCamelCase_ ), torch.tensor(lowerCamelCase_ ) lowerCAmelCase__ = self._chunk_tensor(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = self._chunk_tensor(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = self._scattered(lowerCamelCase_ , [n_queries, n_docs] , target_type=torch.intaa ) lowerCAmelCase__ = self._scattered(lowerCamelCase_ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCamelCase_ )
98
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :List[Any] = KandinskyInpaintPipeline snake_case__ :str = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] snake_case__ :List[str] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] snake_case__ :List[Any] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] snake_case__ :Tuple = False @property def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return 32 @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return 32 @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return self.time_input_dim @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self.time_input_dim * 4 @property def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return 100 @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowerCAmelCase__ = MultilingualCLIP(__magic_name__ ) lowerCAmelCase__ = text_encoder.eval() return text_encoder @property def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCAmelCase__ = UNetaDConditionModel(**__magic_name__ ) return model @property def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = self.dummy_text_encoder lowerCAmelCase__ = self.dummy_tokenizer lowerCAmelCase__ = self.dummy_unet lowerCAmelCase__ = self.dummy_movq lowerCAmelCase__ = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , steps_offset=1 , prediction_type="epsilon" , thresholding=__magic_name__ , ) lowerCAmelCase__ = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any]=0 ): """simple docstring""" lowerCAmelCase__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) lowerCAmelCase__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image lowerCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(__magic_name__ ) ).convert("RGB" ).resize((256, 256) ) # create mask lowerCAmelCase__ = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase__ = 0 if str(__magic_name__ ).startswith("mps" ): lowerCAmelCase__ = torch.manual_seed(__magic_name__ ) else: lowerCAmelCase__ = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) lowerCAmelCase__ = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = "cpu" lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**__magic_name__ ) lowerCAmelCase__ = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) lowerCAmelCase__ = pipe(**self.get_dummy_inputs(__magic_name__ ) ) lowerCAmelCase__ = output.images lowerCAmelCase__ = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) lowerCAmelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCAmelCase__ = np.ones((768, 768) , dtype=np.floataa ) lowerCAmelCase__ = 0 lowerCAmelCase__ = "a hat" lowerCAmelCase__ = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) lowerCAmelCase__ = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) lowerCAmelCase__ = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) lowerCAmelCase__ = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase__ ,lowerCAmelCase__ = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCAmelCase__ = pipeline( __magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) lowerCAmelCase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
48
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = 'umt5' snake_case__ :Any = ['past_key_values'] def __init__( self : List[Any] , __magic_name__ : Tuple=250112 , __magic_name__ : str=512 , __magic_name__ : int=64 , __magic_name__ : str=1024 , __magic_name__ : Tuple=8 , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[Any]=6 , __magic_name__ : Dict=32 , __magic_name__ : Optional[Any]=128 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=1E-6 , __magic_name__ : Optional[int]=1.0 , __magic_name__ : Dict="gated-gelu" , __magic_name__ : List[str]=True , __magic_name__ : Tuple=True , __magic_name__ : Optional[int]="T5Tokenizer" , __magic_name__ : str=True , __magic_name__ : int=0 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : str=0 , **__magic_name__ : Any , ): """simple docstring""" super().__init__( is_encoder_decoder=__magic_name__ , tokenizer_class=__magic_name__ , tie_word_embeddings=__magic_name__ , pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , decoder_start_token_id=__magic_name__ , **__magic_name__ , ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = d_model lowerCAmelCase__ = d_kv lowerCAmelCase__ = d_ff lowerCAmelCase__ = num_layers lowerCAmelCase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCAmelCase__ = num_heads lowerCAmelCase__ = relative_attention_num_buckets lowerCAmelCase__ = relative_attention_max_distance lowerCAmelCase__ = dropout_rate lowerCAmelCase__ = layer_norm_epsilon lowerCAmelCase__ = initializer_factor lowerCAmelCase__ = feed_forward_proj lowerCAmelCase__ = use_cache lowerCAmelCase__ = self.feed_forward_proj.split("-" ) lowerCAmelCase__ = act_info[-1] lowerCAmelCase__ = act_info[0] == "gated" if len(__magic_name__ ) > 1 and act_info[0] != "gated" or len(__magic_name__ ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) if feed_forward_proj == "gated-gelu": lowerCAmelCase__ = "gelu_new" @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return self.d_model @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return self.num_heads @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self.num_layers class A ( SCREAMING_SNAKE_CASE__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: lowerCAmelCase__ = "past_encoder_sequence + sequence" lowerCAmelCase__ = {0: "batch"} lowerCAmelCase__ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"} lowerCAmelCase__ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="inputs" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return 13 @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return 5E-4
48
1
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : str = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } _UpperCAmelCase : Optional[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } _UpperCAmelCase : Dict = {"""facebook/blenderbot_small-90M""": 512} def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = set() snake_case_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ = char snake_case_ = set(UpperCamelCase__ ) return pairs class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['''input_ids''', '''attention_mask'''] def __init__( self , snake_case , snake_case , snake_case="__start__" , snake_case="__end__" , snake_case="__unk__" , snake_case="__null__" , **snake_case , ): super().__init__(unk_token=snake_case , bos_token=snake_case , eos_token=snake_case , pad_token=snake_case , **snake_case ) with open(snake_case , encoding='utf-8' ) as vocab_handle: snake_case_ = json.load(snake_case ) snake_case_ = {v: k for k, v in self.encoder.items()} with open(snake_case , encoding='utf-8' ) as merges_handle: snake_case_ = merges_handle.read().split('\n' )[1:-1] snake_case_ = [tuple(merge.split() ) for merge in merges] snake_case_ = dict(zip(snake_case , range(len(snake_case ) ) ) ) snake_case_ = {} @property def a ( self ): return len(self.encoder ) def a ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def a ( self , snake_case ): if token in self.cache: return self.cache[token] snake_case_ = re.sub('([.,!?()])' , R' \1' , snake_case ) snake_case_ = re.sub('(\')' , R' \1 ' , snake_case ) snake_case_ = re.sub(R'\s{2,}' , ' ' , snake_case ) if "\n" in token: snake_case_ = token.replace('\n' , ' __newln__' ) snake_case_ = token.split(' ' ) snake_case_ = [] for token in tokens: if not len(snake_case ): continue snake_case_ = token.lower() snake_case_ = tuple(snake_case ) snake_case_ = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) snake_case_ = get_pairs(snake_case ) if not pairs: words.append(snake_case ) continue while True: snake_case_ = min(snake_case , key=lambda snake_case : self.bpe_ranks.get(snake_case , float('inf' ) ) ) if bigram not in self.bpe_ranks: break snake_case_ , snake_case_ = bigram snake_case_ = [] snake_case_ = 0 while i < len(snake_case ): try: snake_case_ = word.index(snake_case , snake_case ) new_word.extend(word[i:j] ) snake_case_ = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case_ = tuple(snake_case ) snake_case_ = new_word if len(snake_case ) == 1: break else: snake_case_ = get_pairs(snake_case ) snake_case_ = '@@ '.join(snake_case ) snake_case_ = word[:-4] snake_case_ = word words.append(snake_case ) return " ".join(snake_case ) def a ( self , snake_case ): snake_case_ = [] snake_case_ = re.findall(R'\S+\n?' , snake_case ) for token in words: split_tokens.extend(list(self.bpe(snake_case ).split(' ' ) ) ) return split_tokens def a ( self , snake_case ): snake_case_ = token.lower() return self.encoder.get(snake_case , self.encoder.get(self.unk_token ) ) def a ( self , snake_case ): return self.decoder.get(snake_case , self.unk_token ) def a ( self , snake_case ): snake_case_ = ' '.join(snake_case ).replace('@@ ' , '' ).strip() return out_string def a ( self , snake_case , snake_case = None ): if not os.path.isdir(snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) snake_case_ = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case , ensure_ascii=snake_case ) + '\n' ) snake_case_ = 0 with open(snake_case , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) snake_case_ = token_index writer.write(' '.join(snake_case ) + '\n' ) index += 1 return vocab_file, merge_file
701
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore _UpperCAmelCase : Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" _UpperCAmelCase : Dict = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("""\n""".join(upper_files) + """\n""") _UpperCAmelCase : Tuple = [file for file in filepaths if """ """ in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("""\n""".join(space_files) + """\n""") _UpperCAmelCase : Union[str, Any] = [file for file in filepaths if """-""" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("""\n""".join(hyphen_files) + """\n""") _UpperCAmelCase : List[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("""\n""".join(nodir_files) + """\n""") _UpperCAmelCase : List[str] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
108
0
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = input('''Enter image url: ''').strip() print(F"Downloading image from {url} ...") __SCREAMING_SNAKE_CASE : Optional[int] = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image __SCREAMING_SNAKE_CASE : Optional[int] = soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] __SCREAMING_SNAKE_CASE : List[Any] = requests.get(image_url).content __SCREAMING_SNAKE_CASE : Optional[int] = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg" with open(file_name, '''wb''') as fp: fp.write(image_data) print(F"Done. Image saved to disk as {file_name}.")
