code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowercase ( __A : Union[str, Any] , __A : Any , __A : Any=0 ) -> Any: '''simple docstring''' if name is None: snake_case : str = None else: snake_case : int = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" snake_case : Tuple = fmt.format(__A ) # Print and recurse (if needed). if isinstance(__A , __A ): if msg is not None: print(__A ) for k in val.keys(): recursive_print(__A , val[k] , spaces + 2 ) elif isinstance(__A , torch.Tensor ): print(__A , """:""" , val.size() ) else: print(__A , """:""" , __A ) def lowercase ( __A : Any , __A : Dict , __A : str , __A : Tuple , __A : Optional[int] ) -> List[str]: '''simple docstring''' snake_case : int = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case : Optional[int] = param.view(*__A ) snake_case : Dict = param.transpose(0 , 2 ) snake_case : int = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case : Tuple = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case : Union[str, Any] = param.view(*__A ) snake_case : Dict = param.transpose(0 , 1 ).contiguous() snake_case : Any = param.view(*__A ) return param def lowercase ( __A : str , __A : Dict , __A : str ) -> List[Any]: '''simple docstring''' snake_case : Dict = {} # old versions did not store training args snake_case : int = input_state_dict.get("""args""" , __A ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case : Dict = ds_args.padded_vocab_size snake_case : Dict = ds_args.max_position_embeddings snake_case : Optional[Any] = ds_args.hidden_size snake_case : List[str] = ds_args.num_layers snake_case : str = ds_args.num_attention_heads snake_case : Optional[Any] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case : List[str] = config.n_head # The hidden_size per head. snake_case : List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case : List[Any] = input_state_dict["""checkpoint_version"""] else: snake_case : int = 0.0 # The model. snake_case : Optional[int] = input_state_dict["""model"""] # The language model. snake_case : Union[str, Any] = model["""language_model"""] # The embeddings. snake_case : List[str] = lm["""embedding"""] # The word embeddings. snake_case : Any = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case : Union[str, Any] = word_embeddings[: config.vocab_size, :] snake_case : str = word_embeddings # The position embeddings. snake_case : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case : Optional[Any] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f"""pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match""" ) # Store the position embeddings. snake_case : Tuple = pos_embeddings # The transformer. snake_case : Union[str, Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case : str = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case : Optional[Any] = layer_re.match(__A ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case : List[str] = int(m.group(1 ) ) # The name of the operation. snake_case : Any = m.group(2 ) # Is it a weight or a bias? snake_case : Any = m.group(3 ) # The name of the layer. snake_case : Tuple = f"""transformer.h.{layer_idx}""" # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case : Any = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case : Any = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case : Any = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __A , __A ) snake_case : List[str] = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case : Optional[int] = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case : Any = masked_bias snake_case : Optional[Any] = fix_query_key_value_ordering(__A , __A , 3 , __A , __A ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case : int = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case : List[Any] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case : List[str] = fix_query_key_value_ordering(__A , __A , 3 , __A , __A ) # Store. No change of shape. snake_case : List[str] = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case : str = megatron_to_transformers[op_name] snake_case : Tuple = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case : List[Any] = megatron_to_transformers[op_name] snake_case : int = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case : List[Any] = transformer["""final_layernorm.weight"""] snake_case : Any = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case : List[Any] = word_embeddings # It should be done! return output_state_dict def lowercase ( ) -> Any: '''simple docstring''' snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=__A , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=__A , help="""An optional config json file describing the pre-trained model.""" , ) snake_case : List[Any] = parser.parse_args() # Extract the basename. snake_case : Tuple = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f"""Extracting PyTorch state dictionary from {args.path_to_checkpoint}""" ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case : List[str] = torch.load(__A , map_location="""cpu""" ) else: snake_case : int = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case : Dict = input_state_dict.get("""args""" , __A ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case : int = """gelu_fast""" elif ds_args.openai_gelu: snake_case : Union[str, Any] = """gelu_new""" else: snake_case : int = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case : str = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case : List[Any] = GPTaConfig( vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=__A , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__A , summary_activation=__A , summary_proj_to_labels=__A , summary_first_dropout=0.1 , scale_attn_weights=__A , use_cache=__A , bos_token_id=5_0256 , eos_token_id=5_0256 , ) else: snake_case : int = GPTaConfig.from_json_file(args.config_file ) snake_case : int = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case : str = convert_megatron_checkpoint(__A , __A , __A ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__A , __A ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case : Tuple = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case : List[str] = ds_args.tokenizer_name_or_path else: raise ValueError(f"""Unrecognized tokenizer_type {tokenizer_type}""" ) else: snake_case : Any = """gpt2""" snake_case : List[str] = AutoTokenizer.from_pretrained(__A ) snake_case : Optional[Any] = type(__A ).__name__ snake_case : Tuple = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(__A ) # Save tokenizer based on args print(f"""Adding {tokenizer_class} tokenizer files""" ) tokenizer.save_pretrained(__A ) # Store the state_dict to file. snake_case : List[str] = os.path.join(__A , """pytorch_model.bin""" ) print(f"""Saving checkpoint to \"{output_checkpoint_file}\"""" ) torch.save(__A , __A ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
36
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowercase ( a , a ): '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer SCREAMING_SNAKE_CASE_ :List[Any] = flax_key_tuple[:-1] + ("weight",) SCREAMING_SNAKE_CASE_ :Any = torch.permute(a , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(a ): # linear layer SCREAMING_SNAKE_CASE_ :str = flax_key_tuple[:-1] + ("weight",) SCREAMING_SNAKE_CASE_ :Optional[int] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: SCREAMING_SNAKE_CASE_ :Union[str, Any] = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def lowercase ( a , a , a ): '''simple docstring''' if "metadata" in layer: SCREAMING_SNAKE_CASE_ :Dict = layer.split("metadata" ) SCREAMING_SNAKE_CASE_ :Optional[int] = "".join(split_layer[0] )[:-1] SCREAMING_SNAKE_CASE_ :str = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: SCREAMING_SNAKE_CASE_ :str = layer.split("kvstore" ) SCREAMING_SNAKE_CASE_ :str = "".join(split_layer[0] )[:-1] SCREAMING_SNAKE_CASE_ :str = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: SCREAMING_SNAKE_CASE_ :Union[str, Any] = layer.split("/" ) SCREAMING_SNAKE_CASE_ :Optional[int] = "/".join(split_layer[:-1] ) SCREAMING_SNAKE_CASE_ :int = (split_layer[-1],) if "kvstore/path" in layer: SCREAMING_SNAKE_CASE_ :Union[str, Any] = F"{switch_checkpoint_path}/{checkpoint_info[layer]}" elif "kvstore/driver" in layer: SCREAMING_SNAKE_CASE_ :Tuple = "file" else: SCREAMING_SNAKE_CASE_ :str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowercase ( a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :int = rename_keys(a ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = {} for k, v in current_block.items(): SCREAMING_SNAKE_CASE_ :List[str] = v SCREAMING_SNAKE_CASE_ :Optional[Any] = new_current_block torch.save(a , a ) def lowercase ( a , a , a , a , a = WEIGHTS_NAME ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Optional[int] = convert_file_size_to_int(a ) SCREAMING_SNAKE_CASE_ :int = [] SCREAMING_SNAKE_CASE_ :str = {} SCREAMING_SNAKE_CASE_ :List[str] = 0 SCREAMING_SNAKE_CASE_ :Optional[int] = 0 os.makedirs(a , exist_ok=a ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: SCREAMING_SNAKE_CASE_ :int = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] SCREAMING_SNAKE_CASE_ :Any = flatten_dict(a , sep="/" ) SCREAMING_SNAKE_CASE_ :Optional[Any] = {} for layer in checkpoint_info.keys(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :List[Any] = get_key_and_tensorstore_dict( a , a , a ) if curr_real_layer_name in all_layers: SCREAMING_SNAKE_CASE_ :str = content else: SCREAMING_SNAKE_CASE_ :Optional[Any] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file SCREAMING_SNAKE_CASE_ :Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() SCREAMING_SNAKE_CASE_ :List[Any] = torch.tensor(a ) SCREAMING_SNAKE_CASE_ :str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , a ) SCREAMING_SNAKE_CASE_ :Any = "/".join(a ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: SCREAMING_SNAKE_CASE_ :str = os.path.join( a , weights_name.replace(".bin" , F"-{len(a )+1:05d}-of-???.bin" ) ) rename_and_save_block(a , a ) sharded_state_dicts.append(current_block.keys() ) del current_block SCREAMING_SNAKE_CASE_ :Tuple = {} SCREAMING_SNAKE_CASE_ :Dict = 0 SCREAMING_SNAKE_CASE_ :Optional[int] = raw_weights.to(getattr(a , a ) ) current_block_size += weight_size total_size += weight_size # Add the last block SCREAMING_SNAKE_CASE_ :Dict = os.path.join(a , weights_name.replace(".bin" , F"-{len(a )+1:05d}-of-???.bin" ) ) rename_and_save_block(a , a ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(a ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index SCREAMING_SNAKE_CASE_ :Optional[int] = {} SCREAMING_SNAKE_CASE_ :int = {} for idx, shard in enumerate(a ): SCREAMING_SNAKE_CASE_ :Optional[Any] = weights_name.replace( ".bin" , F"-{idx+1:05d}-of-{len(a ):05d}.bin" ) # len(sharded_state_dicts):05d} SCREAMING_SNAKE_CASE_ :Any = os.path.join(a , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(a , os.path.join(a , a ) ) SCREAMING_SNAKE_CASE_ :List[Any] = shard for key in shard: SCREAMING_SNAKE_CASE_ :str = shard_file # Add the metadata SCREAMING_SNAKE_CASE_ :List[str] = {"total_size": total_size} SCREAMING_SNAKE_CASE_ :Optional[int] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(a , a ) , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE_ :Optional[int] = json.dumps(a , indent=2 , sort_keys=a ) + "\n" f.write(a ) return metadata, index if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowercase ( ): '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer SCREAMING_SNAKE_CASE_ :Dict = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) SCREAMING_SNAKE_CASE_ :str = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) SCREAMING_SNAKE_CASE_ :List[Any] = TaTokenizer.from_pretrained("t5-small" ) SCREAMING_SNAKE_CASE_ :Optional[int] = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." SCREAMING_SNAKE_CASE_ :List[Any] = tokenizer(a , return_tensors="pt" ).input_ids SCREAMING_SNAKE_CASE_ :List[str] = model.generate(a , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
631
0
"""simple docstring""" import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( __UpperCAmelCase , unittest.TestCase ): __A : Tuple = LxmertTokenizer __A : List[Any] = LxmertTokenizerFast __A : Optional[Any] = True __A : Dict = True def __snake_case ( self : int ): '''simple docstring''' super().setUp() lowercase :List[str] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase :int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __snake_case ( self : Any , snake_case__ : int ): '''simple docstring''' lowercase :Optional[int] = '''UNwant\u00E9d,running''' lowercase :Any = '''unwanted, running''' return input_text, output_text def __snake_case ( self : Any ): '''simple docstring''' lowercase :Optional[Any] = self.tokenizer_class(self.vocab_file ) lowercase :Union[str, Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(snake_case__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 1_0, 8, 9] ) def __snake_case ( self : List[str] ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase :Optional[int] = self.get_tokenizer() lowercase :str = self.get_rust_tokenizer() lowercase :Tuple = '''I was born in 92000, and this is falsé.''' lowercase :List[Any] = tokenizer.tokenize(snake_case__ ) lowercase :List[Any] = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowercase :Union[str, Any] = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) lowercase :Tuple = rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowercase :Union[str, Any] = self.get_rust_tokenizer() lowercase :int = tokenizer.encode(snake_case__ ) lowercase :Union[str, Any] = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ )
702
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
475
0
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowerCamelCase_ = logging.getLogger(__name__) def __magic_name__ ( __a : Union[str, Any] , __a : Any ): '''simple docstring''' if os.path.exists(__a ): if os.path.exists(os.path.join(__a , """config.json""" ) ) and os.path.isfile( os.path.join(__a , """config.json""" ) ): os.remove(os.path.join(__a , """config.json""" ) ) if os.path.exists(os.path.join(__a , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(__a , """pytorch_model.bin""" ) ): os.remove(os.path.join(__a , """pytorch_model.bin""" ) ) else: os.makedirs(__a ) model.save_pretrained(__a ) def __magic_name__ ( __a : List[Any] , __a : Optional[Any]=False ): '''simple docstring''' UpperCamelCase__ = 2 if unlogit: UpperCamelCase__ = torch.pow(__a , __a ) UpperCamelCase__ = p * torch.log(__a ) UpperCamelCase__ = 0 return -plogp.sum(dim=-1 ) def __magic_name__ ( __a : List[str] ): '''simple docstring''' logger.info("""lv, h >\t""" + """\t""".join(f"{x + 1}" for x in range(len(__a ) ) ) ) for row in range(len(__a ) ): if tensor.dtype != torch.long: logger.info(f"layer {row + 1}:\t" + """\t""".join(f"{x:.5f}" for x in tensor[row].cpu().data ) ) else: logger.info(f"layer {row + 1}:\t" + """\t""".join(f"{x:d}" for x in tensor[row].cpu().data ) ) def __magic_name__ ( __a : Optional[int] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Optional[int]=True , __a : Optional[Any]=True , __a : Any=None , __a : str=False ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = model.config.num_hidden_layers, model.config.num_attention_heads UpperCamelCase__ = torch.zeros(__a , __a ).to(args.device ) UpperCamelCase__ = torch.zeros(__a , __a ).to(args.device ) if head_mask is None: UpperCamelCase__ = torch.ones(__a , __a ).to(args.device ) head_mask.requires_grad_(requires_grad=__a ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: UpperCamelCase__ = None UpperCamelCase__ = 0.0 UpperCamelCase__ = 0.0 for step, inputs in enumerate(tqdm(__a , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): UpperCamelCase__ = tuple(t.to(args.device ) for t in inputs ) ((UpperCamelCase__) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) UpperCamelCase__ = model(__a , labels=__a , head_mask=__a ) # (loss), lm_logits, presents, (all hidden_states), (attentions) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__a ): UpperCamelCase__ = entropy(attn.detach() , __a ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__a ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: UpperCamelCase__ = 2 UpperCamelCase__ = torch.pow(torch.pow(__a , __a ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-2_0 if not args.dont_normalize_global_importance: UpperCamelCase__ = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(__a ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(__a ) logger.info("""Head ranked by importance scores""" ) UpperCamelCase__ = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) UpperCamelCase__ = torch.arange( head_importance.numel() , device=args.device ) UpperCamelCase__ = head_ranks.view_as(__a ) print_ad_tensor(__a ) return attn_entropy, head_importance, total_loss def __magic_name__ ( __a : str , __a : Dict , __a : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = compute_heads_importance(__a , __a , __a , compute_entropy=__a ) UpperCamelCase__ = 1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , __a , original_score * args.masking_threshold ) UpperCamelCase__ = torch.ones_like(__a ) UpperCamelCase__ = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) UpperCamelCase__ = original_score while current_score >= original_score * args.masking_threshold: UpperCamelCase__ = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads UpperCamelCase__ = float("""Inf""" ) UpperCamelCase__ = head_importance.view(-1 ).sort()[1] if len(__a ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads UpperCamelCase__ = current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) UpperCamelCase__ = new_head_mask.view(-1 ) UpperCamelCase__ = 0.0 UpperCamelCase__ = new_head_mask.view_as(__a ) UpperCamelCase__ = new_head_mask.clone().detach() print_ad_tensor(__a ) # Compute metric and head importance again UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = compute_heads_importance( __a , __a , __a , compute_entropy=__a , head_mask=__a ) UpperCamelCase__ = 1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , __a , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("""Final head mask""" ) print_ad_tensor(__a ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def __magic_name__ ( __a : Any , __a : List[str] , __a : Dict , __a : Dict ): '''simple docstring''' UpperCamelCase__ = datetime.now() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = compute_heads_importance( __a , __a , __a , compute_entropy=__a , compute_importance=__a , head_mask=__a ) UpperCamelCase__ = 1 / loss UpperCamelCase__ = datetime.now() - before_time UpperCamelCase__ = sum(p.numel() for p in model.parameters() ) UpperCamelCase__ = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__a ) ) } for k, v in heads_to_prune.items(): if isinstance(__a , __a ): UpperCamelCase__ = [ v, ] assert sum(len(__a ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__a ) UpperCamelCase__ = sum(p.numel() for p in model.parameters() ) UpperCamelCase__ = datetime.now() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = compute_heads_importance( __a , __a , __a , compute_entropy=__a , compute_importance=__a , head_mask=__a , actually_pruned=__a , ) UpperCamelCase__ = 1 / loss UpperCamelCase__ = datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , __a , __a , pruned_num_params / original_num_params * 100 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , __a , __a ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 100 ) save_model(__a , args.output_dir ) def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=__a , type=__a , required=__a , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=__a , type=__a , required=__a , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=__a , type=__a , required=__a , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=__a , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=__a , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=__a , type=__a , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=__a , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=__a , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=__a , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=__a , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=__a , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=__a , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=__a , default=42 ) parser.add_argument("""--local_rank""" , type=__a , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=__a , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=__a , default="""""" , help="""Can be used for distant debugging.""" ) UpperCamelCase__ = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__a ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: UpperCamelCase__ = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) UpperCamelCase__ = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) UpperCamelCase__ = torch.device("""cuda""" , args.local_rank ) UpperCamelCase__ = 1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) UpperCamelCase__ = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: UpperCamelCase__ = nn.parallel.DistributedDataParallel( __a , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__a ) elif args.n_gpu > 1: UpperCamelCase__ = nn.DataParallel(__a ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__a ) torch.save(__a , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , __a ) # Prepare dataset UpperCamelCase__ = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) UpperCamelCase__ = (torch.from_numpy(__a ),) UpperCamelCase__ = TensorDataset(*__a ) UpperCamelCase__ = RandomSampler(__a ) UpperCamelCase__ = DataLoader(__a , sampler=__a , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__a , __a , __a ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: UpperCamelCase__ = mask_heads(__a , __a , __a ) prune_heads(__a , __a , __a , __a ) if __name__ == "__main__": main()
513
from __future__ import annotations import time import numpy as np lowerCamelCase_ = [8, 5, 9, 7] lowerCamelCase_ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowerCamelCase_ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = claim_vector UpperCamelCase__ = allocated_resources_table UpperCamelCase__ = maximum_claim_table def UpperCAmelCase_ (self ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCAmelCase_ (self ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCAmelCase_ (self ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(SCREAMING_SNAKE_CASE_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCAmelCase_ (self ): return {self.__need().index(SCREAMING_SNAKE_CASE_ ): i for i in self.__need()} def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.__need() UpperCamelCase__ = self.__allocated_resources_table UpperCamelCase__ = self.__available_resources() UpperCamelCase__ = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: UpperCamelCase__ = False for each_need in need_list: UpperCamelCase__ = True for index, need in enumerate(SCREAMING_SNAKE_CASE_ ): if need > available_resources[index]: UpperCamelCase__ = False break if execution: UpperCamelCase__ = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: UpperCamelCase__ = original_need_index print(F"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(SCREAMING_SNAKE_CASE_ ) # update available/freed resources stack UpperCamelCase__ = np.array(SCREAMING_SNAKE_CASE_ ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(SCREAMING_SNAKE_CASE_ ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def UpperCAmelCase_ (self ): print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( F"P{self.__allocated_resources_table.index(SCREAMING_SNAKE_CASE_ ) + 1}" + """ """.join(F"{it:>8}" for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( F"P{self.__maximum_claim_table.index(SCREAMING_SNAKE_CASE_ ) + 1}" + """ """.join(F"{it:>8}" for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(SCREAMING_SNAKE_CASE_ ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(SCREAMING_SNAKE_CASE_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
513
1
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def lowerCAmelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" __magic_name__ : str = os.path.join(args.tf_model_dir, '''parameters.json''' ) __magic_name__ : Tuple = json.loads(open(UpperCAmelCase ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('''.pt''' ): __magic_name__ : Tuple = args.output + '''.pt''' __magic_name__ : Any = OrderedDict() with tf.device('''/CPU:0''' ): __magic_name__ : Dict = tf.train.load_checkpoint(args.tf_model_dir ) __magic_name__ : Dict = reader.get_variable_to_shape_map() for key_name in shapes.keys(): __magic_name__ : List[Any] = reader.get_tensor(UpperCAmelCase ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): __magic_name__ : Tuple = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): __magic_name__ : Optional[Any] = 8 __magic_name__ : Optional[Any] = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time __magic_name__ : List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __magic_name__ : Union[str, Any] = torch.tensor(UpperCAmelCase ) elif key_name.startswith('''model/moe''' ): __magic_name__ : int = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): __magic_name__ : Union[str, Any] = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player __magic_name__ : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __magic_name__ : Optional[Any] = torch.tensor(UpperCAmelCase ) elif key_name.endswith('''/softmlp/kernel''' ): __magic_name__ : Tuple = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player __magic_name__ : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __magic_name__ : str = torch.tensor(UpperCAmelCase ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): __magic_name__ : List[Any] = key_name[-9:-7] for i in range(16 ): __magic_name__ : Any = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) __magic_name__ : List[str] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided __magic_name__ : List[Any] = torch.tensor(UpperCAmelCase ) elif key_name.startswith('''model/mlp''' ): __magic_name__ : str = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): __magic_name__ : int = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player __magic_name__ : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __magic_name__ : Any = torch.tensor(UpperCAmelCase ) elif key_name.endswith('''/p1/bias''' ): __magic_name__ : Optional[Any] = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player __magic_name__ : Optional[Any] = vnp.copy() # same because it is one dimensional __magic_name__ : Tuple = torch.tensor(UpperCAmelCase ) elif key_name.endswith('''/p2/kernel''' ): __magic_name__ : Optional[int] = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player __magic_name__ : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __magic_name__ : List[Any] = torch.tensor(UpperCAmelCase ) elif key_name.endswith('''/p2/bias''' ): __magic_name__ : str = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player __magic_name__ : int = vnp.copy() # same because it is one dimensional __magic_name__ : int = torch.tensor(UpperCAmelCase ) elif key_name.startswith('''model/ln''' ): __magic_name__ : List[str] = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): __magic_name__ : Any = '''model.blocks.%d.feed_forward.norm.bias''' % player __magic_name__ : Union[str, Any] = vnp.copy() # same because it is one dimensional __magic_name__ : Dict = torch.tensor(UpperCAmelCase ) elif key_name.endswith('''/g''' ): __magic_name__ : Optional[Any] = '''model.blocks.%d.feed_forward.norm.weight''' % player __magic_name__ : Optional[int] = vnp.copy() # same because it is one dimensional __magic_name__ : Tuple = torch.tensor(UpperCAmelCase ) elif key_name.startswith('''model/att''' ): __magic_name__ : Any = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): __magic_name__ : str = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum __magic_name__ : Any = state[:, 0, :, :] __magic_name__ : List[Any] = state[:, 1, :, :] __magic_name__ : List[str] = state[:, 2, :, :] __magic_name__ : Dict = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __magic_name__ : List[Any] = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __magic_name__ : Dict = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __magic_name__ : Tuple = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player __magic_name__ : str = torch.tensor(UpperCAmelCase ) __magic_name__ : str = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player __magic_name__ : int = torch.tensor(UpperCAmelCase ) __magic_name__ : int = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player __magic_name__ : Optional[Any] = torch.tensor(UpperCAmelCase ) elif key_name.endswith('''/o/kernel''' ): __magic_name__ : Union[str, Any] = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player __magic_name__ : int = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix __magic_name__ : Any = torch.tensor(UpperCAmelCase ) elif key_name.startswith('''model/an''' ): __magic_name__ : Tuple = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): __magic_name__ : Any = '''model.blocks.%d.self_attn.norm.bias''' % player __magic_name__ : Union[str, Any] = vnp.copy() # same because it is one dimensional __magic_name__ : Tuple = torch.tensor(UpperCAmelCase ) elif key_name.endswith('''/g''' ): __magic_name__ : Tuple = '''model.blocks.%d.self_attn.norm.weight''' % player __magic_name__ : Union[str, Any] = vnp.copy() # same because it is one dimensional __magic_name__ : List[Any] = torch.tensor(UpperCAmelCase ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): __magic_name__ : List[Any] = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] __magic_name__ : str = '''model.%s.weight''' % nlayer __magic_name__ : Union[str, Any] = vnp.copy() # same in embedded __magic_name__ : Union[str, Any] = torch.tensor(UpperCAmelCase ) if key_name.startswith('''model/wte''' ): __magic_name__ : List[str] = '''lm_head.weight''' __magic_name__ : Union[str, Any] = vnp.copy() # same in embedded __magic_name__ : Optional[int] = torch.tensor(UpperCAmelCase ) elif key_name.startswith('''model/wob''' ): __magic_name__ : Any = '''final_logits_bias''' __magic_name__ : Optional[Any] = vnp.copy() # same in embedded __magic_name__ : Optional[Any] = state.reshape((1, -1) ) __magic_name__ : List[Any] = torch.tensor(UpperCAmelCase ) elif key_name == "model/dense/kernel": __magic_name__ : Optional[int] = '''model.last_project.weight''' __magic_name__ : int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __magic_name__ : str = torch.tensor(UpperCAmelCase ) elif key_name == "model/dense_1/bias": __magic_name__ : Union[str, Any] = '''model.last_project.bias''' __magic_name__ : List[str] = vnp.copy() # same because it is one dimensional __magic_name__ : int = torch.tensor(UpperCAmelCase ) torch.save(UpperCAmelCase, args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
713
from __future__ import annotations class A__ : def __init__( self , lowerCamelCase ) -> None: """simple docstring""" __magic_name__ : List[str] = data __magic_name__ : Node | None = None __magic_name__ : Node | None = None def lowerCAmelCase ( UpperCAmelCase ) ->None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowerCAmelCase ( UpperCAmelCase ) ->int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ), depth_of_tree(tree.right ) ) if tree else 0 def lowerCAmelCase ( UpperCAmelCase ) ->bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowerCAmelCase ( ) ->None: # Main function for testing. """simple docstring""" __magic_name__ : Tuple = Node(1 ) __magic_name__ : Union[str, Any] = Node(2 ) __magic_name__ : Tuple = Node(3 ) __magic_name__ : List[str] = Node(4 ) __magic_name__ : str = Node(5 ) __magic_name__ : List[Any] = Node(6 ) __magic_name__ : Optional[int] = Node(7 ) __magic_name__ : str = Node(8 ) __magic_name__ : str = Node(9 ) print(is_full_binary_tree(UpperCAmelCase ) ) print(depth_of_tree(UpperCAmelCase ) ) print('''Tree is: ''' ) display(UpperCAmelCase ) if __name__ == "__main__": main()
336
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy UpperCAmelCase = logging.getLogger(__name__) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , ): lowercase = bnb_quantization_config.load_in_abit lowercase = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) lowercase = [] # custom device map if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(device_map.keys() ) > 1: lowercase = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowercase = get_keys_to_not_convert(__SCREAMING_SNAKE_CASE ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__SCREAMING_SNAKE_CASE ) lowercase = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowercase = [] lowercase = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__SCREAMING_SNAKE_CASE ) # compatibility with peft lowercase = load_in_abit lowercase = load_in_abit lowercase = get_parameter_device(__SCREAMING_SNAKE_CASE ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) lowercase = replace_with_bnb_layers(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , modules_to_not_convert=__SCREAMING_SNAKE_CASE ) # convert param to the right dtype lowercase = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowercase = name.replace('.weight' , '' ).replace('.bias' , '' ) lowercase = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__SCREAMING_SNAKE_CASE ): param.to(__SCREAMING_SNAKE_CASE ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): lowercase = replace_with_bnb_layers( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , modules_to_not_convert=__SCREAMING_SNAKE_CASE ) lowercase = get_quantized_model_device_map( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , max_memory=__SCREAMING_SNAKE_CASE , no_split_module_classes=__SCREAMING_SNAKE_CASE , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowercase = True lowercase = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=bnb_quantization_config.torch_dtype , offload_folder=__SCREAMING_SNAKE_CASE , offload_state_dict=__SCREAMING_SNAKE_CASE , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__SCREAMING_SNAKE_CASE , device_map=__SCREAMING_SNAKE_CASE , offload_dir=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ): if device_map is None: if torch.cuda.is_available(): lowercase = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) lowercase = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowercase = {} lowercase = special_dtypes lowercase = no_split_module_classes lowercase = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowercase = get_balanced_memory( __SCREAMING_SNAKE_CASE , low_zero=(device_map == 'balanced_low_0') , max_memory=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) lowercase = max_memory lowercase = infer_auto_device_map(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # check if don't have any quantized module on the cpu lowercase = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowercase = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ): if modules_to_not_convert is None: lowercase = [] lowercase , lowercase = _replace_with_bnb_layers( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , ): lowercase = False for name, module in model.named_children(): if current_key_name is None: lowercase = [] current_key_name.append(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowercase = '.'.join(__SCREAMING_SNAKE_CASE ) lowercase = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowercase = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowercase = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__SCREAMING_SNAKE_CASE , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowercase = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) lowercase = module.weight.data if module.bias is not None: lowercase = module.bias.data bnb_module.requires_grad_(__SCREAMING_SNAKE_CASE ) setattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase = True if len(list(module.children() ) ) > 0: lowercase , lowercase = _replace_with_bnb_layers( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): # Create a copy of the model with init_empty_weights(): lowercase = deepcopy(__SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowercase = find_tied_parameters(__SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowercase = sum(__SCREAMING_SNAKE_CASE , [] ) lowercase = len(__SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model lowercase = False if hasattr(__SCREAMING_SNAKE_CASE , 'base_model_prefix' ): lowercase = not hasattr(__SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowercase = list(model.named_children() ) lowercase = [list_modules[-1][0]] # add last module together with tied weights lowercase = set(__SCREAMING_SNAKE_CASE ) - set(__SCREAMING_SNAKE_CASE ) lowercase = list(set(__SCREAMING_SNAKE_CASE ) ) + list(__SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys lowercase = ['.weight', '.bias'] lowercase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowercase = name.replace(__SCREAMING_SNAKE_CASE , '' ) filtered_module_names.append(__SCREAMING_SNAKE_CASE ) return filtered_module_names def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): for m in model.modules(): if isinstance(__SCREAMING_SNAKE_CASE , bnb.nn.Linearabit ): return True return False def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): return next(parameter.parameters() ).device def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 0 , dtype=__SCREAMING_SNAKE_CASE , value=__SCREAMING_SNAKE_CASE ) lowercase = param_name lowercase = model if "." in tensor_name: lowercase = tensor_name.split('.' ) for split in splits[:-1]: lowercase = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) lowercase = new_module lowercase = splits[-1] # offload weights lowercase = False offload_weight(module._parameters[tensor_name] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , __SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , ) else: offload_weight(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE ) offload_weight(__SCREAMING_SNAKE_CASE , param_name.replace('weight' , 'SCB' ) , __SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE ) set_module_tensor_to_device(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 'meta' , dtype=__SCREAMING_SNAKE_CASE , value=torch.empty(*param.size() ) )
84
from __future__ import annotations class A_ : '''simple docstring''' def __init__( self , snake_case ): lowercase = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(snake_case ) != 0: lowercase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(snake_case ) != cols: raise error for value in row: if not isinstance(snake_case , (int, float) ): raise error lowercase = rows else: lowercase = [] def SCREAMING_SNAKE_CASE__ ( self ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def SCREAMING_SNAKE_CASE__ ( self ): return len(self.rows ) @property def SCREAMING_SNAKE_CASE__ ( self ): return len(self.rows[0] ) @property def SCREAMING_SNAKE_CASE__ ( self ): return (self.num_rows, self.num_columns) @property def SCREAMING_SNAKE_CASE__ ( self ): return self.order[0] == self.order[1] def SCREAMING_SNAKE_CASE__ ( self ): lowercase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def SCREAMING_SNAKE_CASE__ ( self ): return bool(self.determinant() ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(snake_case ).determinant() def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): if (row + column) % 2 == 0: return self.get_minor(snake_case , snake_case ) return -1 * self.get_minor(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): return Matrix( [ [self.get_minor(snake_case , snake_case ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def SCREAMING_SNAKE_CASE__ ( self ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self ): return str(self.rows ) def __str__( self ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(snake_case ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): lowercase = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(snake_case , snake_case ): raise type_error for value in row: if not isinstance(snake_case , (int, float) ): raise type_error if len(snake_case ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(snake_case ) else: lowercase = self.rows[0:position] + [row] + self.rows[position:] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): lowercase = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(snake_case , snake_case ): raise type_error for value in column: if not isinstance(snake_case , (int, float) ): raise type_error if len(snake_case ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: lowercase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: lowercase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , snake_case ): if not isinstance(snake_case , snake_case ): return NotImplemented return self.rows == other.rows def __ne__( self , snake_case ): return not self == other def __neg__( self ): return self * -1 def __add__( self , snake_case ): if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , snake_case ): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , snake_case ): if isinstance(snake_case , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(snake_case , snake_case ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(snake_case , snake_case ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self , snake_case ): if not isinstance(snake_case , snake_case ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) lowercase = self for _ in range(other - 1 ): result *= self return result @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , snake_case ): return sum(row[i] * column[i] for i in range(len(snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
84
1
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowercase ( enum.Enum ): '''simple docstring''' lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 @add_end_docstrings(_lowerCamelCase ) class lowercase ( _lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : List[Any] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. lowerCamelCase__ = None if self.model.config.prefix is not None: lowerCamelCase__ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. lowerCamelCase__ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self._sanitize_parameters(prefix=__lowerCAmelCase , **self._forward_params ) lowerCamelCase__ = {**self._preprocess_params, **preprocess_params} lowerCamelCase__ = {**self._forward_params, **forward_params} def a__ ( self : Optional[Any] , __lowerCamelCase : str=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : str=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Any=None , **__lowerCamelCase : Dict , ) -> Dict: '''simple docstring''' lowerCamelCase__ = {} if prefix is not None: lowerCamelCase__ = prefix if prefix: lowerCamelCase__ = self.tokenizer( __lowerCAmelCase , padding=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=self.framework ) lowerCamelCase__ = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' " [None, \'hole\']" ) lowerCamelCase__ = handle_long_generation preprocess_params.update(__lowerCAmelCase ) lowerCamelCase__ = generate_kwargs lowerCamelCase__ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) lowerCamelCase__ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) lowerCamelCase__ = ReturnType.TENSORS if return_type is not None: lowerCamelCase__ = return_type if clean_up_tokenization_spaces is not None: lowerCamelCase__ = clean_up_tokenization_spaces if stop_sequence is not None: lowerCamelCase__ = self.tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) if len(__lowerCAmelCase ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) lowerCamelCase__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a__ ( self : Tuple , *__lowerCamelCase : List[str] , **__lowerCamelCase : List[Any] ) -> str: '''simple docstring''' if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*__lowerCAmelCase , **__lowerCAmelCase ) def __call__( self : int , __lowerCamelCase : Tuple , **__lowerCamelCase : int ) -> Dict: '''simple docstring''' return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def a__ ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple="" , __lowerCamelCase : List[str]=None , **__lowerCamelCase : List[str] ) -> int: '''simple docstring''' lowerCamelCase__ = self.tokenizer( prefix + prompt_text , padding=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=self.framework ) lowerCamelCase__ = prompt_text if handle_long_generation == "hole": lowerCamelCase__ = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: lowerCamelCase__ = generate_kwargs["max_new_tokens"] else: lowerCamelCase__ = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: lowerCamelCase__ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) lowerCamelCase__ = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: lowerCamelCase__ = inputs["attention_mask"][:, -keep_length:] return inputs def a__ ( self : str , __lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCamelCase__ = model_inputs["input_ids"] lowerCamelCase__ = model_inputs.get("attention_mask" , __lowerCAmelCase ) # Allow empty prompts if input_ids.shape[1] == 0: lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = 1 else: lowerCamelCase__ = input_ids.shape[0] lowerCamelCase__ = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. lowerCamelCase__ = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: lowerCamelCase__ = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: lowerCamelCase__ = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length lowerCamelCase__ = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL lowerCamelCase__ = self.model.generate(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase , **__lowerCAmelCase ) lowerCamelCase__ = generated_sequence.shape[0] if self.framework == "pt": lowerCamelCase__ = generated_sequence.reshape(__lowerCAmelCase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": lowerCamelCase__ = tf.reshape(__lowerCAmelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def a__ ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str]=ReturnType.FULL_TEXT , __lowerCamelCase : Dict=True ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = model_outputs["generated_sequence"][0] lowerCamelCase__ = model_outputs["input_ids"] lowerCamelCase__ = model_outputs["prompt_text"] lowerCamelCase__ = generated_sequence.numpy().tolist() lowerCamelCase__ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: lowerCamelCase__ = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text lowerCamelCase__ = self.tokenizer.decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: lowerCamelCase__ = 0 else: lowerCamelCase__ = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , ) ) if return_type == ReturnType.FULL_TEXT: lowerCamelCase__ = prompt_text + text[prompt_length:] else: lowerCamelCase__ = text[prompt_length:] lowerCamelCase__ = {"generated_text": all_text} records.append(__lowerCAmelCase ) return records
707