452
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class __lowerCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase : Optional[Any] ="transfo-xl" _UpperCAmelCase : str =["mems"] _UpperCAmelCase : Optional[int] ={ "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : str , lowerCAmelCase : Tuple=26_77_35 , lowerCAmelCase : List[Any]=[2_00_00, 4_00_00, 20_00_00] , lowerCAmelCase : Dict=10_24 , lowerCAmelCase : List[str]=10_24 , lowerCAmelCase : int=16 , lowerCAmelCase : Optional[Any]=64 , lowerCAmelCase : str=40_96 , lowerCAmelCase : Optional[int]=4 , lowerCAmelCase : Any=False , lowerCAmelCase : List[str]=18 , lowerCAmelCase : Any=16_00 , lowerCAmelCase : List[str]=10_00 , lowerCAmelCase : int=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Tuple=-1 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : int=0.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[str]="normal" , lowerCAmelCase : Tuple=0.0_1 , lowerCAmelCase : Optional[int]=0.0_1 , lowerCAmelCase : List[Any]=0.0_2 , lowerCAmelCase : Dict=1e-5 , lowerCAmelCase : Optional[int]=0 , **lowerCAmelCase : List[str] , ): A_ = vocab_size A_ = [] self.cutoffs.extend(lowerCAmelCase ) if proj_share_all_but_first: A_ = [False] + [True] * len(self.cutoffs ) else: A_ = [False] + [False] * len(self.cutoffs ) A_ = d_model A_ = d_embed A_ = d_head A_ = d_inner A_ = div_val A_ = pre_lnorm A_ = n_layer A_ = n_head A_ = mem_len A_ = same_length A_ = attn_type A_ = clamp_len A_ = sample_softmax A_ = adaptive A_ = dropout A_ = dropatt A_ = untie_r A_ = init A_ = init_range A_ = proj_init_std A_ = init_std A_ = layer_norm_epsilon super().__init__(eos_token_id=lowerCAmelCase , **lowerCAmelCase ) @property def _UpperCAmelCase ( self : str ): # Message copied from Transformer-XL documentation logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def _UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict ): # Message copied from Transformer-XL documentation raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
452
1
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case : """simple docstring""" def __init__( self : Any , _A : Tuple , _A : Optional[int]=1_3 , _A : Tuple=7 , _A : int=True , _A : Optional[int]=True , _A : int=True , _A : Optional[int]=True , _A : Dict=9_9 , _A : Any=1_6 , _A : Any=3_6 , _A : List[Any]=6 , _A : Optional[int]=6 , _A : int=6 , _A : Dict=3_7 , _A : List[Any]="gelu" , _A : Optional[int]=0.1 , _A : str=0.1 , _A : Any=5_1_2 , _A : Optional[Any]=1_6 , _A : List[str]=2 , _A : Tuple=0.02 , _A : List[Any]=3 , _A : Any=4 , _A : List[str]=None , ): """simple docstring""" _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_mask _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = embedding_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_hidden_groups _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = scope def _lowerCAmelCase ( self : Optional[int]): """simple docstring""" _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length]) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices) _SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Dict): """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _lowerCAmelCase ( self : Any , _A : str , _A : str , _A : Optional[Any] , _A : int , _A : Union[str, Any] , _A : Dict , _A : Optional[int]): """simple docstring""" _SCREAMING_SNAKE_CASE = AlbertModel(config=_A) model.to(_A) model.eval() _SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , token_type_ids=_A) _SCREAMING_SNAKE_CASE = model(_A , token_type_ids=_A) _SCREAMING_SNAKE_CASE = model(_A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _lowerCAmelCase ( self : Dict , _A : Any , _A : Optional[Any] , _A : str , _A : str , _A : Optional[Any] , _A : int , _A : str): """simple docstring""" _SCREAMING_SNAKE_CASE = AlbertForPreTraining(config=_A) model.to(_A) model.eval() _SCREAMING_SNAKE_CASE = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , sentence_order_label=_A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels)) def _lowerCAmelCase ( self : Dict , _A : int , _A : str , _A : Dict , _A : Dict , _A : Union[str, Any] , _A : str , _A : Dict): """simple docstring""" _SCREAMING_SNAKE_CASE = AlbertForMaskedLM(config=_A) model.to(_A) model.eval() _SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCAmelCase ( self : Tuple , _A : Optional[Any] , _A : Any , _A : Union[str, Any] , _A : Optional[Any] , _A : Dict , _A : List[Any] , _A : Dict): """simple docstring""" _SCREAMING_SNAKE_CASE = AlbertForQuestionAnswering(config=_A) model.to(_A) model.eval() _SCREAMING_SNAKE_CASE = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCAmelCase ( self : Union[str, Any] , _A : Tuple , _A : List[str] , _A : List[str] , _A : Optional[int] , _A : List[Any] , _A : Tuple , _A : int): """simple docstring""" _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = AlbertForSequenceClassification(_A) model.to(_A) model.eval() _SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCAmelCase ( self : Tuple , _A : List[Any] , _A : int , _A : List[Any] , _A : List[str] , _A : Optional[int] , _A : str , _A : Tuple): """simple docstring""" _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = AlbertForTokenClassification(config=_A) model.to(_A) model.eval() _SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCAmelCase ( self : Union[str, Any] , _A : int , _A : Optional[Any] , _A : List[str] , _A : List[Any] , _A : List[str] , _A : List[str] , _A : str): """simple docstring""" _SCREAMING_SNAKE_CASE = self.num_choices _SCREAMING_SNAKE_CASE = AlbertForMultipleChoice(config=_A) model.to(_A) model.eval() _SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _SCREAMING_SNAKE_CASE = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCAmelCase ( self : Dict): """simple docstring""" _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _snake_case ( _a , _a , unittest.TestCase ): """simple docstring""" a = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) a = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) a = True def _lowerCAmelCase ( self : Optional[int] , _A : int , _A : str , _A : str=False): """simple docstring""" _SCREAMING_SNAKE_CASE = super()._prepare_for_class(_A , _A , return_labels=_A) if return_labels: if model_class in get_values(_A): _SCREAMING_SNAKE_CASE = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_A) _SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A) return inputs_dict def _lowerCAmelCase ( self : Any): """simple docstring""" _SCREAMING_SNAKE_CASE = AlbertModelTester(self) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_A , hidden_size=3_7) def _lowerCAmelCase ( self : List[Any]): """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : List[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A) def _lowerCAmelCase ( self : Tuple): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A) def _lowerCAmelCase ( self : List[str]): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A) def _lowerCAmelCase ( self : str): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A) def _lowerCAmelCase ( self : List[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A) def _lowerCAmelCase ( self : Optional[Any]): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A) def _lowerCAmelCase ( self : Tuple): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*_A) @slow def _lowerCAmelCase ( self : Union[str, Any]): """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = AlbertModel.from_pretrained(_A) self.assertIsNotNone(_A) @require_torch class _snake_case ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Tuple): """simple docstring""" _SCREAMING_SNAKE_CASE = AlbertModel.from_pretrained("""albert-base-v2""") _SCREAMING_SNAKE_CASE = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) _SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A)[0] _SCREAMING_SNAKE_CASE = torch.Size((1, 1_1, 7_6_8)) self.assertEqual(output.shape , _A) _SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1e-4))
714
"""simple docstring""" from __future__ import annotations def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , )-> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
635
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "openai-gpt" lowerCAmelCase_ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , UpperCAmelCase=40478 , UpperCAmelCase=512 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1e-5 , UpperCAmelCase=0.02 , UpperCAmelCase="cls_index" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=0.1 , **UpperCAmelCase , ) -> List[str]: _snake_case = vocab_size _snake_case = n_positions _snake_case = n_embd _snake_case = n_layer _snake_case = n_head _snake_case = afn _snake_case = resid_pdrop _snake_case = embd_pdrop _snake_case = attn_pdrop _snake_case = layer_norm_epsilon _snake_case = initializer_range _snake_case = summary_type _snake_case = summary_use_proj _snake_case = summary_activation _snake_case = summary_first_dropout _snake_case = summary_proj_to_labels super().__init__(**UpperCAmelCase )
585
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase = { 'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'], 'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'], 'processing_wav2vec2': ['Wav2Vec2Processor'], 'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Wav2Vec2ForAudioFrameClassification', 'Wav2Vec2ForCTC', 'Wav2Vec2ForMaskedLM', 'Wav2Vec2ForPreTraining', 'Wav2Vec2ForSequenceClassification', 'Wav2Vec2ForXVector', 'Wav2Vec2Model', 'Wav2Vec2PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWav2Vec2ForCTC', 'TFWav2Vec2Model', 'TFWav2Vec2PreTrainedModel', 'TFWav2Vec2ForSequenceClassification', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'FlaxWav2Vec2ForCTC', 'FlaxWav2Vec2ForPreTraining', 'FlaxWav2Vec2Model', 'FlaxWav2Vec2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
585
1
def UpperCamelCase (lowercase_: int = 1000 ) -> int: A__ : Dict = -1 A__ : str = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c A__ : Optional[int] = (n * n - 2 * a * n) // (2 * n - 2 * a) A__ : List[str] = n - a - b if c * c == (a * a + b * b): A__ : Tuple = a * b * c if candidate >= product: A__ : Dict = candidate return product if __name__ == "__main__": print(f'''{solution() = }''')
64
def UpperCamelCase (lowercase_: int ) -> int: if not isinstance(lowercase_ , lowercase_ ): raise TypeError("""Input value must be an 'int' type""" ) A__ : int = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
64
1
"""simple docstring""" def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Union[str, Any]=28123 ) -> str: a_ : int = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i a_ : Optional[int] = set() a_ : int = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(_SCREAMING_SNAKE_CASE ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
473
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class UpperCAmelCase__ ( __lowerCamelCase ): """simple docstring""" lowerCAmelCase__ : List[Any] = """roc_bert""" def __init__( self , _SCREAMING_SNAKE_CASE=3_0_5_2_2 , _SCREAMING_SNAKE_CASE=7_6_8 , _SCREAMING_SNAKE_CASE=1_2 , _SCREAMING_SNAKE_CASE=1_2 , _SCREAMING_SNAKE_CASE=3_0_7_2 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_1_2 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=7_6_8 , _SCREAMING_SNAKE_CASE=9_1_0 , _SCREAMING_SNAKE_CASE=5_1_2 , _SCREAMING_SNAKE_CASE=2_4_8_5_8 , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: a_ : Optional[int] = vocab_size a_ : str = max_position_embeddings a_ : List[Any] = hidden_size a_ : Optional[Any] = num_hidden_layers a_ : Union[str, Any] = num_attention_heads a_ : List[str] = intermediate_size a_ : List[Any] = hidden_act a_ : str = hidden_dropout_prob a_ : Union[str, Any] = attention_probs_dropout_prob a_ : Any = initializer_range a_ : str = type_vocab_size a_ : Union[str, Any] = layer_norm_eps a_ : str = use_cache a_ : Tuple = enable_pronunciation a_ : Dict = enable_shape a_ : int = pronunciation_embed_dim a_ : List[Any] = pronunciation_vocab_size a_ : int = shape_embed_dim a_ : List[str] = shape_vocab_size a_ : List[Any] = concat_input a_ : List[str] = position_embedding_type a_ : Any = classifier_dropout super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
473
1
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self , snake_case_ ) -> Optional[int]: __lowerCAmelCase = 3 __lowerCAmelCase = 250 __lowerCAmelCase = ids_tensor((batch_size, length) , snake_case_ ) __lowerCAmelCase = torch.ones((batch_size, length) , device=snake_case_ , dtype=torch.float ) / length return input_ids, scores def A__ ( self ) -> str: __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(5 ) __lowerCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(snake_case_ , snake_case_ ) ) __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(snake_case_ , snake_case_ ) ) __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(snake_case_ , snake_case_ ) ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = MaxLengthCriteria(max_length=10 ) __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(snake_case_ , snake_case_ ) ) __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(snake_case_ , snake_case_ ) ) __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(snake_case_ , snake_case_ ) ) def A__ ( self ) -> List[str]: __lowerCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(snake_case_ , snake_case_ ) ) __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(snake_case_ , snake_case_ ) ) __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(snake_case_ , snake_case_ ) ) __lowerCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def A__ ( self ) -> int: __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(5 ) __lowerCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(snake_case_ , snake_case_ ) ) __lowerCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(snake_case_ , snake_case_ ) ) def A__ ( self ) -> Dict: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(snake_case_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __lowerCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(snake_case_ ) , 1 )
573