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = StableDiffusionDiffEditPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def a__ ( self : int ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__lowerCamelCase , ) lowerCamelCase__ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) lowerCamelCase__ = DDIMInverseScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=__lowerCamelCase , set_alpha_to_zero=__lowerCamelCase , ) torch.manual_seed(0 ) lowerCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) lowerCamelCase__ = CLIPTextModel(__lowerCamelCase ) lowerCamelCase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase__ = { "unet": unet, "scheduler": scheduler, "inverse_scheduler": inverse_scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def a__ ( self : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any=0 ) -> Tuple: '''simple docstring''' lowerCamelCase__ = floats_tensor((1, 16, 16) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCamelCase__ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) if str(__lowerCamelCase ).startswith("mps" ): lowerCamelCase__ = torch.manual_seed(__lowerCamelCase ) else: lowerCamelCase__ = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCamelCase__ = { "prompt": "a dog and a newt", "mask_image": mask, "image_latents": latents, "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def a__ ( self : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int]=0 ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ) if str(__lowerCamelCase ).startswith("mps" ): lowerCamelCase__ = torch.manual_seed(__lowerCamelCase ) else: lowerCamelCase__ = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCamelCase__ = { "image": image, "source_prompt": "a cat and a frog", "target_prompt": "a dog and a newt", "generator": generator, "num_inference_steps": 2, "num_maps_per_mask": 2, "mask_encode_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def a__ ( self : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str]=0 ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ) if str(__lowerCamelCase ).startswith("mps" ): lowerCamelCase__ = torch.manual_seed(__lowerCamelCase ) else: lowerCamelCase__ = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCamelCase__ = { "image": image, "prompt": "a cat and a frog", "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "decode_latents": True, "output_type": "numpy", } return inputs def a__ ( self : Tuple ) -> str: '''simple docstring''' if not hasattr(self.pipeline_class , "_optional_components" ): return lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowerCamelCase__ = self.get_dummy_inputs(__lowerCamelCase ) lowerCamelCase__ = pipe(**__lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowerCamelCase ) lowerCamelCase__ = self.pipeline_class.from_pretrained(__lowerCamelCase ) pipe_loaded.to(__lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=__lowerCamelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(__lowerCamelCase , __lowerCamelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowerCamelCase__ = self.get_dummy_inputs(__lowerCamelCase ) lowerCamelCase__ = pipe_loaded(**__lowerCamelCase )[0] lowerCamelCase__ = np.abs(output - output_loaded ).max() self.assertLess(__lowerCamelCase , 1E-4 ) def a__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = "cpu" lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = self.get_dummy_mask_inputs(__lowerCamelCase ) lowerCamelCase__ = pipe.generate_mask(**__lowerCamelCase ) lowerCamelCase__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowerCamelCase__ = np.array([0] * 9 ) lowerCamelCase__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def a__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowerCamelCase__ = "cpu" lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = self.get_dummy_inversion_inputs(__lowerCamelCase ) lowerCamelCase__ = pipe.invert(**__lowerCamelCase ).images lowerCamelCase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCamelCase__ = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) lowerCamelCase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1E-3 ) def a__ ( self : Tuple ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def a__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowerCamelCase__ = "cpu" lowerCamelCase__ = self.get_dummy_components() lowerCamelCase__ = {"beta_start": 0.0_0_0_8_5, "beta_end": 0.0_1_2, "beta_schedule": "scaled_linear"} lowerCamelCase__ = DPMSolverMultistepScheduler(**__lowerCamelCase ) lowerCamelCase__ = DPMSolverMultistepInverseScheduler(**__lowerCamelCase ) lowerCamelCase__ = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = self.get_dummy_inversion_inputs(__lowerCamelCase ) lowerCamelCase__ = pipe.invert(**__lowerCamelCase ).images lowerCamelCase__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCamelCase__ = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) lowerCamelCase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1E-3 ) @require_torch_gpu @slow class lowercase ( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def a__ ( cls : int ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) lowerCamelCase__ = raw_image.convert("RGB" ).resize((768, 768) ) lowerCamelCase__ = raw_image def a__ ( self : Optional[Any] ) -> str: '''simple docstring''' lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=__lowerCamelCase , torch_dtype=torch.floataa ) lowerCamelCase__ = DDIMScheduler.from_config(pipe.scheduler.config ) lowerCamelCase__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = "a bowl of fruit" lowerCamelCase__ = "a bowl of pears" lowerCamelCase__ = pipe.generate_mask( image=self.raw_image , source_prompt=__lowerCamelCase , target_prompt=__lowerCamelCase , generator=__lowerCamelCase , ) lowerCamelCase__ = pipe.invert( prompt=__lowerCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__lowerCamelCase ).latents lowerCamelCase__ = pipe( prompt=__lowerCamelCase , mask_image=__lowerCamelCase , image_latents=__lowerCamelCase , generator=__lowerCamelCase , negative_prompt=__lowerCamelCase , inpaint_strength=0.7 , output_type="numpy" , ).images[0] lowerCamelCase__ = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def a__ ( self : List[str] ) -> Dict: '''simple docstring''' lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=__lowerCamelCase , torch_dtype=torch.floataa ) lowerCamelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCamelCase__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ = "a bowl of fruit" lowerCamelCase__ = "a bowl of pears" lowerCamelCase__ = pipe.generate_mask( image=self.raw_image , source_prompt=__lowerCamelCase , target_prompt=__lowerCamelCase , generator=__lowerCamelCase , ) lowerCamelCase__ = pipe.invert( prompt=__lowerCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__lowerCamelCase , num_inference_steps=25 , ).latents lowerCamelCase__ = pipe( prompt=__lowerCamelCase , mask_image=__lowerCamelCase , image_latents=__lowerCamelCase , generator=__lowerCamelCase , negative_prompt=__lowerCamelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="numpy" , ).images[0] lowerCamelCase__ = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
187
0
'''simple docstring''' snake_case_ = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] snake_case_ = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] snake_case_ = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] snake_case_ = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] snake_case_ = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] snake_case_ = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] snake_case_ = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] snake_case_ = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
421
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): @staticmethod @abstractmethod def __lowerCamelCase ( lowercase__ ): """simple docstring""" raise NotImplementedError() @abstractmethod def __lowerCamelCase ( self ): """simple docstring""" raise NotImplementedError()
421
1
import argparse import os import re lowerCamelCase__ = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCamelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCamelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCamelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCamelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCamelCase__ = re.compile(R'''\[([^\]]+)\]''') def A(__a: List[Any] ): lowerCAmelCase_ = _re_indent.search(__a ) return "" if search is None else search.groups()[0] def A(__a: Optional[Any] , __a: Optional[Any]="" , __a: Optional[int]=None , __a: Optional[int]=None ): lowerCAmelCase_ = 0 lowerCAmelCase_ = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(__a ): index += 1 lowerCAmelCase_ = ["\n".join(lines[:index] )] else: lowerCAmelCase_ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase_ = [lines[index]] index += 1 while index < len(__a ) and (end_prompt is None or not lines[index].startswith(__a )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__a ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(__a ) ) if index < len(__a ) - 1: lowerCAmelCase_ = [lines[index + 1]] index += 1 else: lowerCAmelCase_ = [] else: blocks.append("\n".join(__a ) ) lowerCAmelCase_ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__a ) > 0: blocks.append("\n".join(__a ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__a ): blocks.append("\n".join(lines[index:] ) ) return blocks def A(__a: Tuple ): def _inner(__a: Optional[int] ): return key(__a ).lower().replace("_" , "" ) return _inner def A(__a: str , __a: Optional[Any]=None ): # If no key is provided, we use a noop. def noop(__a: List[Any] ): return x if key is None: lowerCAmelCase_ = noop # Constants are all uppercase, they go first. lowerCAmelCase_ = [obj for obj in objects if key(__a ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase_ = [obj for obj in objects if key(__a )[0].isupper() and not key(__a ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase_ = [obj for obj in objects if not key(__a )[0].isupper()] lowerCAmelCase_ = ignore_underscore(__a ) return sorted(__a , key=__a ) + sorted(__a , key=__a ) + sorted(__a , key=__a ) def A(__a: Dict ): # This inner function sort imports between [ ]. def _replace(__a: Any ): lowerCAmelCase_ = match.groups()[0] if "," not in imports: return F"[{imports}]" lowerCAmelCase_ = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase_ = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(__a )] ) + "]" lowerCAmelCase_ = import_statement.split("\n" ) if len(__a ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase_ = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase_ = [(i, _re_strip_line.search(__a ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase_ = sort_objects(__a , key=lambda __a : x[1] ) lowerCAmelCase_ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__a ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase_ = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase_ = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase_ = keys[:-1] lowerCAmelCase_ = get_indent(lines[1] ) + ", ".join([F"\"{k}\"" for k in sort_objects(__a )] ) return "\n".join(__a ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase_ = _re_bracket_content.sub(_replace , __a ) return import_statement def A(__a: Union[str, Any] , __a: str=True ): with open(__a , encoding="utf-8" ) as f: lowerCAmelCase_ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase_ = split_code_in_indented_blocks( __a , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__a ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase_ = main_blocks[block_idx] lowerCAmelCase_ = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase_ = 0 while line_idx < len(__a ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase_ = len(__a ) else: line_idx += 1 if line_idx >= len(__a ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase_ = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase_ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase_ = split_code_in_indented_blocks(__a , indent_level=__a ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase_ = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase_ = [(pattern.search(__a ).groups()[0] if pattern.search(__a ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase_ = [(i, key) for i, key in enumerate(__a ) if key is not None] lowerCAmelCase_ = [x[0] for x in sorted(__a , key=lambda __a : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase_ = 0 lowerCAmelCase_ = [] for i in range(len(__a ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase_ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(__a ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase_ = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(__a ): if check_only: return True else: print(F"Overwriting {file}." ) with open(__a , "w" , encoding="utf-8" ) as f: f.write("\n".join(__a ) ) def A(__a: Any=True ): lowerCAmelCase_ = [] for root, _, files in os.walk(__a ): if "__init__.py" in files: lowerCAmelCase_ = sort_imports(os.path.join(__a , "__init__.py" ) , check_only=__a ) if result: lowerCAmelCase_ = [os.path.join(__a , "__init__.py" )] if len(__a ) > 0: raise ValueError(F"Would overwrite {len(__a )} files, run `make style`." ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCamelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
711
from __future__ import annotations lowerCamelCase__ = 8.9_88e9 # units = N * m^s * C^-2 def A(__a: float , __a: float , __a: float , __a: float ): lowerCAmelCase_ = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if distance < 0: raise ValueError("Distance cannot be negative" ) if force == 0: lowerCAmelCase_ = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowerCAmelCase_ = abs(__a ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowerCAmelCase_ = abs(__a ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowerCAmelCase_ = (COULOMBS_CONSTANT * charge_product / abs(__a )) ** 0.5 return {"distance": distance} raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
226
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
'''simple docstring''' from collections import deque class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" UpperCamelCase = process_name # process name UpperCamelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time UpperCamelCase = arrival_time UpperCamelCase = burst_time # remaining burst time UpperCamelCase = 0 # total time of the process wait in ready queue UpperCamelCase = 0 # time from arrival time to completion time class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : str , UpperCamelCase__ : int , UpperCamelCase__ : list[int] , UpperCamelCase__ : deque[Process] , UpperCamelCase__ : int , ): """simple docstring""" UpperCamelCase = number_of_queues # time slice of queues that round robin algorithm applied UpperCamelCase = time_slices # unfinished process is in this ready_queue UpperCamelCase = queue # current time UpperCamelCase = current_time # finished process is in this sequence queue UpperCamelCase = deque() def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def A ( self : Optional[Any] , UpperCamelCase__ : list[Process] ): """simple docstring""" UpperCamelCase = [] for i in range(len(UpperCamelCase__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def A ( self : Dict , UpperCamelCase__ : list[Process] ): """simple docstring""" UpperCamelCase = [] for i in range(len(UpperCamelCase__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def A ( self : int , UpperCamelCase__ : list[Process] ): """simple docstring""" UpperCamelCase = [] for i in range(len(UpperCamelCase__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def A ( self : Optional[int] , UpperCamelCase__ : deque[Process] ): """simple docstring""" return [q.burst_time for q in queue] def A ( self : Any , UpperCamelCase__ : Process ): """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def A ( self : Union[str, Any] , UpperCamelCase__ : deque[Process] ): """simple docstring""" UpperCamelCase = deque() # sequence deque of finished process while len(UpperCamelCase__ ) != 0: UpperCamelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(UpperCamelCase__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 UpperCamelCase = 0 # set the process's turnaround time because it is finished UpperCamelCase = self.current_time - cp.arrival_time # set the completion time UpperCamelCase = self.current_time # add the process to queue that has finished queue finished.append(UpperCamelCase__ ) self.finish_queue.extend(UpperCamelCase__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def A ( self : Union[str, Any] , UpperCamelCase__ : deque[Process] , UpperCamelCase__ : int ): """simple docstring""" UpperCamelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(UpperCamelCase__ ) ): UpperCamelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(UpperCamelCase__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time UpperCamelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(UpperCamelCase__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished UpperCamelCase = 0 # set the finish time UpperCamelCase = self.current_time # update the process' turnaround time because it is finished UpperCamelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(UpperCamelCase__ ) self.finish_queue.extend(UpperCamelCase__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def A ( self : Any ): """simple docstring""" for i in range(self.number_of_queues - 1 ): UpperCamelCase , UpperCamelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _lowerCamelCase : Optional[Any] = Process("P1", 0, 53) _lowerCamelCase : List[str] = Process("P2", 0, 17) _lowerCamelCase : Optional[int] = Process("P3", 0, 68) _lowerCamelCase : Dict = Process("P4", 0, 24) _lowerCamelCase : Union[str, Any] = 3 _lowerCamelCase : int = [17, 25] _lowerCamelCase : List[Any] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) _lowerCamelCase : Dict = Process("P1", 0, 53) _lowerCamelCase : int = Process("P2", 0, 17) _lowerCamelCase : Union[str, Any] = Process("P3", 0, 68) _lowerCamelCase : str = Process("P4", 0, 24) _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Any = [17, 25] _lowerCamelCase : str = deque([Pa, Pa, Pa, Pa]) _lowerCamelCase : List[Any] = MLFQ(number_of_queues, time_slices, queue, 0) _lowerCamelCase : int = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( f'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( f'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
430
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
714
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : str = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "gptj" __magic_name__ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=5_0400 , snake_case__=2048 , snake_case__=4096 , snake_case__=28 , snake_case__=16 , snake_case__=64 , snake_case__=None , snake_case__="gelu_new" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=1E-5 , snake_case__=0.02 , snake_case__=True , snake_case__=5_0256 , snake_case__=5_0256 , snake_case__=False , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Optional[int] = n_positions _lowerCAmelCase : Optional[int] = n_embd _lowerCAmelCase : Optional[int] = n_layer _lowerCAmelCase : str = n_head _lowerCAmelCase : Tuple = n_inner _lowerCAmelCase : Tuple = rotary_dim _lowerCAmelCase : Optional[int] = activation_function _lowerCAmelCase : Any = resid_pdrop _lowerCAmelCase : List[str] = embd_pdrop _lowerCAmelCase : int = attn_pdrop _lowerCAmelCase : Any = layer_norm_epsilon _lowerCAmelCase : Optional[int] = initializer_range _lowerCAmelCase : List[str] = use_cache _lowerCAmelCase : Dict = bos_token_id _lowerCAmelCase : Any = eos_token_id super().__init__( bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = "default" , snake_case__ = None , snake_case__ = False , ): '''simple docstring''' super().__init__(snake_case__ , task=snake_case__ , patching_specs=snake_case__ , use_past=snake_case__ ) if not getattr(self._config , 'pad_token_id' , snake_case__ ): # TODO: how to do that better? _lowerCAmelCase : Any = 0 @property def a ( self ): '''simple docstring''' _lowerCAmelCase : str = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(snake_case__ , direction='inputs' ) _lowerCAmelCase : int = {0: 'batch', 1: 'past_sequence + sequence'} else: _lowerCAmelCase : int = {0: 'batch', 1: 'sequence'} return common_inputs @property def a ( self ): '''simple docstring''' return self._config.n_layer @property def a ( self ): '''simple docstring''' return self._config.n_head def a ( self , snake_case__ , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = False , snake_case__ = None , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = super(snake_case__ , self ).generate_dummy_inputs( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) # We need to order the input in the way they appears in the forward() _lowerCAmelCase : Any = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = common_inputs['input_ids'].shape # Not using the same length for past_key_values _lowerCAmelCase : Any = seqlen + 2 _lowerCAmelCase : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCAmelCase : Tuple = [ (torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) for _ in range(self.num_layers ) ] _lowerCAmelCase : Tuple = common_inputs['attention_mask'] if self.use_past: _lowerCAmelCase : Any = ordered_inputs['attention_mask'].dtype _lowerCAmelCase : Union[str, Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(snake_case__ , snake_case__ , dtype=snake_case__ )] , dim=1 ) return ordered_inputs @property def a ( self ): '''simple docstring''' return 13
630
0
import re def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Tuple: snake_case__ = re.compile( r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' ) return bool(re.search(__snake_case , __snake_case ) ) if __name__ == "__main__": lowerCamelCase__ : int = """0094702343221""" print(is_sri_lankan_phone_number(phone))
33
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def a ( __snake_case : List[Any], __snake_case : Union[str, Any], __snake_case : str=1E-12 ): '''simple docstring''' UpperCAmelCase_ :int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(__snake_case, axis=1 ), a_min=__snake_case ) ).T UpperCAmelCase_ :List[Any] = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(__snake_case, axis=1 ), a_min=__snake_case ) ).T return jnp.matmul(__snake_case, norm_emb_a.T ) class _snake_case ( nn.Module ): '''simple docstring''' UpperCamelCase__ =42 UpperCamelCase__ =jnp.floataa def snake_case_ ( self : List[Any] ): UpperCAmelCase_ :Optional[Any] = FlaxCLIPVisionModule(self.config.vision_config ) UpperCAmelCase_ :Any = nn.Dense(self.config.projection_dim , use_bias=snake_case , dtype=self.dtype ) UpperCAmelCase_ :Tuple = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) UpperCAmelCase_ :Union[str, Any] = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) UpperCAmelCase_ :Tuple = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) UpperCAmelCase_ :List[str] = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self : Any , snake_case : Dict ): UpperCAmelCase_ :Union[str, Any] = self.vision_model(snake_case )[1] UpperCAmelCase_ :Any = self.visual_projection(snake_case ) UpperCAmelCase_ :Any = jax_cosine_distance(snake_case , self.special_care_embeds ) UpperCAmelCase_ :List[str] = jax_cosine_distance(snake_case , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs UpperCAmelCase_ :List[str] = 0.0 UpperCAmelCase_ :Any = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment UpperCAmelCase_ :List[str] = jnp.round(snake_case , 3 ) UpperCAmelCase_ :Any = jnp.any(special_scores > 0 , axis=1 , keepdims=snake_case ) # Use a lower threshold if an image has any special care concept UpperCAmelCase_ :Tuple = is_special_care * 0.01 UpperCAmelCase_ :int = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment UpperCAmelCase_ :Any = jnp.round(snake_case , 3 ) UpperCAmelCase_ :Optional[Any] = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _snake_case ( A__ ): '''simple docstring''' UpperCamelCase__ =CLIPConfig UpperCamelCase__ ="""clip_input""" UpperCamelCase__ =FlaxStableDiffusionSafetyCheckerModule def __init__( self : int , snake_case : CLIPConfig , snake_case : Optional[Tuple] = None , snake_case : int = 0 , snake_case : jnp.dtype = jnp.floataa , snake_case : bool = True , **snake_case : Optional[int] , ): if input_shape is None: UpperCAmelCase_ :str = (1, 224, 224, 3) UpperCAmelCase_ :Optional[int] = self.module_class(config=snake_case , dtype=snake_case , **snake_case ) super().__init__(snake_case , snake_case , input_shape=snake_case , seed=snake_case , dtype=snake_case , _do_init=_do_init ) def snake_case_ ( self : List[str] , snake_case : jax.random.KeyArray , snake_case : Tuple , snake_case : FrozenDict = None ): # init input tensor UpperCAmelCase_ :Optional[int] = jax.random.normal(snake_case , snake_case ) UpperCAmelCase_ ,UpperCAmelCase_ :Tuple = jax.random.split(snake_case ) UpperCAmelCase_ :Dict = {'''params''': params_rng, '''dropout''': dropout_rng} UpperCAmelCase_ :List[str] = self.module.init(snake_case , snake_case )['''params'''] return random_params def __call__( self : Dict , snake_case : Optional[int] , snake_case : dict = None , ): UpperCAmelCase_ :Union[str, Any] = jnp.transpose(snake_case , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(snake_case , dtype=jnp.floataa ) , rngs={} , )
608
0
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin a : int = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class a_ : def __init__( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int]=16 , __UpperCamelCase : Union[str, Any]=13 , __UpperCamelCase : Optional[Any]=7 , __UpperCamelCase : Dict=14 , __UpperCamelCase : Tuple=10 , __UpperCamelCase : Any=19 , __UpperCamelCase : int=5 , __UpperCamelCase : str=4 , __UpperCamelCase : Dict=True , __UpperCamelCase : Optional[int]=16 , __UpperCamelCase : str=2 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : int=4 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Union[str, Any]=[1, 2, 3, 4, 5] , __UpperCamelCase : Tuple=25 , __UpperCamelCase : List[Any]=5 , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = d_model _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = prediction_length _UpperCAmelCase = context_length _UpperCAmelCase = cardinality _UpperCAmelCase = num_time_features _UpperCAmelCase = lags_sequence _UpperCAmelCase = embedding_dimension _UpperCAmelCase = is_training _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = context_length _UpperCAmelCase = prediction_length + label_length _UpperCAmelCase = label_length _UpperCAmelCase = moving_average _UpperCAmelCase = autocorrelation_factor def _snake_case ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def _snake_case ( self : Optional[int] , __UpperCamelCase : Dict ) ->Tuple: '''simple docstring''' _UpperCAmelCase = config.context_length + max(config.lags_sequence ) _UpperCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _UpperCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _UpperCAmelCase = floats_tensor([self.batch_size, _past_length] ) _UpperCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _UpperCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _UpperCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) _UpperCAmelCase = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def _snake_case ( self : Any ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = self.get_config() _UpperCAmelCase = self.prepare_autoformer_inputs_dict(__UpperCamelCase ) return config, inputs_dict def _snake_case ( self : str ) ->List[Any]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def _snake_case ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = AutoformerModel(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() _UpperCAmelCase = model(**__UpperCamelCase ) _UpperCAmelCase = outputs.encoder_last_hidden_state _UpperCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = model.get_encoder() encoder.save_pretrained(__UpperCamelCase ) _UpperCAmelCase = AutoformerEncoder.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = model.create_network_inputs(**__UpperCamelCase ) _UpperCAmelCase ,_UpperCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _UpperCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _UpperCAmelCase = encoder(inputs_embeds=__UpperCamelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) _UpperCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _UpperCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _UpperCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _UpperCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = model.get_decoder() decoder.save_pretrained(__UpperCamelCase ) _UpperCAmelCase = AutoformerDecoder.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase ) _UpperCAmelCase = decoder( trend=__UpperCamelCase , inputs_embeds=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): a : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () a : Any = (AutoformerForPrediction,) if is_torch_available() else () a : Optional[Any] = {'feature-extraction': AutoformerModel} if is_torch_available() else {} a : Optional[int] = False a : List[str] = False a : Optional[int] = False a : Optional[int] = False a : List[Any] = False a : Optional[int] = False def _snake_case ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = AutoformerModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def _snake_case ( self : str ) ->int: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self : Any ) ->int: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ) _UpperCAmelCase ,_UpperCAmelCase = model_class.from_pretrained(__UpperCamelCase , output_loading_info=__UpperCamelCase ) self.assertEqual(info["""missing_keys"""] , [] ) def _snake_case ( self : str ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__UpperCamelCase ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def _snake_case ( self : Union[str, Any] ) ->int: '''simple docstring''' pass def _snake_case ( self : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase = inspect.signature(getattr(__UpperCamelCase , """forward""" ) ) # The main input is the name of the argument after `self` _UpperCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __UpperCamelCase ) def _snake_case ( self : Any ) ->str: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__UpperCamelCase )] , __UpperCamelCase ) def _snake_case ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True _UpperCAmelCase = getattr(self.model_tester , """seq_length""" , __UpperCamelCase ) _UpperCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , __UpperCamelCase ) _UpperCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , __UpperCamelCase ) _UpperCAmelCase = getattr(self.model_tester , """d_model""" , __UpperCamelCase ) _UpperCAmelCase = getattr(self.model_tester , """num_attention_heads""" , __UpperCamelCase ) _UpperCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCAmelCase = outputs.encoder_attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__UpperCamelCase , __UpperCamelCase ) # decoder attentions _UpperCAmelCase = outputs.decoder_attentions self.assertIsInstance(__UpperCamelCase , (list, tuple) ) self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _UpperCAmelCase = outputs.cross_attentions self.assertIsInstance(__UpperCamelCase , (list, tuple) ) self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(out_len + 2 , len(__UpperCamelCase ) ) _UpperCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def _snake_case ( self : Union[str, Any] ) ->Tuple: '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def _UpperCamelCase ( _A="train-batch.pt" ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_A , repo_type="""dataset""" ) _UpperCAmelCase = torch.load(_A , map_location=_A ) return batch @require_torch @slow class a_ ( unittest.TestCase ): def _snake_case ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__UpperCamelCase ) _UpperCAmelCase = prepare_batch() with torch.no_grad(): _UpperCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] _UpperCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=__UpperCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) def _snake_case ( self : int ) ->List[str]: '''simple docstring''' _UpperCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__UpperCamelCase ) _UpperCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _UpperCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state _UpperCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=__UpperCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) def _snake_case ( self : Dict ) ->int: '''simple docstring''' _UpperCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__UpperCamelCase ) _UpperCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _UpperCAmelCase = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) _UpperCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=__UpperCamelCase ) _UpperCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __UpperCamelCase , rtol=1e-1 ) )
19
"""simple docstring""" import re from filelock import FileLock try: import nltk a : str = True except (ImportError, ModuleNotFoundError): a : List[str] = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def _UpperCamelCase ( _A ) -> str: """simple docstring""" re.sub("""<n>""" , """""" , _A ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_A ) )
19
1
"""simple docstring""" from collections import defaultdict def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" __snake_case = 1 __snake_case = True for v in tree[start]: if v not in visited: ret += dfs(SCREAMING_SNAKE_CASE ) if ret % 2 == 0: cuts.append(SCREAMING_SNAKE_CASE ) return ret def __UpperCamelCase ( ) -> Optional[int]: """simple docstring""" dfs(1 ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 10, 9 _SCREAMING_SNAKE_CASE = defaultdict(list) _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
163
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": _SCREAMING_SNAKE_CASE = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") _SCREAMING_SNAKE_CASE = F"""https://www.google.com/search?q={query}&num=100""" _SCREAMING_SNAKE_CASE = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: _SCREAMING_SNAKE_CASE = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: _SCREAMING_SNAKE_CASE = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
163
1
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ : Tuple = '▁' UpperCAmelCase_ : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): snake_case__ : Union[str, Any] = BigBirdTokenizer snake_case__ : int = BigBirdTokenizerFast snake_case__ : Optional[Any] = True snake_case__ : List[str] = True def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: super().setUp() a_ : int = self.tokenizer_class(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: a_ : str = '<s>' a_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: a_ : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '[MASK]' ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 1_0_0_4 ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: if not self.test_rust_tokenizer: return a_ : str = self.get_tokenizer() a_ : List[Any] = self.get_rust_tokenizer() a_ : List[Any] = 'I was born in 92000, and this is falsé.' a_ : Optional[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) a_ : Dict = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) a_ : int = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : Any = self.get_rust_tokenizer() a_ : str = tokenizer.encode(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: a_ : Union[str, Any] = BigBirdTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) a_ : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) a_ : Tuple = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) a_ : int = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def SCREAMING_SNAKE_CASE ( self : int ) -> Any: return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : str = 'Hello World!' a_ : Optional[Any] = [6_5, 1_8_5_3_6, 2_2_6_0, 1_0_1, 6_6] self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: a_ : List[Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) # fmt: off a_ : Optional[int] = [6_5, 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, 6_6] # noqa: E231 # fmt: on self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence a_ : Optional[int] = list(self.big_tokenizer.get_vocab().keys() )[:1_0] a_ : Union[str, Any] = ' '.join(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = self.big_tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , return_tensors='pt' , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = BigBirdConfig(attention_type='original_full' ) a_ : int = BigBirdModel(SCREAMING_SNAKE_CASE__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**SCREAMING_SNAKE_CASE__ ) model(**SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : Dict = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) a_ : List[str] = tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids ) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: # fmt: off a_ : Optional[Any] = {'input_ids': [[6_5, 3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4, 6_6], [6_5, 4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6_5, 4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='google/bigbird-roberta-base' , revision='215c99f1600e06f83acce68422f2035b2b5c3510' , )
705
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase_ : Optional[int] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def SCREAMING_SNAKE_CASE_ ( __A : Any ) -> Union[str, Any]: """simple docstring""" for pegasus_name, hf_name in PATTERNS: a_ : Union[str, Any] = k.replace(__A , __A ) return k def SCREAMING_SNAKE_CASE_ ( __A : dict , __A : dict ) -> PegasusForConditionalGeneration: """simple docstring""" a_ : int = DEFAULTS.copy() cfg_kwargs.update(__A ) a_ : List[str] = PegasusConfig(**__A ) a_ : List[Any] = PegasusForConditionalGeneration(__A ) a_ : List[str] = torch_model.model.state_dict() a_ : Optional[int] = {} for k, v in tf_weights.items(): a_ : str = rename_state_dict_key(__A ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: a_ : Union[str, Any] = v.T a_ : List[str] = torch.tensor(__A , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected a_ : int = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) a_ : Optional[Any] = mapping['shared.weight'] a_ : Any = mapping['shared.weight'] a_ : Optional[int] = {k: torch.zeros_like(__A ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**__A ) a_ , a_ : Optional[Any] = torch_model.model.load_state_dict(__A , strict=__A ) a_ : Optional[Any] = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def SCREAMING_SNAKE_CASE_ ( __A : Dict="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: """simple docstring""" a_ : List[Any] = tf.train.list_variables(__A ) a_ : Optional[Any] = {} a_ : int = ['Adafactor', 'global_step'] for name, shape in tqdm(__A , desc='converting tf checkpoint to dict' ): a_ : Optional[int] = any(pat in name for pat in ignore_name ) if skip_key: continue a_ : List[str] = tf.train.load_variable(__A , __A ) a_ : Optional[Any] = array return tf_weights def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str ) -> Union[str, Any]: """simple docstring""" a_ : Any = Path(__A ).parent.name a_ : Dict = task_specific_params[F"""summarization_{dataset}"""]['max_position_embeddings'] a_ : Union[str, Any] = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=__A ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__A ) # convert model a_ : List[Any] = get_tf_weights_as_numpy(__A ) a_ : List[str] = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": a_ : Union[str, Any] = task_specific_params a_ : Optional[int] = convert_pegasus(__A , __A ) torch_model.save_pretrained(__A ) a_ : Dict = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(__A , Path(__A ) / 'pytorch_model.bin' ) if __name__ == "__main__": UpperCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : str = parser.parse_args() if args.save_dir is None: UpperCAmelCase_ : str = Path(args.tf_ckpt_path).parent.name UpperCAmelCase_ : Optional[int] = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
443
0
from __future__ import annotations from collections.abc import Sequence from typing import Literal def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = list(A__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(A__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 for i in range(len(A__ ) ): if lista[i] != lista[i]: count += 1 SCREAMING_SNAKE_CASE_ : Optional[int] = '_' if count > 1: return False else: return "".join(A__ ) def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : List[Any] = [] while True: SCREAMING_SNAKE_CASE_ : Tuple = ['$'] * len(A__ ) SCREAMING_SNAKE_CASE_ : Tuple = [] for i in range(len(A__ ) ): for j in range(i + 1, len(A__ ) ): SCREAMING_SNAKE_CASE_ : str = compare_string(binary[i], binary[j] ) if k is False: SCREAMING_SNAKE_CASE_ : Dict = '*' SCREAMING_SNAKE_CASE_ : Tuple = '*' temp.append('X' ) for i in range(len(A__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(A__ ) == 0: return pi SCREAMING_SNAKE_CASE_ : Tuple = list(set(A__ ) ) def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : str = [] for minterm in minterms: SCREAMING_SNAKE_CASE_ : int = '' for _ in range(A__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(A__ ) return temp def a__ ( A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = list(A__ ) SCREAMING_SNAKE_CASE_ : int = list(A__ ) SCREAMING_SNAKE_CASE_ : Dict = 0 for i in range(len(A__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Tuple = [] SCREAMING_SNAKE_CASE_ : str = [0] * len(A__ ) for i in range(len(chart[0] ) ): SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : List[Any] = -1 for j in range(len(A__ ) ): if chart[j][i] == 1: count += 1 SCREAMING_SNAKE_CASE_ : List[Any] = j if count == 1: SCREAMING_SNAKE_CASE_ : Optional[int] = 1 for i in range(len(A__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(A__ ) ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 temp.append(prime_implicants[i] ) while True: SCREAMING_SNAKE_CASE_ : List[str] = 0 SCREAMING_SNAKE_CASE_ : Any = -1 SCREAMING_SNAKE_CASE_ : List[Any] = 0 for i in range(len(A__ ) ): SCREAMING_SNAKE_CASE_ : Any = chart[i].count(1 ) if count_n > max_n: SCREAMING_SNAKE_CASE_ : Union[str, Any] = count_n SCREAMING_SNAKE_CASE_ : Any = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(A__ ) ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : int = [[0 for x in range(len(A__ ) )] for x in range(len(A__ ) )] for i in range(len(A__ ) ): SCREAMING_SNAKE_CASE_ : Tuple = prime_implicants[i].count('_' ) for j in range(len(A__ ) ): if is_for_table(prime_implicants[i], binary[j], A__ ): SCREAMING_SNAKE_CASE_ : int = 1 return chart def a__ ( ): SCREAMING_SNAKE_CASE_ : int = int(input('Enter the no. of variables\n' ) ) SCREAMING_SNAKE_CASE_ : int = [ float(A__ ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] SCREAMING_SNAKE_CASE_ : List[str] = decimal_to_binary(A__, A__ ) SCREAMING_SNAKE_CASE_ : str = check(A__ ) print('Prime Implicants are:' ) print(A__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = prime_implicant_chart(A__, A__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = selection(A__, A__ ) print('Essential Prime Implicants are:' ) print(A__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
101
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Tuple =logging.get_logger(__name__) lowerCAmelCase__ : Optional[int] ={ 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """git_vision_model""" def __init__( self , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3 , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=1_6 , lowerCAmelCase__="quick_gelu" , lowerCAmelCase__=1E-5 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , **lowerCAmelCase__ , ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE_ : Any = num_hidden_layers SCREAMING_SNAKE_CASE_ : Dict = num_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : Tuple = patch_size SCREAMING_SNAKE_CASE_ : Any = image_size SCREAMING_SNAKE_CASE_ : Dict = initializer_range SCREAMING_SNAKE_CASE_ : List[str] = attention_dropout SCREAMING_SNAKE_CASE_ : Any = layer_norm_eps SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_act @classmethod def UpperCamelCase__ ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": SCREAMING_SNAKE_CASE_ : Union[str, Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """git""" def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=3_0_5_2_2 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=6 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=1_0_1 , lowerCAmelCase__=1_0_2 , lowerCAmelCase__=None , **lowerCAmelCase__ , ): """simple docstring""" super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) if vision_config is None: SCREAMING_SNAKE_CASE_ : Dict = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) SCREAMING_SNAKE_CASE_ : str = GitVisionConfig(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Any = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : int = layer_norm_eps SCREAMING_SNAKE_CASE_ : List[str] = position_embedding_type SCREAMING_SNAKE_CASE_ : List[str] = use_cache SCREAMING_SNAKE_CASE_ : Any = tie_word_embeddings SCREAMING_SNAKE_CASE_ : Dict = num_image_with_embedding SCREAMING_SNAKE_CASE_ : List[str] = bos_token_id SCREAMING_SNAKE_CASE_ : str = eos_token_id def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ : str = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ : Optional[int] = self.__class__.model_type return output
101
1
"""simple docstring""" def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if number > 0: raise ValueError("input must be a negative integer" ) __snake_case = len(bin(SCREAMING_SNAKE_CASE )[3:] ) __snake_case = bin(abs(SCREAMING_SNAKE_CASE ) - (1 << binary_number_length) )[3:] __snake_case = ( ( "1" + "0" * (binary_number_length - len(SCREAMING_SNAKE_CASE )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
614
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __magic_name__ ( lowercase__ ): _SCREAMING_SNAKE_CASE : Any = 'data2vec-audio' def __init__( self : Any , snake_case_ : Optional[Any]=32 , snake_case_ : Tuple=768 , snake_case_ : Optional[int]=12 , snake_case_ : str=12 , snake_case_ : int=3072 , snake_case_ : Tuple="gelu" , snake_case_ : Optional[Any]=0.1 , snake_case_ : str=0.1 , snake_case_ : int=0.1 , snake_case_ : int=0.0 , snake_case_ : Optional[int]=0.1 , snake_case_ : Dict=0.1 , snake_case_ : Dict=0.02 , snake_case_ : Optional[int]=1e-5 , snake_case_ : Optional[Any]="gelu" , snake_case_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , snake_case_ : int=(5, 2, 2, 2, 2, 2, 2) , snake_case_ : Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) , snake_case_ : Optional[int]=False , snake_case_ : int=16 , snake_case_ : List[Any]=19 , snake_case_ : str=5 , snake_case_ : List[Any]=0.05 , snake_case_ : Dict=10 , snake_case_ : Dict=2 , snake_case_ : Dict=0.0 , snake_case_ : Union[str, Any]=10 , snake_case_ : Optional[Any]=0 , snake_case_ : Optional[Any]="sum" , snake_case_ : List[str]=False , snake_case_ : List[Any]=False , snake_case_ : Optional[int]=256 , snake_case_ : int=(512, 512, 512, 512, 1500) , snake_case_ : List[Any]=(5, 3, 3, 1, 1) , snake_case_ : Any=(1, 2, 3, 1, 1) , snake_case_ : List[Any]=512 , snake_case_ : Optional[int]=0 , snake_case_ : Dict=1 , snake_case_ : List[str]=2 , snake_case_ : Optional[Any]=False , snake_case_ : Optional[Any]=3 , snake_case_ : Tuple=2 , snake_case_ : Any=3 , snake_case_ : Union[str, Any]=None , **snake_case_ : int , ): super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) __snake_case = hidden_size __snake_case = feat_extract_activation __snake_case = list(snake_case_ ) __snake_case = list(snake_case_ ) __snake_case = list(snake_case_ ) __snake_case = conv_bias __snake_case = num_conv_pos_embeddings __snake_case = num_conv_pos_embedding_groups __snake_case = conv_pos_kernel_size __snake_case = len(self.conv_dim ) __snake_case = num_hidden_layers __snake_case = intermediate_size __snake_case = hidden_act __snake_case = num_attention_heads __snake_case = hidden_dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = feat_proj_dropout __snake_case = final_dropout __snake_case = layerdrop __snake_case = layer_norm_eps __snake_case = initializer_range __snake_case = vocab_size __snake_case = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case = mask_time_prob __snake_case = mask_time_length __snake_case = mask_time_min_masks __snake_case = mask_feature_prob __snake_case = mask_feature_length __snake_case = mask_feature_min_masks # ctc loss __snake_case = ctc_loss_reduction __snake_case = ctc_zero_infinity # adapter __snake_case = add_adapter __snake_case = adapter_kernel_size __snake_case = adapter_stride __snake_case = num_adapter_layers __snake_case = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __snake_case = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __snake_case = list(snake_case_ ) __snake_case = list(snake_case_ ) __snake_case = list(snake_case_ ) __snake_case = xvector_output_dim @property def lowerCAmelCase ( self : List[str] ): return math.prod(self.conv_stride )
614
1
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase( pl.LightningModule ): """simple docstring""" def __init__( self , _lowerCamelCase ): super().__init__() UpperCamelCase_: Optional[Any] = model UpperCamelCase_: Any = 2 UpperCamelCase_: Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _a ( self ): pass def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Tuple: # load longformer model from model identifier UpperCamelCase_: List[str] = LongformerModel.from_pretrained(UpperCAmelCase__ ) UpperCamelCase_: Dict = LightningModel(UpperCAmelCase__ ) UpperCamelCase_: int = torch.load(UpperCAmelCase__ , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model UpperCamelCase_: Optional[Any] = LongformerForQuestionAnswering.from_pretrained(UpperCAmelCase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCAmelCase__ ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A_ : Dict = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
57
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : int ) -> int: """simple docstring""" assert ( isinstance(UpperCAmelCase_, UpperCAmelCase_ ) and number_of_steps > 0 ), F"""number_of_steps needs to be positive integer, your input {number_of_steps}""" if number_of_steps == 1: return 1 A__ , A__ = 1, 1 for _ in range(number_of_steps - 1 ): A__ , A__ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
104
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : int = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : List[str] = """data2vec-vision""" def __init__( self : Optional[Any] , __lowerCamelCase : List[str]=768 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : List[str]=12 , __lowerCamelCase : Any=3_072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : List[str]=0.0 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : int=1E-12 , __lowerCamelCase : Tuple=224 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[str]=[3, 5, 7, 11] , __lowerCamelCase : List[str]=[1, 2, 3, 6] , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : int=0.4 , __lowerCamelCase : Any=256 , __lowerCamelCase : Dict=1 , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Dict=255 , **__lowerCamelCase : Tuple , ): super().__init__(**__lowerCamelCase ) UpperCamelCase :Optional[int] = hidden_size UpperCamelCase :Union[str, Any] = num_hidden_layers UpperCamelCase :int = num_attention_heads UpperCamelCase :Any = intermediate_size UpperCamelCase :Union[str, Any] = hidden_act UpperCamelCase :Optional[int] = hidden_dropout_prob UpperCamelCase :Tuple = attention_probs_dropout_prob UpperCamelCase :List[str] = initializer_range UpperCamelCase :str = layer_norm_eps UpperCamelCase :List[Any] = image_size UpperCamelCase :str = patch_size UpperCamelCase :Optional[Any] = num_channels UpperCamelCase :List[str] = use_mask_token UpperCamelCase :str = use_absolute_position_embeddings UpperCamelCase :str = use_relative_position_bias UpperCamelCase :List[str] = use_shared_relative_position_bias UpperCamelCase :Union[str, Any] = layer_scale_init_value UpperCamelCase :Union[str, Any] = drop_path_rate UpperCamelCase :Optional[int] = use_mean_pooling # decode head attributes (semantic segmentation) UpperCamelCase :Tuple = out_indices UpperCamelCase :Dict = pool_scales # auxiliary head attributes (semantic segmentation) UpperCamelCase :str = use_auxiliary_head UpperCamelCase :Optional[Any] = auxiliary_loss_weight UpperCamelCase :Union[str, Any] = auxiliary_channels UpperCamelCase :Dict = auxiliary_num_convs UpperCamelCase :Dict = auxiliary_concat_input UpperCamelCase :Dict = semantic_loss_ignore_index class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Any = version.parse("""1.11""" ) @property def _A ( self : List[Any] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _A ( self : Optional[int] ): return 1E-4
590
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Any = """trocr""" snake_case__ : str = ["""past_key_values"""] snake_case__ : str = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self : List[str] , __lowerCamelCase : int=50_265 , __lowerCamelCase : Tuple=1_024 , __lowerCamelCase : Dict=12 , __lowerCamelCase : Tuple=16 , __lowerCamelCase : int=4_096 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : Any=0.0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : str=0.0 , __lowerCamelCase : Any=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : int=True , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : List[str]=0 , __lowerCamelCase : int=2 , **__lowerCamelCase : Dict , ): UpperCamelCase :Optional[Any] = vocab_size UpperCamelCase :str = d_model UpperCamelCase :Dict = decoder_layers UpperCamelCase :Tuple = decoder_attention_heads UpperCamelCase :Tuple = decoder_ffn_dim UpperCamelCase :List[Any] = activation_function UpperCamelCase :Dict = max_position_embeddings UpperCamelCase :Optional[Any] = dropout UpperCamelCase :List[str] = attention_dropout UpperCamelCase :int = activation_dropout UpperCamelCase :List[str] = init_std UpperCamelCase :int = decoder_layerdrop UpperCamelCase :List[Any] = use_cache UpperCamelCase :Optional[Any] = scale_embedding UpperCamelCase :Any = use_learned_position_embeddings UpperCamelCase :Tuple = layernorm_embedding super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
590
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowercase__ : List[Any] = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = ['''BeitFeatureExtractor'''] lowercase__ : Dict = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[Any] = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowercase__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
123
0
def UpperCamelCase__ ( lowerCAmelCase__ = 100 ): lowercase = 0 lowercase = 0 for i in range(1 ,n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
72
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 __SCREAMING_SNAKE_CASE : Tuple =get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') __SCREAMING_SNAKE_CASE : Union[str, Any] =get_tests_dir('''fixtures/vocab.json''') __SCREAMING_SNAKE_CASE : Union[str, Any] =get_tests_dir('''fixtures''') class A_ ( unittest.TestCase ): _A :List[str] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = 0 def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaConfig() lowercase = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) copyfile(snake_case__ , os.path.join(snake_case__ , """vocab.json""" ) ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : int ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaFeatureExtractor() lowercase = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase = WavaVecaProcessor(snake_case__ , snake_case__ ) # save in new folder processor.save_pretrained(snake_case__ ) # drop `processor_class` in tokenizer with open(os.path.join(snake_case__ , snake_case__ ) , """r""" ) as f: lowercase = json.load(snake_case__ ) config_dict.pop("""processor_class""" ) with open(os.path.join(snake_case__ , snake_case__ ) , """w""" ) as f: f.write(json.dumps(snake_case__ ) ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaFeatureExtractor() lowercase = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase = WavaVecaProcessor(snake_case__ , snake_case__ ) # save in new folder processor.save_pretrained(snake_case__ ) # drop `processor_class` in feature extractor with open(os.path.join(snake_case__ , snake_case__ ) , """r""" ) as f: lowercase = json.load(snake_case__ ) config_dict.pop("""processor_class""" ) with open(os.path.join(snake_case__ , snake_case__ ) , """w""" ) as f: f.write(json.dumps(snake_case__ ) ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : str ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(snake_case__ ) # copy relevant files copyfile(snake_case__ , os.path.join(snake_case__ , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(snake_case__ , snake_case__ ) , """w""" ) as f: f.write("""{}""" ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case__ ): lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ ) lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) lowercase = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) lowercase = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ , use_fast=snake_case__ ) lowercase = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): try: AutoConfig.register("""custom""" , snake_case__ ) AutoFeatureExtractor.register(snake_case__ , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) AutoProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoProcessor.register(snake_case__ , snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase = CustomFeatureExtractor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase = os.path.join(snake_case__ , """vocab.txt""" ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase = CustomTokenizer(snake_case__ ) lowercase = CustomProcessor(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(snake_case__ ) lowercase = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): class A_ ( __a ): _A :List[str] = False class A_ ( __a ): _A :Dict = False class A_ ( __a ): _A :Union[str, Any] = '''AutoFeatureExtractor''' _A :Tuple = '''AutoTokenizer''' _A :Optional[Any] = False try: AutoConfig.register("""custom""" , snake_case__ ) AutoFeatureExtractor.register(snake_case__ , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) AutoProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local classes. lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=snake_case__ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class A_ ( unittest.TestCase ): _A :Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] ): lowercase = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] ): try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowercase = WavaVecaProcessor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case__ , """test-processor""" ) , push_to_hub=snake_case__ , use_auth_token=self._token ) lowercase = WavaVecaProcessor.from_pretrained(F"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case__ , getattr(new_processor.feature_extractor , snake_case__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = WavaVecaProcessor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case__ , """test-processor-org""" ) , push_to_hub=snake_case__ , use_auth_token=self._token , organization="""valid_org""" , ) lowercase = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case__ , getattr(new_processor.feature_extractor , snake_case__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowercase = CustomFeatureExtractor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase = os.path.join(snake_case__ , """vocab.txt""" ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase = CustomTokenizer(snake_case__ ) lowercase = CustomProcessor(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"""{USER}/test-dynamic-processor""" , token=self._token ) lowercase = Repository(snake_case__ , clone_from=F"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(snake_case__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(snake_case__ , """tokenizer_config.json""" ) ) as f: lowercase = json.load(snake_case__ ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(snake_case__ , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case__ , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case__ , """custom_processing.py""" ) ) ) repo.push_to_hub() lowercase = AutoProcessor.from_pretrained(F"""{USER}/test-dynamic-processor""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
72
1
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Union[dict, list, tuple, torch.Tensor] ): """simple docstring""" a_ : Union[str, Any] = [] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for v in tree.values(): shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple[int, ...] ): """simple docstring""" a_ : List[str] = [] for d in reversed(SCREAMING_SNAKE_CASE_ ): idx.append(flat_idx % d ) a_ : Any = flat_idx // d return tuple(reversed(SCREAMING_SNAKE_CASE_ ) ) @torch.jit.ignore def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Sequence[int] , SCREAMING_SNAKE_CASE_ : Sequence[int] , SCREAMING_SNAKE_CASE_ : Sequence[int] , SCREAMING_SNAKE_CASE_ : Optional[Sequence[bool]] = None , SCREAMING_SNAKE_CASE_ : Optional[Sequence[bool]] = None , ): """simple docstring""" def reduce_edge_list(SCREAMING_SNAKE_CASE_ : List[bool] ) -> None: a_ : List[Any] = True for i in range(len(SCREAMING_SNAKE_CASE_ ) ): a_ : Tuple = -1 * (i + 1) l[reversed_idx] &= tally a_ : List[Any] = l[reversed_idx] if start_edges is None: a_ : Optional[Any] = [s == 0 for s in start] reduce_edge_list(SCREAMING_SNAKE_CASE_ ) if end_edges is None: a_ : List[str] = [e == (d - 1) for e, d in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] reduce_edge_list(SCREAMING_SNAKE_CASE_ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(SCREAMING_SNAKE_CASE_ ) == 0: return [()] elif len(SCREAMING_SNAKE_CASE_ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] a_ : List[Tuple[slice, ...]] = [] a_ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if s == e: path_list.append(slice(SCREAMING_SNAKE_CASE_ , s + 1 ) ) else: break a_ : Tuple[slice, ...] = tuple(SCREAMING_SNAKE_CASE_ ) a_ : str = len(SCREAMING_SNAKE_CASE_ ) # start == end, and we're done if divergence_idx == len(SCREAMING_SNAKE_CASE_ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None a_ : List[str] = start[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE_ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None a_ : str = end[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE_ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) a_ : Union[str, Any] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : torch.Tensor , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" a_ : Dict = t.shape[:no_batch_dims] a_ : Optional[int] = list(_flat_idx_to_idx(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # _get_minimal_slice_set is inclusive a_ : int = list(_flat_idx_to_idx(flat_end - 1 , SCREAMING_SNAKE_CASE_ ) ) # Get an ordered list of slices to perform a_ : Optional[Any] = _get_minimal_slice_set( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) a_ : List[str] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Callable , SCREAMING_SNAKE_CASE_ : Dict[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Any = None , SCREAMING_SNAKE_CASE_ : bool = False , ): """simple docstring""" if not (len(SCREAMING_SNAKE_CASE_ ) > 0): raise ValueError("""Must provide at least one input""" ) a_ : int = [shape[:no_batch_dims] for shape in _fetch_dims(SCREAMING_SNAKE_CASE_ )] a_ : str = tuple([max(SCREAMING_SNAKE_CASE_ ) for s in zip(*SCREAMING_SNAKE_CASE_ )] ) def _prep_inputs(SCREAMING_SNAKE_CASE_ : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: a_ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) a_ : Tuple = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: a_ : List[str] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t a_ : Dict[str, Any] = tensor_tree_map(_prep_inputs , SCREAMING_SNAKE_CASE_ ) a_ : Dict = None if _out is not None: a_ : List[str] = tensor_tree_map(lambda SCREAMING_SNAKE_CASE_ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) a_ : Optional[int] = 1 for d in orig_batch_dims: flat_batch_dim *= d a_ : List[Any] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(SCREAMING_SNAKE_CASE_ : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t a_ : Union[str, Any] = 0 a_ : List[str] = prepped_outputs for _ in range(SCREAMING_SNAKE_CASE_ ): # Chunk the input if not low_mem: a_ : Tuple = _select_chunk else: a_ : Tuple = partial( _chunk_slice , flat_start=SCREAMING_SNAKE_CASE_ , flat_end=min(SCREAMING_SNAKE_CASE_ , i + chunk_size ) , no_batch_dims=len(SCREAMING_SNAKE_CASE_ ) , ) a_ : Dict[str, Any] = tensor_tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Run the layer on the chunk a_ : List[str] = layer(**SCREAMING_SNAKE_CASE_ ) # Allocate space for the output if out is None: a_ : int = tensor_tree_map(lambda SCREAMING_SNAKE_CASE_ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , SCREAMING_SNAKE_CASE_ ) # Put the chunk in its pre-allocated space if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): def assign(SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : dict ) -> None: for k, v in da.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assign(SCREAMING_SNAKE_CASE_ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: a_ : List[Any] = da[k] assign(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for xa, xa in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if _add_into_out: xa[i : i + chunk_size] += xa else: a_ : Tuple = xa elif isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: a_ : Union[str, Any] = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size a_ : List[Any] = tensor_tree_map(lambda SCREAMING_SNAKE_CASE_ : t.view(orig_batch_dims + t.shape[1:] ) , SCREAMING_SNAKE_CASE_ ) return out class snake_case__ : def __init__( self , UpperCamelCase_ = 512 , ) -> List[str]: """simple docstring""" a_ : Any = max_chunk_size a_ : Optional[int] = None a_ : Optional[tuple] = None def A ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: """simple docstring""" logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size a_ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] a_ : int = [c for c in candidates if c > min_chunk_size] a_ : Dict = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCamelCase_ ) -> bool: try: with torch.no_grad(): fn(*UpperCamelCase_ , chunk_size=UpperCamelCase_ ) return True except RuntimeError: return False a_ : int = 0 a_ : Any = len(UpperCamelCase_ ) - 1 while i > min_viable_chunk_size_index: a_ : int = test_chunk_size(candidates[i] ) if not viable: a_ : Any = (min_viable_chunk_size_index + i) // 2 else: a_ : Optional[Any] = i a_ : Optional[int] = (i + len(UpperCamelCase_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def A ( self , UpperCamelCase_ , UpperCamelCase_ ) -> bool: """simple docstring""" a_ : Optional[Any] = True for aa, aa in zip(UpperCamelCase_ , UpperCamelCase_ ): assert type(UpperCamelCase_ ) == type(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , (list, tuple) ): consistent &= self._compare_arg_caches(UpperCamelCase_ , UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): a_ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCamelCase_ : x[0] )] a_ : int = [v for _, v in sorted(aa.items() , key=lambda UpperCamelCase_ : x[0] )] consistent &= self._compare_arg_caches(UpperCamelCase_ , UpperCamelCase_ ) else: consistent &= aa == aa return consistent def A ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> int: """simple docstring""" a_ : Optional[int] = True a_ : tuple = tree_map(lambda UpperCamelCase_ : a.shape if isinstance(UpperCamelCase_ , torch.Tensor ) else a , UpperCamelCase_ , UpperCamelCase_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(UpperCamelCase_ ) a_ : str = self._compare_arg_caches(self.cached_arg_data , UpperCamelCase_ ) else: # Otherwise, we can reuse the precomputed value a_ : List[Any] = False if not consistent: a_ : Union[str, Any] = self._determine_favorable_chunk_size( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) a_ : List[str] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
419
from __future__ import annotations from cmath import sqrt def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) a_ : Any = b * b - 4 * a * c a_ : List[str] = (-b + sqrt(SCREAMING_SNAKE_CASE_ )) / (2 * a) a_ : Union[str, Any] = (-b - sqrt(SCREAMING_SNAKE_CASE_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _lowerCamelCase ( ): """simple docstring""" a_ , a_ : str = quadratic_roots(a=5 , b=6 , c=1 ) print(F"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
419
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : int = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __snake_case : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
615
"""simple docstring""" def _lowercase ( __snake_case = 3 ,__snake_case = 7 ,__snake_case = 1_000_000 ) -> int: __lowerCAmelCase : Optional[Any] = 0 __lowerCAmelCase : List[str] = 1 for current_denominator in range(1 ,limit + 1 ): __lowerCAmelCase : Optional[int] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __lowerCAmelCase : Union[str, Any] = current_numerator __lowerCAmelCase : int = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
615
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case_ : Tuple = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = ['LayoutLMv2FeatureExtractor'] snake_case_ : str = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys snake_case_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
195
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase__ ( unittest.TestCase ): def __init__( self : int ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any]=13 ,lowerCamelCase__ : List[Any]=3 ,lowerCamelCase__ : Optional[Any]=224 ,lowerCamelCase__ : int=30 ,lowerCamelCase__ : str=400 ,lowerCamelCase__ : str=True ,lowerCamelCase__ : Any=None ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : Tuple=[0.5, 0.5, 0.5] ,lowerCamelCase__ : Optional[int]=[0.5, 0.5, 0.5] ,): '''simple docstring''' _UpperCamelCase : Dict = size if size is not None else {'height': 18, 'width': 18} _UpperCamelCase : List[Any] = parent _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[str] = image_size _UpperCamelCase : Optional[Any] = min_resolution _UpperCamelCase : Dict = max_resolution _UpperCamelCase : Tuple = do_resize _UpperCamelCase : Optional[int] = size _UpperCamelCase : Tuple = do_normalize _UpperCamelCase : str = image_mean _UpperCamelCase : int = image_std def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = ViTImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Dict = EfficientFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ ,'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'image_std' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'size' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : int ): '''simple docstring''' # Initialize image_processor _UpperCamelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase : Optional[Any] = prepare_image_inputs(self.image_proc_tester ,equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,Image.Image ) # Test not batched input _UpperCamelCase : int = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) # Test batched _UpperCamelCase : int = image_processor(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' # Initialize image_processor _UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase : Optional[int] = prepare_image_inputs(self.image_proc_tester ,equal_resolution=lowerCamelCase__ ,numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,np.ndarray ) # Test not batched input _UpperCamelCase : Union[str, Any] = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) # Test batched _UpperCamelCase : Optional[Any] = image_processor(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' # Initialize image_processor _UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase : Any = prepare_image_inputs(self.image_proc_tester ,equal_resolution=lowerCamelCase__ ,torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,torch.Tensor ) # Test not batched input _UpperCamelCase : Dict = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) # Test batched _UpperCamelCase : Any = image_processor(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,)
195
1
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''nvidia/segformer-b0-finetuned-ade-512-512''': ( '''https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json''' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowercase( __a ): '''simple docstring''' lowercase__ = "segformer" def __init__( self: Union[str, Any], a_: List[Any]=3, a_: int=4, a_: int=[2, 2, 2, 2], a_: Union[str, Any]=[8, 4, 2, 1], a_: Optional[Any]=[32, 64, 160, 256], a_: Optional[Any]=[7, 3, 3, 3], a_: Optional[int]=[4, 2, 2, 2], a_: str=[1, 2, 5, 8], a_: List[str]=[4, 4, 4, 4], a_: Tuple="gelu", a_: List[str]=0.0, a_: Dict=0.0, a_: Dict=0.1, a_: Tuple=0.02, a_: List[str]=0.1, a_: List[Any]=1E-6, a_: Union[str, Any]=256, a_: Optional[int]=255, **a_: Tuple, ): '''simple docstring''' super().__init__(**a_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""", a_, ) _snake_case : Union[str, Any] = num_channels _snake_case : Tuple = num_encoder_blocks _snake_case : Dict = depths _snake_case : Dict = sr_ratios _snake_case : Tuple = hidden_sizes _snake_case : Dict = patch_sizes _snake_case : List[str] = strides _snake_case : Optional[int] = mlp_ratios _snake_case : List[Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Dict = hidden_dropout_prob _snake_case : int = attention_probs_dropout_prob _snake_case : Union[str, Any] = classifier_dropout_prob _snake_case : str = initializer_range _snake_case : Optional[int] = drop_path_rate _snake_case : Tuple = layer_norm_eps _snake_case : Tuple = decoder_hidden_size _snake_case : Optional[Any] = kwargs.get("""reshape_last_stage""", a_ ) _snake_case : Any = semantic_loss_ignore_index class lowercase( __a ): '''simple docstring''' lowercase__ = version.parse("1.11" ) @property def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' return 1E-4 @property def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' return 12
28
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''OwlViTFeatureExtractor'''] A_ = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
28
1
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def A_ ( snake_case , snake_case ): # ===== initialization ===== SCREAMING_SNAKE_CASE:Optional[Any] = Mock() SCREAMING_SNAKE_CASE:Optional[int] = conn, Mock() SCREAMING_SNAKE_CASE:List[Any] = iter([1, None] ) SCREAMING_SNAKE_CASE:Optional[int] = lambda snake_case : next(snake_case ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=snake_case ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
143
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def A_ ( snake_case ): SCREAMING_SNAKE_CASE:List[Any] = int(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[Any] = t // 3600, (t // 60) % 60, t % 60 return F'''{h}:{m:02d}:{s:02d}''' if h != 0 else F'''{m:02d}:{s:02d}''' def A_ ( snake_case , snake_case , snake_case , snake_case , snake_case=300 ): # docstyle-ignore return F''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Dict = "<table border=\"1\" class=\"dataframe\">\n" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: SCREAMING_SNAKE_CASE:str = F'''{elt:.6f}''' if isinstance(snake_case , snake_case ) else str(snake_case ) html_code += F''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _snake_case : _A : Any = 5 _A : Optional[Any] = 0.2 def __init__( self : Tuple ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Optional[str] = None ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional["NotebookTrainingTracker"] = None ,SCREAMING_SNAKE_CASE__ : int = 300 ,): SCREAMING_SNAKE_CASE:List[Any] = total SCREAMING_SNAKE_CASE:Dict = "" if prefix is None else prefix SCREAMING_SNAKE_CASE:Optional[int] = leave SCREAMING_SNAKE_CASE:Optional[Any] = parent SCREAMING_SNAKE_CASE:List[Any] = width SCREAMING_SNAKE_CASE:Optional[Any] = None SCREAMING_SNAKE_CASE:Optional[int] = None SCREAMING_SNAKE_CASE:int = None def __UpperCamelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : str = None ): SCREAMING_SNAKE_CASE:Any = value if comment is not None: SCREAMING_SNAKE_CASE:List[Any] = comment if self.last_value is None: SCREAMING_SNAKE_CASE:Any = time.time() SCREAMING_SNAKE_CASE:Any = value SCREAMING_SNAKE_CASE:Optional[Any] = None SCREAMING_SNAKE_CASE:Union[str, Any] = self.warmup SCREAMING_SNAKE_CASE:List[Any] = 1 self.update_bar(SCREAMING_SNAKE_CASE__ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for ,self.total ): if self.first_calls > 0: self.first_calls -= 1 SCREAMING_SNAKE_CASE:Any = time.time() SCREAMING_SNAKE_CASE:Union[str, Any] = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: SCREAMING_SNAKE_CASE:Optional[int] = self.elapsed_time / (value - self.start_value) else: SCREAMING_SNAKE_CASE:int = None if value >= self.total: SCREAMING_SNAKE_CASE:Any = self.total SCREAMING_SNAKE_CASE:List[Any] = None if not self.leave: self.close() elif self.average_time_per_item is not None: SCREAMING_SNAKE_CASE:List[Any] = self.average_time_per_item * (self.total - value) self.update_bar(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:int = value SCREAMING_SNAKE_CASE:str = current_time if self.average_time_per_item is None: SCREAMING_SNAKE_CASE:Optional[int] = 1 else: SCREAMING_SNAKE_CASE:int = max(int(self.update_every / self.average_time_per_item ) ,1 ) def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Optional[int]=None ): SCREAMING_SNAKE_CASE:Dict = " " * (len(str(self.total ) ) - len(str(SCREAMING_SNAKE_CASE__ ) )) + str(SCREAMING_SNAKE_CASE__ ) if self.elapsed_time is None: SCREAMING_SNAKE_CASE:Union[str, Any] = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: SCREAMING_SNAKE_CASE:List[Any] = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: SCREAMING_SNAKE_CASE:List[str] = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def __UpperCamelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE:Optional[Any] = html_progress_bar(self.value ,self.total ,self.prefix ,self.label ,self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: SCREAMING_SNAKE_CASE:Optional[Any] = disp.display(disp.HTML(self.html_code ) ,display_id=SCREAMING_SNAKE_CASE__ ) else: self.output.update(disp.HTML(self.html_code ) ) def __UpperCamelCase ( self : Optional[Any] ): if self.parent is None and self.output is not None: self.output.update(disp.HTML("" ) ) class _snake_case ( _a ): def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str=None ): super().__init__(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[int] = None if column_names is None else [column_names] SCREAMING_SNAKE_CASE:List[Any] = None def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:Optional[int] = html_progress_bar(self.value ,self.total ,self.prefix ,self.label ,self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: SCREAMING_SNAKE_CASE:Any = disp.display(disp.HTML(self.html_code ) ,display_id=SCREAMING_SNAKE_CASE__ ) else: self.output.update(disp.HTML(self.html_code ) ) def __UpperCamelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Any ): if self.inner_table is None: SCREAMING_SNAKE_CASE:int = [list(values.keys() ), list(values.values() )] else: SCREAMING_SNAKE_CASE:Dict = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[str] = columns self.inner_table.append([values[c] for c in columns] ) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[Any]=None ,SCREAMING_SNAKE_CASE__ : Dict=300 ): SCREAMING_SNAKE_CASE:Dict = NotebookProgressBar(SCREAMING_SNAKE_CASE__ ,prefix=SCREAMING_SNAKE_CASE__ ,parent=self ,width=SCREAMING_SNAKE_CASE__ ) return self.child_bar def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:int = None self.display() class _snake_case ( _a ): def __init__( self : str ): SCREAMING_SNAKE_CASE:Any = None SCREAMING_SNAKE_CASE:Any = None SCREAMING_SNAKE_CASE:Optional[Any] = False def __UpperCamelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Any ,**SCREAMING_SNAKE_CASE__ : Any ): SCREAMING_SNAKE_CASE:Any = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step" SCREAMING_SNAKE_CASE:Dict = 0 SCREAMING_SNAKE_CASE:Dict = 0 SCREAMING_SNAKE_CASE:List[Any] = [self.first_column] + ["Training Loss"] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("Validation Loss" ) SCREAMING_SNAKE_CASE:str = NotebookTrainingTracker(state.max_steps ,SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,**SCREAMING_SNAKE_CASE__ : int ): SCREAMING_SNAKE_CASE:Dict = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 ,comment=F'''Epoch {epoch}/{state.num_train_epochs}''' ,force_update=self._force_next_update ,) SCREAMING_SNAKE_CASE:List[str] = False def __UpperCamelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Any=None ,**SCREAMING_SNAKE_CASE__ : str ): if not has_length(SCREAMING_SNAKE_CASE__ ): return if self.prediction_bar is None: if self.training_tracker is not None: SCREAMING_SNAKE_CASE:List[Any] = self.training_tracker.add_child(len(SCREAMING_SNAKE_CASE__ ) ) else: SCREAMING_SNAKE_CASE:Dict = NotebookProgressBar(len(SCREAMING_SNAKE_CASE__ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : Dict ,**SCREAMING_SNAKE_CASE__ : Tuple ): if self.prediction_bar is not None: self.prediction_bar.close() SCREAMING_SNAKE_CASE:Union[str, Any] = None def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Any=None ,**SCREAMING_SNAKE_CASE__ : List[Any] ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: SCREAMING_SNAKE_CASE:Tuple = {"Training Loss": logs["loss"]} # First column is necessarily Step sine we're not in epoch eval strategy SCREAMING_SNAKE_CASE:Dict = state.global_step self.training_tracker.write_line(SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,**SCREAMING_SNAKE_CASE__ : int ): if self.training_tracker is not None: SCREAMING_SNAKE_CASE:Union[str, Any] = {"Training Loss": "No log", "Validation Loss": "No log"} for log in reversed(state.log_history ): if "loss" in log: SCREAMING_SNAKE_CASE:Optional[Any] = log["loss"] break if self.first_column == "Epoch": SCREAMING_SNAKE_CASE:List[str] = int(state.epoch ) else: SCREAMING_SNAKE_CASE:List[str] = state.global_step SCREAMING_SNAKE_CASE:Any = "eval" for k in metrics: if k.endswith("_loss" ): SCREAMING_SNAKE_CASE:Dict = re.sub(R"\_loss$" ,"" ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Tuple = metrics.pop("total_flos" ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = metrics.pop("epoch" ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:int = metrics.pop(F'''{metric_key_prefix}_runtime''' ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' ,SCREAMING_SNAKE_CASE__ ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': SCREAMING_SNAKE_CASE:Dict = v else: SCREAMING_SNAKE_CASE:str = k.split("_" ) SCREAMING_SNAKE_CASE:Any = " ".join([part.capitalize() for part in splits[1:]] ) SCREAMING_SNAKE_CASE:Tuple = v self.training_tracker.write_line(SCREAMING_SNAKE_CASE__ ) self.training_tracker.remove_child() SCREAMING_SNAKE_CASE:Optional[int] = None # Evaluation takes a long time so we should force the next update. SCREAMING_SNAKE_CASE:Tuple = True def __UpperCamelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : str ,**SCREAMING_SNAKE_CASE__ : Dict ): self.training_tracker.update( state.global_step ,comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' ,force_update=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:str = None
143
1
__lowerCamelCase : Union[str, Any] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __lowerCamelCase : Dict = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __lowerCamelCase : Union[str, Any] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
719
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase ( _lowerCamelCase ,unittest.TestCase ): '''simple docstring''' UpperCamelCase__ =BlenderbotSmallTokenizer UpperCamelCase__ =False def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: super().setUp() __magic_name__ : Union[str, Any] = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] __magic_name__ : Tuple = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) __magic_name__ : Tuple = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] __magic_name__ : List[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} __magic_name__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __magic_name__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase_ ) ) def UpperCAmelCase__ ( self : List[str] , **lowerCamelCase_ : Optional[Any] ) -> List[Any]: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def UpperCAmelCase__ ( self : Dict , lowerCamelCase_ : Union[str, Any] ) -> Optional[int]: __magic_name__ : Union[str, Any] = '''adapt act apte''' __magic_name__ : Dict = '''adapt act apte''' return input_text, output_text def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: __magic_name__ : int = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __magic_name__ : str = '''adapt act apte''' __magic_name__ : Any = ['''adapt''', '''act''', '''ap@@''', '''te'''] __magic_name__ : List[str] = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) __magic_name__ : Union[str, Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __magic_name__ : List[Any] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , lowerCamelCase_ ) def UpperCAmelCase__ ( self : int ) -> int: __magic_name__ : Any = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1384] __magic_name__ : Dict = '''I am a small frog.''' __magic_name__ : Tuple = tok([src_text] , padding=lowerCamelCase_ , truncation=lowerCamelCase_ )['''input_ids'''] __magic_name__ : Tuple = tok.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def UpperCAmelCase__ ( self : Tuple ) -> Dict: __magic_name__ : Tuple = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) __magic_name__ : Any = '''I am a small frog .''' __magic_name__ : List[str] = '''.''' __magic_name__ : Tuple = tok(lowerCamelCase_ )['''input_ids'''] __magic_name__ : Optional[Any] = tok(lowerCamelCase_ )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
501
0
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE_ = { """vocab_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json""" }, """merges_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt""" }, } SCREAMING_SNAKE_CASE_ = {"""allegro/herbert-base-cased""": 5_14} SCREAMING_SNAKE_CASE_ = {} class a ( UpperCAmelCase__ ): """simple docstring""" __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = HerbertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_="</s>" , **snake_case_ , ): '''simple docstring''' super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , **lowerCamelCase__ , ) def lowercase_ ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = [self.cls_token_id] __UpperCAmelCase: Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase_ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] def lowercase_ ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' __UpperCAmelCase: Dict = [self.sep_token_id] __UpperCAmelCase: List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' __UpperCAmelCase: Optional[int] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
523
def snake_case__ ( lowercase ): lowerCAmelCase_: Union[str, Any] = [1] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_: int = 0, 0, 0 lowerCAmelCase_: Union[str, Any] = ugly_nums[ia] * 2 lowerCAmelCase_: str = ugly_nums[ia] * 3 lowerCAmelCase_: Dict = ugly_nums[ia] * 5 for _ in range(1 , lowercase ): lowerCAmelCase_: Any = min(lowercase , lowercase , lowercase ) ugly_nums.append(lowercase ) if next_num == next_a: ia += 1 lowerCAmelCase_: str = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowerCAmelCase_: Optional[int] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowerCAmelCase_: int = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
613
0
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ ( __lowercase ): '''simple docstring''' def __init__( self, A_, A_=13, A_=7, A_=True, A_=True, A_=True, A_=True, A_=True, A_=False, A_=False, A_=False, A_=2, A_=99, A_=0, A_=32, A_=5, A_=4, A_=0.1, A_=0.1, A_=512, A_=12, A_=2, A_=0.02, A_=3, A_=4, A_="last", A_=None, A_=None, ) -> List[str]: UpperCAmelCase__ =parent UpperCAmelCase__ =batch_size UpperCAmelCase__ =seq_length UpperCAmelCase__ =is_training UpperCAmelCase__ =use_input_lengths UpperCAmelCase__ =use_token_type_ids UpperCAmelCase__ =use_labels UpperCAmelCase__ =gelu_activation UpperCAmelCase__ =sinusoidal_embeddings UpperCAmelCase__ =causal UpperCAmelCase__ =asm UpperCAmelCase__ =n_langs UpperCAmelCase__ =vocab_size UpperCAmelCase__ =n_special UpperCAmelCase__ =hidden_size UpperCAmelCase__ =num_hidden_layers UpperCAmelCase__ =num_attention_heads UpperCAmelCase__ =hidden_dropout_prob UpperCAmelCase__ =attention_probs_dropout_prob UpperCAmelCase__ =max_position_embeddings UpperCAmelCase__ =type_vocab_size UpperCAmelCase__ =type_sequence_label_size UpperCAmelCase__ =initializer_range UpperCAmelCase__ =num_labels UpperCAmelCase__ =num_choices UpperCAmelCase__ =summary_type UpperCAmelCase__ =use_proj UpperCAmelCase__ =scope def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase__ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase__ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ =None if self.use_input_lengths: UpperCAmelCase__ =( ids_tensor([self.batch_size], vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase__ =None if self.use_token_type_ids: UpperCAmelCase__ =ids_tensor([self.batch_size, self.seq_length], self.n_langs ) UpperCAmelCase__ =None UpperCAmelCase__ =None UpperCAmelCase__ =None if self.use_labels: UpperCAmelCase__ =ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase__ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCAmelCase__ =ids_tensor([self.batch_size], 2 ).float() UpperCAmelCase__ =ids_tensor([self.batch_size], self.num_choices ) UpperCAmelCase__ =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __UpperCAmelCase ( self ) -> Optional[int]: return FlaubertConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_, A_, A_, A_, ) -> Optional[Any]: UpperCAmelCase__ =FlaubertModel(config=A_ ) model.to(A_ ) model.eval() UpperCAmelCase__ =model(A_, lengths=A_, langs=A_ ) UpperCAmelCase__ =model(A_, langs=A_ ) UpperCAmelCase__ =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_, A_, A_, A_, ) -> Optional[int]: UpperCAmelCase__ =FlaubertWithLMHeadModel(A_ ) model.to(A_ ) model.eval() UpperCAmelCase__ =model(A_, token_type_ids=A_, labels=A_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_, A_, A_, A_, ) -> Optional[int]: UpperCAmelCase__ =FlaubertForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() UpperCAmelCase__ =model(A_ ) UpperCAmelCase__ =model(A_, start_positions=A_, end_positions=A_ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_, A_, A_, A_, ) -> Optional[int]: UpperCAmelCase__ =FlaubertForQuestionAnswering(A_ ) model.to(A_ ) model.eval() UpperCAmelCase__ =model(A_ ) UpperCAmelCase__ =model( A_, start_positions=A_, end_positions=A_, cls_index=A_, is_impossible=A_, p_mask=A_, ) UpperCAmelCase__ =model( A_, start_positions=A_, end_positions=A_, cls_index=A_, is_impossible=A_, ) (UpperCAmelCase__ ) =result_with_labels.to_tuple() UpperCAmelCase__ =model(A_, start_positions=A_, end_positions=A_ ) (UpperCAmelCase__ ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, () ) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,) ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_, A_, A_, A_, ) -> int: UpperCAmelCase__ =FlaubertForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCAmelCase__ =model(A_ ) UpperCAmelCase__ =model(A_, labels=A_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_, A_, A_, A_, ) -> Dict: UpperCAmelCase__ =self.num_labels UpperCAmelCase__ =FlaubertForTokenClassification(A_ ) model.to(A_ ) model.eval() UpperCAmelCase__ =model(A_, attention_mask=A_, labels=A_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_, A_, A_, A_, A_, ) -> List[Any]: UpperCAmelCase__ =self.num_choices UpperCAmelCase__ =FlaubertForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() UpperCAmelCase__ =input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase__ =token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase__ =input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase__ =model( A_, attention_mask=A_, token_type_ids=A_, labels=A_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase__ =self.prepare_config_and_inputs() ( UpperCAmelCase__ ) =config_and_inputs UpperCAmelCase__ ={ "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class snake_case_ ( __lowercase, __lowercase, unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __UpperCamelCase = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def __UpperCAmelCase ( self, A_, A_, A_, A_, A_ ) -> int: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __UpperCAmelCase ( self, A_, A_, A_=False ) -> Optional[Any]: UpperCAmelCase__ =super()._prepare_for_class(A_, A_, return_labels=A_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": UpperCAmelCase__ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=A_ ) UpperCAmelCase__ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=A_ ) return inputs_dict def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase__ =FlaubertModelTester(self ) UpperCAmelCase__ =ConfigTester(self, config_class=A_, emb_dim=37 ) def __UpperCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*A_ ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*A_ ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*A_ ) @slow def __UpperCAmelCase ( self ) -> List[Any]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ =FlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @slow @require_torch_gpu def __UpperCAmelCase ( self ) -> str: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return UpperCAmelCase__ =True UpperCAmelCase__ =model_class(config=A_ ) UpperCAmelCase__ =self._prepare_for_class(A_, A_ ) UpperCAmelCase__ =torch.jit.trace( A_, (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(A_, os.path.join(A_, "traced_model.pt" ) ) UpperCAmelCase__ =torch.jit.load(os.path.join(A_, "traced_model.pt" ), map_location=A_ ) loaded(inputs_dict["input_ids"].to(A_ ), inputs_dict["attention_mask"].to(A_ ) ) @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase__ =FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) UpperCAmelCase__ =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): UpperCAmelCase__ =model(A_ )[0] UpperCAmelCase__ =torch.Size((1, 11, 768) ) self.assertEqual(output.shape, A_ ) UpperCAmelCase__ =torch.tensor( [[[-2.62_51, -1.42_98, -0.02_27], [-2.85_10, -1.63_87, 0.22_58], [-2.81_14, -1.18_32, -0.30_66]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], A_, atol=1E-4 ) )