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = KandinskyInpaintPipeline _snake_case = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] _snake_case = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] _snake_case = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case = False @property def A__ ( self ) -> Any: return 32 @property def A__ ( self ) -> Tuple: return 32 @property def A__ ( self ) -> List[str]: return self.time_input_dim @property def A__ ( self ) -> int: return self.time_input_dim * 4 @property def A__ ( self ) -> Optional[int]: return 100 @property def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A__ ( self ) -> Tuple: torch.manual_seed(0 ) __lowerCAmelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) __lowerCAmelCase = MultilingualCLIP(snake_case_ ) __lowerCAmelCase = text_encoder.eval() return text_encoder @property def A__ ( self ) -> Dict: torch.manual_seed(0 ) __lowerCAmelCase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __lowerCAmelCase = UNetaDConditionModel(**snake_case_ ) return model @property def A__ ( self ) -> Optional[int]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A__ ( self ) -> Dict: torch.manual_seed(0 ) __lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def A__ ( self ) -> Tuple: __lowerCAmelCase = self.dummy_text_encoder __lowerCAmelCase = self.dummy_tokenizer __lowerCAmelCase = self.dummy_unet __lowerCAmelCase = self.dummy_movq __lowerCAmelCase = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=snake_case_ , ) __lowerCAmelCase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A__ ( self , snake_case_ , snake_case_=0 ) -> List[Any]: __lowerCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) __lowerCAmelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(snake_case_ ) # create init_image __lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(snake_case_ ) ).convert("""RGB""" ).resize((256, 256) ) # create mask __lowerCAmelCase = np.ones((64, 64) , dtype=np.floataa ) __lowerCAmelCase = 0 if str(snake_case_ ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(snake_case_ ) else: __lowerCAmelCase = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) __lowerCAmelCase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A__ ( self ) -> Dict: __lowerCAmelCase = """cpu""" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**snake_case_ ) __lowerCAmelCase = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(snake_case_ ) ) __lowerCAmelCase = output.images __lowerCAmelCase = pipe( **self.get_dummy_inputs(snake_case_ ) , return_dict=snake_case_ , )[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def A__ ( self ) -> Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> List[Any]: __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __lowerCAmelCase = np.ones((768, 768) , dtype=np.floataa ) __lowerCAmelCase = 0 __lowerCAmelCase = """a hat""" __lowerCAmelCase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case_ ) __lowerCAmelCase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __lowerCAmelCase = pipeline.to(snake_case_ ) pipeline.set_progress_bar_config(disable=snake_case_ ) __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase , __lowerCAmelCase = pipe_prior( snake_case_ , generator=snake_case_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __lowerCAmelCase = pipeline( snake_case_ , image=snake_case_ , mask_image=snake_case_ , image_embeds=snake_case_ , negative_image_embeds=snake_case_ , generator=snake_case_ , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) __lowerCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case_ , snake_case_ )
573
1
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCAmelCase_ : List[Any] = TypeVar('''KEY''') UpperCAmelCase_ : str = TypeVar('''VAL''') @dataclass(frozen=__lowercase , slots=__lowercase) class lowerCAmelCase ( Generic[KEY, VAL]): __lowercase : KEY __lowercase : VAL class lowerCAmelCase ( _Item): def __init__( self ) -> None: '''simple docstring''' super().__init__(_a , _a ) def __bool__( self ) -> bool: '''simple docstring''' return False UpperCAmelCase_ : List[str] = _DeletedItem() class lowerCAmelCase ( MutableMapping[KEY, VAL]): def __init__( self , __SCREAMING_SNAKE_CASE = 8 , __SCREAMING_SNAKE_CASE = 0.75 ) -> None: '''simple docstring''' __snake_case = initial_block_size __snake_case = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __snake_case = capacity_factor __snake_case = 0 def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return hash(_a ) % len(self._buckets ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return (ind + 1) % len(self._buckets ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' __snake_case = self._buckets[ind] if not stored: __snake_case = _Item(_a , _a ) self._len += 1 return True elif stored.key == key: __snake_case = _Item(_a , _a ) return True else: return False def lowerCAmelCase ( self ) -> bool: '''simple docstring''' __snake_case = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_a ) def lowerCAmelCase ( self ) -> bool: '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __snake_case = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' __snake_case = self._buckets __snake_case = [None] * new_size __snake_case = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def lowerCAmelCase ( self ) -> None: '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def lowerCAmelCase ( self ) -> None: '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Iterator[int]: '''simple docstring''' __snake_case = self._get_bucket_index(_a ) for _ in range(len(self._buckets ) ): yield ind __snake_case = self._get_next_ind(_a ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' for ind in self._iterate_buckets(_a ): if self._try_set(_a , _a , _a ): break def __setitem__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' if self._is_full(): self._size_up() self._add_item(_a , _a ) def __delitem__( self , __SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' for ind in self._iterate_buckets(_a ): __snake_case = self._buckets[ind] if item is None: raise KeyError(_a ) if item is _deleted: continue if item.key == key: __snake_case = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __SCREAMING_SNAKE_CASE ) -> VAL: '''simple docstring''' for ind in self._iterate_buckets(_a ): __snake_case = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_a ) def __len__( self ) -> int: '''simple docstring''' return self._len def __iter__( self ) -> Iterator[KEY]: '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ) -> str: '''simple docstring''' __snake_case = ''' ,'''.join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
24
a__ = '''Input must be a string of 8 numbers plus letter''' a__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def __UpperCAmelCase ( __a : str ) -> bool: """simple docstring""" if not isinstance(__a ,__a ): _a : List[str] = F"""Expected string as input, found {type(__a ).__name__}""" raise TypeError(__a ) _a : List[Any] = spanish_id.replace('''-''' ,'''''' ).upper() if len(__a ) != 9: raise ValueError(__a ) try: _a : Any = int(spanish_id_clean[0:8] ) _a : str = spanish_id_clean[8] except ValueError as ex: raise ValueError(__a ) from ex if letter.isdigit(): raise ValueError(__a ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
14
0
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = int(_lowerCamelCase ) _UpperCAmelCase : Union[str, Any] = t // 3_6_0_0, (t // 6_0) % 6_0, t % 6_0 return F"""{h}:{m:02d}:{s:02d}""" if h != 0 else F"""{m:02d}:{s:02d}""" def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=3_0_0 ) -> int: """simple docstring""" return F""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase : str = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: _UpperCAmelCase : str = F"""{elt:.6f}""" if isinstance(_lowerCamelCase , _lowerCamelCase ) else str(_lowerCamelCase ) html_code += F""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _UpperCamelCase: __A: Tuple = 5 __A: Any = 0.2 def __init__( self : str , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple = None , _lowerCamelCase : Optional[Any] = True , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Dict = 3_00 , ): _UpperCAmelCase : List[str] = total _UpperCAmelCase : str = '' if prefix is None else prefix _UpperCAmelCase : Optional[int] = leave _UpperCAmelCase : int = parent _UpperCAmelCase : List[Any] = width _UpperCAmelCase : List[Any] = None _UpperCAmelCase : Dict = None _UpperCAmelCase : List[Any] = None def a__ ( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict = False , _lowerCamelCase : Tuple = None ): _UpperCAmelCase : Optional[int] = value if comment is not None: _UpperCAmelCase : Optional[Any] = comment if self.last_value is None: _UpperCAmelCase : Optional[Any] = time.time() _UpperCAmelCase : Dict = value _UpperCAmelCase : Tuple = None _UpperCAmelCase : Tuple = self.warmup _UpperCAmelCase : Union[str, Any] = 1 self.update_bar(_A ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 _UpperCAmelCase : str = time.time() _UpperCAmelCase : int = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: _UpperCAmelCase : int = self.elapsed_time / (value - self.start_value) else: _UpperCAmelCase : List[str] = None if value >= self.total: _UpperCAmelCase : Tuple = self.total _UpperCAmelCase : Optional[int] = None if not self.leave: self.close() elif self.average_time_per_item is not None: _UpperCAmelCase : int = self.average_time_per_item * (self.total - value) self.update_bar(_A ) _UpperCAmelCase : Union[str, Any] = value _UpperCAmelCase : Optional[Any] = current_time if self.average_time_per_item is None: _UpperCAmelCase : Any = 1 else: _UpperCAmelCase : Optional[int] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def a__ ( self : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any]=None ): _UpperCAmelCase : List[Any] = ' ' * (len(str(self.total ) ) - len(str(_A ) )) + str(_A ) if self.elapsed_time is None: _UpperCAmelCase : Any = f"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: _UpperCAmelCase : List[Any] = f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: _UpperCAmelCase : List[Any] = ( f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" f""" {format_time(self.predicted_remaining )}""" ) self.label += f""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else f""", {self.comment}]""" self.display() def a__ ( self : Any ): _UpperCAmelCase : str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: _UpperCAmelCase : Optional[int] = disp.display(disp.HTML(self.html_code ) , display_id=_A ) else: self.output.update(disp.HTML(self.html_code ) ) def a__ ( self : List[Any] ): if self.parent is None and self.output is not None: self.output.update(disp.HTML("" ) ) class _UpperCamelCase( a__ ): def __init__( self : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Any=None ): super().__init__(_A ) _UpperCAmelCase : Optional[Any] = None if column_names is None else [column_names] _UpperCAmelCase : Optional[Any] = None def a__ ( self : Optional[Any] ): _UpperCAmelCase : Optional[Any] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: _UpperCAmelCase : Union[str, Any] = disp.display(disp.HTML(self.html_code ) , display_id=_A ) else: self.output.update(disp.HTML(self.html_code ) ) def a__ ( self : List[str] , _lowerCamelCase : List[Any] ): if self.inner_table is None: _UpperCAmelCase : Dict = [list(values.keys() ), list(values.values() )] else: _UpperCAmelCase : Union[str, Any] = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(_A ) _UpperCAmelCase : List[str] = columns self.inner_table.append([values[c] for c in columns] ) def a__ ( self : List[str] , _lowerCamelCase : Dict , _lowerCamelCase : Any=None , _lowerCamelCase : List[Any]=3_00 ): _UpperCAmelCase : Optional[Any] = NotebookProgressBar(_A , prefix=_A , parent=self , width=_A ) return self.child_bar def a__ ( self : str ): _UpperCAmelCase : Any = None self.display() class _UpperCamelCase( a__ ): def __init__( self : str ): _UpperCAmelCase : int = None _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : List[Any] = False def a__ ( self : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] , **_lowerCamelCase : Union[str, Any] ): _UpperCAmelCase : int = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' _UpperCAmelCase : Any = 0 _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : int = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("Validation Loss" ) _UpperCAmelCase : List[str] = NotebookTrainingTracker(state.max_steps , _A ) def a__ ( self : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : Tuple , **_lowerCamelCase : Optional[Any] ): _UpperCAmelCase : List[str] = int(state.epoch ) if int(state.epoch ) == state.epoch else f"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=f"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) _UpperCAmelCase : int = False def a__ ( self : str , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int]=None , **_lowerCamelCase : Optional[int] ): if not has_length(_A ): return if self.prediction_bar is None: if self.training_tracker is not None: _UpperCAmelCase : str = self.training_tracker.add_child(len(_A ) ) else: _UpperCAmelCase : str = NotebookProgressBar(len(_A ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def a__ ( self : int , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , **_lowerCamelCase : Dict ): if self.prediction_bar is not None: self.prediction_bar.close() _UpperCAmelCase : Tuple = None def a__ ( self : Any , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any]=None , **_lowerCamelCase : Optional[Any] ): if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: _UpperCAmelCase : str = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy _UpperCAmelCase : Dict = state.global_step self.training_tracker.write_line(_A ) def a__ ( self : Dict , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Tuple , _lowerCamelCase : Any=None , **_lowerCamelCase : Any ): if self.training_tracker is not None: _UpperCAmelCase : Any = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: _UpperCAmelCase : str = log['loss'] break if self.first_column == "Epoch": _UpperCAmelCase : Dict = int(state.epoch ) else: _UpperCAmelCase : Optional[Any] = state.global_step _UpperCAmelCase : Optional[Any] = 'eval' for k in metrics: if k.endswith("_loss" ): _UpperCAmelCase : List[Any] = re.sub(R"\_loss$" , "" , _A ) _UpperCAmelCase : Dict = metrics.pop("total_flos" , _A ) _UpperCAmelCase : int = metrics.pop("epoch" , _A ) _UpperCAmelCase : str = metrics.pop(f"""{metric_key_prefix}_runtime""" , _A ) _UpperCAmelCase : Dict = metrics.pop(f"""{metric_key_prefix}_samples_per_second""" , _A ) _UpperCAmelCase : Tuple = metrics.pop(f"""{metric_key_prefix}_steps_per_second""" , _A ) _UpperCAmelCase : int = metrics.pop(f"""{metric_key_prefix}_jit_compilation_time""" , _A ) for k, v in metrics.items(): if k == f"""{metric_key_prefix}_loss""": _UpperCAmelCase : Optional[int] = v else: _UpperCAmelCase : Tuple = k.split("_" ) _UpperCAmelCase : Optional[int] = ' '.join([part.capitalize() for part in splits[1:]] ) _UpperCAmelCase : str = v self.training_tracker.write_line(_A ) self.training_tracker.remove_child() _UpperCAmelCase : Tuple = None # Evaluation takes a long time so we should force the next update. _UpperCAmelCase : Union[str, Any] = True def a__ ( self : Any , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : List[str] , **_lowerCamelCase : Dict ): self.training_tracker.update( state.global_step , comment=f"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=_A ) _UpperCAmelCase : List[Any] = None
716
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __lowerCamelCase = logging.getLogger(__name__) class _UpperCamelCase( SCREAMING_SNAKE_CASE ): def __init__( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : int , _lowerCamelCase : Tuple=None ): super().__init__( _lowerCamelCase , question_encoder_tokenizer=_lowerCamelCase , generator_tokenizer=_lowerCamelCase , index=_lowerCamelCase , init_retrieval=_lowerCamelCase , ) _UpperCAmelCase : str = None def a__ ( self : Optional[Any] , _lowerCamelCase : int ): logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually _UpperCAmelCase : int = self._infer_socket_ifname() # avoid clash with the NCCL port _UpperCAmelCase : int = str(distributed_port + 1 ) _UpperCAmelCase : Union[str, Any] = dist.new_group(ranks=_lowerCamelCase , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def a__ ( self : Tuple ): return dist.get_rank(group=self.process_group ) == 0 def a__ ( self : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : str=torch.floataa ): _UpperCAmelCase : int = torch.empty(_lowerCamelCase , dtype=_lowerCamelCase ) dist.scatter(_lowerCamelCase , src=0 , scatter_list=_lowerCamelCase , group=self.process_group ) return target_tensor def a__ ( self : Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _UpperCAmelCase : Union[str, Any] = next((addr for addr in addrs if addr.startswith("e" )) , _lowerCamelCase ) return ifname def a__ ( self : Optional[int] , _lowerCamelCase : np.ndarray , _lowerCamelCase : int ): # single GPU training if not dist.is_initialized(): _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = self._main_retrieve(_lowerCamelCase , _lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_lowerCamelCase ) # distributed training _UpperCAmelCase : Optional[int] = dist.get_world_size(group=self.process_group ) # gather logic _UpperCAmelCase : int = None if self._is_main(): _UpperCAmelCase : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(_lowerCamelCase )] dist.gather(torch.tensor(_lowerCamelCase ) , dst=0 , gather_list=_lowerCamelCase , group=self.process_group ) # scatter logic _UpperCAmelCase : str = question_hidden_states.shape[0] _UpperCAmelCase : Dict = [] _UpperCAmelCase : List[Any] = [] if self._is_main(): assert len(_lowerCamelCase ) == world_size _UpperCAmelCase ,_UpperCAmelCase : Any = self._main_retrieve(torch.cat(_lowerCamelCase ).numpy() , _lowerCamelCase ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = torch.tensor(_lowerCamelCase ), torch.tensor(_lowerCamelCase ) _UpperCAmelCase : Tuple = self._chunk_tensor(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : List[Any] = self._chunk_tensor(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : str = self._scattered(_lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa ) _UpperCAmelCase : Tuple = self._scattered(_lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_lowerCamelCase )