706
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 'glpn' def __init__( self, A_=3, A_=4, A_=[2, 2, 2, 2], A_=[8, 4, 2, 1], A_=[32, 64, 160, 256], A_=[7, 3, 3, 3], A_=[4, 2, 2, 2], A_=[1, 2, 5, 8], A_=[4, 4, 4, 4], A_="gelu", A_=0.0, A_=0.0, A_=0.02, A_=0.1, A_=1E-6, A_=64, A_=10, A_=-1, **A_, ) -> Tuple: super().__init__(**A_ ) UpperCAmelCase__ =num_channels UpperCAmelCase__ =num_encoder_blocks UpperCAmelCase__ =depths UpperCAmelCase__ =sr_ratios UpperCAmelCase__ =hidden_sizes UpperCAmelCase__ =patch_sizes UpperCAmelCase__ =strides UpperCAmelCase__ =mlp_ratios UpperCAmelCase__ =num_attention_heads UpperCAmelCase__ =hidden_act UpperCAmelCase__ =hidden_dropout_prob UpperCAmelCase__ =attention_probs_dropout_prob UpperCAmelCase__ =initializer_range UpperCAmelCase__ =drop_path_rate UpperCAmelCase__ =layer_norm_eps UpperCAmelCase__ =decoder_hidden_size UpperCAmelCase__ =max_depth UpperCAmelCase__ =head_in_index
510
0
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES __UpperCAmelCase = '''tiny-wmt19-en-ru''' # Build # borrowed from a test __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __UpperCAmelCase = dict(zip(vocab, range(len(vocab)))) __UpperCAmelCase = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase = Path(tmpdirname) __UpperCAmelCase = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] __UpperCAmelCase = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] __UpperCAmelCase = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) __UpperCAmelCase = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) __UpperCAmelCase = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) __UpperCAmelCase = FSMTForConditionalGeneration(config) print(f"""num of params {tiny_model.num_parameters()}""") # Test __UpperCAmelCase = tokenizer(['''Making tiny model'''], return_tensors='''pt''') __UpperCAmelCase = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-ru
90
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __UpperCAmelCase ( pl.LightningModule ): def __init__( self , lowerCAmelCase_ ): """simple docstring""" super().__init__() _snake_case = model _snake_case = 2 _snake_case = nn.Linear(self.model.config.hidden_size , self.num_labels ) def lowerCamelCase ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> List[str]: # load longformer model from model identifier _snake_case = LongformerModel.from_pretrained(__A ) _snake_case = LightningModel(__A ) _snake_case = torch.load(__A , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model _snake_case = LongformerForQuestionAnswering.from_pretrained(__A ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__A ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase : List[str] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
495
0
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowerCAmelCase__ : def __init__( self , a = None ) -> None: '''simple docstring''' if components is None: _UpperCamelCase = [] _UpperCamelCase = list(a ) def __len__( self ) -> int: '''simple docstring''' return len(self.__components ) def __str__( self ) -> str: '''simple docstring''' return "(" + ",".join(map(a , self.__components ) ) + ")" def __add__( self , a ) -> Vector: '''simple docstring''' _UpperCamelCase = len(self ) if size == len(a ): _UpperCamelCase = [self.__components[i] + other.component(a ) for i in range(a )] return Vector(a ) else: raise Exception("""must have the same size""" ) def __sub__( self , a ) -> Vector: '''simple docstring''' _UpperCamelCase = len(self ) if size == len(a ): _UpperCamelCase = [self.__components[i] - other.component(a ) for i in range(a )] return Vector(a ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , a ) -> Vector: '''simple docstring''' ... @overload def __mul__( self , a ) -> float: '''simple docstring''' ... def __mul__( self , a ) -> float | Vector: '''simple docstring''' if isinstance(a , (float, int) ): _UpperCamelCase = [c * other for c in self.__components] return Vector(a ) elif isinstance(a , a ) and len(self ) == len(a ): _UpperCamelCase = len(self ) _UpperCamelCase = [self.__components[i] * other.component(a ) for i in range(a )] return sum(a ) else: # error case raise Exception("""invalid operand!""" ) def A_ ( self ) -> Vector: '''simple docstring''' return Vector(self.__components ) def A_ ( self , a ) -> float: '''simple docstring''' if isinstance(a , a ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def A_ ( self , a , a ) -> None: '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) _UpperCamelCase = value def A_ ( self ) -> float: '''simple docstring''' if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) _UpperCamelCase = [c**2 for c in self.__components] return math.sqrt(sum(a ) ) def A_ ( self , a , a = False ) -> float: '''simple docstring''' _UpperCamelCase = self * other _UpperCamelCase = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __A(lowerCAmelCase ) -> Vector: """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) return Vector([0] * dimension ) def __A(lowerCAmelCase , lowerCAmelCase ) -> Vector: """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) and (isinstance(lowerCAmelCase , lowerCAmelCase )) _UpperCamelCase = [0] * dimension _UpperCamelCase = 1 return Vector(lowerCAmelCase ) def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Vector: """simple docstring""" assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) and (isinstance(lowerCAmelCase , (int, float) )) ) return x * scalar + y def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Vector: """simple docstring""" random.seed(lowerCAmelCase ) _UpperCamelCase = [random.randint(lowerCAmelCase , lowerCAmelCase ) for _ in range(lowerCAmelCase )] return Vector(lowerCAmelCase ) class lowerCAmelCase__ : def __init__( self , a , a , a ) -> None: '''simple docstring''' _UpperCamelCase = matrix _UpperCamelCase = w _UpperCamelCase = h def __str__( self ) -> str: '''simple docstring''' _UpperCamelCase = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , a ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _UpperCamelCase = [] for i in range(self.__height ): _UpperCamelCase = [ self.__matrix[i][j] + other.component(a , a ) for j in range(self.__width ) ] matrix.append(a ) return Matrix(a , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , a ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _UpperCamelCase = [] for i in range(self.__height ): _UpperCamelCase = [ self.__matrix[i][j] - other.component(a , a ) for j in range(self.__width ) ] matrix.append(a ) return Matrix(a , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , a ) -> Matrix: '''simple docstring''' ... @overload def __mul__( self , a ) -> Vector: '''simple docstring''' ... def __mul__( self , a ) -> Vector | Matrix: '''simple docstring''' if isinstance(a , a ): # matrix-vector if len(a ) == self.__width: _UpperCamelCase = zero_vector(self.__height ) for i in range(self.__height ): _UpperCamelCase = [ self.__matrix[i][j] * other.component(a ) for j in range(self.__width ) ] ans.change_component(a , sum(a ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(a , (int, float) ): # matrix-scalar _UpperCamelCase = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(a , self.__width , self.__height ) return None def A_ ( self ) -> int: '''simple docstring''' return self.__height def A_ ( self ) -> int: '''simple docstring''' return self.__width def A_ ( self , a , a ) -> float: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def A_ ( self , a , a , a ) -> None: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: _UpperCamelCase = value else: raise Exception("""change_component: indices out of bounds""" ) def A_ ( self , a , a ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) _UpperCamelCase = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(a ) ): _UpperCamelCase = minor[i][:y] + minor[i][y + 1 :] return Matrix(a , self.__width - 1 , self.__height - 1 ).determinant() def A_ ( self , a , a ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(a , a ) else: raise Exception("""Indices out of bounds""" ) def A_ ( self ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _UpperCamelCase = [ self.__matrix[0][y] * self.cofactor(0 , a ) for y in range(self.__width ) ] return sum(a ) def __A(lowerCAmelCase ) -> Matrix: """simple docstring""" _UpperCamelCase = [[0] * n for _ in range(lowerCAmelCase )] return Matrix(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Matrix: """simple docstring""" random.seed(lowerCAmelCase ) _UpperCamelCase = [ [random.randint(lowerCAmelCase , lowerCAmelCase ) for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase ) ] return Matrix(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
202
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __A(lowerCAmelCase ) -> List[str]: """simple docstring""" if "model" in orig_key: _UpperCamelCase = orig_key.replace("""model.""" , """""" ) if "norm1" in orig_key: _UpperCamelCase = orig_key.replace("""norm1""" , """attention.output.LayerNorm""" ) if "norm2" in orig_key: _UpperCamelCase = orig_key.replace("""norm2""" , """output.LayerNorm""" ) if "norm" in orig_key: _UpperCamelCase = orig_key.replace("""norm""" , """LayerNorm""" ) if "transformer" in orig_key: _UpperCamelCase = orig_key.split(""".""" )[0].split("""_""" )[-1] _UpperCamelCase = orig_key.replace(F'transformer_{layer_num}' , F'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: _UpperCamelCase = orig_key.replace("""mha.attn""" , """attention.self""" ) if "mha" in orig_key: _UpperCamelCase = orig_key.replace("""mha""" , """attention""" ) if "W_q" in orig_key: _UpperCamelCase = orig_key.replace("""W_q""" , """self.query""" ) if "W_k" in orig_key: _UpperCamelCase = orig_key.replace("""W_k""" , """self.key""" ) if "W_v" in orig_key: _UpperCamelCase = orig_key.replace("""W_v""" , """self.value""" ) if "ff1" in orig_key: _UpperCamelCase = orig_key.replace("""ff1""" , """intermediate.dense""" ) if "ff2" in orig_key: _UpperCamelCase = orig_key.replace("""ff2""" , """output.dense""" ) if "ff" in orig_key: _UpperCamelCase = orig_key.replace("""ff""" , """output.dense""" ) if "mlm_class" in orig_key: _UpperCamelCase = orig_key.replace("""mlm.mlm_class""" , """cls.predictions.decoder""" ) if "mlm" in orig_key: _UpperCamelCase = orig_key.replace("""mlm""" , """cls.predictions.transform""" ) if "cls" not in orig_key: _UpperCamelCase = """yoso.""" + orig_key return orig_key def __A(lowerCAmelCase , lowerCAmelCase ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): _UpperCamelCase = orig_state_dict.pop(lowerCAmelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: _UpperCamelCase = val _UpperCamelCase = orig_state_dict["""cls.predictions.decoder.bias"""] _UpperCamelCase = torch.arange(lowerCAmelCase ).expand((1, -1) ) + 2 return orig_state_dict def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: """simple docstring""" _UpperCamelCase = torch.load(lowerCAmelCase , map_location="""cpu""" )["""model_state_dict"""] _UpperCamelCase = YosoConfig.from_json_file(lowerCAmelCase ) _UpperCamelCase = YosoForMaskedLM(lowerCAmelCase ) _UpperCamelCase = convert_checkpoint_helper(config.max_position_embeddings , lowerCAmelCase ) print(model.load_state_dict(lowerCAmelCase ) ) model.eval() model.save_pretrained(lowerCAmelCase ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase__ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
202
1
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a ( __UpperCAmelCase , unittest.TestCase ): lowercase_ : Optional[Any] = XLNetTokenizer lowercase_ : Any = XLNetTokenizerFast lowercase_ : Dict = True lowercase_ : Dict = True def UpperCAmelCase__ ( self : str ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = XLNetTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __lowerCAmelCase = "<s>" __lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<eod>" ) self.assertEqual(len(snake_case__ ) , 1_006 ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __lowerCAmelCase = XLNetTokenizer(snake_case__ , keep_accents=snake_case__ ) __lowerCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [285, 46, 10, 170, 382] ) __lowerCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual(snake_case__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __lowerCAmelCase = XLNetTokenizer(snake_case__ , do_lower_case=snake_case__ ) __lowerCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "", "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["▁he", "ll", "o"] ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __lowerCAmelCase = XLNetTokenizer(snake_case__ , do_lower_case=snake_case__ ) __lowerCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) @slow def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __lowerCAmelCase = XLNetTokenizer.from_pretrained("xlnet-base-cased" ) __lowerCAmelCase = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) __lowerCAmelCase = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case__ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def UpperCAmelCase__ ( self : str ): """simple docstring""" __lowerCAmelCase = {"input_ids": [[17, 21_442, 270, 17, 10, 14_645, 318, 34, 17, 4_546, 3_145, 787, 13, 7_752, 22_018, 23, 21, 17, 4_546, 3_145, 787, 13, 3_352, 14_431, 13, 5_500, 11, 1_176, 580, 13, 16_819, 4_797, 23, 17, 10, 17_135, 658, 19, 457, 7_932, 13, 184, 19, 3_154, 17_135, 6_468, 19, 1_404, 12_269, 19, 4_229, 5_356, 16_264, 46, 19, 17, 20_545, 10_395, 9, 9, 9, 11, 28, 6_421, 9_531, 20_729, 17, 10, 353, 17_022, 11, 21, 6_421, 9_531, 16_949, 17, 10, 11_509, 753, 11, 33, 95, 2_421, 7_385, 956, 14_431, 2_626, 25, 842, 7_385, 4_836, 21, 1_429, 2_272, 9_855, 3_120, 161, 24_738, 19, 13_203, 658, 218, 787, 21, 430, 18_482, 847, 2_637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22_178, 27, 1_064, 22, 956, 13, 11_101, 1_429, 5_854, 24_313, 18_953, 40, 422, 24_366, 68, 1_758, 37, 10_483, 14_257, 31, 207, 263, 21, 203, 3_773, 25, 71, 9_735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2_049, 3_442, 17, 13_894, 3_380, 23, 95, 18, 17_634, 2_288, 9, 4, 3]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="xlnet-base-cased" , revision="c841166438c31ec7ca9a106dee7bb312b73ae511" , )
611
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def _UpperCAmelCase ( UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Tuple ): """simple docstring""" __lowerCAmelCase = 1.5 __lowerCAmelCase = int(factor * num_class_images ) __lowerCAmelCase = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=UpperCamelCase , aesthetic_weight=0.1 ) os.makedirs(F"{class_data_dir}/images" , exist_ok=UpperCamelCase ) if len(list(Path(F"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images: return while True: __lowerCAmelCase = client.query(text=UpperCamelCase ) if len(UpperCamelCase ) >= factor * num_class_images or num_images > 1e4: break else: __lowerCAmelCase = int(factor * num_images ) __lowerCAmelCase = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=UpperCamelCase , aesthetic_weight=0.1 , ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = tqdm(desc="downloading real regularization images" , total=UpperCamelCase ) with open(F"{class_data_dir}/caption.txt" , "w" ) as fa, open(F"{class_data_dir}/urls.txt" , "w" ) as fa, open( F"{class_data_dir}/images.txt" , "w" ) as fa: while total < num_class_images: __lowerCAmelCase = class_images[count] count += 1 try: __lowerCAmelCase = requests.get(images["url"] ) if img.status_code == 2_0_0: __lowerCAmelCase = Image.open(BytesIO(img.content ) ) with open(F"{class_data_dir}/images/{total}.jpg" , "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(F"{class_data_dir}/images/{total}.jpg" + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def _UpperCAmelCase ( ): """simple docstring""" __lowerCAmelCase = argparse.ArgumentParser("" , add_help=UpperCamelCase ) parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=UpperCamelCase , type=UpperCamelCase ) parser.add_argument("--class_data_dir" , help="path to save images" , required=UpperCamelCase , type=UpperCamelCase ) parser.add_argument("--num_class_images" , help="number of images to download" , default=2_0_0 , type=UpperCamelCase ) return parser.parse_args() if __name__ == "__main__": UpperCamelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
611
1
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): a : Any = MobileBertTokenizer a : Any = MobileBertTokenizerFast a : int = True a : int = True a : Dict = filter_non_english a : Union[str, Any] = '''google/mobilebert-uncased''' def lowercase ( self ): super().setUp() _SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _SCREAMING_SNAKE_CASE = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def lowercase ( self , UpperCamelCase ): _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = """unwanted, running""" return input_text, output_text def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [9, 6, 7, 12, 10, 11] ) def lowercase ( self ): if not self.test_rust_tokenizer: return _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) # With lower casing _SCREAMING_SNAKE_CASE = self.get_tokenizer(do_lower_case=A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(do_lower_case=A__ ) _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _SCREAMING_SNAKE_CASE = {} for i, token in enumerate(A__ ): _SCREAMING_SNAKE_CASE = i _SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=A__ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def lowercase ( self ): self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def lowercase ( self ): self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def lowercase ( self ): self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A__ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(A__ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) _SCREAMING_SNAKE_CASE = tokenizer.encode("sequence builders" , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode("multi-sequence build" , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A__ , A__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def lowercase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = F'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' _SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( A__ , return_attention_mask=A__ , return_token_type_ids=A__ , return_offsets_mapping=A__ , add_special_tokens=A__ , ) _SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(A__ , "do_lower_case" ) else False _SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = ["""的""", """人""", """有"""] _SCREAMING_SNAKE_CASE = """""".join(A__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that only the first Chinese character is not preceded by "##". _SCREAMING_SNAKE_CASE = [ F'##{token}' if idx != 0 else token for idx, token in enumerate(A__ ) ] self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ )
720
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): a : int = LayoutLMTokenizer a : Optional[int] = LayoutLMTokenizerFast a : Optional[int] = True a : Any = True def lowercase ( self ): super().setUp() _SCREAMING_SNAKE_CASE = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowercase ( self , **UpperCamelCase ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowercase ( self , UpperCamelCase ): _SCREAMING_SNAKE_CASE = "UNwant\u00E9d,running" _SCREAMING_SNAKE_CASE = "unwanted, running" return input_text, output_text def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(UpperCamelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [7, 4, 5, 10, 8, 9] ) def lowercase ( self ): pass
493
0
'''simple docstring''' import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = "▁" _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): __lowerCamelCase : Dict = BigBirdTokenizer __lowerCamelCase : Optional[Any] = BigBirdTokenizerFast __lowerCamelCase : Any = True __lowerCamelCase : Union[str, Any] = True def _snake_case ( self ) -> Any: super().setUp() _lowerCAmelCase = self.tokenizer_class(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = "<s>" _lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(_lowerCAmelCase ) , 1004 ) def _snake_case ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _snake_case ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = "I was born in 92000, and this is falsé." _lowerCAmelCase = tokenizer.tokenize(_lowerCAmelCase ) _lowerCAmelCase = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = tokenizer.encode(_lowerCAmelCase ) _lowerCAmelCase = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> int: _lowerCAmelCase = BigBirdTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(_lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [285, 46, 10, 170, 382] , ) _lowerCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _lowerCAmelCase = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowerCAmelCase = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _snake_case ( self ) -> Any: return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def _snake_case ( self ) -> Tuple: _lowerCAmelCase = "Hello World!" _lowerCAmelCase = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowerCAmelCase , self.big_tokenizer.encode(_lowerCAmelCase ) ) @slow def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off _lowerCAmelCase = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowerCAmelCase , self.big_tokenizer.encode(_lowerCAmelCase ) ) @require_torch @slow def _snake_case ( self ) -> Any: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _lowerCAmelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _lowerCAmelCase = " ".join(_lowerCAmelCase ) _lowerCAmelCase = self.big_tokenizer.encode_plus(_lowerCAmelCase , return_tensors="pt" , return_token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = BigBirdConfig(attention_type="original_full" ) _lowerCAmelCase = BigBirdModel(_lowerCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowerCAmelCase ) model(**_lowerCAmelCase ) @slow def _snake_case ( self ) -> int: _lowerCAmelCase = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) _lowerCAmelCase = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def _snake_case ( self ) -> Any: # fmt: off _lowerCAmelCase = {"input_ids": [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
18
import math def lowerCAmelCase__ ( _a : float , _a : float ): if ( not isinstance(_a , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def lowerCAmelCase__ ( _a : float , _a : float ): if ( not isinstance(_a , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
568
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class snake_case_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Optional[int]=7 , __magic_name__ : Union[str, Any]=3 , __magic_name__ : Optional[Any]=18 , __magic_name__ : Optional[int]=30 , __magic_name__ : List[Any]=400 , __magic_name__ : int=True , __magic_name__ : str=32 , __magic_name__ : Optional[int]=True , ) -> Tuple: lowerCamelCase_ : Optional[Any] = parent lowerCamelCase_ : int = batch_size lowerCamelCase_ : Any = num_channels lowerCamelCase_ : Tuple = image_size lowerCamelCase_ : Dict = min_resolution lowerCamelCase_ : str = max_resolution lowerCamelCase_ : List[str] = do_resize lowerCamelCase_ : Optional[Any] = size_divisor lowerCamelCase_ : int = do_rescale def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class snake_case_ ( __a , unittest.TestCase ): '''simple docstring''' lowerCamelCase = GLPNImageProcessor if is_vision_available() else None def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: lowerCamelCase_ : Optional[Any] = GLPNImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self : int ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: lowerCamelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "size_divisor" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "resample" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "do_rescale" ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: pass def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: lowerCamelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCamelCase_ : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: lowerCamelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCamelCase_ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __SCREAMING_SNAKE_CASE ( self : int ) -> int: lowerCamelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowerCamelCase_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
719
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata def __a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str]=False ) -> Any: """simple docstring""" try: lowerCamelCase_ : Any = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowerCamelCase_ : Dict = default else: # KEY is set, convert it to True or False. try: lowerCamelCase_ : Any = strtobool(__UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no." ) return _value snake_case_ : Dict = parse_flag_from_env("RUN_SLOW", default=False) snake_case_ : int = parse_flag_from_env("RUN_REMOTE", default=False) snake_case_ : List[str] = parse_flag_from_env("RUN_LOCAL", default=True) snake_case_ : int = parse_flag_from_env("RUN_PACKAGED", default=True) # Compression snake_case_ : List[Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4") snake_case_ : Tuple = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr") snake_case_ : List[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard") # Audio snake_case_ : Dict = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"), reason="test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; ", ) # Beam snake_case_ : List[Any] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"), reason="test requires apache-beam and a compatible dill version", ) # Dill-cloudpickle compatibility snake_case_ : Dict = pytest.mark.skipif( config.DILL_VERSION <= version.parse("0.3.2"), reason="test requires dill>0.3.2 for cloudpickle compatibility", ) # Windows snake_case_ : int = pytest.mark.skipif( sys.platform == "win32", reason="test should not be run on Windows", ) def __a ( __UpperCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" try: import faiss # noqa except ImportError: lowerCamelCase_ : Dict = unittest.skip("test requires faiss" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" try: import regex # noqa except ImportError: lowerCamelCase_ : Union[str, Any] = unittest.skip("test requires regex" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : List[Any] ) -> Dict: """simple docstring""" try: import elasticsearch # noqa except ImportError: lowerCamelCase_ : Dict = unittest.skip("test requires elasticsearch" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" try: import sqlalchemy # noqa except ImportError: lowerCamelCase_ : Optional[int] = unittest.skip("test requires sqlalchemy" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" if not config.TORCH_AVAILABLE: lowerCamelCase_ : Dict = unittest.skip("test requires PyTorch" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if not config.TF_AVAILABLE: lowerCamelCase_ : Optional[Any] = unittest.skip("test requires TensorFlow" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : int ) -> Any: """simple docstring""" if not config.JAX_AVAILABLE: lowerCamelCase_ : Tuple = unittest.skip("test requires JAX" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" if not config.PIL_AVAILABLE: lowerCamelCase_ : int = unittest.skip("test requires Pillow" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : Dict ) -> List[Any]: """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(__UpperCAmelCase ) else: return test_case def __a ( __UpperCAmelCase : List[Any] ) -> List[str]: """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(__UpperCAmelCase ) else: return test_case def __a ( __UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(__UpperCAmelCase ) else: return test_case def __a ( __UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" def _require_spacy_model(__UpperCAmelCase : Tuple ): try: import spacy # noqa F401 spacy.load(__UpperCAmelCase ) except ImportError: return unittest.skip("test requires spacy" )(__UpperCAmelCase ) except OSError: return unittest.skip("test requires spacy model '{}'".format(__UpperCAmelCase ) )(__UpperCAmelCase ) else: return test_case return _require_spacy_model def __a ( __UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(__UpperCAmelCase ) else: return test_case def __a ( __UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(__UpperCAmelCase ) else: return test_case def __a ( __UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: lowerCamelCase_ : Any = unittest.skip("test is slow" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" if not _run_local_tests or _run_local_tests == 0: lowerCamelCase_ : List[Any] = unittest.skip("test is local" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: lowerCamelCase_ : Union[str, Any] = unittest.skip("test is packaged" )(__UpperCAmelCase ) return test_case def __a ( __UpperCAmelCase : Dict ) -> str: """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: lowerCamelCase_ : Any = unittest.skip("test requires remote" )(__UpperCAmelCase ) return test_case def __a ( *__UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" def decorate(cls : int ): for name, fn in cls.__dict__.items(): if callable(__UpperCAmelCase ) and name.startswith("test" ): for decorator in decorators: lowerCamelCase_ : int = decorator(__UpperCAmelCase ) setattr(cls , __UpperCAmelCase , __UpperCAmelCase ) return cls return decorate class snake_case_ ( __A ): '''simple docstring''' pass class snake_case_ ( __A ): '''simple docstring''' lowerCamelCase = 0 lowerCamelCase = 1 lowerCamelCase = 2 @contextmanager def __a ( __UpperCAmelCase : Tuple=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : Any=1e-16 ) -> Dict: """simple docstring""" lowerCamelCase_ : Optional[Any] = requests.Session().request def timeout_request(__UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Optional[int] ): # Change the url to an invalid url so that the connection hangs lowerCamelCase_ : str = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) lowerCamelCase_ : List[Any] = timeout try: return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier lowerCamelCase_ : Any = url lowerCamelCase_ : Tuple = e.args[0] lowerCamelCase_ : Union[str, Any] = (max_retry_error.args[0].replace("10.255.255.1" , f"OfflineMock[{url}]" ),) lowerCamelCase_ : str = (max_retry_error,) raise def raise_connection_error(__UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int , **__UpperCAmelCase : Dict ): raise requests.ConnectionError("Offline mode is enabled." , request=__UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , __UpperCAmelCase ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def __a ( *__UpperCAmelCase : int , **__UpperCAmelCase : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ : int = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir: try: os.chdir(__UpperCAmelCase ) yield finally: os.chdir(__UpperCAmelCase ) @contextmanager def __a ( ) -> Union[str, Any]: """simple docstring""" import gc gc.collect() lowerCamelCase_ : Tuple = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __a ( ) -> int: """simple docstring""" import gc gc.collect() lowerCamelCase_ : Optional[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __a ( __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" return deepcopy(__UpperCAmelCase ).integers(0 , 100 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 100 , 10 ).tolist() def __a ( __UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCAmelCase : Any , *__UpperCAmelCase : Dict , **__UpperCAmelCase : str ): try: return func(*__UpperCAmelCase , **__UpperCAmelCase ) except HTTPError as err: if str(__UpperCAmelCase ).startswith("500" ) or str(__UpperCAmelCase ).startswith("502" ): pytest.xfail(str(__UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCAmelCase ) class snake_case_ : '''simple docstring''' def __init__( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str] ) -> Any: lowerCamelCase_ : int = returncode lowerCamelCase_ : int = stdout lowerCamelCase_ : Union[str, Any] = stderr async def __a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" while True: lowerCamelCase_ : List[str] = await stream.readline() if line: callback(__UpperCAmelCase ) else: break async def __a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Any=None , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Optional[int]=False ) -> _RunOutput: """simple docstring""" if echo: print("\nRunning: " , " ".join(__UpperCAmelCase ) ) lowerCamelCase_ : Dict = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowerCamelCase_ : Optional[Any] = [] lowerCamelCase_ : Optional[Any] = [] def tee(__UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any]="" ): lowerCamelCase_ : Optional[int] = line.decode("utf-8" ).rstrip() sink.append(__UpperCAmelCase ) if not quiet: print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label="stderr:" ) ), ] , timeout=__UpperCAmelCase , ) return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase ) def __a ( __UpperCAmelCase : int , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : List[Any]=180 , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Dict=True ) -> _RunOutput: """simple docstring""" lowerCamelCase_ : List[str] = asyncio.get_event_loop() lowerCamelCase_ : Tuple = loop.run_until_complete( _stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) ) lowerCamelCase_ : Tuple = " ".join(__UpperCAmelCase ) if result.returncode > 0: lowerCamelCase_ : int = "\n".join(result.stderr ) raise RuntimeError( f"'{cmd_str}' failed with returncode {result.returncode}\n\n" f"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"'{cmd_str}' produced no output." ) return result def __a ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : Optional[Any] = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) lowerCamelCase_ : Optional[Any] = re.sub(R"^gw" , "" , __UpperCAmelCase , 0 , re.M ) return int(__UpperCAmelCase ) def __a ( ) -> int: """simple docstring""" lowerCamelCase_ : int = 29500 lowerCamelCase_ : int = pytest_xdist_worker_id() return port + uniq_delta
253
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
171
def UpperCamelCase( __UpperCamelCase : str ,__UpperCamelCase : str ): lowerCAmelCase_ : Any = len(__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = [] for i in range(len(__UpperCamelCase ) - pat_len + 1 ): lowerCAmelCase_ : str = True for j in range(__UpperCamelCase ): if s[i + j] != pattern[j]: lowerCAmelCase_ : List[Any] = False break if match_found: position.append(__UpperCamelCase ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
171
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__: Dict = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Dict = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys A__: int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
721
def lowerCAmelCase_ ( ): for n in range(1 ,1_00_00_00): yield n * (n + 1) // 2 def lowerCAmelCase_ ( A_): UpperCamelCase__: int = 1 UpperCamelCase__: Dict = 2 while i * i <= n: UpperCamelCase__: Any = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCAmelCase_ ( ): return next(i for i in triangle_number_generator() if count_divisors(A_) > 5_00) if __name__ == "__main__": print(solution())
221
0
import re from filelock import FileLock try: import nltk __A = True except (ImportError, ModuleNotFoundError): __A = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def lowercase__ ( A_: str ) -> str: """simple docstring""" re.sub("""<n>""" , """""" , A_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(A_ ) )
68
def UpperCAmelCase__( __UpperCAmelCase : int ): if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True __snake_case : str = 4 __snake_case : List[str] = (1 << p) - 1 for _ in range(p - 2 ): __snake_case : List[str] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
576
0
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _A = Lock() def UpperCAmelCase ( a_, a_, a_, a_, a_, a_, a_ ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0, 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(a_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCamelCase : List[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCamelCase : int = min(a_, a_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(a_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCamelCase : List[Any] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCamelCase : str = max(a_, a_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : str = [] lowerCamelCase : List[Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCamelCase : Any = Pipe() lowerCamelCase : List[Any] = Pipe() process_array_.append( Process( target=a_, args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]), ) ) lowerCamelCase : List[str] = temp_rs lowerCamelCase : Optional[int] = temp_rr for i in range(1, len(a_ ) - 1 ): lowerCamelCase : Tuple = Pipe() lowerCamelCase : Dict = Pipe() process_array_.append( Process( target=a_, args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]), ) ) lowerCamelCase : List[str] = temp_rs lowerCamelCase : Optional[Any] = temp_rr process_array_.append( Process( target=a_, args=( len(a_ ) - 1, arr[len(a_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(a_ ) - 1], ), ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0, len(a_ ) ): lowerCamelCase : Any = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCAmelCase ( ): '''simple docstring''' lowerCamelCase : int = list(range(10, 0, -1 ) ) print('Initial List' ) print(*a_ ) lowerCamelCase : int = odd_even_transposition(a_ ) print('Sorted List\n' ) print(*a_ ) if __name__ == "__main__": main()
133
"""simple docstring""" import os import pytest from attr import dataclass _A = 'us-east-1' # defaults region @dataclass class _lowercase : lowercase_ = 42 lowercase_ = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' lowercase_ = { 'task_name': 'mnli', 'per_device_train_batch_size': 1_6, 'per_device_eval_batch_size': 1_6, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_0_0, 'save_steps': 5_5_0_0, } lowercase_ = {**hyperparameters, 'max_steps': 1_0_0_0} @property def _UpperCamelCase ( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _UpperCamelCase ( self ) -> str: return F"""{self.framework}-transfromers-test""" @property def _UpperCamelCase ( self ) -> str: return F"""./tests/sagemaker/scripts/{self.framework}""" @property def _UpperCamelCase ( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : Optional[int] = SageMakerTestEnvironment(framework=request.cls.framework )
133
1
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _a = logging.get_logger("""transformers.models.encodec""") _a = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } _a = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } _a = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } _a = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } _a = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } _a = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _a = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _a = [] _a = [] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" for attribute in key.split('''.''' ): _UpperCamelCase = getattr(__snake_case, __snake_case ) if weight_type is not None: _UpperCamelCase = getattr(__snake_case, __snake_case ).shape else: _UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value elif weight_type == "running_mean": _UpperCamelCase = value elif weight_type == "running_var": _UpperCamelCase = value elif weight_type == "num_batches_tracked": _UpperCamelCase = value elif weight_type == "weight_ih_l0": _UpperCamelCase = value elif weight_type == "weight_hh_l0": _UpperCamelCase = value elif weight_type == "bias_ih_l0": _UpperCamelCase = value elif weight_type == "bias_hh_l0": _UpperCamelCase = value elif weight_type == "weight_ih_l1": _UpperCamelCase = value elif weight_type == "weight_hh_l1": _UpperCamelCase = value elif weight_type == "bias_ih_l1": _UpperCamelCase = value elif weight_type == "bias_hh_l1": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(F'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _UpperCamelCase , _UpperCamelCase = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": _UpperCamelCase = MAPPING_24K elif model_name == "encodec_48khz": _UpperCamelCase = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(__snake_case, __snake_case ): logger.info(F'''{name} was ignored''' ) continue _UpperCamelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: _UpperCamelCase , _UpperCamelCase = key.split('''.*.''' ) if prefix in name and suffix in name: _UpperCamelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(__snake_case )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''', __snake_case ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "weight_ih_l0" in name: _UpperCamelCase = '''weight_ih_l0''' elif "weight_hh_l0" in name: _UpperCamelCase = '''weight_hh_l0''' elif "bias_ih_l0" in name: _UpperCamelCase = '''bias_ih_l0''' elif "bias_hh_l0" in name: _UpperCamelCase = '''bias_hh_l0''' elif "weight_ih_l1" in name: _UpperCamelCase = '''weight_ih_l1''' elif "weight_hh_l1" in name: _UpperCamelCase = '''weight_hh_l1''' elif "bias_ih_l1" in name: _UpperCamelCase = '''bias_ih_l1''' elif "bias_hh_l1" in name: _UpperCamelCase = '''bias_hh_l1''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: _UpperCamelCase = '''weight''' elif "running_mean" in name: _UpperCamelCase = '''running_mean''' elif "running_var" in name: _UpperCamelCase = '''running_var''' elif "num_batches_tracked" in name: _UpperCamelCase = '''num_batches_tracked''' else: _UpperCamelCase = None set_recursively(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=None, __snake_case=None, ) -> Dict: """simple docstring""" if config_path is not None: _UpperCamelCase = EncodecConfig.from_pretrained(__snake_case ) else: _UpperCamelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _UpperCamelCase = [8, 5, 4, 4] _UpperCamelCase = [2.2] _UpperCamelCase = 64 _UpperCamelCase = 3_20_00 _UpperCamelCase = 20_48 _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False elif model_name == "encodec_48khz": _UpperCamelCase = [8, 5, 4, 2] _UpperCamelCase = [3.0, 6.0, 12.0, 24.0] _UpperCamelCase = 4_80_00 _UpperCamelCase = 2 _UpperCamelCase = False _UpperCamelCase = '''time_group_norm''' _UpperCamelCase = True _UpperCamelCase = 1.0 _UpperCamelCase = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) _UpperCamelCase = EncodecModel(__snake_case ) _UpperCamelCase = EncodecFeatureExtractor( feature_size=config.audio_channels, sampling_rate=config.sampling_rate, chunk_length_s=config.chunk_length_s, overlap=config.overlap, ) feature_extractor.save_pretrained(__snake_case ) _UpperCamelCase = torch.load(__snake_case ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _UpperCamelCase = original_checkpoint['''best_state'''] recursively_load_weights(__snake_case, __snake_case, __snake_case ) model.save_pretrained(__snake_case ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(__snake_case ) model.push_to_hub(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _a = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
19
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'wavlm' def __init__( self , __a=32 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.02 , __a=1e-5 , __a="group" , __a="gelu" , __a=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=1_28 , __a=16 , __a=3_20 , __a=8_00 , __a=False , __a=True , __a=0.05 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=3_20 , __a=2 , __a=0.1 , __a=1_00 , __a=2_56 , __a=2_56 , __a=0.1 , __a="mean" , __a=False , __a=False , __a=2_56 , __a=(5_12, 5_12, 5_12, 5_12, 15_00) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=5_12 , __a=80 , __a=0 , __a=1 , __a=2 , __a=False , __a=3 , __a=2 , __a=3 , __a=None , **__a , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a) _UpperCamelCase = hidden_size _UpperCamelCase = feat_extract_norm _UpperCamelCase = feat_extract_activation _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = conv_bias _UpperCamelCase = num_buckets _UpperCamelCase = max_bucket_distance _UpperCamelCase = num_conv_pos_embeddings _UpperCamelCase = num_conv_pos_embedding_groups _UpperCamelCase = len(self.conv_dim) _UpperCamelCase = num_hidden_layers _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = feat_proj_dropout _UpperCamelCase = final_dropout _UpperCamelCase = layerdrop _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = num_ctc_classes _UpperCamelCase = vocab_size _UpperCamelCase = do_stable_layer_norm _UpperCamelCase = use_weighted_layer_sum _UpperCamelCase = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCamelCase = apply_spec_augment _UpperCamelCase = mask_time_prob _UpperCamelCase = mask_time_length _UpperCamelCase = mask_time_min_masks _UpperCamelCase = mask_feature_prob _UpperCamelCase = mask_feature_length # parameters for pretraining with codevector quantized representations _UpperCamelCase = num_codevectors_per_group _UpperCamelCase = num_codevector_groups _UpperCamelCase = contrastive_logits_temperature _UpperCamelCase = num_negatives _UpperCamelCase = codevector_dim _UpperCamelCase = proj_codevector_dim _UpperCamelCase = diversity_loss_weight # ctc loss _UpperCamelCase = ctc_loss_reduction _UpperCamelCase = ctc_zero_infinity # adapter _UpperCamelCase = add_adapter _UpperCamelCase = adapter_kernel_size _UpperCamelCase = adapter_stride _UpperCamelCase = num_adapter_layers _UpperCamelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = list(__a) _UpperCamelCase = xvector_output_dim @property def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
19
1