328
0
"""simple docstring""" import math from numpy import inf from scipy.integrate import quad def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> List[str]: if num <= 0: raise ValueError("math domain error" ) return quad(lowerCamelCase_ , 0 , lowerCamelCase_ , args=(lowerCamelCase_) )[0] def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: return math.pow(lowerCamelCase_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
159
from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=_SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = ['''speech'''] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(self , ['''speech'''] ) class __lowercase ( metaclass=_SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : int = ['''speech'''] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(self , ['''speech'''] )
542
0
"""simple docstring""" # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers UpperCamelCase : Optional[Any] = float("nan") class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = sys.stdout __UpperCamelCase = open(_A , 'a' ) def __getattr__( self , __UpperCAmelCase ): '''simple docstring''' return getattr(self.stdout , _A ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' self.stdout.write(_A ) # strip tqdm codes self.file.write(re.sub(R'^.*\r' , '' , _A , 0 , re.M ) ) def A ( snake_case :Optional[Any]=8_0 , snake_case :List[Any]=False ) -> Dict: __UpperCamelCase = [] # deal with critical env vars __UpperCamelCase = ['CUDA_VISIBLE_DEVICES'] for key in env_keys: __UpperCamelCase = os.environ.get(UpperCAmelCase__ , UpperCAmelCase__ ) if val is not None: cmd.append(f'{key}={val}' ) # python executable (not always needed if the script is executable) __UpperCamelCase = sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(UpperCAmelCase__ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __UpperCamelCase = [] __UpperCamelCase = '' while len(UpperCAmelCase__ ) > 0: current_line += f'{cmd.pop(0 )} ' if len(UpperCAmelCase__ ) == 0 or len(UpperCAmelCase__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(UpperCAmelCase__ ) __UpperCamelCase = '' return "\\\n".join(UpperCAmelCase__ ) def A ( snake_case :Any , snake_case :Any ) -> Tuple: __UpperCamelCase = re.sub(r'[\\\n]+' , ' ' , args.base_cmd ) # remove --output_dir if any and set our own __UpperCamelCase = re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd ) args.base_cmd += f' --output_dir {output_dir}' # ensure we have --overwrite_output_dir __UpperCamelCase = re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def A ( snake_case :Union[str, Any] , snake_case :Dict , snake_case :List[str] , snake_case :List[Any] , snake_case :Any , snake_case :Optional[int] , snake_case :List[Any] ) -> Dict: if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_0_0 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6_666, 222.22_222_222] )} , ) __UpperCamelCase = subprocess.run(UpperCAmelCase__ , capture_output=UpperCAmelCase__ , text=UpperCAmelCase__ ) if verbose: print('STDOUT' , result.stdout ) print('STDERR' , result.stderr ) # save the streams __UpperCamelCase = variation.replace(' ' , '-' ) with open(Path(UpperCAmelCase__ ) / f'log.{prefix}.stdout.txt' , 'w' ) as f: f.write(result.stdout ) with open(Path(UpperCAmelCase__ ) / f'log.{prefix}.stderr.txt' , 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(f'{output_dir}/all_results.json' , 'r' , encoding='utf-8' ) as f: __UpperCamelCase = json.load(UpperCAmelCase__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def A ( snake_case :Optional[int] , snake_case :Optional[Any] , snake_case :Tuple , snake_case :Dict , snake_case :int , snake_case :Union[str, Any] , snake_case :int , snake_case :List[str] , snake_case :List[Any] , snake_case :int , ) -> str: __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = f'{id}: {variation:<{longest_variation_len}}' __UpperCamelCase = f'{preamble}: ' __UpperCamelCase = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(UpperCAmelCase__ ) , desc=UpperCAmelCase__ , leave=UpperCAmelCase__ ): __UpperCamelCase = process_run_single( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) __UpperCamelCase = single_run_metrics[target_metric_key] if not math.isnan(UpperCAmelCase__ ): metrics.append(UpperCAmelCase__ ) results.append(UpperCAmelCase__ ) outcome += "✓" else: outcome += "✘" __UpperCamelCase = f'\33[2K\r{outcome}' if len(UpperCAmelCase__ ) > 0: __UpperCamelCase = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __UpperCamelCase = round(mean_metrics[target_metric_key] , 2 ) __UpperCamelCase = f'{outcome} {mean_target}' if len(UpperCAmelCase__ ) > 1: results_str += f' {tuple(round(UpperCAmelCase__ , 2 ) for x in results )}' print(UpperCAmelCase__ ) __UpperCamelCase = variation return mean_metrics else: print(UpperCAmelCase__ ) return {variation_key: variation, target_metric_key: nan} def A ( ) -> List[str]: __UpperCamelCase = torch.cuda.get_device_properties(torch.device('cuda' ) ) return f'\nDatetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**3_0:0.2f}GB\n' def A ( snake_case :Any , snake_case :int , snake_case :List[Any] , snake_case :Optional[int] , snake_case :List[Any] ) -> Tuple: __UpperCamelCase = pd.DataFrame(UpperCAmelCase__ ) __UpperCamelCase = 'variation' __UpperCamelCase = 'diff_%' __UpperCamelCase = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __UpperCamelCase = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(UpperCAmelCase__ ): # as a fallback, use the minimal value as the sentinel __UpperCamelCase = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(UpperCAmelCase__ ): __UpperCamelCase = df.apply( lambda snake_case : round(1_0_0 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='columns' , ) # re-order columns __UpperCamelCase = [variation_key, target_metric_key, diff_key, *report_metric_keys] __UpperCamelCase = df.reindex(UpperCAmelCase__ , axis='columns' ) # reorder cols # capitalize __UpperCamelCase = df.rename(str.capitalize , axis='columns' ) # make the cols as narrow as possible __UpperCamelCase = df.rename(lambda snake_case : c.replace('_' , '<br>' ) , axis='columns' ) __UpperCamelCase = df.rename(lambda snake_case : c.replace('_' , '\n' ) , axis='columns' ) __UpperCamelCase = ['', 'Copy between the cut-here-lines and paste as is to github or a forum'] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=UpperCAmelCase__ , floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=UpperCAmelCase__ , floatfmt='.2f' )] print('\n\n'.join(UpperCAmelCase__ ) ) def A ( ) -> List[str]: __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '--base-cmd' , default=UpperCAmelCase__ , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='Base cmd' , ) parser.add_argument( '--variations' , default=UpperCAmelCase__ , type=UpperCAmelCase__ , nargs='+' , required=UpperCAmelCase__ , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , ) parser.add_argument( '--base-variation' , default=UpperCAmelCase__ , type=UpperCAmelCase__ , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , ) parser.add_argument( '--target-metric-key' , default=UpperCAmelCase__ , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , ) parser.add_argument( '--report-metric-keys' , default='' , type=UpperCAmelCase__ , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , ) parser.add_argument( '--repeat-times' , default=1 , type=UpperCAmelCase__ , help='How many times to re-run each variation - an average will be reported' , ) parser.add_argument( '--output_dir' , default='output_benchmark' , type=UpperCAmelCase__ , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , ) parser.add_argument( '--verbose' , default=UpperCAmelCase__ , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = args.output_dir Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) __UpperCamelCase = get_base_command(UpperCAmelCase__ , UpperCAmelCase__ ) # split each dimension into its --foo variations __UpperCamelCase = [list(map(str.strip , re.split(r'\|' , UpperCAmelCase__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __UpperCamelCase = list(map(str.strip , map(' '.join , itertools.product(*UpperCAmelCase__ ) ) ) ) __UpperCamelCase = max(len(UpperCAmelCase__ ) for x in variations ) # split wanted keys __UpperCamelCase = args.report_metric_keys.split() # capture prints into a log file for convenience __UpperCamelCase = f'benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt' print(f'\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt' ) print(f'and this script\'s output is also piped into {report_fn}' ) __UpperCamelCase = Tee(UpperCAmelCase__ ) print(f'\n*** Running {len(UpperCAmelCase__ )} benchmarks:' ) print(f'Base command: {" ".join(UpperCAmelCase__ )}' ) __UpperCamelCase = 'variation' __UpperCamelCase = [] for id, variation in enumerate(tqdm(UpperCAmelCase__ , desc='Total completion: ' , leave=UpperCAmelCase__ ) ): __UpperCamelCase = base_cmd + variation.split() results.append( process_run( id + 1 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , args.target_metric_key , UpperCAmelCase__ , args.repeat_times , UpperCAmelCase__ , args.verbose , ) ) process_results(UpperCAmelCase__ , args.target_metric_key , UpperCAmelCase__ , args.base_variation , UpperCAmelCase__ ) if __name__ == "__main__": main()
714
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : List[str] = { "configuration_autoformer": [ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "AutoformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Dict = [ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys UpperCamelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
293
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _A = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['''MaskFormerFeatureExtractor'''] _A = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] _A = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
182
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase( snake_case_ ): """simple docstring""" a : torch.FloatTensor a : Optional[torch.FloatTensor] = None def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=0.999 ,SCREAMING_SNAKE_CASE_="cosine" ,) -> str: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowercase__ : List[str] = [] for i in range(SCREAMING_SNAKE_CASE_ ): lowercase__ : int = i / num_diffusion_timesteps lowercase__ : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) ,SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ ,dtype=torch.floataa ) class UpperCAmelCase( snake_case_ , snake_case_ ): """simple docstring""" a : int = 1 @register_to_config def __init__( self , lowerCamelCase = 1000 , lowerCamelCase = 0.00_01 , lowerCamelCase = 0.02 , lowerCamelCase = "linear" , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = True , lowerCamelCase = 0 , lowerCamelCase = "epsilon" , lowerCamelCase = 1.0 , **lowerCamelCase , ) -> List[Any]: """simple docstring""" if kwargs.get("set_alpha_to_one" , lowerCamelCase ) is not None: lowercase__ : Any = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , lowerCamelCase , standard_warn=lowerCamelCase ) lowercase__ : Optional[int] = kwargs["set_alpha_to_one"] if trained_betas is not None: lowercase__ : Optional[int] = torch.tensor(lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase__ : int = torch.linspace(lowerCamelCase , lowerCamelCase , lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase__ : List[str] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase__ : Optional[Any] = betas_for_alpha_bar(lowerCamelCase ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) lowercase__ : List[str] = 1.0 - self.betas lowercase__ : List[str] = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. lowercase__ : Dict = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution lowercase__ : Optional[int] = 1.0 # setable values lowercase__ : int = None lowercase__ : int = torch.from_numpy(np.arange(0 , lowerCamelCase ).copy().astype(np.intaa ) ) def __a ( self , lowerCamelCase , lowerCamelCase = None ) -> torch.FloatTensor: """simple docstring""" return sample def __a ( self , lowerCamelCase , lowerCamelCase = None ) -> Optional[Any]: """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"""`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:""" f""" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle""" f""" maximal {self.config.num_train_timesteps} timesteps.""" ) lowercase__ : Optional[Any] = num_inference_steps lowercase__ : Dict = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase__ : Dict = (np.arange(0 , lowerCamelCase ) * step_ratio).round().copy().astype(np.intaa ) lowercase__ : Any = torch.from_numpy(lowerCamelCase ).to(lowerCamelCase ) self.timesteps += self.config.steps_offset def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" lowercase__ : int = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process lowercase__ : Optional[int] = self.alphas_cumprod[timestep] lowercase__ : Dict = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) lowercase__ : Optional[int] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": lowercase__ : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 lowercase__ : Optional[int] = model_output elif self.config.prediction_type == "sample": lowercase__ : Any = model_output lowercase__ : Optional[int] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": lowercase__ : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output lowercase__ : Any = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or""" " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: lowercase__ : Optional[Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : int = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : Dict = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCamelCase , pred_original_sample=lowerCamelCase ) def __len__( self ) -> Tuple: """simple docstring""" return self.config.num_train_timesteps
397
0
import heapq as hq import math from collections.abc import Iterator class __A: def __init__( self : str , __UpperCamelCase : str ): lowerCamelCase_ = str(id_ ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = [] lowerCamelCase_ = {} # {vertex:distance} def __lt__( self : str , __UpperCamelCase : Union[str, Any] ): return self.key < other.key def __repr__( self : Optional[int] ): return self.id def lowercase__ ( self : Any , __UpperCamelCase : Any ): self.neighbors.append(A_ ) def lowercase__ ( self : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any ): lowerCamelCase_ = weight def __lowerCAmelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple ) -> List[Any]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _lowerCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , _lowerCAmelCase ) def __lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any ) -> list: lowerCamelCase_ = [] for u in graph: lowerCamelCase_ = math.inf lowerCamelCase_ = None lowerCamelCase_ = 0 lowerCamelCase_ = graph[:] while q: lowerCamelCase_ = min(_lowerCAmelCase ) q.remove(_lowerCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowerCamelCase_ = u lowerCamelCase_ = u.edges[v.id] for i in range(1 , len(_lowerCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] ) -> Iterator[tuple]: for u in graph: lowerCamelCase_ = math.inf lowerCamelCase_ = None lowerCamelCase_ = 0 lowerCamelCase_ = list(_lowerCAmelCase ) hq.heapify(_lowerCAmelCase ) while h: lowerCamelCase_ = hq.heappop(_lowerCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowerCamelCase_ = u lowerCamelCase_ = u.edges[v.id] hq.heapify(_lowerCAmelCase ) for i in range(1 , len(_lowerCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __lowerCAmelCase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
716
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __A( UpperCAmelCase ): SCREAMING_SNAKE_CASE = '''facebook/bart-large-mnli''' SCREAMING_SNAKE_CASE = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) SCREAMING_SNAKE_CASE = '''text_classifier''' SCREAMING_SNAKE_CASE = AutoTokenizer SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE = ['''text''', ['''text''']] SCREAMING_SNAKE_CASE = ['''text'''] def lowercase__ ( self : Union[str, Any] ): super().setup() lowerCamelCase_ = self.model.config lowerCamelCase_ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("""entail""" ): lowerCamelCase_ = int(__UpperCamelCase ) if self.entailment_id == -1: raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" ) def lowercase__ ( self : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] ): lowerCamelCase_ = labels return self.pre_processor( [text] * len(__UpperCamelCase ) , [F'''This example is {label}''' for label in labels] , return_tensors="""pt""" , padding="""max_length""" , ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[str] ): lowerCamelCase_ = outputs.logits lowerCamelCase_ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
103
0
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a : def __init__( self : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any]=13 , __lowerCAmelCase : Optional[int]=10 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : Dict=2 , __lowerCAmelCase : Dict=2 , __lowerCAmelCase : str=2 , __lowerCAmelCase : Any=True , __lowerCAmelCase : str=True , __lowerCAmelCase : List[Any]=32 , __lowerCAmelCase : str=5 , __lowerCAmelCase : Any=4 , __lowerCAmelCase : Dict=37 , __lowerCAmelCase : Optional[int]="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : Optional[Any]=10 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Optional[int]=0.9 , __lowerCAmelCase : str=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = tubelet_size _UpperCAmelCase = num_frames _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = mask_ratio _UpperCAmelCase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _UpperCAmelCase = int(mask_ratio * self.seq_length ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : str ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] ): _UpperCAmelCase = VideoMAEModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] ): _UpperCAmelCase = VideoMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _UpperCAmelCase = torch.ones((self.num_masks,) ) _UpperCAmelCase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _UpperCAmelCase = mask.expand(self.batch_size , -1 ).bool() _UpperCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ) # model only returns predictions for masked patches _UpperCAmelCase = mask.sum().item() _UpperCAmelCase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : Tuple = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _snake_case : int = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) _snake_case : Optional[int] = False _snake_case : Optional[int] = False _snake_case : Dict = False _snake_case : List[Any] = False def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = VideoMAEModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any]=False ): _UpperCAmelCase = copy.deepcopy(__lowerCAmelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _UpperCAmelCase = torch.ones((self.model_tester.num_masks,) ) _UpperCAmelCase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _UpperCAmelCase = mask.expand(self.model_tester.batch_size , -1 ).bool() _UpperCAmelCase = bool_masked_pos.to(__lowerCAmelCase ) if return_labels: if model_class in [ *get_values(__lowerCAmelCase ), ]: _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def lowerCAmelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__lowerCAmelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : List[Any] ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = VideoMAEModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): if not self.has_attentions: pass else: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: _UpperCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks _UpperCAmelCase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _UpperCAmelCase = len(__lowerCAmelCase ) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertEqual(out_len + 1 , len(__lowerCAmelCase ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowerCAmelCase_ ( self : Dict ): def check_hidden_states_output(__lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) _UpperCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks _UpperCAmelCase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase_ ( self : str ): pass def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" ,filename="""eating_spaghetti.npy""" ,repo_type="""dataset""" ) _UpperCAmelCase = np.load(lowercase ) return list(lowercase ) @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self : Union[str, Any] ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( __lowerCAmelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_video() _UpperCAmelCase = image_processor(__lowerCAmelCase , return_tensors="""pt""" ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**__lowerCAmelCase ) # verify the logits _UpperCAmelCase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) _UpperCAmelCase = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(__lowerCAmelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_video() _UpperCAmelCase = image_processor(__lowerCAmelCase , return_tensors="""pt""" ).to(__lowerCAmelCase ) # add boolean mask, indicating which patches to mask _UpperCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) _UpperCAmelCase = torch.load(__lowerCAmelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**__lowerCAmelCase ) # verify the logits _UpperCAmelCase = torch.Size([1, 1408, 1536] ) _UpperCAmelCase = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=__lowerCAmelCase ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _UpperCAmelCase = torch.tensor([0.5_142] , device=__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , __lowerCAmelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _UpperCAmelCase = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=__lowerCAmelCase ).to( __lowerCAmelCase ) with torch.no_grad(): _UpperCAmelCase = model(**__lowerCAmelCase ) _UpperCAmelCase = torch.tensor(torch.tensor([0.6_469] ) , device=__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , __lowerCAmelCase , atol=1e-4 ) )
277
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[Any] = 'timm_backbone' def __init__( self : List[Any] , __lowerCAmelCase : str=None , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : Optional[Any] , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = backbone _UpperCAmelCase = num_channels _UpperCAmelCase = features_only _UpperCAmelCase = use_pretrained_backbone _UpperCAmelCase = True _UpperCAmelCase = out_indices if out_indices is not None else (-1,)
277
1
"""simple docstring""" from math import factorial def lowerCamelCase_ ( __lowerCAmelCase = 20 ) -> int: '''simple docstring''' lowerCamelCase__ =2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... lowerCamelCase__ =n // 2 return int(factorial(__lowerCAmelCase ) / (factorial(__lowerCAmelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: a =int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
132
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml a =logging.get_logger(__name__) def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' def run_func(__lowerCAmelCase ): @wraps(__lowerCAmelCase ) def run_in_eager_mode(*__lowerCAmelCase , **__lowerCAmelCase ): return func(*__lowerCAmelCase , **__lowerCAmelCase ) @wraps(__lowerCAmelCase ) @tf.function(experimental_compile=__lowerCAmelCase ) def run_in_graph_mode(*__lowerCAmelCase , **__lowerCAmelCase ): return func(*__lowerCAmelCase , **__lowerCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> ["tf.Tensor"]: '''simple docstring''' lowerCamelCase__ =random.Random() lowerCamelCase__ =[rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__lowerCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __UpperCAmelCase ( __lowerCAmelCase ): A__ : TensorFlowBenchmarkArguments A__ : PretrainedConfig A__ : str = "TensorFlow" @property def _a ( self ): return tf.__version__ def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): # initialize GPU on separate process lowerCamelCase__ =self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) lowerCamelCase__ =self._prepare_inference_func(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return self._measure_speed(_inference ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ =self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) lowerCamelCase__ =self._prepare_train_func(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return self._measure_speed(_train ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _lowerCamelCase ) lowerCamelCase__ =self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) lowerCamelCase__ =self._prepare_inference_func(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return self._measure_memory(_inference ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _lowerCamelCase ) lowerCamelCase__ =self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) lowerCamelCase__ =self._prepare_train_func(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return self._measure_memory(_train ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ =self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) lowerCamelCase__ =( hasattr(_lowerCamelCase , "architectures" ) and isinstance(config.architectures , _lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCamelCase__ ="TF" + config.architectures[0] # prepend 'TF' for tensorflow model lowerCamelCase__ =__import__("transformers" , fromlist=[model_class] ) lowerCamelCase__ =getattr(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ =model_cls(_lowerCamelCase ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: lowerCamelCase__ =TF_MODEL_MAPPING[config.__class__](_lowerCamelCase ) # encoder-decoder has vocab size saved differently lowerCamelCase__ =config.vocab_size if hasattr(_lowerCamelCase , "vocab_size" ) else config.encoder.vocab_size lowerCamelCase__ =random_input_ids(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(_lowerCamelCase , decoder_input_ids=_lowerCamelCase , training=_lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(_lowerCamelCase , training=_lowerCamelCase ) lowerCamelCase__ =encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ =self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) lowerCamelCase__ =( hasattr(_lowerCamelCase , "architectures" ) and isinstance(config.architectures , _lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCamelCase__ ="TF" + config.architectures[0] # prepend 'TF' for tensorflow model lowerCamelCase__ =__import__("transformers" , fromlist=[model_class] ) lowerCamelCase__ =getattr(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ =model_cls(_lowerCamelCase ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: lowerCamelCase__ =TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_lowerCamelCase ) # encoder-decoder has vocab size saved differently lowerCamelCase__ =config.vocab_size if hasattr(_lowerCamelCase , "vocab_size" ) else config.encoder.vocab_size lowerCamelCase__ =random_input_ids(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowerCamelCase__ =model(_lowerCamelCase , decoder_input_ids=_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase )[0] lowerCamelCase__ =tf.gradients(_lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowerCamelCase__ =model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase )[0] lowerCamelCase__ =tf.gradients(_lowerCamelCase , model.trainable_variables ) return gradients lowerCamelCase__ =encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def _a ( self , _lowerCamelCase ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(_lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowerCamelCase__ =timeit.repeat( _lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(_lowerCamelCase ) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) def _a ( self , _lowerCamelCase ): logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) lowerCamelCase__ =start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) lowerCamelCase__ ="N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() lowerCamelCase__ =nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowerCamelCase__ =nvml.nvmlDeviceGetMemoryInfo(_lowerCamelCase ) lowerCamelCase__ =meminfo.used lowerCamelCase__ =Memory(_lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) lowerCamelCase__ =None else: lowerCamelCase__ =measure_peak_memory_cpu(_lowerCamelCase ) lowerCamelCase__ =Memory(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: lowerCamelCase__ =stop_memory_tracing(_lowerCamelCase ) if memory is None: lowerCamelCase__ =summary.total else: lowerCamelCase__ =None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
132
1
def a ( A__ , A__ , A__ ) -> int: '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: SCREAMING_SNAKE_CASE__ : Tuple = _modexpt(A__ , exponent // 2 , A__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(A__ , exponent - 1 , A__ )) % modulo_value def a ( A__ = 1_7_7_7 , A__ = 1_8_5_5 , A__ = 8 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = base for _ in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = _modexpt(A__ , A__ , 1_0**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
35