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : torch.FloatTensor class __magic_name__ (nn.Module ): '''simple docstring''' def __init__( self:Dict , _a:Any=3 , _a:Tuple=3 , _a:List[str]=("DownEncoderBlock2D",) , _a:Tuple=(64,) , _a:List[str]=2 , _a:Any=32 , _a:List[Any]="silu" , _a:List[Any]=True , ): super().__init__() snake_case__ = layers_per_block snake_case__ = torch.nn.Convad( _a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) snake_case__ = None snake_case__ = nn.ModuleList([] ) # down snake_case__ = block_out_channels[0] for i, down_block_type in enumerate(_a ): snake_case__ = output_channel snake_case__ = block_out_channels[i] snake_case__ = i == len(_a ) - 1 snake_case__ = get_down_block( _a , num_layers=self.layers_per_block , in_channels=_a , out_channels=_a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=_a , resnet_groups=_a , attention_head_dim=_a , temb_channels=_a , ) self.down_blocks.append(_a ) # mid snake_case__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_a , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=_a , temb_channels=_a , ) # out snake_case__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=_a , eps=1e-6 ) snake_case__ = nn.SiLU() snake_case__ = 2 * out_channels if double_z else out_channels snake_case__ = nn.Convad(block_out_channels[-1] , _a , 3 , padding=1 ) snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Any ): snake_case__ = x snake_case__ = self.conv_in(_a ) if self.training and self.gradient_checkpointing: def create_custom_forward(_a:str ): def custom_forward(*_a:Any ): return module(*_a ) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0''' ): for down_block in self.down_blocks: snake_case__ = torch.utils.checkpoint.checkpoint( create_custom_forward(_a ) , _a , use_reentrant=_a ) # middle snake_case__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _a , use_reentrant=_a ) else: for down_block in self.down_blocks: snake_case__ = torch.utils.checkpoint.checkpoint(create_custom_forward(_a ) , _a ) # middle snake_case__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , _a ) else: # down for down_block in self.down_blocks: snake_case__ = down_block(_a ) # middle snake_case__ = self.mid_block(_a ) # post-process snake_case__ = self.conv_norm_out(_a ) snake_case__ = self.conv_act(_a ) snake_case__ = self.conv_out(_a ) return sample class __magic_name__ (nn.Module ): '''simple docstring''' def __init__( self:Union[str, Any] , _a:Optional[Any]=3 , _a:Optional[int]=3 , _a:List[str]=("UpDecoderBlock2D",) , _a:Union[str, Any]=(64,) , _a:str=2 , _a:Optional[int]=32 , _a:Optional[int]="silu" , _a:str="group" , ): super().__init__() snake_case__ = layers_per_block snake_case__ = nn.Convad( _a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) snake_case__ = None snake_case__ = nn.ModuleList([] ) snake_case__ = in_channels if norm_type == '''spatial''' else None # mid snake_case__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_a , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=_a , temb_channels=_a , ) # up snake_case__ = list(reversed(_a ) ) snake_case__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(_a ): snake_case__ = output_channel snake_case__ = reversed_block_out_channels[i] snake_case__ = i == len(_a ) - 1 snake_case__ = get_up_block( _a , num_layers=self.layers_per_block + 1 , in_channels=_a , out_channels=_a , prev_output_channel=_a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=_a , resnet_groups=_a , attention_head_dim=_a , temb_channels=_a , resnet_time_scale_shift=_a , ) self.up_blocks.append(_a ) snake_case__ = output_channel # out if norm_type == "spatial": snake_case__ = SpatialNorm(block_out_channels[0] , _a ) else: snake_case__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=_a , eps=1e-6 ) snake_case__ = nn.SiLU() snake_case__ = nn.Convad(block_out_channels[0] , _a , 3 , padding=1 ) snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:Tuple , _a:List[Any]=None ): snake_case__ = z snake_case__ = self.conv_in(_a ) snake_case__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(_a:List[str] ): def custom_forward(*_a:Union[str, Any] ): return module(*_a ) return custom_forward if is_torch_version('''>=''' , '''1.11.0''' ): # middle snake_case__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _a , _a , use_reentrant=_a ) snake_case__ = sample.to(_a ) # up for up_block in self.up_blocks: snake_case__ = torch.utils.checkpoint.checkpoint( create_custom_forward(_a ) , _a , _a , use_reentrant=_a ) else: # middle snake_case__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _a , _a ) snake_case__ = sample.to(_a ) # up for up_block in self.up_blocks: snake_case__ = torch.utils.checkpoint.checkpoint(create_custom_forward(_a ) , _a , _a ) else: # middle snake_case__ = self.mid_block(_a , _a ) snake_case__ = sample.to(_a ) # up for up_block in self.up_blocks: snake_case__ = up_block(_a , _a ) # post-process if latent_embeds is None: snake_case__ = self.conv_norm_out(_a ) else: snake_case__ = self.conv_norm_out(_a , _a ) snake_case__ = self.conv_act(_a ) snake_case__ = self.conv_out(_a ) return sample class __magic_name__ (nn.Module ): '''simple docstring''' def __init__( self:Dict , _a:Optional[int] , _a:str , _a:Optional[Any] , _a:str=None , _a:Optional[Any]="random" , _a:Union[str, Any]=False , _a:Union[str, Any]=True ): super().__init__() snake_case__ = n_e snake_case__ = vq_embed_dim snake_case__ = beta snake_case__ = legacy snake_case__ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) snake_case__ = remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) ) snake_case__ = self.used.shape[0] snake_case__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": snake_case__ = self.re_embed snake_case__ = self.re_embed + 1 print( F"""Remapping {self.n_e} indices to {self.re_embed} indices. """ F"""Using {self.unknown_index} for unknown indices.""" ) else: snake_case__ = n_e snake_case__ = sane_index_shape def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[int] ): snake_case__ = inds.shape assert len(_a ) > 1 snake_case__ = inds.reshape(ishape[0] , -1 ) snake_case__ = self.used.to(_a ) snake_case__ = (inds[:, :, None] == used[None, None, ...]).long() snake_case__ = match.argmax(-1 ) snake_case__ = match.sum(2 ) < 1 if self.unknown_index == "random": snake_case__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: snake_case__ = self.unknown_index return new.reshape(_a ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:List[Any] ): snake_case__ = inds.shape assert len(_a ) > 1 snake_case__ = inds.reshape(ishape[0] , -1 ) snake_case__ = self.used.to(_a ) if self.re_embed > self.used.shape[0]: # extra token snake_case__ = 0 # simply set to zero snake_case__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , _a ) return back.reshape(_a ) def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Tuple ): # reshape z -> (batch, height, width, channel) and flatten snake_case__ = z.permute(0 , 2 , 3 , 1 ).contiguous() snake_case__ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z snake_case__ = torch.argmin(torch.cdist(_a , self.embedding.weight ) , dim=1 ) snake_case__ = self.embedding(_a ).view(z.shape ) snake_case__ = None snake_case__ = None # compute loss for embedding if not self.legacy: snake_case__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: snake_case__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients snake_case__ = z + (z_q - z).detach() # reshape back to match original input shape snake_case__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: snake_case__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis snake_case__ = self.remap_to_used(_a ) snake_case__ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: snake_case__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Tuple , _a:Optional[Any] ): # shape specifying (batch, height, width, channel) if self.remap is not None: snake_case__ = indices.reshape(shape[0] , -1 ) # add batch axis snake_case__ = self.unmap_to_all(_a ) snake_case__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors snake_case__ = self.embedding(_a ) if shape is not None: snake_case__ = z_q.view(_a ) # reshape back to match original input shape snake_case__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __magic_name__ (snake_case_ ): '''simple docstring''' def __init__( self:Union[str, Any] , _a:Optional[Any] , _a:str=False ): snake_case__ = parameters snake_case__ , snake_case__ = torch.chunk(_a , 2 , dim=1 ) snake_case__ = torch.clamp(self.logvar , -30.0 , 20.0 ) snake_case__ = deterministic snake_case__ = torch.exp(0.5 * self.logvar ) snake_case__ = torch.exp(self.logvar ) if self.deterministic: snake_case__ = snake_case__ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Optional[torch.Generator] = None ): # make sure sample is on the same device as the parameters and has same dtype snake_case__ = randn_tensor( self.mean.shape , generator=_a , device=self.parameters.device , dtype=self.parameters.dtype ) snake_case__ = self.mean + self.std * sample return x def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:Union[str, Any]=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int , _a:Optional[int]=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) snake_case__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return self.mean
718
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Tuple = 'xlm-roberta' def __init__( self:Dict , _a:List[Any]=3_05_22 , _a:Optional[Any]=7_68 , _a:Union[str, Any]=12 , _a:str=12 , _a:Union[str, Any]=30_72 , _a:str="gelu" , _a:List[Any]=0.1 , _a:List[str]=0.1 , _a:Dict=5_12 , _a:Optional[int]=2 , _a:Optional[Any]=0.02 , _a:List[str]=1e-12 , _a:Dict=1 , _a:Optional[Any]=0 , _a:str=2 , _a:Optional[int]="absolute" , _a:List[str]=True , _a:List[Any]=None , **_a:str , ): super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = hidden_act snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = position_embedding_type snake_case__ = use_cache snake_case__ = classifier_dropout class __magic_name__ (snake_case_ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): if self.task == "multiple-choice": snake_case__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
208
0
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): def __lt__( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" return self[-1] < other[-1] def __eq__( self : int , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" return self[-1] == other[-1] def lowercase( UpperCamelCase_ ) -> list: '''simple docstring''' UpperCamelCase = [] # sort into stacks for element in collection: UpperCamelCase = Stack([element] ) UpperCamelCase = bisect_left(UpperCamelCase_ , UpperCamelCase_ ) if i != len(UpperCamelCase_ ): stacks[i].append(UpperCamelCase_ ) else: stacks.append(UpperCamelCase_ ) # use a heap-based merge to merge stack efficiently UpperCamelCase = merge(*(reversed(UpperCamelCase_ ) for stack in stacks) ) return collection if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""").strip() _SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(""",""")] print(patience_sort(unsorted))
537
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Any: '''simple docstring''' # Initialise PyTorch model UpperCamelCase = MobileBertConfig.from_json_file(UpperCamelCase_ ) print(f"""Building PyTorch model from configuration: {config}""" ) UpperCamelCase = MobileBertForPreTraining(UpperCamelCase_ ) # Load weights from tf checkpoint UpperCamelCase = load_tf_weights_in_mobilebert(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
537
1
def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = 0 while number > 0: snake_case_ = number % 10 sum_of_digits += last_digit snake_case_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase__ ( _A = 100 ): '''simple docstring''' snake_case_ = factorial(SCREAMING_SNAKE_CASE_ ) snake_case_ = split_and_add(SCREAMING_SNAKE_CASE_ ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
700
def lowerCamelCase__ ( _A = 600851475143 ): '''simple docstring''' try: snake_case_ = int(_A ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) snake_case_ = 2 snake_case_ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 snake_case_ = i while n % i == 0: snake_case_ = n // i i += 1 return int(_A ) if __name__ == "__main__": print(f'''{solution() = }''')
139
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] , lowercase__ : Dict , lowercase__ : int=1_3 , lowercase__ : Dict=7 , lowercase__ : Optional[int]=True , lowercase__ : Union[str, Any]=True , lowercase__ : Optional[Any]=True , lowercase__ : Optional[int]=True , lowercase__ : List[str]=9_9 , lowercase__ : Optional[Any]=3_2 , lowercase__ : Optional[Any]=2 , lowercase__ : Any=4 , lowercase__ : List[str]=3_7 , lowercase__ : Dict="gelu" , lowercase__ : Dict=0.1 , lowercase__ : Dict=0.1 , lowercase__ : Tuple=5_1_2 , lowercase__ : str=1_6 , lowercase__ : int=2 , lowercase__ : Any=0.0_2 , lowercase__ : Union[str, Any]=3 , lowercase__ : str=4 , lowercase__ : Union[str, Any]=None , ): __lowercase : str = parent __lowercase : int = 1_3 __lowercase : List[str] = 7 __lowercase : Any = True __lowercase : Dict = True __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = 9_9 __lowercase : Union[str, Any] = 3_8_4 __lowercase : List[Any] = 2 __lowercase : Any = 4 __lowercase : Union[str, Any] = 3_7 __lowercase : List[str] = "gelu" __lowercase : Tuple = 0.1 __lowercase : Optional[Any] = 0.1 __lowercase : int = 5_1_2 __lowercase : Union[str, Any] = 1_6 __lowercase : List[Any] = 2 __lowercase : Optional[int] = 0.0_2 __lowercase : Optional[int] = 3 __lowercase : List[str] = 4 __lowercase : Any = 1_2_8 __lowercase : str = 2 __lowercase : Tuple = 9 __lowercase : Union[str, Any] = 1 __lowercase : Tuple = None def snake_case ( self : Tuple ): __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : List[Any] = None if self.use_input_mask: __lowercase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Any = None if self.use_token_type_ids: __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Tuple = None __lowercase : Optional[int] = None __lowercase : str = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Dict = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowercase__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self : Tuple , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : Optional[Any] , lowercase__ : List[str] , lowercase__ : int , lowercase__ : str , lowercase__ : Any ): __lowercase : Union[str, Any] = TFConvBertModel(config=lowercase__ ) __lowercase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowercase : str = [input_ids, input_mask] __lowercase : str = model(lowercase__ ) __lowercase : Tuple = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : List[str] , lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : List[str] , lowercase__ : int , lowercase__ : Any , lowercase__ : List[str] , lowercase__ : Any ): __lowercase : Optional[int] = TFConvBertForMaskedLM(config=lowercase__ ) __lowercase : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowercase : str = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : Dict , lowercase__ : str , lowercase__ : Dict , lowercase__ : Dict , lowercase__ : int , lowercase__ : str , lowercase__ : Any , lowercase__ : Dict ): __lowercase : Optional[Any] = self.num_labels __lowercase : Optional[int] = TFConvBertForSequenceClassification(config=lowercase__ ) __lowercase : int = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowercase : List[str] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self : str , lowercase__ : Union[str, Any] , lowercase__ : Optional[int] , lowercase__ : Any , lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Optional[Any] , lowercase__ : Optional[Any] ): __lowercase : List[str] = self.num_choices __lowercase : Union[str, Any] = TFConvBertForMultipleChoice(config=lowercase__ ) __lowercase : List[Any] = tf.tile(tf.expand_dims(lowercase__ , 1 ) , (1, self.num_choices, 1) ) __lowercase : Dict = tf.tile(tf.expand_dims(lowercase__ , 1 ) , (1, self.num_choices, 1) ) __lowercase : Optional[int] = tf.tile(tf.expand_dims(lowercase__ , 1 ) , (1, self.num_choices, 1) ) __lowercase : List[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __lowercase : Union[str, Any] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self : Dict , lowercase__ : Optional[int] , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : List[str] , lowercase__ : List[Any] , lowercase__ : Optional[Any] ): __lowercase : Dict = self.num_labels __lowercase : Optional[int] = TFConvBertForTokenClassification(config=lowercase__ ) __lowercase : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowercase : Tuple = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self : Any , lowercase__ : List[str] , lowercase__ : str , lowercase__ : str , lowercase__ : List[Any] , lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : int ): __lowercase : Tuple = TFConvBertForQuestionAnswering(config=lowercase__ ) __lowercase : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowercase : Dict = model(lowercase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self : Tuple ): __lowercase : Optional[int] = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) : Union[str, Any] = config_and_inputs __lowercase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __UpperCAmelCase : Any = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Dict = False __UpperCAmelCase : List[Any] = False def snake_case ( self : Tuple ): __lowercase : List[str] = TFConvBertModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7 ) def snake_case ( self : Tuple ): self.config_tester.run_common_tests() def snake_case ( self : str ): __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def snake_case ( self : Tuple ): __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def snake_case ( self : Any ): __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ ) def snake_case ( self : List[Any] ): __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) def snake_case ( self : Optional[int] ): __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def snake_case ( self : str ): __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) @slow def snake_case ( self : Dict ): __lowercase ,__lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[Any] = True __lowercase : Dict = True if hasattr(lowercase__ , "use_cache" ): __lowercase : int = True __lowercase : Tuple = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) __lowercase : Union[str, Any] = getattr(self.model_tester , "key_length" , lowercase__ ) for model_class in self.all_model_classes: __lowercase : Tuple = self._prepare_for_class(lowercase__ , lowercase__ ) __lowercase : int = model_class(lowercase__ ) __lowercase : Optional[Any] = len(model(lowercase__ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase__ , saved_model=lowercase__ ) __lowercase : str = os.path.join(lowercase__ , "saved_model" , "1" ) __lowercase : str = tf.keras.models.load_model(lowercase__ ) __lowercase : Optional[int] = model(lowercase__ ) if self.is_encoder_decoder: __lowercase : Optional[Any] = outputs["encoder_hidden_states"] __lowercase : List[Any] = outputs["encoder_attentions"] else: __lowercase : Union[str, Any] = outputs["hidden_states"] __lowercase : List[Any] = outputs["attentions"] self.assertEqual(len(lowercase__ ) , lowercase__ ) __lowercase : Tuple = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowercase__ ) , lowercase__ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def snake_case ( self : List[Any] ): __lowercase : List[str] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(lowercase__ ) def snake_case ( self : Tuple ): __lowercase ,__lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : int = True __lowercase : Optional[Any] = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) __lowercase : List[str] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) __lowercase : int = getattr(self.model_tester , "key_length" , lowercase__ ) __lowercase : List[str] = getattr(self.model_tester , "key_length" , lowercase__ ) def check_decoder_attentions_output(lowercase__ : int ): __lowercase : int = len(lowercase__ ) self.assertEqual(out_len % 2 , 0 ) __lowercase : List[Any] = outputs.decoder_attentions self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowercase__ : Union[str, Any] ): __lowercase : Tuple = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowercase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase : List[str] = True __lowercase : Any = False __lowercase : str = model_class(lowercase__ ) __lowercase : Any = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) __lowercase : Optional[Any] = len(lowercase__ ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) if self.is_encoder_decoder: __lowercase : List[Any] = model_class(lowercase__ ) __lowercase : str = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_decoder_attentions_output(lowercase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase : Optional[int] = True __lowercase : List[str] = model_class(lowercase__ ) __lowercase : Dict = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) # Check attention is always last and order is fine __lowercase : List[Any] = True __lowercase : Union[str, Any] = True __lowercase : Any = model_class(lowercase__ ) __lowercase : str = model(self._prepare_for_class(lowercase__ , lowercase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowercase__ ) ) self.assertEqual(model.config.output_hidden_states , lowercase__ ) check_encoder_attentions_output(lowercase__ ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self : Union[str, Any] ): __lowercase : List[Any] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) __lowercase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase : str = model(lowercase__ )[0] __lowercase : Dict = [1, 6, 7_6_8] self.assertEqual(output.shape , lowercase__ ) __lowercase : Union[str, Any] = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1e-4 )
575
"""simple docstring""" def snake_case__ ( _lowerCamelCase ) ->str: """simple docstring""" if isinstance(_lowerCamelCase, _lowerCamelCase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(_lowerCamelCase, _lowerCamelCase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" __lowercase : int = False if num < 0: __lowercase : List[Any] = True __lowercase : List[Any] = -num __lowercase : list[int] = [] while num > 0: binary.insert(0, num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCamelCase ) for e in binary ) return "0b" + "".join(str(_lowerCamelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
575
1
from __future__ import annotations from typing import Any class _A ( _UpperCamelCase ): pass class _A : def __init__(self , SCREAMING_SNAKE_CASE_ ) -> None: '''simple docstring''' UpperCamelCase__ = data UpperCamelCase__ = None def __iter__(self ) -> int: '''simple docstring''' UpperCamelCase__ = self UpperCamelCase__ = [] while node: if node in visited: raise ContainsLoopError visited.append(__a ) yield node.data UpperCamelCase__ = node.next_node @property def _a (self ) -> bool: '''simple docstring''' try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": __magic_name__ =Node(1) __magic_name__ =Node(2) __magic_name__ =Node(3) __magic_name__ =Node(4) print(root_node.has_loop) # False __magic_name__ =root_node.next_node print(root_node.has_loop) # True __magic_name__ =Node(5) __magic_name__ =Node(6) __magic_name__ =Node(5) __magic_name__ =Node(6) print(root_node.has_loop) # False __magic_name__ =Node(1) print(root_node.has_loop) # False
707
from __future__ import annotations def __UpperCamelCase ( A , A ): UpperCamelCase__ = get_failure_array(A ) # 2) Step through text searching for pattern UpperCamelCase__ , UpperCamelCase__ = 0, 0 # index into text, pattern while i < len(A ): if pattern[j] == text[i]: if j == (len(A ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCamelCase__ = failure[j - 1] continue i += 1 return False def __UpperCamelCase ( A ): UpperCamelCase__ = [0] UpperCamelCase__ = 0 UpperCamelCase__ = 1 while j < len(A ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCamelCase__ = failure[i - 1] continue j += 1 failure.append(A ) return failure if __name__ == "__main__": # Test 1) __magic_name__ ='''abc1abc12''' __magic_name__ ='''alskfjaldsabc1abc1abc12k23adsfabcabc''' __magic_name__ ='''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __magic_name__ ='''ABABX''' __magic_name__ ='''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) __magic_name__ ='''AAAB''' __magic_name__ ='''ABAAAAAB''' assert kmp(pattern, text) # Test 4) __magic_name__ ='''abcdabcy''' __magic_name__ ='''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) __magic_name__ ='''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
469
0
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Dict = len(SCREAMING_SNAKE_CASE ) # We need to create solution object to save path. A_ : Union[str, Any] = [[0 for _ in range(SCREAMING_SNAKE_CASE )] for _ in range(SCREAMING_SNAKE_CASE )] A_ : str = run_maze(SCREAMING_SNAKE_CASE , 0 , 0 , SCREAMING_SNAKE_CASE ) if solved: print('''\n'''.join(str(SCREAMING_SNAKE_CASE ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Optional[Any] = len(SCREAMING_SNAKE_CASE ) # Final check point. if i == j == (size - 1): A_ : List[str] = 1 return True A_ : Tuple = (not i < 0) and (not j < 0) # Check lower bounds A_ : List[str] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. A_ : str = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited A_ : Optional[Any] = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE , i + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or run_maze(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , j + 1 , SCREAMING_SNAKE_CASE ) or run_maze(SCREAMING_SNAKE_CASE , i - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or run_maze(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , j - 1 , SCREAMING_SNAKE_CASE ) ): return True A_ : Any = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
590
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A_ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = [t[-1] for t in os.walk(os.path.join(_SCREAMING_SNAKE_CASE , os.listdir(_SCREAMING_SNAKE_CASE )[0] , '''snapshots''' ) )] A_ : Tuple = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ , A_ : Any = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=_SCREAMING_SNAKE_CASE ) A_ : Any = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) A_ : Union[str, Any] = jax.random.PRNGKey(0 ) A_ : Dict = 4 A_ : str = jax.device_count() A_ : Union[str, Any] = num_samples * [prompt] A_ : Optional[int] = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng A_ : List[Any] = replicate(_SCREAMING_SNAKE_CASE ) A_ : str = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Any = shard(_SCREAMING_SNAKE_CASE ) A_ : List[str] = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 A_ : Optional[int] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_SCREAMING_SNAKE_CASE ) == num_samples def _snake_case ( self )->Any: '''simple docstring''' A_ , A_ : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=_SCREAMING_SNAKE_CASE ) A_ : str = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) A_ : Dict = jax.random.PRNGKey(0 ) A_ : str = 50 A_ : Tuple = jax.device_count() A_ : List[str] = num_samples * [prompt] A_ : Optional[int] = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng A_ : List[str] = replicate(_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Any = shard(_SCREAMING_SNAKE_CASE ) A_ : Any = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def _snake_case ( self )->Tuple: '''simple docstring''' A_ , A_ : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE ) A_ : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) A_ : int = jax.random.PRNGKey(0 ) A_ : str = 50 A_ : List[Any] = jax.device_count() A_ : List[Any] = num_samples * [prompt] A_ : Tuple = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng A_ : Dict = replicate(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : int = shard(_SCREAMING_SNAKE_CASE ) A_ : str = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ , A_ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) A_ : Tuple = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) A_ : Tuple = jax.random.PRNGKey(0 ) A_ : Dict = 50 A_ : Optional[Any] = jax.device_count() A_ : Tuple = num_samples * [prompt] A_ : Union[str, Any] = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng A_ : Optional[Any] = replicate(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Any = shard(_SCREAMING_SNAKE_CASE ) A_ : int = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Dict = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , ) A_ , A_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , ) A_ : int = scheduler.create_state() A_ : Optional[int] = scheduler_state A_ : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) A_ : List[str] = jax.random.PRNGKey(0 ) A_ : Optional[int] = 50 A_ : Any = jax.device_count() A_ : Any = num_samples * [prompt] A_ : Optional[Any] = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng A_ : Union[str, Any] = replicate(_SCREAMING_SNAKE_CASE ) A_ : Tuple = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Dict = shard(_SCREAMING_SNAKE_CASE ) A_ : Tuple = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Tuple = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) A_ : List[str] = jax.device_count() A_ : Any = num_samples * [prompt] A_ : Optional[int] = jax.random.split(jax.random.PRNGKey(0 ) , _SCREAMING_SNAKE_CASE ) A_ , A_ : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , ) A_ : Any = replicate(_SCREAMING_SNAKE_CASE ) A_ : Tuple = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) A_ : Dict = shard(_SCREAMING_SNAKE_CASE ) A_ : int = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) A_ : str = images[2, 0, 256, 10:17, 1] # With memory efficient attention A_ , A_ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , use_memory_efficient_attention=_SCREAMING_SNAKE_CASE , ) A_ : Union[str, Any] = replicate(_SCREAMING_SNAKE_CASE ) A_ : Tuple = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) A_ : str = shard(_SCREAMING_SNAKE_CASE ) A_ : Any = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A_ : List[str] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
590
1
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(_a ) class __lowercase ( _a ): def __init__( self , *UpperCamelCase , **UpperCamelCase ) -> str: super().__init__(*snake_case_ , **snake_case_ ) self.check_model_type(snake_case_ ) def UpperCamelCase__ ( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , **UpperCamelCase ) -> Dict: __a , __a = {}, {} if padding is not None: __a = padding if truncation is not None: __a = truncation if top_k is not None: __a = top_k return preprocess_params, {}, postprocess_params def __call__( self , UpperCamelCase , UpperCamelCase = None , **UpperCamelCase ) -> Any: if isinstance(snake_case_ , (Image.Image, str) ) and isinstance(snake_case_ , snake_case_ ): __a = {'image': image, 'question': question} else: __a = image __a = super().__call__(snake_case_ , **snake_case_ ) return results def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase=False , UpperCamelCase=False ) -> Tuple: __a = load_image(inputs['image'] ) __a = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=snake_case_ , truncation=snake_case_ ) __a = self.image_processor(images=snake_case_ , return_tensors=self.framework ) model_inputs.update(snake_case_ ) return model_inputs def UpperCamelCase__ ( self , UpperCamelCase ) -> List[str]: __a = self.model(**snake_case_ ) return model_outputs def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase=5 ) -> int: if top_k > self.model.config.num_labels: __a = self.model.config.num_labels if self.framework == "pt": __a = model_outputs.logits.sigmoid()[0] __a , __a = probs.topk(snake_case_ ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) __a = scores.tolist() __a = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(snake_case_ , snake_case_ )]
720
'''simple docstring''' import os def SCREAMING_SNAKE_CASE ( ): with open(os.path.dirname(a_ ) + '/grid.txt' ) as f: __a = [] # noqa: E741 for _ in range(20 ): l.append([int(a_ ) for x in f.readline().split()] ) __a = 0 # right for i in range(20 ): for j in range(17 ): __a = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: __a = temp # down for i in range(17 ): for j in range(20 ): __a = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: __a = temp # diagonal 1 for i in range(17 ): for j in range(17 ): __a = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: __a = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): __a = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: __a = temp return maximum if __name__ == "__main__": print(solution())
490
0
"""simple docstring""" import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : Tuple = AutoencoderKL snake_case__ : Optional[int] = "sample" snake_case__ : Optional[Any] = 1e-2 @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = 4 _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : List[str] = (3_2, 3_2) _lowerCamelCase : Any = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCAmelCase ) return {"sample": image} @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" return (3, 3_2, 3_2) @property def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return (3, 3_2, 3_2) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Any = { '''block_out_channels''': [3_2, 6_4], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } _lowerCamelCase : Tuple = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.prepare_init_args_and_inputs_for_common() _lowerCamelCase : List[str] = self.model_class(**__lowerCAmelCase ) model.to(__lowerCAmelCase ) assert not model.is_gradient_checkpointing and model.training _lowerCamelCase : Union[str, Any] = model(**__lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _lowerCamelCase : List[Any] = torch.randn_like(__lowerCAmelCase ) _lowerCamelCase : Tuple = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _lowerCamelCase : List[Any] = self.model_class(**__lowerCAmelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(__lowerCAmelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _lowerCamelCase : List[Any] = model_a(**__lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _lowerCamelCase : Any = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) _lowerCamelCase : Optional[int] = dict(model.named_parameters() ) _lowerCamelCase : Any = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[Any] = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) _lowerCamelCase : int = model.to(__lowerCAmelCase ) model.eval() if torch_device == "mps": _lowerCamelCase : int = torch.manual_seed(0 ) else: _lowerCamelCase : str = torch.Generator(device=__lowerCAmelCase ).manual_seed(0 ) _lowerCamelCase : int = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _lowerCamelCase : Optional[int] = image.to(__lowerCAmelCase ) with torch.no_grad(): _lowerCamelCase : str = model(__lowerCAmelCase , sample_posterior=__lowerCAmelCase , generator=__lowerCAmelCase ).sample _lowerCamelCase : List[str] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _lowerCamelCase : str = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": _lowerCamelCase : Optional[int] = torch.tensor( [-0.13_52, 0.08_78, 0.04_19, -0.08_18, -0.10_69, 0.06_88, -0.14_58, -0.44_46, -0.00_26] ) else: _lowerCamelCase : List[str] = torch.tensor( [-0.24_21, 0.46_42, 0.25_07, -0.04_38, 0.06_82, 0.31_60, -0.20_18, -0.07_27, 0.24_85] ) self.assertTrue(torch_all_close(__lowerCAmelCase , __lowerCAmelCase , rtol=1E-2 ) ) @slow class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): """simple docstring""" return f'''gaussian_noise_s={seed}_shape={"_".join([str(__lowerCAmelCase ) for s in shape] )}.npy''' def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Dict=0 , __lowerCAmelCase : Tuple=(4, 3, 5_1_2, 5_1_2) , __lowerCAmelCase : Tuple=False ): """simple docstring""" _lowerCamelCase : str = torch.floataa if fpaa else torch.floataa _lowerCamelCase : List[Any] = torch.from_numpy(load_hf_numpy(self.get_file_format(__lowerCAmelCase , __lowerCAmelCase ) ) ).to(__lowerCAmelCase ).to(__lowerCAmelCase ) return image def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : List[str]="CompVis/stable-diffusion-v1-4" , __lowerCAmelCase : List[str]=False ): """simple docstring""" _lowerCamelCase : Any = '''fp16''' if fpaa else None _lowerCamelCase : str = torch.floataa if fpaa else torch.floataa _lowerCamelCase : Any = AutoencoderKL.from_pretrained( __lowerCAmelCase , subfolder='''vae''' , torch_dtype=__lowerCAmelCase , revision=__lowerCAmelCase , ) model.to(__lowerCAmelCase ).eval() return model def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : int=0 ): """simple docstring""" if torch_device == "mps": return torch.manual_seed(__lowerCAmelCase ) return torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) @parameterized.expand( [ # fmt: off [3_3, [-0.16_03, 0.98_78, -0.04_95, -0.07_90, -0.27_09, 0.83_75, -0.20_60, -0.08_24], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]], [4_7, [-0.23_76, 0.11_68, 0.13_32, -0.48_40, -0.25_08, -0.07_91, -0.04_93, -0.40_89], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]], # fmt: on ] ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = self.get_sd_vae_model() _lowerCamelCase : List[str] = self.get_sd_image(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = self.get_generator(__lowerCAmelCase ) with torch.no_grad(): _lowerCamelCase : Any = model(__lowerCAmelCase , generator=__lowerCAmelCase , sample_posterior=__lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCamelCase : Optional[int] = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCamelCase : Tuple = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [3_3, [-0.05_13, 0.02_89, 1.37_99, 0.21_66, -0.25_73, -0.08_71, 0.51_03, -0.09_99]], [4_7, [-0.41_28, -0.13_20, -0.37_04, 0.19_65, -0.41_16, -0.23_32, -0.33_40, 0.22_47]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[str] = self.get_sd_vae_model(fpaa=__lowerCAmelCase ) _lowerCamelCase : int = self.get_sd_image(__lowerCAmelCase , fpaa=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = self.get_generator(__lowerCAmelCase ) with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase , generator=__lowerCAmelCase , sample_posterior=__lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCamelCase : Union[str, Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCamelCase : Optional[Any] = torch.tensor(__lowerCAmelCase ) assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [3_3, [-0.16_09, 0.98_66, -0.04_87, -0.07_77, -0.27_16, 0.83_68, -0.20_55, -0.08_14], [-0.23_95, 0.00_98, 0.01_02, -0.07_09, -0.28_40, -0.02_74, -0.07_18, -0.18_24]], [4_7, [-0.23_77, 0.11_47, 0.13_33, -0.48_41, -0.25_06, -0.08_05, -0.04_91, -0.40_85], [0.03_50, 0.08_47, 0.04_67, 0.03_44, -0.08_42, -0.05_47, -0.06_33, -0.11_31]], # fmt: on ] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.get_sd_vae_model() _lowerCamelCase : int = self.get_sd_image(__lowerCAmelCase ) with torch.no_grad(): _lowerCamelCase : List[str] = model(__lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCamelCase : Optional[int] = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCamelCase : Tuple = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [1_3, [-0.20_51, -0.18_03, -0.23_11, -0.21_14, -0.32_92, -0.35_74, -0.29_53, -0.33_23]], [3_7, [-0.26_32, -0.26_25, -0.21_99, -0.27_41, -0.45_39, -0.49_90, -0.37_20, -0.49_25]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Dict = self.get_sd_vae_model() _lowerCamelCase : Any = self.get_sd_image(__lowerCAmelCase , shape=(3, 4, 6_4, 6_4) ) with torch.no_grad(): _lowerCamelCase : List[Any] = model.decode(__lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] _lowerCamelCase : Tuple = sample[-1, -2:, :2, -2:].flatten().cpu() _lowerCamelCase : List[Any] = torch.tensor(__lowerCAmelCase ) assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) @parameterized.expand( [ # fmt: off [2_7, [-0.03_69, 0.02_07, -0.07_76, -0.06_82, -0.17_47, -0.19_30, -0.14_65, -0.20_39]], [1_6, [-0.16_28, -0.21_34, -0.27_47, -0.26_42, -0.37_74, -0.44_04, -0.36_87, -0.42_77]], # fmt: on ] ) @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = self.get_sd_vae_model(fpaa=__lowerCAmelCase ) _lowerCamelCase : int = self.get_sd_image(__lowerCAmelCase , shape=(3, 4, 6_4, 6_4) , fpaa=__lowerCAmelCase ) with torch.no_grad(): _lowerCamelCase : Dict = model.decode(__lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] _lowerCamelCase : Dict = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCamelCase : Union[str, Any] = torch.tensor(__lowerCAmelCase ) assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , atol=5E-3 ) @parameterized.expand([(1_3,), (1_6,), (2_7,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = self.get_sd_vae_model(fpaa=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.get_sd_image(__lowerCAmelCase , shape=(3, 4, 6_4, 6_4) , fpaa=__lowerCAmelCase ) with torch.no_grad(): _lowerCamelCase : List[str] = model.decode(__lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCamelCase : Optional[int] = model.decode(__lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , atol=1E-1 ) @parameterized.expand([(1_3,), (1_6,), (3_7,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Dict = self.get_sd_vae_model() _lowerCamelCase : List[str] = self.get_sd_image(__lowerCAmelCase , shape=(3, 4, 6_4, 6_4) ) with torch.no_grad(): _lowerCamelCase : Optional[int] = model.decode(__lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCamelCase : Any = model.decode(__lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [3_3, [-0.30_01, 0.09_18, -2.69_84, -3.97_20, -3.20_99, -5.03_53, 1.73_38, -0.20_65, 3.42_67]], [4_7, [-1.50_30, -4.38_71, -6.03_55, -9.11_57, -1.66_61, -2.78_53, 2.16_07, -5.08_23, 2.56_33]], # fmt: on ] ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = self.get_sd_vae_model() _lowerCamelCase : Optional[Any] = self.get_sd_image(__lowerCAmelCase ) _lowerCamelCase : List[str] = self.get_generator(__lowerCAmelCase ) with torch.no_grad(): _lowerCamelCase : Tuple = model.encode(__lowerCAmelCase ).latent_dist _lowerCamelCase : Tuple = dist.sample(generator=__lowerCAmelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _lowerCamelCase : Optional[Any] = sample[0, -1, -3:, -3:].flatten().cpu() _lowerCamelCase : str = torch.tensor(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(__lowerCAmelCase , __lowerCAmelCase , atol=__lowerCAmelCase )
83
"""simple docstring""" import colorsys from PIL import Image # type: ignore def snake_case_ ( A_ : float, A_ : float, A_ : int ): '''simple docstring''' _lowerCamelCase : List[Any] = x _lowerCamelCase : List[Any] = y for step in range(A_ ): # noqa: B007 _lowerCamelCase : Dict = a * a - b * b + x _lowerCamelCase : List[str] = 2 * a * b + y _lowerCamelCase : Any = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def snake_case_ ( A_ : float ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def snake_case_ ( A_ : float ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(A_, 1, 1 ) ) def snake_case_ ( A_ : int = 8_00, A_ : int = 6_00, A_ : float = -0.6, A_ : float = 0, A_ : float = 3.2, A_ : int = 50, A_ : bool = True, ): '''simple docstring''' _lowerCamelCase : Tuple = Image.new('''RGB''', (image_width, image_height) ) _lowerCamelCase : int = img.load() # loop through the image-coordinates for image_x in range(A_ ): for image_y in range(A_ ): # determine the figure-coordinates based on the image-coordinates _lowerCamelCase : Optional[Any] = figure_width / image_width * image_height _lowerCamelCase : List[Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width _lowerCamelCase : Optional[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height _lowerCamelCase : str = get_distance(A_, A_, A_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: _lowerCamelCase : Dict = get_color_coded_rgb(A_ ) else: _lowerCamelCase : str = get_black_and_white_rgb(A_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCAmelCase__ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
83
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def lowerCAmelCase ( UpperCamelCase__ : dict[int, list[int]] ): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = len(UpperCamelCase__ ) # No of vertices in graph __UpperCAmelCase = [0] * n __UpperCAmelCase = [False] * n def dfs(UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] ): __UpperCAmelCase = True __UpperCAmelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , id_ ) __UpperCAmelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge __UpperCAmelCase = min(low[at] , low[to] ) __UpperCAmelCase = [] for i in range(UpperCamelCase__ ): if not visited[i]: dfs(UpperCamelCase__ , -1 , UpperCamelCase__ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __lowerCAmelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase : str = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __lowerCAmelCase : int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") __lowerCAmelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __lowerCAmelCase : List[str] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __lowerCAmelCase : Optional[int] = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __UpperCAmelCase = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) __UpperCAmelCase = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): __UpperCAmelCase = None if _re_tf_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = tf_models __UpperCAmelCase = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = flax_models __UpperCAmelCase = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: __UpperCAmelCase = pt_models __UpperCAmelCase = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: __UpperCAmelCase = True break # Try again after removing the last word in the name __UpperCAmelCase = ''''''.join(camel_case_split(UpperCamelCase__ )[:-1] ) __UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __UpperCAmelCase = list(UpperCamelCase__ ) all_models.sort() __UpperCAmelCase = {'''model_type''': all_models} __UpperCAmelCase = [pt_models[t] for t in all_models] __UpperCAmelCase = [tf_models[t] for t in all_models] __UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __UpperCAmelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __UpperCAmelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __UpperCAmelCase = '''AutoTokenizer''' __UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __UpperCAmelCase = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __UpperCAmelCase = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names __UpperCAmelCase = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = get_frameworks_table() __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) __UpperCAmelCase = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=UpperCamelCase__ ) __UpperCAmelCase = Dataset.from_json(UpperCamelCase__ ) __UpperCAmelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(UpperCamelCase__ ) ) } __UpperCAmelCase = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __UpperCAmelCase = sorted(table.keys() ) __UpperCAmelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) __UpperCAmelCase = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , '''pipeline_tags.json''' ) ) if commit_sha is not None: __UpperCAmelCase = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __UpperCAmelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=UpperCamelCase__ , repo_type='''dataset''' , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS __UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: __UpperCAmelCase = pipeline_tasks[key]['''pt'''] if isinstance(UpperCamelCase__ , (list, tuple) ): __UpperCAmelCase = model[0] __UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: __UpperCAmelCase = ''', '''.join(UpperCamelCase__ ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") __lowerCAmelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
654