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin A : Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp A : Dict = 5 A : Optional[int] = 10 @require_sentencepiece @require_tokenizers class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = SpeechaTextTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def __A ( self : Optional[Any] ) -> str: super().setUp() SCREAMING_SNAKE_CASE_ = sp.SentencePieceProcessor() spm_model.Load(__magic_name__ ) SCREAMING_SNAKE_CASE_ = ["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__magic_name__ ) )] SCREAMING_SNAKE_CASE_ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) SCREAMING_SNAKE_CASE_ = Path(self.tmpdirname ) save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) SCREAMING_SNAKE_CASE_ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE_ = "<pad>" SCREAMING_SNAKE_CASE_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def __A ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__magic_name__ ) , 1_001 ) def __A ( self : List[Any] ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 1_001 ) def __A ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__magic_name__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [289, 50, 14, 174, 386] , ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def __A ( self : List[str] ) -> List[Any]: # fmt: off SCREAMING_SNAKE_CASE_ = {"input_ids": [[3_791, 797, 31, 11, 64, 797, 31, 2_429, 433, 12, 1_176, 12, 20, 786, 915, 142, 2_413, 240, 37, 3_238, 797, 31, 11, 35, 93, 915, 142, 2_413, 240, 37, 5_540, 567, 1_276, 93, 37, 610, 40, 62, 455, 657, 1_042, 123, 780, 177, 37, 309, 241, 1_298, 514, 20, 292, 2_737, 114, 2_469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3_388, 511, 459, 4, 3_555, 40, 321, 302, 705, 4, 3_388, 511, 583, 326, 5, 5, 5, 62, 3_310, 560, 177, 2_680, 217, 1_508, 32, 31, 853, 418, 64, 583, 511, 1_605, 62, 35, 93, 560, 177, 2_680, 217, 1_508, 1_521, 64, 583, 511, 519, 62, 20, 1_515, 764, 20, 149, 261, 5_625, 7_972, 20, 5_540, 567, 1_276, 93, 3_925, 1_675, 11, 15, 802, 7_972, 576, 217, 1_508, 11, 35, 93, 1_253, 2_441, 15, 289, 652, 31, 416, 321, 3_842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2_681, 1_153, 3_434, 20, 5_540, 37, 567, 126, 1_253, 2_441, 3_376, 449, 210, 431, 1_563, 177, 767, 5_540, 11, 1_203, 472, 11, 2_953, 685, 285, 364, 706, 1_153, 20, 6_799, 20, 2_869, 20, 4_464, 126, 40, 2_429, 20, 1_040, 866, 2_664, 418, 20, 318, 20, 1_726, 186, 20, 265, 522, 35, 93, 2_191, 4_634, 20, 1_040, 12, 6_799, 15, 228, 2_356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_575, 2_666, 684, 1_582, 1_176, 12, 627, 149, 619, 20, 4_902, 563, 11, 20, 149, 261, 3_420, 2_356, 174, 142, 4_714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class lowerCamelCase (unittest.TestCase ): """simple docstring""" lowerCamelCase__ = '''valhalla/s2t_mustc_multilinguial_medium''' lowerCamelCase__ = '''C\'est trop cool''' lowerCamelCase__ = '''Esto es genial''' @classmethod def __A ( cls : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __A ( self : str ) -> int: self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def __A ( self : List[Any] ) -> Union[str, Any]: self.assertEqual(self.tokenizer.vocab_size , 10_000 ) def __A ( self : Any ) -> int: self.assertIn(__magic_name__ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE_ = [ES_CODE, 4, 1_601, 47, 7_647, 2] SCREAMING_SNAKE_CASE_ = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertNotIn(self.tokenizer.eos_token , __magic_name__ ) def __A ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE_ = "fr" SCREAMING_SNAKE_CASE_ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __magic_name__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __A ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "fr" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) SCREAMING_SNAKE_CASE_ = "es" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
140
0
def _SCREAMING_SNAKE_CASE ( snake_case ) -> list[list[float]]: _UpperCAmelCase = [] for data in source_data: for i, el in enumerate(snake_case ): if len(snake_case ) < i + 1: data_lists.append([] ) data_lists[i].append(float(snake_case ) ) return data_lists def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> list[list[float]]: _UpperCAmelCase = [] for dlist, weight in zip(snake_case , snake_case ): _UpperCAmelCase = min(snake_case ) _UpperCAmelCase = max(snake_case ) _UpperCAmelCase = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: _UpperCAmelCase = f"Invalid weight of {weight:f} provided" raise ValueError(snake_case ) score_lists.append(snake_case ) return score_lists def _SCREAMING_SNAKE_CASE ( snake_case ) -> list[float]: _UpperCAmelCase = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(snake_case ): _UpperCAmelCase = final_scores[j] + ele return final_scores def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> list[list[float]]: _UpperCAmelCase = get_data(snake_case ) _UpperCAmelCase = calculate_each_score(snake_case , snake_case ) _UpperCAmelCase = generate_final_scores(snake_case ) # append scores to source data for i, ele in enumerate(snake_case ): source_data[i].append(snake_case ) return source_data
175
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig a = logging.get_logger(__name__) a = "T5Config" def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> jnp.ndarray: _UpperCAmelCase = jnp.zeros_like(snake_case ) _UpperCAmelCase = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) _UpperCAmelCase = shifted_input_ids.at[:, 0].set(snake_case ) _UpperCAmelCase = jnp.where(shifted_input_ids == -1_0_0 , snake_case , snake_case ) return shifted_input_ids class _A ( __lowercase ): __a = """mt5""" __a = MTaConfig class _A ( __lowercase ): __a = """mt5""" __a = MTaConfig class _A ( __lowercase ): __a = """mt5""" __a = MTaConfig
175
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Any = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class A_ ( _a ): lowerCAmelCase__ = 'open-llama' def __init__( self: List[Any] ,__lowerCAmelCase: int=100_000 ,__lowerCAmelCase: Optional[int]=4_096 ,__lowerCAmelCase: Optional[int]=11_008 ,__lowerCAmelCase: Tuple=32 ,__lowerCAmelCase: Union[str, Any]=32 ,__lowerCAmelCase: int="silu" ,__lowerCAmelCase: Dict=2_048 ,__lowerCAmelCase: Dict=0.02 ,__lowerCAmelCase: Any=1e-6 ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: Optional[Any]=0 ,__lowerCAmelCase: List[Any]=1 ,__lowerCAmelCase: Optional[Any]=2 ,__lowerCAmelCase: int=False ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: Any=0.1 ,__lowerCAmelCase: Optional[int]=0.1 ,__lowerCAmelCase: str=True ,__lowerCAmelCase: Any=True ,__lowerCAmelCase: Dict=None ,**__lowerCAmelCase: Union[str, Any] ,): '''simple docstring''' _lowerCamelCase : str = vocab_size _lowerCamelCase : Optional[int] = max_position_embeddings _lowerCamelCase : Any = hidden_size _lowerCamelCase : List[str] = intermediate_size _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : List[Any] = num_attention_heads _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : Any = rms_norm_eps _lowerCamelCase : Optional[Any] = use_cache _lowerCamelCase : str = kwargs.pop( "use_memorry_efficient_attention" ,__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = hidden_dropout_prob _lowerCamelCase : List[str] = attention_dropout_prob _lowerCamelCase : Optional[int] = use_stable_embedding _lowerCamelCase : List[Any] = shared_input_output_embedding _lowerCamelCase : Tuple = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,tie_word_embeddings=__lowerCAmelCase ,**__lowerCAmelCase ,) def _lowercase ( self: List[str] ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,__lowerCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"""got {self.rope_scaling}""" ) _lowerCamelCase : Optional[Any] = self.rope_scaling.get("type" ,__lowerCAmelCase ) _lowerCamelCase : int = self.rope_scaling.get("factor" ,__lowerCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
46
import numpy as np def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
43
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCamelCase ( unittest.TestCase ): def snake_case_ ( self : str ) -> int: debug_launcher(test_script.main ) def snake_case_ ( self : Optional[int] ) -> List[Any]: debug_launcher(test_ops.main )
249
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self : Any , __snake_case : int , __snake_case : Optional[Any]=13 , __snake_case : int=7 , __snake_case : Dict=True , __snake_case : str=True , __snake_case : List[str]=True , __snake_case : int=True , __snake_case : str=99 , __snake_case : Dict=24 , __snake_case : int=2 , __snake_case : Dict=6 , __snake_case : str=37 , __snake_case : str="gelu" , __snake_case : List[str]=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Optional[int]=512 , __snake_case : Any=16 , __snake_case : Optional[int]=2 , __snake_case : List[Any]=0.02 , __snake_case : str=3 , __snake_case : List[Any]=None , __snake_case : Any=1000 , ) -> str: _a : Dict = parent _a : Tuple = batch_size _a : Optional[int] = seq_length _a : Optional[int] = is_training _a : Dict = use_input_mask _a : Optional[Any] = use_token_type_ids _a : List[Any] = use_labels _a : List[str] = vocab_size _a : int = hidden_size _a : List[str] = num_hidden_layers _a : Optional[Any] = num_attention_heads _a : Dict = intermediate_size _a : str = hidden_act _a : str = hidden_dropout_prob _a : Union[str, Any] = attention_probs_dropout_prob _a : Tuple = max_position_embeddings _a : List[str] = type_vocab_size _a : List[Any] = type_sequence_label_size _a : Optional[int] = initializer_range _a : str = num_labels _a : int = scope _a : Tuple = range_bbox def snake_case_ ( self : Any ) -> Any: _a : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : str = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _a : Any = bbox[i, j, 3] _a : Any = bbox[i, j, 1] _a : Optional[int] = t if bbox[i, j, 2] < bbox[i, j, 0]: _a : int = bbox[i, j, 2] _a : str = bbox[i, j, 0] _a : List[Any] = t _a : Any = None if self.use_input_mask: _a : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _a : Optional[Any] = None if self.use_token_type_ids: _a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : Any = None _a : Union[str, Any] = None if self.use_labels: _a : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case_ ( self : str ) -> List[str]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def snake_case_ ( self : int , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Any , __snake_case : int , ) -> Any: _a : Union[str, Any] = LiltModel(config=__snake_case ) model.to(__snake_case ) model.eval() _a : Union[str, Any] = model(__snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) _a : List[Any] = model(__snake_case , bbox=__snake_case , token_type_ids=__snake_case ) _a : List[Any] = model(__snake_case , bbox=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self : Dict , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : int , ) -> Tuple: _a : List[str] = self.num_labels _a : Optional[Any] = LiltForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() _a : Optional[Any] = model( __snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self : Tuple , __snake_case : int , __snake_case : int , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Optional[int] , ) -> Optional[int]: _a : List[str] = LiltForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() _a : int = model( __snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self : Any ) -> Optional[int]: _a : List[Any] = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : Optional[Any] = config_and_inputs _a : List[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCAmelCase : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase : Optional[Any] = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase : Any = False UpperCAmelCase : Optional[Any] = False def snake_case_ ( self : Optional[int] , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : Optional[int] ) -> List[str]: return True def snake_case_ ( self : int ) -> Dict: _a : Union[str, Any] = LiltModelTester(self ) _a : List[str] = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def snake_case_ ( self : Dict ) -> Union[str, Any]: self.config_tester.run_common_tests() def snake_case_ ( self : str ) -> Tuple: _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case_ ( self : str ) -> str: _a : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a : Any = type self.model_tester.create_and_check_model(*__snake_case ) def snake_case_ ( self : Optional[Any] ) -> List[Any]: _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) def snake_case_ ( self : List[Any] ) -> List[Any]: _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) @slow def snake_case_ ( self : Dict ) -> Optional[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : List[str] = LiltModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch @slow class lowerCamelCase ( unittest.TestCase ): def snake_case_ ( self : Optional[Any] ) -> str: _a : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__snake_case ) _a : List[str] = torch.tensor([[1, 2]] , device=__snake_case ) _a : List[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__snake_case ) # forward pass with torch.no_grad(): _a : List[Any] = model(input_ids=__snake_case , bbox=__snake_case ) _a : Optional[Any] = torch.Size([1, 2, 768] ) _a : Optional[Any] = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__snake_case , ) self.assertTrue(outputs.last_hidden_state.shape , __snake_case ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __snake_case , atol=1E-3 ) )
249
1
__lowerCamelCase : Any = "Alexander Joslin" import operator as op from .stack import Stack def lowerCamelCase_(lowerCamelCase_ ) -> int: UpperCAmelCase = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} UpperCAmelCase = Stack() UpperCAmelCase = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowerCamelCase_ ) ) elif i in operators: # RULE 2 operator_stack.push(lowerCamelCase_ ) elif i == ")": # RULE 4 UpperCAmelCase = operator_stack.peek() operator_stack.pop() UpperCAmelCase = operand_stack.peek() operand_stack.pop() UpperCAmelCase = operand_stack.peek() operand_stack.pop() UpperCAmelCase = operators[opr](lowerCamelCase_ , lowerCamelCase_ ) operand_stack.push(lowerCamelCase_ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __lowerCamelCase : Dict = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
323
import os from datetime import datetime as dt from github import Github __lowerCamelCase : Optional[int] = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def lowerCamelCase_() -> List[str]: UpperCAmelCase = Github(os.environ["GITHUB_TOKEN"] ) UpperCAmelCase = g.get_repo("huggingface/diffusers" ) UpperCAmelCase = repo.get_issues(state="open" ) for issue in open_issues: UpperCAmelCase = sorted(issue.get_comments() , key=lambda lowerCamelCase_ : i.created_at , reverse=lowerCamelCase_ ) UpperCAmelCase = comments[0] if len(lowerCamelCase_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
323
1
"""simple docstring""" from __future__ import annotations from typing import Any class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): pass class UpperCamelCase : def __init__( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = data _SCREAMING_SNAKE_CASE : Node | None = None def __iter__( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = self _SCREAMING_SNAKE_CASE : int = [] while node: if node in visited: raise ContainsLoopError visited.append(snake_case__ ) yield node.data _SCREAMING_SNAKE_CASE : Optional[Any] = node.next_node @property def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": lowercase_ : str = Node(1) lowercase_ : List[str] = Node(2) lowercase_ : int = Node(3) lowercase_ : List[str] = Node(4) print(root_node.has_loop) # False lowercase_ : Union[str, Any] = root_node.next_node print(root_node.has_loop) # True lowercase_ : List[str] = Node(5) lowercase_ : Optional[Any] = Node(6) lowercase_ : Any = Node(5) lowercase_ : List[str] = Node(6) print(root_node.has_loop) # False lowercase_ : int = Node(1) print(root_node.has_loop) # False
295