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''owlvit_text_model''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple=4_9_4_0_8 , SCREAMING_SNAKE_CASE__ : Optional[int]=5_1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2_0_4_8 , SCREAMING_SNAKE_CASE__ : int=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=8 , SCREAMING_SNAKE_CASE__ : int=1_6 , SCREAMING_SNAKE_CASE__ : Dict="quick_gelu" , SCREAMING_SNAKE_CASE__ : Any=1e-5 , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : List[Any]=4_9_4_0_6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4_9_4_0_7 , **SCREAMING_SNAKE_CASE__ : Dict , ): '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a : List[Any] = vocab_size __a : Dict = hidden_size __a : Optional[Any] = intermediate_size __a : Any = num_hidden_layers __a : List[Any] = num_attention_heads __a : Optional[Any] = max_position_embeddings __a : Dict = hidden_act __a : str = layer_norm_eps __a : List[str] = attention_dropout __a : Optional[int] = initializer_range __a : List[Any] = initializer_factor @classmethod def __lowerCAmelCase ( cls : int , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) __a , __a : Dict = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": __a : Dict = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : str = '''owlvit_vision_model''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : Dict=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Dict=1_2 , SCREAMING_SNAKE_CASE__ : List[str]=1_2 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : List[Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : int=3_2 , SCREAMING_SNAKE_CASE__ : Tuple="quick_gelu" , SCREAMING_SNAKE_CASE__ : List[Any]=1e-5 , SCREAMING_SNAKE_CASE__ : List[str]=0.0 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : Tuple=1.0 , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) __a : str = hidden_size __a : int = intermediate_size __a : Dict = num_hidden_layers __a : str = num_attention_heads __a : Optional[int] = num_channels __a : Tuple = image_size __a : str = patch_size __a : List[str] = hidden_act __a : Dict = layer_norm_eps __a : Union[str, Any] = attention_dropout __a : int = initializer_range __a : List[str] = initializer_factor @classmethod def __lowerCAmelCase ( cls : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) __a , __a : int = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": __a : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Any = '''owlvit''' __SCREAMING_SNAKE_CASE : str = True def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Any=5_1_2 , SCREAMING_SNAKE_CASE__ : Optional[int]=2.6_592 , SCREAMING_SNAKE_CASE__ : Dict=True , **SCREAMING_SNAKE_CASE__ : str , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) if text_config is None: __a : int = {} logger.info('text_config is None. Initializing the OwlViTTextConfig with default values.' ) if vision_config is None: __a : Optional[int] = {} logger.info('vision_config is None. initializing the OwlViTVisionConfig with default values.' ) __a : int = OwlViTTextConfig(**SCREAMING_SNAKE_CASE__ ) __a : str = OwlViTVisionConfig(**SCREAMING_SNAKE_CASE__ ) __a : str = projection_dim __a : Union[str, Any] = logit_scale_init_value __a : Union[str, Any] = return_dict __a : int = 1.0 @classmethod def __lowerCAmelCase ( cls : Any , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) __a , __a : int = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @classmethod def __lowerCAmelCase ( cls : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' __a : Union[str, Any] = {} __a : List[str] = text_config __a : Tuple = vision_config return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' __a : List[Any] = copy.deepcopy(self.__dict__ ) __a : Optional[Any] = self.text_config.to_dict() __a : Dict = self.vision_config.to_dict() __a : Dict = self.__class__.model_type return output class _UpperCamelCase( __lowerCamelCase ): @property def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ] ) @property def __lowerCAmelCase ( self : Dict ): '''simple docstring''' return OrderedDict( [ ('logits_per_image', {0: 'batch'}), ('logits_per_text', {0: 'batch'}), ('text_embeds', {0: 'batch'}), ('image_embeds', {0: 'batch'}), ] ) @property def __lowerCAmelCase ( self : str ): '''simple docstring''' return 1e-4 def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : "ProcessorMixin" , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , ): '''simple docstring''' __a : Tuple = super().generate_dummy_inputs( processor.tokenizer , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) __a : Dict = super().generate_dummy_inputs( processor.image_processor , batch_size=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) return {**text_input_dict, **image_input_dict} @property def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return 1_4
47
from typing import Any def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): _validation( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) # Creates data structures and fill initial step UpperCamelCase__ : dict = {} UpperCamelCase__ : dict = {} for state in states_space: UpperCamelCase__ : Optional[int] = observations_space[0] UpperCamelCase__ : Any = ( initial_probabilities[state] * emission_probabilities[state][observation] ) UpperCamelCase__ : Union[str, Any] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(UpperCamelCase__ ) ): UpperCamelCase__ : str = observations_space[o] UpperCamelCase__ : Union[str, Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function UpperCamelCase__ : int = '''''' UpperCamelCase__ : List[str] = -1 for k_state in states_space: UpperCamelCase__ : Union[str, Any] = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: UpperCamelCase__ : Tuple = probability UpperCamelCase__ : Union[str, Any] = k_state # Update probabilities and pointers dicts UpperCamelCase__ : Tuple = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) UpperCamelCase__ : Optional[Any] = arg_max # The final observation UpperCamelCase__ : List[str] = observations_space[len(UpperCamelCase__ ) - 1] # argmax for given final observation UpperCamelCase__ : Dict = '''''' UpperCamelCase__ : Tuple = -1 for k_state in states_space: UpperCamelCase__ : Any = probabilities[(k_state, final_observation)] if probability > max_probability: UpperCamelCase__ : List[str] = probability UpperCamelCase__ : Tuple = k_state UpperCamelCase__ : Any = arg_max # Process pointers backwards UpperCamelCase__ : List[Any] = last_state UpperCamelCase__ : int = [] for o in range(len(UpperCamelCase__ ) - 1 , -1 , -1 ): result.append(UpperCamelCase__ ) UpperCamelCase__ : int = pointers[previous, observations_space[o]] result.reverse() return result def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): _validate_not_empty( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) _validate_lists(UpperCamelCase__ , UpperCamelCase__ ) _validate_dicts( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): _validate_list(UpperCamelCase__ , '''observations_space''' ) _validate_list(UpperCamelCase__ , '''states_space''' ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): if not isinstance(_object , UpperCamelCase__ ): UpperCamelCase__ : List[Any] = f'''{var_name} must be a list''' raise ValueError(UpperCamelCase__ ) else: for x in _object: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : List[Any] = f'''{var_name} must be a list of strings''' raise ValueError(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): _validate_dict(UpperCamelCase__ , '''initial_probabilities''' , UpperCamelCase__ ) _validate_nested_dict(UpperCamelCase__ , '''transition_probabilities''' ) _validate_nested_dict(UpperCamelCase__ , '''emission_probabilities''' ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): _validate_dict(_object , UpperCamelCase__ , UpperCamelCase__ ) for x in _object.values(): _validate_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ): if not isinstance(_object , UpperCamelCase__ ): UpperCamelCase__ : List[str] = f'''{var_name} must be a dict''' raise ValueError(UpperCamelCase__ ) if not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for x in _object ): UpperCamelCase__ : Dict = f'''{var_name} all keys must be strings''' raise ValueError(UpperCamelCase__ ) if not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for x in _object.values() ): UpperCamelCase__ : Optional[Any] = '''nested dictionary ''' if nested else '''''' UpperCamelCase__ : Optional[Any] = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(UpperCamelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
285
0
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps", "test_metrics.py"] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 SCREAMING_SNAKE_CASE = test_metrics @require_cpu def _snake_case ( self : int ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _snake_case ( self : Tuple ): debug_launcher(self.test_metrics.main ) @require_single_gpu def _snake_case ( self : str ): self.test_metrics.main() @require_multi_gpu def _snake_case ( self : int ): print(f"Found {torch.cuda.device_count()} devices." ) SCREAMING_SNAKE_CASE = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase , env=os.environ.copy() )
698
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __a ( A__ : str=None ): if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser("test" ) else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=A__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: SCREAMING_SNAKE_CASE = script_name else: SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split() SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __a ( ): SCREAMING_SNAKE_CASE = test_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() test_command(A__ ) if __name__ == "__main__": main()
698
1
'''simple docstring''' import os import sys import unittest UpperCamelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path UpperCamelCase_ = os.path.join(git_repo_path, "src", "diffusers") class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = find_backend(' if not is_torch_available():' ) self.assertEqual(A, 'torch' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") SCREAMING_SNAKE_CASE : Dict = find_backend(' if not (is_torch_available() and is_transformers_available()):' ) self.assertEqual(A, 'torch_and_transformers' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") SCREAMING_SNAKE_CASE : Dict = find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' ) self.assertEqual(A, 'torch_and_transformers_and_onnx' ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch', A ) self.assertIn('torch_and_transformers', A ) self.assertIn('flax_and_transformers', A ) self.assertIn('torch_and_transformers_and_onnx', A ) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel', objects['torch'] ) self.assertIn('FlaxUNet2DConditionModel', objects['flax'] ) self.assertIn('StableDiffusionPipeline', objects['torch_and_transformers'] ) self.assertIn('FlaxStableDiffusionPipeline', objects['flax_and_transformers'] ) self.assertIn('LMSDiscreteScheduler', objects['torch_and_scipy'] ) self.assertIn('OnnxStableDiffusionPipeline', objects['torch_and_transformers_and_onnx'] ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = create_dummy_object('CONSTANT', '\'torch\'' ) self.assertEqual(A, '\nCONSTANT = None\n' ) SCREAMING_SNAKE_CASE : Any = create_dummy_object('function', '\'torch\'' ) self.assertEqual( A, '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) SCREAMING_SNAKE_CASE : str = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' SCREAMING_SNAKE_CASE : Any = create_dummy_object('FakeClass', '\'torch\'' ) self.assertEqual(A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' SCREAMING_SNAKE_CASE : Tuple = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'], A )
28
'''simple docstring''' def lowercase__( __UpperCamelCase: int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE : int = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
28
1
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ): '''simple docstring''' model.train() SCREAMING_SNAKE_CASE = model(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = F.mse_loss(SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): '''simple docstring''' set_seed(42 ) SCREAMING_SNAKE_CASE = RegressionModel() SCREAMING_SNAKE_CASE = deepcopy(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE = DataLoader(SCREAMING_SNAKE_CASE , batch_size=16 ) model.to(accelerator.device ) if sched: SCREAMING_SNAKE_CASE = AdamW(params=model.parameters() , lr=1E-3 ) SCREAMING_SNAKE_CASE = AdamW(params=ddp_model.parameters() , lr=1E-3 ) SCREAMING_SNAKE_CASE = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) SCREAMING_SNAKE_CASE = LambdaLR(SCREAMING_SNAKE_CASE , lr_lambda=lambda SCREAMING_SNAKE_CASE : epoch**0.65 ) # Make a copy of `model` if sched: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' # Test when on a single CPU or GPU that the context manager does nothing SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) SCREAMING_SNAKE_CASE = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' # Test on distributed setup that context manager behaves properly SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_training_setup(SCREAMING_SNAKE_CASE ) # Use a single batch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = next(iter(SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) SCREAMING_SNAKE_CASE = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] def lowerCamelCase_ ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ): '''simple docstring''' SCREAMING_SNAKE_CASE = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_training_setup(SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) SCREAMING_SNAKE_CASE = ddp_input[torch.randperm(len(SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def lowerCamelCase_ ( SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ): '''simple docstring''' SCREAMING_SNAKE_CASE = Accelerator( split_batches=SCREAMING_SNAKE_CASE , dispatch_batches=SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_training_setup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(SCREAMING_SNAKE_CASE ): step_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" SCREAMING_SNAKE_CASE = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def lowerCamelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE = Accelerator() SCREAMING_SNAKE_CASE = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE = DataLoader(SCREAMING_SNAKE_CASE , batch_size=16 ) SCREAMING_SNAKE_CASE = RegressionDataset(length=96 ) SCREAMING_SNAKE_CASE = DataLoader(SCREAMING_SNAKE_CASE , batch_size=16 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if iteration < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(SCREAMING_SNAKE_CASE ) if batch_num < len(SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCamelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE = Accelerator() SCREAMING_SNAKE_CASE = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
450
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Dict = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
450
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCAmelCase = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
569
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _lowerCAmelCase = HUGGINGFACE_HUB_CACHE _lowerCAmelCase = """config.json""" _lowerCAmelCase = """diffusion_pytorch_model.bin""" _lowerCAmelCase = """diffusion_flax_model.msgpack""" _lowerCAmelCase = """model.onnx""" _lowerCAmelCase = """diffusion_pytorch_model.safetensors""" _lowerCAmelCase = """weights.pb""" _lowerCAmelCase = """https://huggingface.co""" _lowerCAmelCase = default_cache_path _lowerCAmelCase = """diffusers_modules""" _lowerCAmelCase = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) _lowerCAmelCase = ["""fp16""", """non-ema"""] _lowerCAmelCase = """.self_attn"""
569
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm UpperCamelCase_ = logging.get_logger(__name__) @dataclass class _snake_case ( snake_case__ ): '''simple docstring''' A__ : List[str] = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self: Any ,**lowerCamelCase_: Dict ) -> Optional[Any]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase_ : Optional[Any] = deprecated_arg[3:] setattr(self ,lowercase_ ,not kwargs.pop(lowercase_ ) ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) UpperCAmelCase_ : List[str] = kwargs.pop("""torchscript""" ,self.torchscript ) UpperCAmelCase_ : List[str] = kwargs.pop("""torch_xla_tpu_print_metrics""" ,self.torch_xla_tpu_print_metrics ) UpperCAmelCase_ : Optional[int] = kwargs.pop("""fp16_opt_level""" ,self.fpaa_opt_level ) super().__init__(**lowercase_ ) A__ : Tuple = field(default=snake_case__ , metadata={"help": "Trace the models using torchscript"} ) A__ : Any = field(default=snake_case__ , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) A__ : int = field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def A__ ( self: Tuple ) -> Any: requires_backends(self ,["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: UpperCAmelCase_ : int = torch.device("""cpu""" ) UpperCAmelCase_ : Union[str, Any] = 0 elif is_torch_tpu_available(): UpperCAmelCase_ : List[str] = xm.xla_device() UpperCAmelCase_ : Tuple = 0 else: UpperCAmelCase_ : Tuple = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) UpperCAmelCase_ : Optional[int] = torch.cuda.device_count() return device, n_gpu @property def A__ ( self: Dict ) -> Any: return is_torch_tpu_available() and self.tpu @property def A__ ( self: List[str] ) -> int: requires_backends(self ,["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def A__ ( self: Dict ) -> Dict: requires_backends(self ,["""torch"""] ) return self._setup_devices[0] @property def A__ ( self: List[Any] ) -> Optional[Any]: requires_backends(self ,["""torch"""] ) return self._setup_devices[1] @property def A__ ( self: Optional[int] ) -> Union[str, Any]: return self.n_gpu > 0
704
from __future__ import annotations def lowerCamelCase_ ( _a : int | float | str , _a : int | float | str ): '''simple docstring''' if nth_term == "": return [""] UpperCAmelCase_ : Tuple = int(_a ) UpperCAmelCase_ : Optional[int] = int(_a ) UpperCAmelCase_ : list[str] = [] for temp in range(int(_a ) ): series.append(F'''1 / {pow(temp + 1 , int(_a ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ = int(input('''Enter the last number (nth term) of the P-Series''')) UpperCamelCase_ = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
322
0
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowerCAmelCase : Optional[int] = """A painting of a squirrel eating a burger""" __lowerCAmelCase : Union[str, Any] = jax.device_count() __lowerCAmelCase : Any = num_samples * [prompt] __lowerCAmelCase : Any = sd_pipe.prepare_inputs(lowerCAmelCase ) __lowerCAmelCase : List[Any] = replicate(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = shard(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) __lowerCAmelCase : str = jax.random.split(lowerCAmelCase , jax.device_count() ) __lowerCAmelCase : Tuple = sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) __lowerCAmelCase : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowerCAmelCase : Optional[int] = images[0, 2_53:2_56, 2_53:2_56, -1] __lowerCAmelCase : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowerCAmelCase : Dict = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.4_5508, 0.4512] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: """simple docstring""" __lowerCAmelCase : Dict = """stabilityai/stable-diffusion-2""" __lowerCAmelCase ,__lowerCAmelCase : Optional[Any] = FlaxDPMSolverMultistepScheduler.from_pretrained(lowerCAmelCase , subfolder="""scheduler""" ) __lowerCAmelCase ,__lowerCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( lowerCAmelCase , scheduler=lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowerCAmelCase : Tuple = scheduler_params __lowerCAmelCase : Optional[int] = """A painting of a squirrel eating a burger""" __lowerCAmelCase : Optional[Any] = jax.device_count() __lowerCAmelCase : Union[str, Any] = num_samples * [prompt] __lowerCAmelCase : List[str] = sd_pipe.prepare_inputs(lowerCAmelCase ) __lowerCAmelCase : Dict = replicate(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = shard(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) __lowerCAmelCase : List[str] = jax.random.split(lowerCAmelCase , jax.device_count() ) __lowerCAmelCase : str = sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) __lowerCAmelCase : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowerCAmelCase : Tuple = images[0, 2_53:2_56, 2_53:2_56, -1] __lowerCAmelCase : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowerCAmelCase : Optional[int] = jnp.array([0.4336, 0.4_2969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
651
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase = logging.getLogger() def snake_case_ (__A : Path , __A : list ) -> List[Any]: __lowerCAmelCase : Any = """\n""".join(__A ) Path(__A ).open("""w""" ).writelines(__A ) __UpperCAmelCase = """patrickvonplaten/t5-tiny-random""" __UpperCAmelCase = """sshleifer/bart-tiny-random""" __UpperCAmelCase = """sshleifer/tiny-mbart""" __UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Tuple = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" __lowerCAmelCase : str = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() __lowerCAmelCase : str = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""] _dump_articles(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Any = str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" ) __lowerCAmelCase : Optional[Any] = """translation_en_to_de""" if model == T5_TINY else """summarization""" __lowerCAmelCase : Any = f''' run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 '''.split() with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): run_generate() assert Path(lowerCAmelCase ).exists() # os.remove(Path(output_file_name)) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: """simple docstring""" self.run_eval_tester(lowerCAmelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.run_eval_tester(lowerCAmelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : Optional[Any] ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[int] = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" __lowerCAmelCase : List[str] = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() __lowerCAmelCase : Union[str, Any] = { """en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""], """de""": [ """Maschinelles Lernen ist großartig, oder?""", """Ich esse gerne Bananen""", """Morgen ist wieder ein toller Tag!""", ], } __lowerCAmelCase : List[str] = Path(self.get_auto_remove_tmp_dir() ) __lowerCAmelCase : List[str] = str(tmp_dir / """scores.json""" ) __lowerCAmelCase : Dict = str(tmp_dir / """val.target""" ) _dump_articles(lowerCAmelCase , text["""en"""] ) _dump_articles(lowerCAmelCase , text["""de"""] ) __lowerCAmelCase : List[Any] = """translation_en_to_de""" if model == T5_TINY else """summarization""" __lowerCAmelCase : Dict = f''' run_eval_search.py {model} {str(lowerCAmelCase )} {str(lowerCAmelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} '''.split() testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] ) with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): with CaptureStdout() as cs: run_search() __lowerCAmelCase : Any = [""" num_beams | length_penalty""", model, """Best score args"""] __lowerCAmelCase : Tuple = ["""Info"""] if "translation" in task: expected_strings.append("""bleu""" ) else: expected_strings.extend(lowerCAmelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCAmelCase ).exists() os.remove(Path(lowerCAmelCase ) )
651
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = ["""pixel_values"""] def __init__( self : Any , A : bool = True , A : Optional[Dict[str, int]] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 255 , A : bool = True , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , **A : Dict , ): super().__init__(**A ) __snake_case: str = size if size is not None else {"""shortest_edge""": 256} __snake_case: List[Any] = get_size_dict(A , default_to_square=A ) __snake_case: str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __snake_case: List[str] = get_size_dict(A ) __snake_case: Tuple = do_resize __snake_case: Any = size __snake_case: Tuple = resample __snake_case: Optional[Any] = do_center_crop __snake_case: Tuple = crop_size __snake_case: List[str] = do_rescale __snake_case: Optional[int] = rescale_factor __snake_case: Optional[int] = do_normalize __snake_case: List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __snake_case: Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__ ( self : Dict , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : Tuple , ): __snake_case: Dict = get_size_dict(A , default_to_square=A ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __snake_case: Optional[Any] = get_resize_output_image_size(A , size=size["""shortest_edge"""] , default_to_square=A ) return resize(A , size=A , resample=A , data_format=A , **A ) def UpperCAmelCase__ ( self : str , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Optional[Any] , ): __snake_case: Tuple = get_size_dict(A ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase__ ( self : Any , A : np.ndarray , A : float , A : Optional[Union[str, ChannelDimension]] = None , **A : Any ): return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase__ ( self : Optional[Any] , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ): return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase__ ( self : Any , A : ImageInput , A : Optional[bool] = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Dict[str, int] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[float, List[float]]] = None , A : Optional[Union[str, TensorType]] = None , A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A : str , ): __snake_case: Any = do_resize if do_resize is not None else self.do_resize __snake_case: Union[str, Any] = size if size is not None else self.size __snake_case: Optional[int] = get_size_dict(A , default_to_square=A ) __snake_case: Union[str, Any] = resample if resample is not None else self.resample __snake_case: Any = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case: Optional[int] = crop_size if crop_size is not None else self.crop_size __snake_case: List[str] = get_size_dict(A ) __snake_case: List[str] = do_rescale if do_rescale is not None else self.do_rescale __snake_case: int = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case: Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __snake_case: List[str] = image_mean if image_mean is not None else self.image_mean __snake_case: Optional[Any] = image_std if image_std is not None else self.image_std __snake_case: Optional[int] = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __snake_case: str = [to_numpy_array(A ) for image in images] if do_resize: __snake_case: Optional[int] = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: __snake_case: Dict = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: __snake_case: Optional[int] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: __snake_case: Optional[Any] = [self.normalize(image=A , mean=A , std=A ) for image in images] __snake_case: List[str] = [to_channel_dimension_format(A , A ) for image in images] __snake_case: List[str] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
155
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __UpperCAmelCase : Optional[Any] = 4 __UpperCAmelCase : str = 3 class __snake_case ( __lowerCamelCase ): '''simple docstring''' pass def A__ ( SCREAMING_SNAKE_CASE__) -> List[str]: for shard in shards: for i in range(SCREAMING_SNAKE_CASE__): yield {"i": i, "shard": shard} def A__ ( ) -> Optional[Any]: __snake_case: Optional[int] = int(os.environ["""RANK"""]) __snake_case: Dict = int(os.environ["""WORLD_SIZE"""]) __snake_case: Union[str, Any] = ArgumentParser() parser.add_argument("""--streaming""" , type=SCREAMING_SNAKE_CASE__) parser.add_argument("""--local_rank""" , type=SCREAMING_SNAKE_CASE__) parser.add_argument("""--num_workers""" , type=SCREAMING_SNAKE_CASE__ , default=0) __snake_case: Union[str, Any] = parser.parse_args() __snake_case: Union[str, Any] = args.streaming __snake_case: Dict = args.num_workers __snake_case: Optional[Any] = {"""shards""": [F'''shard_{shard_idx}''' for shard_idx in range(SCREAMING_SNAKE_CASE__)]} __snake_case: Union[str, Any] = IterableDataset.from_generator(SCREAMING_SNAKE_CASE__ , gen_kwargs=SCREAMING_SNAKE_CASE__) if not streaming: __snake_case: int = Dataset.from_list(list(SCREAMING_SNAKE_CASE__)) __snake_case: List[str] = split_dataset_by_node(SCREAMING_SNAKE_CASE__ , rank=SCREAMING_SNAKE_CASE__ , world_size=SCREAMING_SNAKE_CASE__) __snake_case: Tuple = torch.utils.data.DataLoader(SCREAMING_SNAKE_CASE__ , num_workers=SCREAMING_SNAKE_CASE__) __snake_case: int = NUM_SHARDS * NUM_ITEMS_PER_SHARD __snake_case: str = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) __snake_case: Tuple = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
155
1
'''simple docstring''' def __snake_case (__UpperCAmelCase ): """simple docstring""" if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
501
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __lowerCamelCase : List[str] = """<<<<<<< This should probably be modified because it mentions: """ __lowerCamelCase : Optional[int] = """======= >>>>>>> """ __lowerCamelCase : List[str] = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] __lowerCamelCase : Optional[int] = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def __snake_case (__UpperCAmelCase ): """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowerCAmelCase__ ( _lowerCAmelCase ): @staticmethod def __UpperCamelCase ( UpperCamelCase_ : ArgumentParser ) -> str: """simple docstring""" lowerCamelCase_ : int = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=UpperCamelCase_ ) def __init__( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : str , *UpperCamelCase_ : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : Union[str, Any] = get_logger('''datasets-cli/converting''' ) lowerCamelCase_ : Union[str, Any] = tfds_path lowerCamelCase_ : List[Any] = datasets_directory def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" if os.path.isdir(self._tfds_path ): lowerCamelCase_ : Union[str, Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowerCamelCase_ : Any = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowerCamelCase_ : Optional[int] = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) lowerCamelCase_ : Optional[Any] = [] lowerCamelCase_ : Optional[int] = [] lowerCamelCase_ : str = {} if os.path.isdir(self._tfds_path ): lowerCamelCase_ : Any = os.listdir(UpperCamelCase_ ) else: lowerCamelCase_ : Optional[int] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) lowerCamelCase_ : Dict = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) if not os.path.isfile(UpperCamelCase_ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(UpperCamelCase_ , encoding='''utf-8''' ) as f: lowerCamelCase_ : int = f.readlines() lowerCamelCase_ : Union[str, Any] = [] lowerCamelCase_ : Optional[Any] = False lowerCamelCase_ : Optional[Any] = False lowerCamelCase_ : List[Any] = [] for line in lines: lowerCamelCase_ : Any = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowerCamelCase_ : Union[str, Any] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowerCamelCase_ : Union[str, Any] = '''''' continue elif "from absl import logging" in out_line: lowerCamelCase_ : Optional[Any] = '''from datasets import logging\n''' elif "getLogger" in out_line: lowerCamelCase_ : str = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowerCamelCase_ : Optional[Any] = True lowerCamelCase_ : List[Any] = list(filter(lambda UpperCamelCase_ : e in out_line , UpperCamelCase_ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(UpperCamelCase_ ) + '''\n''' ) out_lines.append(UpperCamelCase_ ) out_lines.append(UpperCamelCase_ ) continue else: for pattern, replacement in TO_CONVERT: lowerCamelCase_ : Tuple = re.sub(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowerCamelCase_ : Optional[int] = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , UpperCamelCase_ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowerCamelCase_ : Any = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowerCamelCase_ : Tuple = True out_lines.append(UpperCamelCase_ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowerCamelCase_ : Any = f_name.replace('''.py''' , '''''' ) lowerCamelCase_ : Any = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ : List[Any] = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(UpperCamelCase_ ) if needs_manual_update: with_manual_update.append(UpperCamelCase_ ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.writelines(UpperCamelCase_ ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: lowerCamelCase_ : str = os.path.basename(UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(UpperCamelCase_ , UpperCamelCase_ ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
501
1
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets lowerCamelCase__ : Tuple = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" lowerCamelCase__ : Optional[Any] = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" lowerCamelCase__ : Optional[int] = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self :int ) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict=None , lowerCamelCase_ :Union[str, Any]=True , lowerCamelCase_ :Tuple=False ) -> Dict: '''simple docstring''' if rouge_types is None: SCREAMING_SNAKE_CASE : Optional[Any] = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] SCREAMING_SNAKE_CASE : int = rouge_scorer.RougeScorer(rouge_types=__lowerCAmelCase , use_stemmer=__lowerCAmelCase ) if use_aggregator: SCREAMING_SNAKE_CASE : Any = scoring.BootstrapAggregator() else: SCREAMING_SNAKE_CASE : Optional[int] = [] for ref, pred in zip(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE : Tuple = scorer.score(__lowerCAmelCase , __lowerCAmelCase ) if use_aggregator: aggregator.add_scores(__lowerCAmelCase ) else: scores.append(__lowerCAmelCase ) if use_aggregator: SCREAMING_SNAKE_CASE : str = aggregator.aggregate() else: SCREAMING_SNAKE_CASE : int = {} for key in scores[0]: SCREAMING_SNAKE_CASE : List[str] = [score[key] for score in scores] return result
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[Any] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Dict = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
0
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig __a = logging.get_logger(__name__) __a = '''T5Config''' def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->jnp.ndarray: """simple docstring""" lowercase : str = jnp.zeros_like(_UpperCamelCase ) lowercase : Dict = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowercase : Optional[int] = shifted_input_ids.at[:, 0].set(_UpperCamelCase ) lowercase : str = jnp.where(shifted_input_ids == -100, _UpperCamelCase, _UpperCamelCase ) return shifted_input_ids class __SCREAMING_SNAKE_CASE ( A__ ): A : Optional[int] = 'mt5' A : Dict = MTaConfig class __SCREAMING_SNAKE_CASE ( A__ ): A : List[Any] = 'mt5' A : List[str] = MTaConfig class __SCREAMING_SNAKE_CASE ( A__ ): A : List[str] = 'mt5' A : Optional[Any] = MTaConfig
319
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __SCREAMING_SNAKE_CASE : def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=[0, 1, 2, 3] , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=[1, 384, 24, 24] , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , ): lowercase : Optional[Any] = parent lowercase : Tuple = batch_size lowercase : Any = image_size lowercase : Union[str, Any] = patch_size lowercase : Optional[Any] = num_channels lowercase : Optional[int] = is_training lowercase : Dict = use_labels lowercase : Union[str, Any] = hidden_size lowercase : Dict = num_hidden_layers lowercase : Optional[Any] = backbone_out_indices lowercase : Dict = num_attention_heads lowercase : Tuple = intermediate_size lowercase : Union[str, Any] = hidden_act lowercase : str = hidden_dropout_prob lowercase : Optional[Any] = attention_probs_dropout_prob lowercase : Union[str, Any] = initializer_range lowercase : str = num_labels lowercase : str = backbone_featmap_shape lowercase : Optional[int] = scope lowercase : int = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) lowercase : List[Any] = (image_size // patch_size) ** 2 lowercase : int = num_patches + 1 def __lowerCamelCase ( self ): lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : int = None if self.use_labels: lowercase : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): lowercase : List[str] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=SCREAMING_SNAKE_CASE__ , backbone_featmap_shape=self.backbone_featmap_shape , ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = DPTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Tuple = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Union[str, Any] = self.num_labels lowercase : Optional[Any] = DPTForDepthEstimation(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Dict = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[Any] = self.num_labels lowercase : List[str] = DPTForSemanticSegmentation(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Optional[int] = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCamelCase ( self ): lowercase : List[Any] = self.prepare_config_and_inputs() lowercase , lowercase , lowercase : Union[str, Any] = config_and_inputs lowercase : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( A__ , A__ , unittest.TestCase ): A : Tuple = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () A : Optional[int] = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) A : str = False A : Union[str, Any] = False A : List[Any] = False def __lowerCamelCase ( self ): lowercase : List[str] = DPTModelTester(self ) lowercase : Tuple = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def __lowerCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): lowercase , lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : str = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) ) def __lowerCamelCase ( self ): lowercase , lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Dict = model_class(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : List[str] = [*signature.parameters.keys()] lowercase : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase , lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Tuple = True if model_class in get_values(SCREAMING_SNAKE_CASE__ ): continue lowercase : List[str] = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.train() lowercase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ).loss loss.backward() def __lowerCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase , lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Dict = False lowercase : Optional[int] = True if model_class in get_values(SCREAMING_SNAKE_CASE__ ) or not model_class.supports_gradient_checkpointing: continue lowercase : Any = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.gradient_checkpointing_enable() model.train() lowercase : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = model(**SCREAMING_SNAKE_CASE__ ).loss loss.backward() def __lowerCamelCase ( self ): lowercase , lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Optional[Any] = _config_zero_init(SCREAMING_SNAKE_CASE__ ) for model_class in self.all_model_classes: lowercase : List[Any] = model_class(config=SCREAMING_SNAKE_CASE__ ) # Skip the check for the backbone lowercase : Tuple = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": lowercase : List[Any] = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCamelCase ( self ): pass @slow def __lowerCamelCase ( self ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: lowercase : Any = DPTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type lowercase , lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Any = '''add''' with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = DPTForDepthEstimation(SCREAMING_SNAKE_CASE__ ) def __lowercase ( ) ->List[Any]: """simple docstring""" lowercase : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): lowercase : Optional[Any] = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) lowercase : Optional[Any] = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(SCREAMING_SNAKE_CASE__ ) lowercase : Any = prepare_img() lowercase : str = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): lowercase : Any = model(**SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = outputs.predicted_depth # verify the predicted depth lowercase : str = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
319
1
'''simple docstring''' import math def lowerCamelCase ( lowerCamelCase : int): A_ : str = math.loga(math.sqrt(4 * positive_integer + 1) / 2 + 1 / 2) return exponent == int(lowerCamelCase) def lowerCamelCase ( lowerCamelCase : float = 1 / 1_2345): A_ : int = 0 A_ : Dict = 0 A_ : Tuple = 3 while True: A_ : Any = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(lowerCamelCase): A_ : Union[str, Any] = int(lowerCamelCase) total_partitions += 1 if check_partition_perfect(lowerCamelCase): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(lowerCamelCase) integer += 1 if __name__ == "__main__": print(f"""{solution() = }""")
721
'''simple docstring''' import baseaa def lowerCamelCase ( lowerCamelCase : str): return baseaa.aaaencode(string.encode("""utf-8""")) def lowerCamelCase ( lowerCamelCase : bytes): return baseaa.aaadecode(lowerCamelCase).decode("""utf-8""") if __name__ == "__main__": import doctest doctest.testmod()
27
0
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase="pt" ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE = {"""add_prefix_space""": True} if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not line.startswith(""" """ ) else {} __SCREAMING_SNAKE_CASE = padding_side return tokenizer( [line] , max_length=__UpperCAmelCase , padding="""max_length""" if pad_to_max_length else None , truncation=__UpperCAmelCase , return_tensors=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = input_ids.ne(__UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __a ( _snake_case ): def __init__( self : List[str] ,lowerCamelCase : Dict ,lowerCamelCase : Tuple ,lowerCamelCase : List[str] ,lowerCamelCase : Tuple ,lowerCamelCase : Tuple="train" ,lowerCamelCase : str=None ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : str=None ,lowerCamelCase : Optional[int]="" ,): '''simple docstring''' super().__init__() __SCREAMING_SNAKE_CASE = Path(lowerCamelCase ).joinpath(type_path + """.source""" ) __SCREAMING_SNAKE_CASE = Path(lowerCamelCase ).joinpath(type_path + """.target""" ) __SCREAMING_SNAKE_CASE = self.get_char_lens(self.src_file ) __SCREAMING_SNAKE_CASE = max_source_length __SCREAMING_SNAKE_CASE = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" __SCREAMING_SNAKE_CASE = tokenizer __SCREAMING_SNAKE_CASE = prefix if n_obs is not None: __SCREAMING_SNAKE_CASE = self.src_lens[:n_obs] __SCREAMING_SNAKE_CASE = src_lang __SCREAMING_SNAKE_CASE = tgt_lang def __len__( self : Optional[int] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self : Union[str, Any] ,lowerCamelCase : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = index + 1 # linecache starts at 1 __SCREAMING_SNAKE_CASE = self.prefix + linecache.getline(str(self.src_file ) ,lowerCamelCase ).rstrip("""\n""" ) __SCREAMING_SNAKE_CASE = linecache.getline(str(self.tgt_file ) ,lowerCamelCase ).rstrip("""\n""" ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer ,lowerCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __SCREAMING_SNAKE_CASE = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,lowerCamelCase ) else self.tokenizer ) __SCREAMING_SNAKE_CASE = self.tokenizer.generator if isinstance(self.tokenizer ,lowerCamelCase ) else self.tokenizer __SCREAMING_SNAKE_CASE = encode_line(lowerCamelCase ,lowerCamelCase ,self.max_source_length ,"""right""" ) __SCREAMING_SNAKE_CASE = encode_line(lowerCamelCase ,lowerCamelCase ,self.max_target_length ,"""right""" ) __SCREAMING_SNAKE_CASE = source_inputs["""input_ids"""].squeeze() __SCREAMING_SNAKE_CASE = target_inputs["""input_ids"""].squeeze() __SCREAMING_SNAKE_CASE = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCAmelCase__ ( lowerCamelCase : List[str] ): '''simple docstring''' return [len(lowerCamelCase ) for x in Path(lowerCamelCase ).open().readlines()] def UpperCAmelCase__ ( self : int ,lowerCamelCase : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.stack([x["""input_ids"""] for x in batch] ) __SCREAMING_SNAKE_CASE = torch.stack([x["""attention_mask"""] for x in batch] ) __SCREAMING_SNAKE_CASE = torch.stack([x["""decoder_input_ids"""] for x in batch] ) __SCREAMING_SNAKE_CASE = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,lowerCamelCase ) else self.tokenizer.pad_token_id ) __SCREAMING_SNAKE_CASE = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,lowerCamelCase ) else self.tokenizer.pad_token_id ) __SCREAMING_SNAKE_CASE = trim_batch(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = trim_batch(lowerCamelCase ,lowerCamelCase ,attention_mask=lowerCamelCase ) __SCREAMING_SNAKE_CASE = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch a = getLogger(__name__) def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return list(itertools.chain.from_iterable(__UpperCAmelCase ) ) def __magic_name__ ( __UpperCAmelCase ) -> None: '''simple docstring''' __SCREAMING_SNAKE_CASE = get_git_info() save_json(__UpperCAmelCase , os.path.join(__UpperCAmelCase , """git_log.json""" ) ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=4 , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' with open(__UpperCAmelCase , """w""" ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=__UpperCAmelCase , **__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' with open(__UpperCAmelCase ) as f: return json.load(__UpperCAmelCase ) def __magic_name__ ( ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = git.Repo(search_parent_directories=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = { """repo_id""": str(__UpperCAmelCase ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> List: '''simple docstring''' return list(map(__UpperCAmelCase , __UpperCAmelCase ) ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' with open(__UpperCAmelCase , """wb""" ) as f: return pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' def remove_articles(__UpperCAmelCase ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , __UpperCAmelCase ) def white_space_fix(__UpperCAmelCase ): return " ".join(text.split() ) def remove_punc(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__UpperCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCAmelCase ) ) ) ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = normalize_answer(__UpperCAmelCase ).split() __SCREAMING_SNAKE_CASE = normalize_answer(__UpperCAmelCase ).split() __SCREAMING_SNAKE_CASE = Counter(__UpperCAmelCase ) & Counter(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = sum(common.values() ) if num_same == 0: return 0 __SCREAMING_SNAKE_CASE = 1.0 * num_same / len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = 1.0 * num_same / len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = (2 * precision * recall) / (precision + recall) return fa def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' return normalize_answer(__UpperCAmelCase ) == normalize_answer(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' assert len(__UpperCAmelCase ) == len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = 0 for hypo, pred in zip(__UpperCAmelCase , __UpperCAmelCase ): em += exact_match_score(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: em /= len(__UpperCAmelCase ) return {"em": em} def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return model_prefix.startswith("""rag""" ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __SCREAMING_SNAKE_CASE = """dropout_rate""" for p in extra_params: if getattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if not hasattr(__UpperCAmelCase , __UpperCAmelCase ) and not hasattr(__UpperCAmelCase , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(__UpperCAmelCase ) ) delattr(__UpperCAmelCase , __UpperCAmelCase ) continue __SCREAMING_SNAKE_CASE = p if hasattr(__UpperCAmelCase , __UpperCAmelCase ) else equivalent_param[p] setattr(__UpperCAmelCase , __UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) delattr(__UpperCAmelCase , __UpperCAmelCase ) return hparams, config
109
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class a ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , __lowercase : Union[str, Any] , __lowercase : Any=13 , __lowercase : Optional[int]=7 , __lowercase : str=True , __lowercase : Optional[Any]=True , __lowercase : int=True , __lowercase : int=True , __lowercase : List[str]=99 , __lowercase : int=32 , __lowercase : int=5 , __lowercase : Tuple=4 , __lowercase : str=37 , __lowercase : Optional[int]="gelu" , __lowercase : Tuple=0.1 , __lowercase : str=0.1 , __lowercase : Dict=512 , __lowercase : List[Any]=16 , __lowercase : Dict=2 , __lowercase : Union[str, Any]=0.02 , __lowercase : Dict=4 , ) -> int: __UpperCAmelCase : Dict = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : str = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_attention_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Any = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : str = type_sequence_label_size __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : Tuple = num_choices def UpperCAmelCase ( self : Dict ) -> Tuple: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Optional[Any] = None if self.use_attention_mask: __UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : List[Any] = None if self.use_token_type_ids: __UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[Any] = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self : Tuple ) -> List[Any]: __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase ( self : Any ) -> List[str]: __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : int = True __UpperCAmelCase : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class a ( lowercase__ , unittest.TestCase ): """simple docstring""" a : Optional[Any] = True a : List[Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: __UpperCAmelCase : List[str] = FlaxRobertaModelTester(self ) @slow def UpperCAmelCase ( self : str ) -> List[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class_name.from_pretrained("""roberta-base""" , from_pt=__lowercase ) __UpperCAmelCase : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowercase )
63
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Dict = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """megatron-bert""" def __init__( self :Optional[Any] , lowerCamelCase_ :Optional[Any]=2_90_56 , lowerCamelCase_ :Tuple=10_24 , lowerCamelCase_ :str=24 , lowerCamelCase_ :int=16 , lowerCamelCase_ :List[str]=40_96 , lowerCamelCase_ :List[Any]="gelu" , lowerCamelCase_ :List[str]=0.1 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Optional[int]=5_12 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :Dict=0.0_2 , lowerCamelCase_ :List[str]=1E-12 , lowerCamelCase_ :str=0 , lowerCamelCase_ :List[Any]="absolute" , lowerCamelCase_ :str=True , **lowerCamelCase_ :int , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : int = use_cache
711
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__: '''simple docstring''' def __init__( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Any=13 , lowerCamelCase_ :Any=32 , lowerCamelCase_ :Union[str, Any]=2 , lowerCamelCase_ :Any=3 , lowerCamelCase_ :Union[str, Any]=16 , lowerCamelCase_ :int=[1, 2, 1] , lowerCamelCase_ :str=[2, 2, 4] , lowerCamelCase_ :str=2 , lowerCamelCase_ :Tuple=2.0 , lowerCamelCase_ :Union[str, Any]=True , lowerCamelCase_ :str=0.0 , lowerCamelCase_ :Optional[int]=0.0 , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :str=False , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :List[Any]=1E-5 , lowerCamelCase_ :int=True , lowerCamelCase_ :str=None , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Union[str, Any]=10 , lowerCamelCase_ :List[Any]=8 , ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Any = embed_dim SCREAMING_SNAKE_CASE : int = depths SCREAMING_SNAKE_CASE : List[str] = num_heads SCREAMING_SNAKE_CASE : Union[str, Any] = window_size SCREAMING_SNAKE_CASE : Optional[Any] = mlp_ratio SCREAMING_SNAKE_CASE : List[Any] = qkv_bias SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = drop_path_rate SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = use_absolute_embeddings SCREAMING_SNAKE_CASE : Any = patch_norm SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : List[Any] = scope SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = encoder_stride def __lowerCAmelCase ( self :Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : int = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self :int ) -> int: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = SwinvaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :str , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = SwinvaForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : List[Any] = SwinvaForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Any , lowerCamelCase_ :int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = SwinvaForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self :List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) UpperCamelCase = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = SwinvaModelTester(self ) SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=lowerCamelCase_ , embed_dim=37 ) def __lowerCAmelCase ( self :Dict ) -> List[str]: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self :List[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def __lowerCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def __lowerCAmelCase ( self :List[Any] ) -> Any: '''simple docstring''' pass def __lowerCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , nn.Linear ) ) def __lowerCAmelCase ( self :int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Tuple = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Any = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.attentions SCREAMING_SNAKE_CASE : Tuple = len(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Optional[int] = config.window_size**2 SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Dict = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) SCREAMING_SNAKE_CASE : Dict = len(lowerCamelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : int = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): SCREAMING_SNAKE_CASE : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states SCREAMING_SNAKE_CASE : Optional[Any] = 2 self.assertEqual(out_len + added_hidden_states , len(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Any , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE : str = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) # Swinv2 has a different seq_length SCREAMING_SNAKE_CASE : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) SCREAMING_SNAKE_CASE : Any = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = reshaped_hidden_states[0].shape SCREAMING_SNAKE_CASE : Optional[int] = ( reshaped_hidden_states[0].view(lowerCamelCase_ , lowerCamelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __lowerCAmelCase ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : List[str] = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = 3 SCREAMING_SNAKE_CASE : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , (padded_height, padded_width) ) def __lowerCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :Tuple ) -> List[str]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Tuple = SwinvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Tuple = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class lowercase__( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self :Dict ) -> List[Any]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE : List[str] = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**lowerCamelCase_ ) # verify the logits SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) )
18
0
'''simple docstring''' def __snake_case ( _UpperCAmelCase : int): if not isinstance(_UpperCAmelCase, _UpperCAmelCase): raise TypeError('''Input value must be an \'int\' type''') UpperCamelCase = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
212
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : Tuple = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = '''time_series_transformer''' _snake_case = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "student_t" , lowerCamelCase__ = "nll" , lowerCamelCase__ = 1 , lowerCamelCase__ = [1, 2, 3, 4, 5, 6, 7] , lowerCamelCase__ = "mean" , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 , lowerCamelCase__ = 0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 3_2 , lowerCamelCase__ = 3_2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = 2 , lowerCamelCase__ = True , lowerCamelCase__ = "gelu" , lowerCamelCase__ = 6_4 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 1_0_0 , lowerCamelCase__ = 0.02 , lowerCamelCase__=True , **lowerCamelCase__ , ): '''simple docstring''' UpperCamelCase = prediction_length UpperCamelCase = context_length or prediction_length UpperCamelCase = distribution_output UpperCamelCase = loss UpperCamelCase = input_size UpperCamelCase = num_time_features UpperCamelCase = lags_sequence UpperCamelCase = scaling UpperCamelCase = num_dynamic_real_features UpperCamelCase = num_static_real_features UpperCamelCase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCamelCase__ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) UpperCamelCase = cardinality else: UpperCamelCase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCamelCase__ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) UpperCamelCase = embedding_dimension else: UpperCamelCase = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCamelCase = num_parallel_samples # Transformer architecture configuration UpperCamelCase = input_size * len(lowerCamelCase__ ) + self._number_of_features UpperCamelCase = d_model UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_attention_heads UpperCamelCase = encoder_ffn_dim UpperCamelCase = decoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = decoder_layers UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = use_cache super().__init__(is_encoder_decoder=lowerCamelCase__ , **lowerCamelCase__ ) @property def UpperCAmelCase ( self ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
212
1
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a : Optional[Any] = logging.get_logger(__name__) a : List[str] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a : snake_case_ = field( default=_lowerCamelCase , metadata={"help": "Model type selected in the list: " + ", ".join(_lowerCamelCase )} ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) snake_case_ = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case_ = field( default=128 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) snake_case_ = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) snake_case_ = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) snake_case_ = field( default=_lowerCamelCase , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) snake_case_ = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) snake_case_ = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) snake_case_ = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) snake_case_ = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class a ( _lowerCamelCase ): snake_case_ = "train" snake_case_ = "dev" class a ( _lowerCamelCase ): snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self : str , lowercase_ : SquadDataTrainingArguments , lowercase_ : PreTrainedTokenizer , lowercase_ : Optional[int] = None , lowercase_ : Union[str, Split] = Split.train , lowercase_ : Optional[bool] = False , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = "pt" , ): snake_case_ = args snake_case_ = is_language_sensitive snake_case_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase_ , lowercase_ ): try: snake_case_ = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) snake_case_ = mode # Load data features from cache or dataset file snake_case_ = '''v2''' if args.version_2_with_negative else '''v1''' snake_case_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case_ = cached_features_file + '''.lock''' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: snake_case_ = time.time() snake_case_ = torch.load(lowercase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case_ = self.old_features['''features'''] snake_case_ = self.old_features.get('''dataset''' , lowercase_ ) snake_case_ = self.old_features.get('''examples''' , lowercase_ ) logger.info( F"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" ''' future run''' ) else: if mode == Split.dev: snake_case_ = self.processor.get_dev_examples(args.data_dir ) else: snake_case_ = self.processor.get_train_examples(args.data_dir ) snake_case_ ,snake_case_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=lowercase_ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=lowercase_ , ) snake_case_ = time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , lowercase_ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self : int ): return len(self.features ) def __getitem__( self : List[Any] , lowercase_ : Tuple ): # Convert to Tensors and build dataset snake_case_ = self.features[i] snake_case_ = torch.tensor(feature.input_ids , dtype=torch.long ) snake_case_ = torch.tensor(feature.attention_mask , dtype=torch.long ) snake_case_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) snake_case_ = torch.tensor(feature.cls_index , dtype=torch.long ) snake_case_ = torch.tensor(feature.p_mask , dtype=torch.float ) snake_case_ = torch.tensor(feature.is_impossible , dtype=torch.float ) snake_case_ = { '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case_ = torch.tensor(feature.start_position , dtype=torch.long ) snake_case_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
708
'''simple docstring''' a : Dict = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a : Optional[Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a : Optional[Any] = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> str: '''simple docstring''' assert len(str(__UpperCAmelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: snake_case_ = year // 100 snake_case_ = (5 * (century % 4) + 2) % 7 snake_case_ = year % 100 snake_case_ = centurian % 12 snake_case_ = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 snake_case_ = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) snake_case_ = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
593
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration a_ :Any = 'facebook/wmt19-en-de' a_ :Tuple = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model a_ :List[str] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) a_ :Union[str, Any] = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test a_ :Any = tokenizer(['Making tiny model'], return_tensors='pt') a_ :Tuple = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save a_ :str = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
35
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters a : Optional[Any] = False a : str = False def __magic_name__ ( UpperCamelCase : Namespace ) -> Optional[int]: return TrainCommand(UpperCamelCase ) class lowercase(_lowercase ): @staticmethod def lowercase__ ( __SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" a__ = parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=__SCREAMING_SNAKE_CASE , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=__SCREAMING_SNAKE_CASE , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=__SCREAMING_SNAKE_CASE , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=__SCREAMING_SNAKE_CASE , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=__SCREAMING_SNAKE_CASE , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=__SCREAMING_SNAKE_CASE , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=__SCREAMING_SNAKE_CASE , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=__SCREAMING_SNAKE_CASE , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=__SCREAMING_SNAKE_CASE , default=3_2 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=__SCREAMING_SNAKE_CASE , default=6_4 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=__SCREAMING_SNAKE_CASE , default=3e-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=__SCREAMING_SNAKE_CASE , default=1e-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__( self , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" a__ = logging.get_logger('transformers-cli/training' ) a__ = 'tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=__SCREAMING_SNAKE_CASE ) a__ = args.output a__ = args.column_label a__ = args.column_text a__ = args.column_id self.logger.info(f'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": a__ = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'Loading dataset from {args.train_data}' ) a__ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) a__ = None if args.validation_data: self.logger.info(f'Loading validation dataset from {args.validation_data}' ) a__ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) a__ = args.validation_split a__ = args.train_batch_size a__ = args.valid_batch_size a__ = args.learning_rate a__ = args.adam_epsilon def lowercase__ ( self ) -> Tuple: """simple docstring""" if self.framework == "tf": return self.run_tf() return self.run_torch() def lowercase__ ( self ) -> Any: """simple docstring""" raise NotImplementedError def lowercase__ ( self ) -> Dict: """simple docstring""" self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
273
0
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : str=2 , _UpperCamelCase : Any=56 , _UpperCamelCase : Optional[Any]=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : int=True , _UpperCamelCase : Any=True , _UpperCamelCase : Optional[int]=99 , _UpperCamelCase : Optional[Any]=32 , _UpperCamelCase : Optional[Any]=2 , _UpperCamelCase : str=2 , _UpperCamelCase : Optional[int]=7 , _UpperCamelCase : int="gelu_new" , _UpperCamelCase : Tuple=0.1 , _UpperCamelCase : List[str]=0.1 , _UpperCamelCase : Any=512 , _UpperCamelCase : Optional[int]=16 , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : int=0.0_2 , _UpperCamelCase : Optional[Any]=4 , _UpperCamelCase : str="block_sparse" , _UpperCamelCase : List[str]=True , _UpperCamelCase : List[str]=False , _UpperCamelCase : Dict=2 , _UpperCamelCase : Any=3 , ): _lowercase: Any = parent _lowercase: Optional[Any] = batch_size _lowercase: str = seq_length _lowercase: List[str] = is_training _lowercase: str = use_attention_mask _lowercase: Optional[Any] = use_token_type_ids _lowercase: Union[str, Any] = use_labels _lowercase: Optional[int] = vocab_size _lowercase: Optional[int] = hidden_size _lowercase: Any = num_hidden_layers _lowercase: int = num_attention_heads _lowercase: Optional[Any] = intermediate_size _lowercase: Any = hidden_act _lowercase: Dict = hidden_dropout_prob _lowercase: Optional[int] = attention_probs_dropout_prob _lowercase: List[Any] = max_position_embeddings _lowercase: List[str] = type_vocab_size _lowercase: List[str] = type_sequence_label_size _lowercase: str = initializer_range _lowercase: List[str] = num_choices _lowercase: Any = rescale_embeddings _lowercase: str = attention_type _lowercase: int = use_bias _lowercase: Dict = block_size _lowercase: Optional[int] = num_random_blocks def UpperCAmelCase__ ( self : List[Any]): _lowercase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _lowercase: Optional[int] = None if self.use_attention_mask: _lowercase: Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length]) _lowercase: Optional[int] = None if self.use_token_type_ids: _lowercase: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _lowercase: Tuple = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self : str): _lowercase: Optional[int] = self.prepare_config_and_inputs() _lowercase: List[Any] = config_and_inputs _lowercase: List[Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class A ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase : int = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowerCamelCase : List[Any] = False lowerCamelCase : List[str] = False def UpperCAmelCase__ ( self : str): _lowercase: List[str] = FlaxBigBirdModelTester(self) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase__ ( self : Optional[int]): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase__ ( self : List[Any]): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase__ ( self : int): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase__ ( self : Union[str, Any]): super().test_hidden_states_output() @slow def UpperCAmelCase__ ( self : Union[str, Any]): for model_class_name in self.all_model_classes: _lowercase: Optional[int] = model_class_name.from_pretrained("google/bigbird-roberta-base") self.assertIsNotNone(_UpperCamelCase) def UpperCAmelCase__ ( self : Any): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase__ ( self : Union[str, Any]): _lowercase: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _lowercase: List[str] = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase) _lowercase: int = model_class(_UpperCamelCase) @jax.jit def model_jitted(_UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any]=None , **_UpperCamelCase : List[str]): return model(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , **_UpperCamelCase) with self.subTest("JIT Enabled"): _lowercase: Any = model_jitted(**_UpperCamelCase).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): _lowercase: Any = model_jitted(**_UpperCamelCase).to_tuple() self.assertEqual(len(_UpperCamelCase) , len(_UpperCamelCase)) for jitted_output, output in zip(_UpperCamelCase , _UpperCamelCase): self.assertEqual(jitted_output.shape , output.shape) def UpperCAmelCase__ ( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any]=1e-5 , _UpperCamelCase : Dict="outputs" , _UpperCamelCase : Optional[int]=None): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("outputs.attentions"): return else: super().check_pt_flax_outputs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
708
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _SCREAMING_SNAKE_CASE : int = get_logger(__name__) class A : '''simple docstring''' lowerCamelCase : Dict = """dummy_data""" lowerCamelCase : List[Any] = """datasets""" lowerCamelCase : List[str] = False def __init__( self : str , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : Union[Version, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : bool = False , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[List[Callable]] = None , ): _lowercase: Dict = 0 _lowercase: Dict = dataset_name _lowercase: Any = cache_dir _lowercase: Union[str, Any] = use_local_dummy_data _lowercase: Tuple = config # download_callbacks take a single url as input _lowercase: List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowercase: Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowercase: Optional[int] = str(_UpperCamelCase) # to be downloaded _lowercase: Dict = None _lowercase: Dict = None @property def UpperCAmelCase__ ( self : str): if self._dummy_file is None: _lowercase: Any = self.download_dummy_data() return self._dummy_file @property def UpperCAmelCase__ ( self : Tuple): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name) # structure is dummy / version_name return os.path.join("dummy" , self.version_name) @property def UpperCAmelCase__ ( self : Tuple): return os.path.join(self.dummy_data_folder , "dummy_data.zip") def UpperCAmelCase__ ( self : int): _lowercase: List[Any] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowercase: Dict = cached_path( _UpperCamelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCamelCase , force_extract=_UpperCamelCase) return os.path.join(_UpperCamelCase , self.dummy_file_name) @property def UpperCAmelCase__ ( self : Optional[Any]): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file) @property def UpperCAmelCase__ ( self : List[str]): if self._bucket_url is None: _lowercase: Any = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/")) return self._bucket_url @property def UpperCAmelCase__ ( self : Optional[int]): # return full path if its a dir if os.path.isdir(self.dummy_file): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/").split("/")[:-1]) def UpperCAmelCase__ ( self : List[str] , _UpperCamelCase : str , *_UpperCamelCase : Optional[Any]): if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowercase: int = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowercase: List[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_UpperCamelCase , _UpperCamelCase): return self.create_dummy_data_dict(_UpperCamelCase , _UpperCamelCase) elif isinstance(_UpperCamelCase , (list, tuple)): return self.create_dummy_data_list(_UpperCamelCase , _UpperCamelCase) else: return self.create_dummy_data_single(_UpperCamelCase , _UpperCamelCase) def UpperCAmelCase__ ( self : List[Any] , _UpperCamelCase : Union[str, Any] , *_UpperCamelCase : List[Any]): return self.download_and_extract(_UpperCamelCase) def UpperCAmelCase__ ( self : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : Any): return self.download_and_extract(_UpperCamelCase) def UpperCAmelCase__ ( self : Dict , _UpperCamelCase : str , *_UpperCamelCase : List[Any] , **_UpperCamelCase : int): return path def UpperCAmelCase__ ( self : Optional[int]): return {} def UpperCAmelCase__ ( self : str , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any]): _lowercase: List[Any] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_UpperCamelCase , _UpperCamelCase): for single_url in single_urls: download_callback(_UpperCamelCase) else: _lowercase: Any = single_urls download_callback(_UpperCamelCase) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_UpperCamelCase , _UpperCamelCase): _lowercase: List[str] = [os.path.join(_UpperCamelCase , urllib.parse.quote_plus(Path(_UpperCamelCase).name)) for x in single_urls] else: _lowercase: Any = single_urls _lowercase: List[str] = os.path.join(_UpperCamelCase , urllib.parse.quote_plus(Path(_UpperCamelCase).name)) _lowercase: Union[str, Any] = value # make sure that values are unique if all(isinstance(_UpperCamelCase , _UpperCamelCase) for i in dummy_data_dict.values()) and len(set(dummy_data_dict.values())) < len( dummy_data_dict.values()): # append key to value to make its name unique _lowercase: Optional[int] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCAmelCase__ ( self : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str]): _lowercase: Union[str, Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowercase: Dict = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , _UpperCamelCase)) for url in data_url) _lowercase: Tuple = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed") for url in data_url) if data_url and (is_tf_records or is_pubmed_records): _lowercase: List[str] = [data_url[0]] * len(_UpperCamelCase) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_UpperCamelCase) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowercase: Optional[Any] = os.path.join(_UpperCamelCase , urllib.parse.quote_plus(single_url.split("/")[-1])) dummy_data_list.append(_UpperCamelCase) return dummy_data_list def UpperCAmelCase__ ( self : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict): for download_callback in self.download_callbacks: download_callback(_UpperCamelCase) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowercase: Tuple = os.path.join(_UpperCamelCase , urllib.parse.quote_plus(data_url.split("/")[-1])) if os.path.exists(_UpperCamelCase) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCAmelCase__ ( self : Optional[int]): pass def UpperCAmelCase__ ( self : List[Any]): pass def UpperCAmelCase__ ( self : List[str] , _UpperCamelCase : Tuple): def _iter_archive_members(_UpperCamelCase : Optional[int]): # this preserves the order of the members inside the ZIP archive _lowercase: str = Path(self.dummy_file).parent _lowercase: Tuple = path.relative_to(_UpperCamelCase) with ZipFile(self.local_path_to_dummy_data) as zip_file: _lowercase: Any = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix()): yield dummy_parent_path.joinpath(_UpperCamelCase) _lowercase: Tuple = Path(_UpperCamelCase) _lowercase: Optional[int] = _iter_archive_members(_UpperCamelCase) if self.use_local_dummy_data else path.rglob("*") for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__")): yield file_path.relative_to(_UpperCamelCase).as_posix(), file_path.open("rb") def UpperCAmelCase__ ( self : Union[str, Any] , _UpperCamelCase : Dict): if not isinstance(_UpperCamelCase , _UpperCamelCase): _lowercase: List[Any] = [paths] for path in paths: if os.path.isfile(_UpperCamelCase): if os.path.basename(_UpperCamelCase).startswith((".", "__")): return yield path else: for dirpath, dirnames, filenames in os.walk(_UpperCamelCase): if os.path.basename(_UpperCamelCase).startswith((".", "__")): continue dirnames.sort() for filename in sorted(_UpperCamelCase): if filename.startswith((".", "__")): continue yield os.path.join(_UpperCamelCase , _UpperCamelCase)
206
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : Optional[Any] = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class _a ( A__ ): """simple docstring""" snake_case ="""swin2sr""" snake_case ={ """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , _snake_case=64 , _snake_case=1 , _snake_case=3 , _snake_case=180 , _snake_case=[6, 6, 6, 6, 6, 6] , _snake_case=[6, 6, 6, 6, 6, 6] , _snake_case=8 , _snake_case=2.0 , _snake_case=True , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.1 , _snake_case="gelu" , _snake_case=False , _snake_case=0.02 , _snake_case=1E-5 , _snake_case=2 , _snake_case=1.0 , _snake_case="1conv" , _snake_case="pixelshuffle" , **_snake_case , ): super().__init__(**_snake_case ) _UpperCAmelCase =image_size _UpperCAmelCase =patch_size _UpperCAmelCase =num_channels _UpperCAmelCase =embed_dim _UpperCAmelCase =depths _UpperCAmelCase =len(_snake_case ) _UpperCAmelCase =num_heads _UpperCAmelCase =window_size _UpperCAmelCase =mlp_ratio _UpperCAmelCase =qkv_bias _UpperCAmelCase =hidden_dropout_prob _UpperCAmelCase =attention_probs_dropout_prob _UpperCAmelCase =drop_path_rate _UpperCAmelCase =hidden_act _UpperCAmelCase =use_absolute_embeddings _UpperCAmelCase =layer_norm_eps _UpperCAmelCase =initializer_range _UpperCAmelCase =upscale _UpperCAmelCase =img_range _UpperCAmelCase =resi_connection _UpperCAmelCase =upsampler
408
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin snake_case__ : int = get_tests_dir('fixtures/test_sentencepiece.model') snake_case__ : Dict = get_tests_dir('fixtures/test_sentencepiece_bpe.model') snake_case__ : str = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class _a ( A__ , unittest.TestCase ): """simple docstring""" snake_case =CamembertTokenizer snake_case =CamembertTokenizerFast snake_case =True snake_case =True def SCREAMING_SNAKE_CASE ( self ): super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase =CamembertTokenizer(_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase ="<pad>" _UpperCAmelCase =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>NOTUSED" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(_snake_case ) , 1004 ) def SCREAMING_SNAKE_CASE ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =CamembertTokenizer(_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) _UpperCAmelCase =CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _UpperCAmelCase ="I was born in 92000, and this is falsé." _UpperCAmelCase =tokenizer.encode(_snake_case ) _UpperCAmelCase =rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) _UpperCAmelCase =tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) _UpperCAmelCase =rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _UpperCAmelCase =tokenizer.convert_ids_to_tokens(_snake_case ) _UpperCAmelCase =rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def SCREAMING_SNAKE_CASE ( self ): if not self.test_rust_tokenizer: return _UpperCAmelCase =self.get_tokenizer() _UpperCAmelCase =self.get_rust_tokenizer() _UpperCAmelCase ="I was born in 92000, and this is falsé." _UpperCAmelCase =tokenizer.tokenize(_snake_case ) _UpperCAmelCase =rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) _UpperCAmelCase =tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) _UpperCAmelCase =rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) _UpperCAmelCase =self.get_rust_tokenizer() _UpperCAmelCase =tokenizer.encode(_snake_case ) _UpperCAmelCase =rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) @slow def SCREAMING_SNAKE_CASE ( self ): # fmt: off _UpperCAmelCase ={"input_ids": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 2_7575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 2_2804, 1_8818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 1_0326, 24, 2267, 20, 416, 5072, 1_5612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _UpperCAmelCase =[ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name="camembert-base" , revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf" , sequences=_snake_case , )
408
1
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) a_ = logging.getLogger() def __SCREAMING_SNAKE_CASE ( ) -> str: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) __UpperCamelCase = parser.parse_args() return args.f def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" __UpperCamelCase = {} __UpperCamelCase = os.path.join(lowercase_ , '''all_results.json''' ) if os.path.exists(lowercase_ ): with open(lowercase_ , '''r''' ) as f: __UpperCamelCase = json.load(lowercase_ ) else: raise ValueError(F"can't find {path}" ) return results def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" __UpperCamelCase = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() a_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" @classmethod def snake_case ( cls : Tuple ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case ( cls : Optional[Any] ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : int ): __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F"\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n ".split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) __UpperCamelCase = get_results(snake_case ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(snake_case , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : str ): __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F"\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n ".split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) __UpperCamelCase = get_results(snake_case ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(snake_case , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : int ): __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F"\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase = get_results(snake_case ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(snake_case , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Dict ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __UpperCamelCase = 7 if get_gpu_count() > 1 else 2 __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F"\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase = get_results(snake_case ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(snake_case , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Optional[int] ): __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F"\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase = get_results(snake_case ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(snake_case , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Dict ): __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F"\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase = get_results(snake_case ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(snake_case , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : List[str] ): __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F"\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase = get_results(snake_case ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(snake_case , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : List[str] ): __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F"\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase = get_results(snake_case ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(snake_case , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case , '''translation_no_trainer''' ) ) ) @slow def snake_case ( self : List[str] ): __UpperCamelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(snake_case ) __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F"\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n ".split() run_command(self._launch_args + testargs ) __UpperCamelCase = get_results(snake_case ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case ( self : Tuple ): __UpperCamelCase = self.get_auto_remove_tmp_dir() __UpperCamelCase = F"\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n ".split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) __UpperCamelCase = get_results(snake_case ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(snake_case , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case , '''image_classification_no_trainer''' ) ) )
375
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging a_ = logging.get_logger(__name__) class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ : Dict = ["input_features", "is_longer"] def __init__( self : Dict , snake_case : int=64 , snake_case : Dict=48000 , snake_case : Tuple=480 , snake_case : Optional[Any]=10 , snake_case : Union[str, Any]=1024 , snake_case : Union[str, Any]=0.0 , snake_case : List[str]=False , snake_case : float = 0 , snake_case : float = 14000 , snake_case : int = None , snake_case : str = "fusion" , snake_case : str = "repeatpad" , **snake_case : int , ): super().__init__( feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , return_attention_mask=snake_case , **snake_case , ) __UpperCamelCase = top_db __UpperCamelCase = truncation __UpperCamelCase = padding __UpperCamelCase = fft_window_size __UpperCamelCase = (fft_window_size >> 1) + 1 __UpperCamelCase = hop_length __UpperCamelCase = max_length_s __UpperCamelCase = max_length_s * sampling_rate __UpperCamelCase = sampling_rate __UpperCamelCase = frequency_min __UpperCamelCase = frequency_max __UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case , min_frequency=snake_case , max_frequency=snake_case , sampling_rate=snake_case , norm=snake_case , mel_scale='''htk''' , ) __UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case , min_frequency=snake_case , max_frequency=snake_case , sampling_rate=snake_case , norm='''slaney''' , mel_scale='''slaney''' , ) def snake_case ( self : Union[str, Any] ): __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def snake_case ( self : Tuple , snake_case : np.array , snake_case : Optional[np.array] = None ): __UpperCamelCase = spectrogram( snake_case , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case , log_mel='''dB''' , ) return log_mel_spectrogram.T def snake_case ( self : Optional[int] , snake_case : Any , snake_case : List[Any] , snake_case : int ): __UpperCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __UpperCamelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __UpperCamelCase = [0] # randomly choose index for each part __UpperCamelCase = np.random.choice(ranges[0] ) __UpperCamelCase = np.random.choice(ranges[1] ) __UpperCamelCase = np.random.choice(ranges[2] ) __UpperCamelCase = mel[idx_front : idx_front + chunk_frames, :] __UpperCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] __UpperCamelCase = mel[idx_back : idx_back + chunk_frames, :] __UpperCamelCase = torch.tensor(mel[None, None, :] ) __UpperCamelCase = torch.nn.functional.interpolate( snake_case , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=snake_case ) __UpperCamelCase = mel_shrink[0][0].numpy() __UpperCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def snake_case ( self : Optional[Any] , snake_case : np.array , snake_case : Optional[int] , snake_case : Tuple , snake_case : str ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": __UpperCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __UpperCamelCase = len(snake_case ) - max_length __UpperCamelCase = np.random.randint(0 , overflow + 1 ) __UpperCamelCase = waveform[idx : idx + max_length] __UpperCamelCase = self._np_extract_fbank_features(snake_case , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __UpperCamelCase = self._np_extract_fbank_features(snake_case , self.mel_filters ) __UpperCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __UpperCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __UpperCamelCase = np.stack([mel, mel, mel, mel] , axis=0 ) __UpperCamelCase = False else: __UpperCamelCase = self._random_mel_fusion(snake_case , snake_case , snake_case ) __UpperCamelCase = True else: raise NotImplementedError(F"data_truncating {truncation} not implemented" ) else: __UpperCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __UpperCamelCase = int(max_length / len(snake_case ) ) __UpperCamelCase = np.stack(np.tile(snake_case , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __UpperCamelCase = int(max_length / len(snake_case ) ) __UpperCamelCase = np.stack(np.tile(snake_case , snake_case ) ) __UpperCamelCase = np.pad(snake_case , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": __UpperCamelCase = self._np_extract_fbank_features(snake_case , self.mel_filters ) __UpperCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __UpperCamelCase = self._np_extract_fbank_features(snake_case , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : List[str] , snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case : str = None , snake_case : Optional[str] = None , snake_case : Optional[int] = None , snake_case : Optional[int] = None , snake_case : Optional[Union[str, TensorType]] = None , **snake_case : Any , ): __UpperCamelCase = truncation if truncation is not None else self.truncation __UpperCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" F" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" F" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __UpperCamelCase = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) __UpperCamelCase = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCamelCase = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): __UpperCamelCase = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCamelCase = [np.asarray(snake_case )] # convert to mel spectrogram, truncate and pad if needed. __UpperCamelCase = [ self._get_input_mel(snake_case , max_length if max_length else self.nb_max_samples , snake_case , snake_case ) for waveform in raw_speech ] __UpperCamelCase = [] __UpperCamelCase = [] for mel, longer in padded_inputs: input_mel.append(snake_case ) is_longer.append(snake_case ) if truncation == "fusion" and sum(snake_case ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __UpperCamelCase = np.random.randint(0 , len(snake_case ) ) __UpperCamelCase = True if isinstance(input_mel[0] , snake_case ): __UpperCamelCase = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __UpperCamelCase = [[longer] for longer in is_longer] __UpperCamelCase = {'''input_features''': input_mel, '''is_longer''': is_longer} __UpperCamelCase = BatchFeature(snake_case ) if return_tensors is not None: __UpperCamelCase = input_features.convert_to_tensors(snake_case ) return input_features
375
1
from collections.abc import Generator from math import sin def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) != 32: raise ValueError("""Input must be of length 32""" ) __lowercase = b"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def snake_case ( lowerCamelCase ): '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) __lowercase = format(lowerCamelCase , """08x""" )[-8:] __lowercase = b"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = b"""""" for char in message: bit_string += format(lowerCamelCase , """08b""" ).encode("""utf-8""" ) __lowercase = format(len(lowerCamelCase ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowerCamelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(lowerCamelCase ) , 512 ): __lowercase = bit_string[pos : pos + 512] __lowercase = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def snake_case ( lowerCamelCase ): '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) __lowercase = format(lowerCamelCase , """032b""" ) __lowercase = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(lowerCamelCase , 2 ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return (a + b) % 2**32 def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = preprocess(lowerCamelCase ) __lowercase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __lowercase = 0x67452301 __lowercase = 0xefcdab89 __lowercase = 0x98badcfe __lowercase = 0x10325476 __lowercase = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowerCamelCase ): __lowercase = aa __lowercase = ba __lowercase = ca __lowercase = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __lowercase = d ^ (b & (c ^ d)) __lowercase = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __lowercase = c ^ (d & (b ^ c)) __lowercase = (5 * i + 1) % 16 elif i <= 47: __lowercase = b ^ c ^ d __lowercase = (3 * i + 5) % 16 else: __lowercase = c ^ (b | not_aa(lowerCamelCase )) __lowercase = (7 * i) % 16 __lowercase = (f + a + added_consts[i] + block_words[g]) % 2**32 __lowercase = d __lowercase = c __lowercase = b __lowercase = sum_aa(lowerCamelCase , left_rotate_aa(lowerCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total __lowercase = sum_aa(lowerCamelCase , lowerCamelCase ) __lowercase = sum_aa(lowerCamelCase , lowerCamelCase ) __lowercase = sum_aa(lowerCamelCase , lowerCamelCase ) __lowercase = sum_aa(lowerCamelCase , lowerCamelCase ) __lowercase = reformat_hex(lowerCamelCase ) + reformat_hex(lowerCamelCase ) + reformat_hex(lowerCamelCase ) + reformat_hex(lowerCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