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ = DiTPipeline A__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS A__ = PipelineTesterMixin.required_optional_params - { """latents""", """num_images_per_prompt""", """callback""", """callback_steps""", } A__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS A__ = False def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : List[str] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=snake_case__ , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=snake_case__ , ) _SCREAMING_SNAKE_CASE : Optional[Any] = AutoencoderKL() _SCREAMING_SNAKE_CASE : Union[str, Any] = DDIMScheduler() _SCREAMING_SNAKE_CASE : Dict = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__=0 ): """simple docstring""" if str(snake_case__ ).startswith("mps" ): _SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(snake_case__ ) else: _SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _SCREAMING_SNAKE_CASE : List[str] = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = "cpu" _SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() _SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs(snake_case__ ) _SCREAMING_SNAKE_CASE : List[str] = pipe(**snake_case__ ).images _SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _SCREAMING_SNAKE_CASE : List[str] = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case__ , 1E-3 ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=snake_case__ , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCamelCase ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : str = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) _SCREAMING_SNAKE_CASE : Optional[int] = ["vase", "umbrella", "white shark", "white wolf"] _SCREAMING_SNAKE_CASE : Any = pipe.get_label_ids(snake_case__ ) _SCREAMING_SNAKE_CASE : List[str] = pipe(snake_case__ , generator=snake_case__ , num_inference_steps=40 , output_type="np" ).images for word, image in zip(snake_case__ , snake_case__ ): _SCREAMING_SNAKE_CASE : int = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) _SCREAMING_SNAKE_CASE : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) _SCREAMING_SNAKE_CASE : List[Any] = ["vase", "umbrella"] _SCREAMING_SNAKE_CASE : int = pipe.get_label_ids(snake_case__ ) _SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Tuple = pipe(snake_case__ , generator=snake_case__ , num_inference_steps=25 , output_type="np" ).images for word, image in zip(snake_case__ , snake_case__ ): _SCREAMING_SNAKE_CASE : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
295
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[str] = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class a__( snake_case__ ): a_ : Union[str, Any] = '''trajectory_transformer''' a_ : Optional[int] = ['''past_key_values'''] a_ : Dict = { '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _UpperCAmelCase=100 , _UpperCAmelCase=5 , _UpperCAmelCase=1 , _UpperCAmelCase=1 , _UpperCAmelCase=249 , _UpperCAmelCase=6 , _UpperCAmelCase=17 , _UpperCAmelCase=25 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=128 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0_006 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=1 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=5_0256 , _UpperCAmelCase=5_0256 , **_UpperCAmelCase , ) -> Optional[int]: snake_case__ =vocab_size snake_case__ =action_weight snake_case__ =reward_weight snake_case__ =value_weight snake_case__ =max_position_embeddings snake_case__ =block_size snake_case__ =action_dim snake_case__ =observation_dim snake_case__ =transition_dim snake_case__ =learning_rate snake_case__ =n_layer snake_case__ =n_head snake_case__ =n_embd snake_case__ =embd_pdrop snake_case__ =attn_pdrop snake_case__ =resid_pdrop snake_case__ =initializer_range snake_case__ =layer_norm_eps snake_case__ =kaiming_initializer_range snake_case__ =use_cache super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
538
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
538
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowerCamelCase ( SCREAMING_SNAKE_CASE ): UpperCAmelCase : List[str] = 'char' UpperCAmelCase : Any = 'bpe' UpperCAmelCase : Optional[int] = 'wp' __UpperCAmelCase : Optional[int] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowerCamelCase ( SCREAMING_SNAKE_CASE ): UpperCAmelCase : Tuple = ['image_processor', 'char_tokenizer'] UpperCAmelCase : Any = 'ViTImageProcessor' UpperCAmelCase : Optional[int] = 'MgpstrTokenizer' def __init__( self : Union[str, Any] , __snake_case : Any=None , __snake_case : List[Any]=None , **__snake_case : Optional[Any] ) -> List[str]: _a : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) _a : Any = kwargs.pop('''feature_extractor''' ) _a : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) _a : Union[str, Any] = tokenizer _a : Tuple = AutoTokenizer.from_pretrained('''gpt2''' ) _a : List[Any] = AutoTokenizer.from_pretrained('''bert-base-uncased''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Optional[Any]=None , __snake_case : Optional[int]=None , __snake_case : Tuple=None , **__snake_case : Any ) -> List[str]: if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: _a : Optional[Any] = self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case ) if text is not None: _a : Any = self.char_tokenizer(__snake_case , return_tensors=__snake_case , **__snake_case ) if text is None: return inputs elif images is None: return encodings else: _a : Optional[Any] = encodings['''input_ids'''] return inputs def snake_case_ ( self : Optional[int] , __snake_case : List[Any] ) -> Tuple: _a , _a , _a : List[str] = sequences _a : str = char_preds.size(0 ) _a , _a : Dict = self._decode_helper(__snake_case , '''char''' ) _a , _a : Optional[int] = self._decode_helper(__snake_case , '''bpe''' ) _a , _a : int = self._decode_helper(__snake_case , '''wp''' ) _a : Any = [] _a : int = [] for i in range(__snake_case ): _a : List[Any] = [char_scores[i], bpe_scores[i], wp_scores[i]] _a : Tuple = [char_strs[i], bpe_strs[i], wp_strs[i]] _a : List[str] = scores.index(max(__snake_case ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _a : Dict = {} _a : Optional[Any] = final_strs _a : List[str] = final_scores _a : List[Any] = char_strs _a : int = bpe_strs _a : Tuple = wp_strs return out def snake_case_ ( self : Tuple , __snake_case : str , __snake_case : Tuple ) -> Any: if format == DecodeType.CHARACTER: _a : Any = self.char_decode _a : Optional[Any] = 1 _a : Union[str, Any] = '''[s]''' elif format == DecodeType.BPE: _a : List[str] = self.bpe_decode _a : Tuple = 2 _a : Union[str, Any] = '''#''' elif format == DecodeType.WORDPIECE: _a : Union[str, Any] = self.wp_decode _a : Optional[int] = 102 _a : Tuple = '''[SEP]''' else: raise ValueError(f"""Format {format} is not supported.""" ) _a , _a : Optional[Any] = [], [] _a : List[Any] = pred_logits.size(0 ) _a : Optional[int] = pred_logits.size(1 ) _a , _a : List[str] = pred_logits.topk(1 , dim=-1 , largest=__snake_case , sorted=__snake_case ) _a : int = preds_index.view(-1 , __snake_case )[:, 1:] _a : int = decoder(__snake_case ) _a , _a : Optional[int] = torch.nn.functional.softmax(__snake_case , dim=2 ).max(dim=2 ) _a : str = preds_max_prob[:, 1:] for index in range(__snake_case ): _a : Tuple = preds_str[index].find(__snake_case ) _a : Optional[Any] = preds_str[index][:pred_eos] _a : int = preds_index[index].cpu().tolist() _a : int = pred_index.index(__snake_case ) if eos_token in pred_index else -1 _a : Union[str, Any] = preds_max_prob[index][: pred_eos_index + 1] _a : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__snake_case ) conf_scores.append(__snake_case ) return dec_strs, conf_scores def snake_case_ ( self : Dict , __snake_case : Union[str, Any] ) -> List[Any]: _a : List[str] = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(__snake_case )] return decode_strs def snake_case_ ( self : Union[str, Any] , __snake_case : Optional[Any] ) -> Tuple: return self.bpe_tokenizer.batch_decode(__snake_case ) def snake_case_ ( self : List[Any] , __snake_case : List[Any] ) -> Union[str, Any]: _a : str = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(__snake_case )] return decode_strs
249
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCamelCase ( SCREAMING_SNAKE_CASE ): UpperCAmelCase : str = 'convbert' def __init__( self : Optional[Any] , __snake_case : Union[str, Any]=30522 , __snake_case : Any=768 , __snake_case : Optional[Any]=12 , __snake_case : Tuple=12 , __snake_case : Optional[Any]=3072 , __snake_case : List[str]="gelu" , __snake_case : int=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[Any]=512 , __snake_case : Union[str, Any]=2 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=1E-1_2 , __snake_case : Any=1 , __snake_case : List[str]=0 , __snake_case : Union[str, Any]=2 , __snake_case : Union[str, Any]=768 , __snake_case : Dict=2 , __snake_case : Union[str, Any]=9 , __snake_case : Union[str, Any]=1 , __snake_case : Union[str, Any]=None , **__snake_case : Optional[Any] , ) -> List[Any]: super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case , ) _a : str = vocab_size _a : str = hidden_size _a : List[str] = num_hidden_layers _a : Any = num_attention_heads _a : Optional[int] = intermediate_size _a : Dict = hidden_act _a : List[Any] = hidden_dropout_prob _a : str = attention_probs_dropout_prob _a : Dict = max_position_embeddings _a : Tuple = type_vocab_size _a : Optional[int] = initializer_range _a : Any = layer_norm_eps _a : Optional[int] = embedding_size _a : int = head_ratio _a : List[str] = conv_kernel_size _a : Any = num_groups _a : Tuple = classifier_dropout class lowerCamelCase ( SCREAMING_SNAKE_CASE ): @property def snake_case_ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _a : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a : List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
249
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) if is_vision_available(): import PIL class _A ( __lowerCAmelCase ): snake_case__ : Optional[int] = ['''pixel_values'''] def __init__( self , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = 1 / 255 , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) lowercase = size if size is not None else {"""shortest_edge""": 224} lowercase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) lowercase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ , param_name="""crop_size""" ) lowercase = do_resize lowercase = size lowercase = resample lowercase = do_center_crop lowercase = crop_size lowercase = do_rescale lowercase = rescale_factor lowercase = do_normalize lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase = image_std if image_std is not None else OPENAI_CLIP_STD lowercase = do_convert_rgb def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowercase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowercase = get_resize_output_image_size(lowerCAmelCase_ , size=size["""shortest_edge"""] , default_to_square=lowerCAmelCase_ ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowercase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(lowerCAmelCase_ , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , **__lowerCAmelCase , ): """simple docstring""" lowercase = do_resize if do_resize is not None else self.do_resize lowercase = size if size is not None else self.size lowercase = get_size_dict(lowerCAmelCase_ , param_name="""size""" , default_to_square=lowerCAmelCase_ ) lowercase = resample if resample is not None else self.resample lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase = crop_size if crop_size is not None else self.crop_size lowercase = get_size_dict(lowerCAmelCase_ , param_name="""crop_size""" , default_to_square=lowerCAmelCase_ ) lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase = [convert_to_rgb(lowerCAmelCase_ ) for image in images] # All transformations expect numpy arrays. lowercase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: lowercase = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: lowercase = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: lowercase = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: lowercase = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] lowercase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] lowercase = {"""pixel_values""": images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
359
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[int]: _A = tempfile.mkdtemp() # fmt: off _A = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _A = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _A = {"""unk_token""": """<unk>"""} _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase_ ) ) _A = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } _A = os.path.join(self.tmpdirname , lowerCAmelCase_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> List[Any]: return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **lowerCAmelCase_ ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> List[str]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **lowerCAmelCase_ ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Optional[Any]: return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Dict: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> List[Any]: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self ) -> List[str]: _A = self.get_tokenizer() _A = self.get_rust_tokenizer() _A = self.get_image_processor() _A = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) _A = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase_ ) _A = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) _A = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Tuple: _A = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _A = self.get_image_processor(do_normalize=lowerCAmelCase_ ) _A = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Optional[int]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _A = self.prepare_image_inputs() _A = image_processor(lowerCAmelCase_ , return_tensors="""np""" ) _A = processor(images=lowerCAmelCase_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self ) -> Optional[int]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _A = """lower newer""" _A = processor(text=lowerCAmelCase_ , return_tensors="""np""" ) _A = tokenizer(lowerCAmelCase_ , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _A = """lower newer""" _A = self.prepare_image_inputs() _A = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def UpperCAmelCase ( self ) -> List[Any]: _A = """google/owlvit-base-patch32""" _A = OwlViTProcessor.from_pretrained(lowerCAmelCase_ ) _A = ["""cat""", """nasa badge"""] _A = processor(text=lowerCAmelCase_ ) _A = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def UpperCAmelCase ( self ) -> Optional[int]: _A = """google/owlvit-base-patch32""" _A = OwlViTProcessor.from_pretrained(lowerCAmelCase_ ) _A = [["""cat""", """nasa badge"""], ["""person"""]] _A = processor(text=lowerCAmelCase_ ) _A = 16 _A = len(lowerCAmelCase_ ) _A = max([len(lowerCAmelCase_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def UpperCAmelCase ( self ) -> Tuple: _A = """google/owlvit-base-patch32""" _A = OwlViTProcessor.from_pretrained(lowerCAmelCase_ ) _A = ["""cat""", """nasa badge"""] _A = processor(text=lowerCAmelCase_ ) _A = 16 _A = inputs["""input_ids"""] _A = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _A = self.prepare_image_inputs() _A = self.prepare_image_inputs() _A = processor(images=lowerCAmelCase_ , query_images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def UpperCAmelCase ( self ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = OwlViTProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(lowerCAmelCase_ ) _A = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
401
0
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
707
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _UpperCamelCase : Tuple = '\\n Text data.\n Second line of data.' _UpperCamelCase : Tuple = 'file' @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' lowercase = tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') lowercase = bytes(__snake_case , 'utf-8' ) with zstd.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , __snake_case ) , 'w' ) as f: f.write(__snake_case ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str ): '''simple docstring''' lowercase = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} lowercase = input_paths[compression_format] lowercase = tmp_path / 'cache' lowercase = DownloadConfig(cache_dir=__snake_case , extract_compressed_file=__snake_case ) lowercase = cached_path(__snake_case , download_config=__snake_case ) with open(__snake_case ) as f: lowercase = f.read() with open(__snake_case ) as f: lowercase = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def _SCREAMING_SNAKE_CASE ( __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : int , __snake_case : Optional[Any] ): '''simple docstring''' lowercase = 'custom_cache' lowercase = 'custom_extracted_dir' lowercase = tmp_path / 'custom_extracted_path' if default_extracted: lowercase = ('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , __snake_case ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(__snake_case ) ) lowercase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowercase = xz_file lowercase = ( DownloadConfig(extract_compressed_file=__snake_case ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__snake_case ) ) lowercase = cached_path(__snake_case , download_config=__snake_case ) assert Path(__snake_case ).parent.parts[-2:] == expected def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' lowercase = str(Path(__snake_case ).resolve() ) assert cached_path(__snake_case ) == text_file # relative path lowercase = str(Path(__snake_case ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__snake_case ) == text_file def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' lowercase = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(__snake_case ): cached_path(__snake_case ) # relative path lowercase = './__missing_file__.txt' with pytest.raises(__snake_case ): cached_path(__snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case : Tuple ): '''simple docstring''' lowercase = get_from_cache(f'tmp://{tmpfs_file}' ) with open(__snake_case ) as f: lowercase = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , __snake_case ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with pytest.raises(__snake_case ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] ): '''simple docstring''' lowercase = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(__snake_case ): http_get('https://huggingface.co' , temp_file=__snake_case ) with pytest.raises(__snake_case ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] ): '''simple docstring''' lowercase = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(__snake_case ): ftp_get('ftp://huggingface.co' , temp_file=__snake_case ) with pytest.raises(__snake_case ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case : Any ): '''simple docstring''' lowercase = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(__snake_case ): fsspec_get('s3://huggingface.co' , temp_file=__snake_case ) with pytest.raises(__snake_case ): fsspec_head('s3://huggingface.co' )
134
0
'''simple docstring''' from math import factorial def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if n < k or k < 0: raise ValueError("""Please enter positive integers for n and k where n >= k""" ) return factorial(lowerCamelCase_ ) // (factorial(lowerCamelCase_ ) * factorial(n - k )) if __name__ == "__main__": print( """The number of five-card hands possible from a standard""", f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( """If a class of 40 students must be arranged into groups of""", f'''4 for group projects, there are {combinations(40, 4)} ways''', """to arrange them.\n""", ) print( """If 10 teams are competing in a Formula One race, there""", f'''are {combinations(10, 3)} ways that first, second and''', """third place can be awarded.""", )
379
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable __UpperCAmelCase = {"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
379
1
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _a : """simple docstring""" @staticmethod def __lowerCAmelCase ( *lowerCAmelCase_ , **lowerCAmelCase_ ): pass @is_pipeline_test @require_torch @require_vision class _a ( unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) _lowercase =[ { """image""": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase =vqa_pipeline(lowerCAmelCase_ , top_k=1 ) self.assertEqual( lowerCAmelCase_ , [ [{"score": ANY(lowerCAmelCase_ ), "answer": ANY(lowerCAmelCase_ )}], [{"score": ANY(lowerCAmelCase_ ), "answer": ANY(lowerCAmelCase_ )}], ] , ) @require_torch def __lowerCAmelCase ( self ): _lowercase =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) _lowercase ="""./tests/fixtures/tests_samples/COCO/000000039769.png""" _lowercase ="""How many cats are there?""" _lowercase =vqa_pipeline(image=lowerCAmelCase_ , question="How many cats are there?" , top_k=2 ) self.assertEqual( lowerCAmelCase_ , [{"score": ANY(lowerCAmelCase_ ), "answer": ANY(lowerCAmelCase_ )}, {"score": ANY(lowerCAmelCase_ ), "answer": ANY(lowerCAmelCase_ )}] ) _lowercase =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( lowerCAmelCase_ , [{"score": ANY(lowerCAmelCase_ ), "answer": ANY(lowerCAmelCase_ )}, {"score": ANY(lowerCAmelCase_ ), "answer": ANY(lowerCAmelCase_ )}] ) @slow @require_torch def __lowerCAmelCase ( self ): _lowercase =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) _lowercase ="""./tests/fixtures/tests_samples/COCO/000000039769.png""" _lowercase ="""How many cats are there?""" _lowercase =vqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [{"score": 0.8_7_9_9, "answer": "2"}, {"score": 0.2_9_6, "answer": "1"}] ) _lowercase =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [{"score": 0.8_7_9_9, "answer": "2"}, {"score": 0.2_9_6, "answer": "1"}] ) _lowercase =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [[{"score": 0.8_7_9_9, "answer": "2"}, {"score": 0.2_9_6, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def __lowerCAmelCase ( self ): pass
714
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _a ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE = BartphoTokenizer __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True def __lowerCAmelCase ( self ): super().setUp() _lowercase =["▁This", "▁is", "▁a", "▁t", "est"] _lowercase =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _lowercase ={"unk_token": "<unk>"} _lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) _lowercase =BartphoTokenizer(lowerCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **lowerCAmelCase_ ): kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase ="This is a là test" _lowercase ="This is a<unk><unk> test" return input_text, output_text def __lowerCAmelCase ( self ): _lowercase =BartphoTokenizer(lowerCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map ) _lowercase ="This is a là test" _lowercase ="▁This ▁is ▁a ▁l à ▁t est".split() _lowercase =tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _lowercase =tokens + [tokenizer.unk_token] _lowercase =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ )
594
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : Optional[int] = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
107
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def SCREAMING_SNAKE_CASE ( lowercase_ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE ( ): lowercase = 2 while True: if is_prime(lowercase_ ): yield num num += 1 def SCREAMING_SNAKE_CASE ( lowercase_ : int = 200_0000 ): return sum(takewhile(lambda lowercase_ : x < n , prime_generator() ) ) if __name__ == "__main__": print(f'''{solution() = }''')
588
0
import math import sys def __lowercase( __snake_case : Any ) -> int: if number != int(lowerCamelCase_ ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __snake_case = [-1] * (number + 1) __snake_case = 0 for i in range(1 ,number + 1 ): __snake_case = sys.maxsize __snake_case = int(math.sqrt(lowerCamelCase_ ) ) for j in range(1 ,root + 1 ): __snake_case = 1 + answers[i - (j**2)] __snake_case = min(lowerCamelCase_ ,lowerCamelCase_ ) __snake_case = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
706
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCamelCase (lowerCamelCase , unittest.TestCase ): lowercase__ = GPTSanJapaneseTokenizer lowercase__ = False lowercase__ = {"""do_clean_text""": False, """add_prefix_space""": False} def __lowerCamelCase ( self ): super().setUp() # fmt: off __snake_case = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on __snake_case = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 __snake_case = {'unk_token': '<unk>'} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) def __lowerCamelCase ( self , **SCREAMING_SNAKE_CASE_ ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ ): __snake_case = 'こんにちは、世界。 \nこんばんは、㔺界。😀' __snake_case = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ ): __snake_case , __snake_case = self.get_input_output_texts(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) return text, ids def __lowerCamelCase ( self ): pass # TODO add if relevant def __lowerCamelCase ( self ): pass # TODO add if relevant def __lowerCamelCase ( self ): pass # TODO add if relevant def __lowerCamelCase ( self ): __snake_case = self.get_tokenizer() # Testing tokenization __snake_case = 'こんにちは、世界。 こんばんは、㔺界。' __snake_case = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids without special tokens __snake_case = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __snake_case = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids with special tokens __snake_case = tokens + [tokenizer.unk_token] __snake_case = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] __snake_case = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __snake_case = self.get_tokenizer() # Testing tokenization __snake_case = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' __snake_case = 'こんにちは、、、、世界。こんばんは、、、、世界。' __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def __lowerCamelCase ( self ): __snake_case = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization __snake_case = 'こんにちは、世界。' __snake_case = 'こんばんは、㔺界。😀' __snake_case = 'こんにちは、世界。こんばんは、世界。😀' __snake_case = tokenizer.encode(prefix_text + input_text ) __snake_case = tokenizer.encode('' , prefix_text=prefix_text + input_text ) __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def __lowerCamelCase ( self ): __snake_case = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization __snake_case = 'こんにちは、世界。' __snake_case = 'こんばんは、㔺界。😀' __snake_case = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 __snake_case = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 __snake_case = [1] + [0] * (len_prefix + len_text + 1) __snake_case = [1] * (len_prefix + len_text + 1) + [0] __snake_case = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __snake_case = tokenizer(prefix_text + input_text ).token_type_ids __snake_case = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ).token_type_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def __lowerCamelCase ( self ): __snake_case = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) __snake_case = tokenizer.encode('あンいワ' ) __snake_case = tokenizer.encode('' , prefix_text='あンいワ' ) __snake_case = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __lowerCamelCase ( self ): __snake_case = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) __snake_case = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) # fmt: off __snake_case = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] __snake_case = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __snake_case = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.attention_mask , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.attention_mask , SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __lowerCamelCase ( self ): # tokenizer has no padding token pass
345
0
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( a_ , unittest.TestCase ): """simple docstring""" __snake_case = PhobertTokenizer __snake_case = False def a__ ( self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : List[str] = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] _lowerCamelCase : Optional[int] = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) _lowerCamelCase : Optional[int] = ['''#version: 0.2''', '''l à</w>'''] _lowerCamelCase : Optional[Any] = {'''unk_token''': '''<unk>'''} _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowercase ) ) def a__ ( self , **_lowercase ) -> Any: kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def a__ ( self , _lowercase ) -> Union[str, Any]: _lowerCamelCase : List[str] = '''Tôi là VinAI Research''' _lowerCamelCase : int = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def a__ ( self ) -> int: _lowerCamelCase : Optional[int] = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : Optional[Any] = '''Tôi là VinAI Research''' _lowerCamelCase : Tuple = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() _lowerCamelCase : Optional[int] = tokenizer.tokenize(_lowercase ) print(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) _lowerCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCamelCase : str = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase )
434
"""simple docstring""" SCREAMING_SNAKE_CASE__ : Dict =[ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] SCREAMING_SNAKE_CASE__ : List[Any] =[ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] SCREAMING_SNAKE_CASE__ : Optional[int] =[ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] SCREAMING_SNAKE_CASE__ : List[Any] =[ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] SCREAMING_SNAKE_CASE__ : Union[str, Any] =[ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] SCREAMING_SNAKE_CASE__ : Optional[int] =[ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] SCREAMING_SNAKE_CASE__ : Optional[Any] =[ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] SCREAMING_SNAKE_CASE__ : Optional[Any] =[ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
434
1
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __lowerCAmelCase = '' __lowerCAmelCase = '' __lowerCAmelCase = '' __lowerCAmelCase = 1 # (0 is vertical, 1 is horizontal) def _UpperCAmelCase ( ): a_ , a_ : Tuple = get_dataset(__A , __A ) print('''Processing...''' ) a_ , a_ , a_ : Optional[int] = update_image_and_anno(__A , __A , __A ) for index, image in enumerate(__A ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' a_ : List[Any] = random_chars(32 ) a_ : Dict = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] a_ : Dict = f'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}' cva.imwrite(f'/{file_root}.jpg' , __A , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'Success {index+1}/{len(__A )} with {file_name}' ) a_ : List[str] = [] for anno in new_annos[index]: a_ : int = f'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}' annos_list.append(__A ) with open(f'/{file_root}.txt' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def _UpperCAmelCase ( __A : str , __A : str ): a_ : List[str] = [] a_ : str = [] for label_file in glob.glob(os.path.join(__A , '''*.txt''' ) ): a_ : int = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__A ) as in_file: a_ : List[Any] = in_file.readlines() a_ : int = os.path.join(__A , f'{label_name}.jpg' ) a_ : Tuple = [] for obj_list in obj_lists: a_ : List[str] = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__A ) labels.append(__A ) return img_paths, labels def _UpperCAmelCase ( __A : list , __A : list , __A : int = 1 ): a_ : Any = [] a_ : List[Any] = [] a_ : Optional[int] = [] for idx in range(len(__A ) ): a_ : Any = [] a_ : Optional[int] = img_list[idx] path_list.append(__A ) a_ : str = anno_list[idx] a_ : List[str] = cva.imread(__A ) if flip_type == 1: a_ : Optional[int] = cva.flip(__A , __A ) for bbox in img_annos: a_ : Any = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: a_ : Any = cva.flip(__A , __A ) for bbox in img_annos: a_ : str = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__A ) new_imgs_list.append(__A ) return new_imgs_list, new_annos_lists, path_list def _UpperCAmelCase ( __A : int = 32 ): assert number_char > 1, "The number of character should greater than 1" a_ : List[str] = ascii_lowercase + digits return "".join(random.choice(__A ) for _ in range(__A ) ) if __name__ == "__main__": main() print('DONE ✅')
666
'''simple docstring''' import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
666
1