80
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : List[str] = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) __UpperCamelCase : Tuple = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) __UpperCamelCase : Optional[Any] = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) __UpperCamelCase : Optional[Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) __UpperCamelCase : int = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) __UpperCamelCase : List[Any] = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) __UpperCamelCase : List[Any] = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) __UpperCamelCase : List[str] = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) __UpperCamelCase : List[str] = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) __UpperCamelCase : int = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) __UpperCamelCase : Dict = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) __UpperCamelCase : str = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) __UpperCamelCase : Optional[int] = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) __UpperCamelCase : Dict = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) __UpperCamelCase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __UpperCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __UpperCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __UpperCamelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __UpperCamelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __UpperCamelCase : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __UpperCamelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __UpperCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __UpperCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __UpperCamelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __UpperCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __UpperCamelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __UpperCamelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __UpperCamelCase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Tuple = FLAX_MODEL_MAPPING __UpperCamelCase : Tuple = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Union[str, Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING __UpperCamelCase : List[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Dict = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __UpperCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :List[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING __UpperCamelCase : Dict = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Optional[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCamelCase : Optional[Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Optional[Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __UpperCamelCase : Optional[int] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Optional[Any] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __UpperCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :List[Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __UpperCamelCase : Optional[int] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Optional[int] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __UpperCamelCase : int = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :str = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __UpperCamelCase : int = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __UpperCamelCase : Optional[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Dict = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __UpperCamelCase : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Optional[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __UpperCamelCase : str = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
80
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class a_ ( UpperCAmelCase__ ): lowercase_ : Dict = '''gpt_neo''' lowercase_ : Tuple = ['''past_key_values'''] lowercase_ : List[str] = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : List[str] , __lowerCAmelCase : Optional[int]=5_0_2_5_7 , __lowerCAmelCase : Tuple=2_0_4_8 , __lowerCAmelCase : str=2_0_4_8 , __lowerCAmelCase : Optional[Any]=2_4 , __lowerCAmelCase : Optional[Any]=[[["global", "local"], 1_2]] , __lowerCAmelCase : Optional[Any]=1_6 , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Any=2_5_6 , __lowerCAmelCase : str="gelu_new" , __lowerCAmelCase : Union[str, Any]=0.0 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : Dict=0.0 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : List[Any]=1E-5 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : int=True , __lowerCAmelCase : Tuple=5_0_2_5_6 , __lowerCAmelCase : Any=5_0_2_5_6 , **__lowerCAmelCase : Optional[int] , ): __snake_case = vocab_size __snake_case = max_position_embeddings __snake_case = hidden_size __snake_case = num_layers __snake_case = num_heads __snake_case = intermediate_size __snake_case = window_size __snake_case = activation_function __snake_case = resid_dropout __snake_case = embed_dropout __snake_case = attention_dropout __snake_case = classifier_dropout __snake_case = layer_norm_epsilon __snake_case = initializer_range __snake_case = use_cache __snake_case = bos_token_id __snake_case = eos_token_id __snake_case = attention_types __snake_case = self.expand_attention_types_params(__lowerCAmelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' F'`config.num_layers = {self.num_layers}`. ' '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @staticmethod def lowercase__ ( __lowerCAmelCase : Optional[Any] ): __snake_case = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase__ ( a , a , a , a ): import torch __snake_case = input.size() __snake_case = len(a ) __snake_case = shape[dimension] __snake_case = torch.arange(0 , a , a ) __snake_case = torch.div(sizedim - size , a , rounding_mode='floor' ) + 1 __snake_case = torch.arange(a ) + low_indices[:min_length][:, None] __snake_case = [slice(a )] * rank __snake_case = indices __snake_case = input[s] __snake_case = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(a ) def lowerCamelCase__ ( a , a ): import torch __snake_case = torch.arange(1 , a ) __snake_case = torch.remainder(a , a ) __snake_case = remainders == 0 __snake_case = candidates[divisor_indices] __snake_case = torch.max(a ) return largest_divisor, torch.div(a , a , rounding_mode='floor' ) class a_ ( UpperCAmelCase__ ): @property def lowercase__ ( self : Optional[Any] ): __snake_case = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCAmelCase , direction='inputs' ) __snake_case = {0: 'batch', 1: 'past_sequence + sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowercase__ ( self : Tuple ): return self._config.num_heads def lowercase__ ( self : int , __lowerCAmelCase : PreTrainedTokenizer , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[TensorType] = None , ): __snake_case = super(__lowerCAmelCase , self ).generate_dummy_inputs( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) # We need to order the input in the way they appears in the forward() __snake_case = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __snake_case , __snake_case = common_inputs['input_ids'].shape # Not using the same length for past_key_values __snake_case = seqlen + 2 __snake_case = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case = [ (torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) for _ in range(self.num_layers ) ] __snake_case = common_inputs['attention_mask'] if self.use_past: __snake_case = ordered_inputs['attention_mask'].dtype __snake_case = torch.cat( [ordered_inputs['attention_mask'], torch.ones(__lowerCAmelCase , __lowerCAmelCase , dtype=__lowerCAmelCase )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : str ): return 1_3
427
'''simple docstring''' from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a_ : def __init__( self : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any=1_3 , __lowerCAmelCase : Any=3_0 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : Union[str, Any]=3 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Any=3_2 , __lowerCAmelCase : int=2 , __lowerCAmelCase : str=4 , __lowerCAmelCase : str=3_7 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Tuple=1_0 , __lowerCAmelCase : Optional[Any]=0.02 , __lowerCAmelCase : Any=3 , __lowerCAmelCase : int=None , ): __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def lowercase__ ( self : Union[str, Any] ): __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Optional[int] ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) def lowercase__ ( self : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ): __snake_case = TFViTModel(config=__lowerCAmelCase ) __snake_case = model(__lowerCAmelCase , training=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. __snake_case = self.image_size // 2 __snake_case = pixel_values[:, :, :image_size, :image_size] __snake_case = model(__lowerCAmelCase , interpolate_pos_encoding=__lowerCAmelCase , training=__lowerCAmelCase ) __snake_case = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any ): __snake_case = self.type_sequence_label_size __snake_case = TFViTForImageClassification(__lowerCAmelCase ) __snake_case = model(__lowerCAmelCase , labels=__lowerCAmelCase , training=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. __snake_case = self.image_size // 2 __snake_case = pixel_values[:, :, :image_size, :image_size] __snake_case = model(__lowerCAmelCase , interpolate_pos_encoding=__lowerCAmelCase , training=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __snake_case = 1 __snake_case = TFViTForImageClassification(__lowerCAmelCase ) __snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : List[str] ): __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowercase_ : Any = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () lowercase_ : Optional[Any] = ( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) lowercase_ : Optional[int] = False lowercase_ : Optional[int] = False lowercase_ : Optional[Any] = False def lowercase__ ( self : int ): __snake_case = TFViTModelTester(self ) __snake_case = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=3_7 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def lowercase__ ( self : Tuple ): pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def lowercase__ ( self : List[Any] ): pass def lowercase__ ( self : str ): __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , tf.keras.layers.Layer ) ) def lowercase__ ( self : Any ): __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(__lowerCAmelCase ) __snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def lowercase__ ( self : Dict ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def lowercase__ ( self : Tuple ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) @slow def lowercase__ ( self : Dict ): __snake_case = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase__ ( ): __snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def lowercase__ ( self : Union[str, Any] ): return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def lowercase__ ( self : Union[str, Any] ): __snake_case = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=__lowerCAmelCase , return_tensors='tf' ) # forward pass __snake_case = model(**__lowerCAmelCase ) # verify the logits __snake_case = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) __snake_case = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 )
427
1
from __future__ import annotations from collections.abc import Callable lowerCAmelCase_ = list[list[float | int]] def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Matrix: """simple docstring""" snake_case_ : int = len(_UpperCamelCase ) snake_case_ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_UpperCamelCase )] snake_case_ : int snake_case_ : int snake_case_ : int snake_case_ : int snake_case_ : int snake_case_ : float for row in range(_UpperCamelCase ): for col in range(_UpperCamelCase ): snake_case_ : int = matrix[row][col] snake_case_ : int = vector[row][0] snake_case_ : str = 0 snake_case_ : List[str] = 0 while row < size and col < size: # pivoting snake_case_ : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_UpperCamelCase , _UpperCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: snake_case_ , snake_case_ : int = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _UpperCamelCase ): snake_case_ : Tuple = augmented[rowa][col] / augmented[row][col] snake_case_ : str = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _UpperCamelCase ): for row in range(_UpperCamelCase ): snake_case_ : Tuple = augmented[row][col] / augmented[col][col] for cola in range(_UpperCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_UpperCamelCase ) ] def lowerCamelCase_ ( _UpperCamelCase ) -> Callable[[int], int]: """simple docstring""" snake_case_ : int = len(_UpperCamelCase ) snake_case_ : Matrix = [[0 for _ in range(_UpperCamelCase )] for _ in range(_UpperCamelCase )] snake_case_ : Matrix = [[0] for _ in range(_UpperCamelCase )] snake_case_ : Matrix snake_case_ : int snake_case_ : int snake_case_ : int for x_val, y_val in enumerate(_UpperCamelCase ): for col in range(_UpperCamelCase ): snake_case_ : str = (x_val + 1) ** (size - col - 1) snake_case_ : Optional[int] = y_val snake_case_ : Any = solve(_UpperCamelCase , _UpperCamelCase ) def interpolated_func(_UpperCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_UpperCamelCase ) ) return interpolated_func def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCamelCase_ ( _UpperCamelCase = question_function , _UpperCamelCase = 10 ) -> int: """simple docstring""" snake_case_ : list[int] = [func(_UpperCamelCase ) for x_val in range(1 , order + 1 )] snake_case_ : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] snake_case_ : int = 0 snake_case_ : Callable[[int], int] snake_case_ : int for poly in polynomials: snake_case_ : List[Any] = 1 while func(_UpperCamelCase ) == poly(_UpperCamelCase ): x_val += 1 ret += poly(_UpperCamelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
60
import comet # From: unbabel-comet import torch import datasets SCREAMING_SNAKE_CASE = datasets.logging.get_logger(__name__) SCREAMING_SNAKE_CASE = '\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = "{COMET}: A Neural Framework for {MT} Evaluation",\n author = "Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon",\n booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",\n month = nov,\n year = "2020",\n address = "Online",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/2020.emnlp-main.213",\n pages = "2685--2702",\n}\n' SCREAMING_SNAKE_CASE = '\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n' SCREAMING_SNAKE_CASE = '\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric(\'comet\')\n >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use\n >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."]\n >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"]\n >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results["scores"]])\n [0.19, 0.92]\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): """simple docstring""" def snake_case_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence""" ), """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def snake_case_ ( self , __A ): if self.config_name == "default": __a = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: __a = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def snake_case_ ( self , __A , __A , __A , __A=None , __A=False ): if gpus is None: __a = 1 if torch.cuda.is_available() else 0 __a = {"""src""": sources, """mt""": predictions, """ref""": references} __a = [dict(zip(__A , __A ) ) for t in zip(*data.values() )] __a , __a = self.scorer.predict(__A , gpus=__A , progress_bar=__A ) return {"mean_score": mean_score, "scores": scores}
99
0
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests UpperCamelCase_ : Tuple = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user UpperCamelCase_ : Union[str, Any] = BASE_URL + """/user""" # https://github.com/settings/tokens UpperCamelCase_ : List[str] = os.environ.get("""USER_TOKEN""", """""") def _lowerCAmelCase (_lowercase ): """simple docstring""" a__ = { "Authorization": F'token {auth_token}', "Accept": "application/vnd.github.v3+json", } return requests.get(_lowercase , headers=_lowercase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"{key}: {value}") else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
394
'''simple docstring''' def _lowerCAmelCase (_lowercase , _lowercase = " " ): """simple docstring""" a__ = [] a__ = 0 for index, char in enumerate(_lowercase ): if char == separator: split_words.append(string[last_index:index] ) a__ = index + 1 elif index + 1 == len(_lowercase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
394
1
import logging from transformers import PretrainedConfig UpperCAmelCase_ = logging.getLogger(__name__) UpperCAmelCase_ = { "bertabs-finetuned-cnndm": "https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json", } class __UpperCamelCase ( A__ ): __A : Tuple = """bertabs""" def __init__( self , _UpperCamelCase=30522 , _UpperCamelCase=512 , _UpperCamelCase=6 , _UpperCamelCase=512 , _UpperCamelCase=8 , _UpperCamelCase=512 , _UpperCamelCase=0.2 , _UpperCamelCase=6 , _UpperCamelCase=768 , _UpperCamelCase=8 , _UpperCamelCase=2048 , _UpperCamelCase=0.2 , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = max_pos _UpperCAmelCase = enc_layers _UpperCAmelCase = enc_hidden_size _UpperCAmelCase = enc_heads _UpperCAmelCase = enc_ff_size _UpperCAmelCase = enc_dropout _UpperCAmelCase = dec_layers _UpperCAmelCase = dec_hidden_size _UpperCAmelCase = dec_heads _UpperCAmelCase = dec_ff_size _UpperCAmelCase = dec_dropout
32
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowercase ( unittest.TestCase ): def lowerCAmelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase__ ( self ): __magic_name__ , __magic_name__ = FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , ) __magic_name__ = '''A painting of a squirrel eating a burger''' __magic_name__ = jax.device_count() __magic_name__ = num_samples * [prompt] __magic_name__ = sd_pipe.prepare_inputs(UpperCamelCase_ ) __magic_name__ = replicate(UpperCamelCase_ ) __magic_name__ = shard(UpperCamelCase_ ) __magic_name__ = jax.random.PRNGKey(0 ) __magic_name__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) __magic_name__ = sd_pipe(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , num_inference_steps=25 , jit=UpperCamelCase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __magic_name__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __magic_name__ = images[0, 253:256, 253:256, -1] __magic_name__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __magic_name__ = jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self ): __magic_name__ = '''stabilityai/stable-diffusion-2''' __magic_name__ , __magic_name__ = FlaxDPMSolverMultistepScheduler.from_pretrained(UpperCamelCase_ , subfolder='''scheduler''' ) __magic_name__ , __magic_name__ = FlaxStableDiffusionPipeline.from_pretrained( UpperCamelCase_ , scheduler=UpperCamelCase_ , revision='''bf16''' , dtype=jnp.bfloataa , ) __magic_name__ = scheduler_params __magic_name__ = '''A painting of a squirrel eating a burger''' __magic_name__ = jax.device_count() __magic_name__ = num_samples * [prompt] __magic_name__ = sd_pipe.prepare_inputs(UpperCamelCase_ ) __magic_name__ = replicate(UpperCamelCase_ ) __magic_name__ = shard(UpperCamelCase_ ) __magic_name__ = jax.random.PRNGKey(0 ) __magic_name__ = jax.random.split(UpperCamelCase_ , jax.device_count() ) __magic_name__ = sd_pipe(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , num_inference_steps=25 , jit=UpperCamelCase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __magic_name__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __magic_name__ = images[0, 253:256, 253:256, -1] __magic_name__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __magic_name__ = jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
490
0
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED lowercase__ = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } lowercase__ = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _snake_case ( ): _lowerCamelCase : List[str] = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _lowerCamelCase : Any = bs[:] _lowerCamelCase : Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase__ ) cs.append(2**8 + n ) n += 1 _lowerCamelCase : Dict = [chr(lowercase__ ) for n in cs] return dict(zip(lowercase__ , lowercase__ ) ) def _snake_case ( lowercase__ ): _lowerCamelCase : Union[str, Any] = set() _lowerCamelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCamelCase : Any = char return pairs class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase , lowercase , lowercase="replace" , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=False , **lowercase , ): _lowerCamelCase : Dict = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else bos_token _lowerCamelCase : List[str] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else eos_token _lowerCamelCase : Optional[int] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else sep_token _lowerCamelCase : Union[str, Any] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else cls_token _lowerCamelCase : Union[str, Any] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else unk_token _lowerCamelCase : List[str] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase : Union[str, Any] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token super().__init__( errors=lowercase , bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , cls_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , **lowercase , ) with open(lowercase , encoding='utf-8' ) as vocab_handle: _lowerCamelCase : List[str] = json.load(lowercase ) _lowerCamelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} _lowerCamelCase : Dict = errors # how to handle errors in decoding _lowerCamelCase : Tuple = bytes_to_unicode() _lowerCamelCase : List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowercase , encoding='utf-8' ) as merges_handle: _lowerCamelCase : int = merges_handle.read().split('\n' )[1:-1] _lowerCamelCase : Tuple = [tuple(merge.split() ) for merge in bpe_merges] _lowerCamelCase : Tuple = dict(zip(lowercase , range(len(lowercase ) ) ) ) _lowerCamelCase : Tuple = {} _lowerCamelCase : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCamelCase : str = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A_ ( self ): return len(self.encoder ) def A_ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def A_ ( self , lowercase ): if token in self.cache: return self.cache[token] _lowerCamelCase : List[Any] = tuple(lowercase ) _lowerCamelCase : List[Any] = get_pairs(lowercase ) if not pairs: return token while True: _lowerCamelCase : Union[str, Any] = min(lowercase , key=lambda lowercase : self.bpe_ranks.get(lowercase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCamelCase, _lowerCamelCase : Optional[int] = bigram _lowerCamelCase : Any = [] _lowerCamelCase : List[Any] = 0 while i < len(lowercase ): try: _lowerCamelCase : str = word.index(lowercase , lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCamelCase : str = j if word[i] == first and i < len(lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCamelCase : Tuple = tuple(lowercase ) _lowerCamelCase : Tuple = new_word if len(lowercase ) == 1: break else: _lowerCamelCase : List[str] = get_pairs(lowercase ) _lowerCamelCase : List[Any] = ' '.join(lowercase ) _lowerCamelCase : str = word return word def A_ ( self , lowercase ): _lowerCamelCase : Optional[int] = [] for token in re.findall(self.pat , lowercase ): _lowerCamelCase : int = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase ).split(' ' ) ) return bpe_tokens def A_ ( self , lowercase ): return self.encoder.get(lowercase , self.encoder.get(self.unk_token ) ) def A_ ( self , lowercase ): return self.decoder.get(lowercase ) def A_ ( self , lowercase ): _lowerCamelCase : List[str] = ''.join(lowercase ) _lowerCamelCase : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def A_ ( self , lowercase , lowercase = None ): if not os.path.isdir(lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCamelCase : Dict = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCamelCase : Any = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase , ensure_ascii=lowercase ) + '\n' ) _lowerCamelCase : List[Any] = 0 with open(lowercase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) _lowerCamelCase : Optional[Any] = token_index writer.write(' '.join(lowercase ) + '\n' ) index += 1 return vocab_file, merge_file def A_ ( self , lowercase , lowercase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCamelCase : Any = [self.cls_token_id] _lowerCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A_ ( self , lowercase , lowercase = None , lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) if token_ids_a is None: return [1] + ([0] * len(lowercase )) + [1] return [1] + ([0] * len(lowercase )) + [1, 1] + ([0] * len(lowercase )) + [1] def A_ ( self , lowercase , lowercase = None ): _lowerCamelCase : Dict = [self.sep_token_id] _lowerCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self , lowercase , lowercase=False , **lowercase ): _lowerCamelCase : Union[str, Any] = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowercase ) > 0 and not text[0].isspace()): _lowerCamelCase : int = ' ' + text return (text, kwargs) def A_ ( self , lowercase , lowercase = None , lowercase = PaddingStrategy.DO_NOT_PAD , lowercase = None , lowercase = None , ): _lowerCamelCase : Dict = super()._pad( encoded_inputs=lowercase , max_length=lowercase , padding_strategy=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , ) # Load from model defaults if return_attention_mask is None: _lowerCamelCase : List[str] = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCamelCase : List[str] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCamelCase : Any = len(encoded_inputs['global_attention_mask'] ) != len(lowercase ) if needs_to_be_padded: _lowerCamelCase : int = len(lowercase ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCamelCase : str = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": _lowerCamelCase : Union[str, Any] = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
492
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase , lowercase=7 , lowercase=3 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=True , lowercase=1 / 255 , lowercase=True , lowercase=[0.5, 0.5, 0.5] , lowercase=[0.5, 0.5, 0.5] , lowercase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase : Any = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : int = num_channels _lowerCamelCase : Union[str, Any] = min_resolution _lowerCamelCase : List[Any] = max_resolution _lowerCamelCase : Union[str, Any] = do_resize _lowerCamelCase : str = size _lowerCamelCase : List[str] = do_rescale _lowerCamelCase : Optional[int] = rescale_factor _lowerCamelCase : str = do_normalize _lowerCamelCase : Optional[int] = image_mean _lowerCamelCase : Tuple = image_std _lowerCamelCase : Tuple = do_pad def A_ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def A_ ( self , lowercase , lowercase=False ): if not batched: _lowerCamelCase : Union[str, Any] = image_inputs[0] if isinstance(lowercase , Image.Image ): _lowerCamelCase, _lowerCamelCase : Optional[Any] = image.size else: _lowerCamelCase, _lowerCamelCase : List[str] = image.shape[1], image.shape[2] if w < h: _lowerCamelCase : List[Any] = int(self.size['shortest_edge'] * h / w ) _lowerCamelCase : Union[str, Any] = self.size['shortest_edge'] elif w > h: _lowerCamelCase : List[str] = self.size['shortest_edge'] _lowerCamelCase : Optional[Any] = int(self.size['shortest_edge'] * w / h ) else: _lowerCamelCase : int = self.size['shortest_edge'] _lowerCamelCase : Optional[Any] = self.size['shortest_edge'] else: _lowerCamelCase : Union[str, Any] = [] for image in image_inputs: _lowerCamelCase, _lowerCamelCase : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase : Tuple = max(lowercase , key=lambda lowercase : item[0] )[0] _lowerCamelCase : Any = max(lowercase , key=lambda lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = DetrImageProcessor if is_vision_available() else None def A_ ( self ): _lowerCamelCase : int = DetrImageProcessingTester(self ) @property def A_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self ): _lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , 'image_mean' ) ) self.assertTrue(hasattr(lowercase , 'image_std' ) ) self.assertTrue(hasattr(lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase , 'do_rescale' ) ) self.assertTrue(hasattr(lowercase , 'rescale_factor' ) ) self.assertTrue(hasattr(lowercase , 'do_resize' ) ) self.assertTrue(hasattr(lowercase , 'size' ) ) self.assertTrue(hasattr(lowercase , 'do_pad' ) ) def A_ ( self ): _lowerCamelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , lowercase ) _lowerCamelCase : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , lowercase ) def A_ ( self ): pass def A_ ( self ): # Initialize image_processing _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input _lowerCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCamelCase, _lowerCamelCase : List[Any] = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase, _lowerCamelCase : str = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) _lowerCamelCase : Union[str, Any] = image_processing(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self ): # Initialize image_processing _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input _lowerCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCamelCase, _lowerCamelCase : List[Any] = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase : str = image_processing(lowercase , return_tensors='pt' ).pixel_values _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self ): # Initialize image_processing _lowerCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input _lowerCamelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase : Dict = image_processing(lowercase , return_tensors='pt' ).pixel_values _lowerCamelCase, _lowerCamelCase : List[str] = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def A_ ( self ): # prepare image and target _lowerCamelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: _lowerCamelCase : int = json.loads(f.read() ) _lowerCamelCase : str = {'image_id': 39769, 'annotations': target} # encode them _lowerCamelCase : str = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) _lowerCamelCase : int = image_processing(images=lowercase , annotations=lowercase , return_tensors='pt' ) # verify pixel values _lowerCamelCase : Optional[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , lowercase ) _lowerCamelCase : List[str] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase , atol=1E-4 ) ) # verify area _lowerCamelCase : Dict = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase ) ) # verify boxes _lowerCamelCase : int = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase ) _lowerCamelCase : Tuple = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase , atol=1E-3 ) ) # verify image_id _lowerCamelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase ) ) # verify is_crowd _lowerCamelCase : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase ) ) # verify class_labels _lowerCamelCase : Dict = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase ) ) # verify orig_size _lowerCamelCase : Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase ) ) # verify size _lowerCamelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase ) ) @slow def A_ ( self ): # prepare image, target and masks_path _lowerCamelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: _lowerCamelCase : List[Any] = json.loads(f.read() ) _lowerCamelCase : str = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} _lowerCamelCase : List[Any] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _lowerCamelCase : List[Any] = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) _lowerCamelCase : Dict = image_processing(images=lowercase , annotations=lowercase , masks_path=lowercase , return_tensors='pt' ) # verify pixel values _lowerCamelCase : Optional[int] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , lowercase ) _lowerCamelCase : List[Any] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase , atol=1E-4 ) ) # verify area _lowerCamelCase : Optional[Any] = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase ) ) # verify boxes _lowerCamelCase : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase ) _lowerCamelCase : Union[str, Any] = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase , atol=1E-3 ) ) # verify image_id _lowerCamelCase : List[str] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase ) ) # verify is_crowd _lowerCamelCase : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase ) ) # verify class_labels _lowerCamelCase : List[str] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase ) ) # verify masks _lowerCamelCase : List[str] = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowercase ) # verify orig_size _lowerCamelCase : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase ) ) # verify size _lowerCamelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase ) )
492
1
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Union[str, Any] ,lowerCAmelCase_ : str ,lowerCAmelCase_ : Tuple ,lowerCAmelCase_ : Tuple ,lowerCAmelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =TapasConfig.from_json_file(lowerCAmelCase_ ) # set absolute/relative position embeddings parameter SCREAMING_SNAKE_CASE_ : Optional[Any] =reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": SCREAMING_SNAKE_CASE_ : Optional[Any] =TapasForQuestionAnswering(config=lowerCAmelCase_ ) elif task == "WTQ": # run_task_main.py hparams SCREAMING_SNAKE_CASE_ : int =4 SCREAMING_SNAKE_CASE_ : Any =True # hparam_utils.py hparams SCREAMING_SNAKE_CASE_ : Optional[int] =0.66_4694 SCREAMING_SNAKE_CASE_ : int =0.20_7951 SCREAMING_SNAKE_CASE_ : List[Any] =0.12_1194 SCREAMING_SNAKE_CASE_ : Optional[int] =True SCREAMING_SNAKE_CASE_ : Dict =True SCREAMING_SNAKE_CASE_ : List[str] =False SCREAMING_SNAKE_CASE_ : Union[str, Any] =0.035_2513 SCREAMING_SNAKE_CASE_ : Any =TapasForQuestionAnswering(config=lowerCAmelCase_ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams SCREAMING_SNAKE_CASE_ : Union[str, Any] =4 SCREAMING_SNAKE_CASE_ : str =False # hparam_utils.py hparams SCREAMING_SNAKE_CASE_ : Optional[Any] =36.4519 SCREAMING_SNAKE_CASE_ : Optional[Any] =0.90_3421 SCREAMING_SNAKE_CASE_ : Tuple =222.088 SCREAMING_SNAKE_CASE_ : Union[str, Any] =True SCREAMING_SNAKE_CASE_ : int =True SCREAMING_SNAKE_CASE_ : Dict =True SCREAMING_SNAKE_CASE_ : str =0.76_3141 SCREAMING_SNAKE_CASE_ : List[str] =TapasForQuestionAnswering(config=lowerCAmelCase_ ) elif task == "TABFACT": SCREAMING_SNAKE_CASE_ : Optional[Any] =TapasForSequenceClassification(config=lowerCAmelCase_ ) elif task == "MLM": SCREAMING_SNAKE_CASE_ : Union[str, Any] =TapasForMaskedLM(config=lowerCAmelCase_ ) elif task == "INTERMEDIATE_PRETRAINING": SCREAMING_SNAKE_CASE_ : List[Any] =TapasModel(config=lowerCAmelCase_ ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCAmelCase_ ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) SCREAMING_SNAKE_CASE_ : List[Any] =TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' ,model_max_length=512 ) tokenizer.save_pretrained(lowerCAmelCase_ ) print('Used relative position embeddings:' ,model.config.reset_position_index_per_cell ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
220
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _lowercase = Features({'text': Value('string' )} ) _lowercase = Features({'labels': ClassLabel} ) _lowercase = "text" _lowercase = "labels" def __lowerCamelCase ( self , __UpperCAmelCase ): if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , __UpperCAmelCase ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) SCREAMING_SNAKE_CASE_ : Optional[int] =copy.deepcopy(self ) SCREAMING_SNAKE_CASE_ : Any =self.label_schema.copy() SCREAMING_SNAKE_CASE_ : Any =features[self.label_column] SCREAMING_SNAKE_CASE_ : int =label_schema return task_template @property def __lowerCamelCase ( self ): return { self.text_column: "text", self.label_column: "labels", }
220
1
from math import sqrt def UpperCAmelCase__ ( _A ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(_A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase__ ( _A = 10_001 ): """simple docstring""" a_ = 0 a_ = 1 while count != nth and number < 3: number += 1 if is_prime(_A ): count += 1 while count != nth: number += 2 if is_prime(_A ): count += 1 return number if __name__ == "__main__": print(F"""{solution() = }""")
143
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __lowercase ( a__ ): _lowerCAmelCase = "" _lowerCAmelCase = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self : int , lowercase__ : Optional[DatasetInfo] = None , lowercase__ : Optional[str] = None , **lowercase__ : List[Any] , ): super().__init__(self , **lowercase__ ) a_ = repo_info a_ = token a_ = None def __magic_name__ ( self : List[str] ): if self.dir_cache is None: a_ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes a_ = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(lowercase__ ): {'''name''': str(lowercase__ ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __magic_name__ ( self : Dict , lowercase__ : str , lowercase__ : str = "rb" , **lowercase__ : Dict , ): if not isinstance(self.repo_info , lowercase__ ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) a_ = hf_hub_url(self.repo_info.id , lowercase__ , revision=self.repo_info.sha ) return fsspec.open( lowercase__ , mode=lowercase__ , headers=get_authentication_headers_for_url(lowercase__ , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def __magic_name__ ( self : Optional[Any] , lowercase__ : Dict , **lowercase__ : Optional[int] ): self._get_dirs() a_ = self._strip_protocol(lowercase__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(lowercase__ ) def __magic_name__ ( self : Dict , lowercase__ : Dict , lowercase__ : List[Any]=False , **lowercase__ : Tuple ): self._get_dirs() a_ = PurePosixPath(path.strip('''/''' ) ) a_ = {} for p, f in self.dir_cache.items(): a_ = PurePosixPath(p.strip('''/''' ) ) a_ = p.parent if root == path: a_ = f a_ = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
143
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_ = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
373
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { '''configuration_speecht5''': [ '''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''', '''SpeechT5Config''', '''SpeechT5HifiGanConfig''', ], '''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''], '''processing_speecht5''': ['''SpeechT5Processor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''SpeechT5Tokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SpeechT5ForSpeechToText''', '''SpeechT5ForSpeechToSpeech''', '''SpeechT5ForTextToSpeech''', '''SpeechT5Model''', '''SpeechT5PreTrainedModel''', '''SpeechT5HifiGan''', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
373
1
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo UpperCamelCase = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ UpperCamelCase = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ UpperCamelCase = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def snake_case__ ( self ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1 , SCREAMING_SNAKE_CASE__ = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=SCREAMING_SNAKE_CASE__ , hypotheses=SCREAMING_SNAKE_CASE__ , min_len=SCREAMING_SNAKE_CASE__ , max_len=SCREAMING_SNAKE_CASE__ ) }
562
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
562
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class __A ( UpperCamelCase__ ): UpperCamelCase = """autoformer""" UpperCamelCase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self :List[Any] , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None , __snake_case :str = "student_t" , __snake_case :str = "nll" , __snake_case :int = 1 , __snake_case :List[int] = [1, 2, 3, 4, 5, 6, 7] , __snake_case :bool = True , __snake_case :int = 0 , __snake_case :int = 0 , __snake_case :int = 0 , __snake_case :int = 0 , __snake_case :Optional[List[int]] = None , __snake_case :Optional[List[int]] = None , __snake_case :int = 64 , __snake_case :int = 2 , __snake_case :int = 2 , __snake_case :int = 2 , __snake_case :int = 2 , __snake_case :int = 32 , __snake_case :int = 32 , __snake_case :str = "gelu" , __snake_case :float = 0.1 , __snake_case :float = 0.1 , __snake_case :float = 0.1 , __snake_case :float = 0.1 , __snake_case :float = 0.1 , __snake_case :int = 1_00 , __snake_case :float = 0.02 , __snake_case :bool = True , __snake_case :List[Any]=True , __snake_case :int = 10 , __snake_case :int = 25 , __snake_case :int = 3 , **__snake_case :int , ): '''simple docstring''' __magic_name__ : Tuple =prediction_length __magic_name__ : Any =context_length if context_length is not None else prediction_length __magic_name__ : Union[str, Any] =distribution_output __magic_name__ : int =loss __magic_name__ : Dict =input_size __magic_name__ : int =num_time_features __magic_name__ : List[Any] =lags_sequence __magic_name__ : Optional[int] =scaling __magic_name__ : Optional[int] =num_dynamic_real_features __magic_name__ : str =num_static_real_features __magic_name__ : Optional[Any] =num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) __magic_name__ : List[Any] =cardinality else: __magic_name__ : Optional[int] =[0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) __magic_name__ : Any =embedding_dimension else: __magic_name__ : List[str] =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __magic_name__ : Any =num_parallel_samples # Transformer architecture configuration __magic_name__ : Union[str, Any] =input_size * len(self.lags_sequence ) + self._number_of_features __magic_name__ : str =d_model __magic_name__ : Optional[int] =encoder_attention_heads __magic_name__ : Tuple =decoder_attention_heads __magic_name__ : int =encoder_ffn_dim __magic_name__ : List[str] =decoder_ffn_dim __magic_name__ : List[Any] =encoder_layers __magic_name__ : Dict =decoder_layers __magic_name__ : str =dropout __magic_name__ : str =attention_dropout __magic_name__ : Optional[int] =activation_dropout __magic_name__ : int =encoder_layerdrop __magic_name__ : Optional[int] =decoder_layerdrop __magic_name__ : List[str] =activation_function __magic_name__ : str =init_std __magic_name__ : Optional[int] =use_cache # Autoformer __magic_name__ : Any =label_length __magic_name__ : Tuple =moving_average __magic_name__ : Dict =autocorrelation_factor super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def A__ ( self :List[Any] ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
21
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def lowercase ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Tuple ): lowercase_ : Any = OmegaConf.load(__snake_case ) lowercase_ : Dict = torch.load(__snake_case , map_location='''cpu''' )['''model'''] lowercase_ : int = list(state_dict.keys() ) # extract state_dict for VQVAE lowercase_ : List[str] = {} lowercase_ : str = '''first_stage_model.''' for key in keys: if key.startswith(__snake_case ): lowercase_ : Optional[int] = state_dict[key] # extract state_dict for UNetLDM lowercase_ : str = {} lowercase_ : Any = '''model.diffusion_model.''' for key in keys: if key.startswith(__snake_case ): lowercase_ : Any = state_dict[key] lowercase_ : Optional[int] = config.model.params.first_stage_config.params lowercase_ : List[Any] = config.model.params.unet_config.params lowercase_ : Any = VQModel(**__snake_case ).eval() vqvae.load_state_dict(__snake_case ) lowercase_ : Optional[int] = UNetLDMModel(**__snake_case ).eval() unet.load_state_dict(__snake_case ) lowercase_ : str = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__snake_case , ) lowercase_ : Dict = LDMPipeline(__snake_case , __snake_case , __snake_case ) pipeline.save_pretrained(__snake_case ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) __A : int = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
231
0
from __future__ import annotations def lowerCAmelCase ( UpperCamelCase__ : int ) -> list[int]: """simple docstring""" __SCREAMING_SNAKE_CASE: int = 2 __SCREAMING_SNAKE_CASE: List[Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(UpperCamelCase__ ) if n > 1: factors.append(UpperCamelCase__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
146
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class a : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=64 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = parent __SCREAMING_SNAKE_CASE: str = batch_size __SCREAMING_SNAKE_CASE: Union[str, Any] = seq_length __SCREAMING_SNAKE_CASE: List[str] = is_training __SCREAMING_SNAKE_CASE: str = use_input_mask __SCREAMING_SNAKE_CASE: Optional[int] = use_token_type_ids __SCREAMING_SNAKE_CASE: int = use_labels __SCREAMING_SNAKE_CASE: Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE: Optional[int] = hidden_size __SCREAMING_SNAKE_CASE: int = embedding_size __SCREAMING_SNAKE_CASE: Optional[int] = num_hidden_layers __SCREAMING_SNAKE_CASE: List[str] = num_attention_heads __SCREAMING_SNAKE_CASE: Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE: Any = hidden_act __SCREAMING_SNAKE_CASE: List[str] = hidden_dropout_prob __SCREAMING_SNAKE_CASE: Union[str, Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE: Optional[int] = max_position_embeddings __SCREAMING_SNAKE_CASE: Optional[int] = type_vocab_size __SCREAMING_SNAKE_CASE: str = type_sequence_label_size __SCREAMING_SNAKE_CASE: List[str] = initializer_range __SCREAMING_SNAKE_CASE: Union[str, Any] = num_labels __SCREAMING_SNAKE_CASE: Dict = num_choices __SCREAMING_SNAKE_CASE: Optional[Any] = scope def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE: List[str] = None if self.use_input_mask: __SCREAMING_SNAKE_CASE: str = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE: Tuple = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE: Tuple = None __SCREAMING_SNAKE_CASE: int = None __SCREAMING_SNAKE_CASE: Any = None if self.use_labels: __SCREAMING_SNAKE_CASE: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE: int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE: int = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE: List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ): """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = MegatronBertModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Optional[Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Tuple = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = MegatronBertForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Union[str, Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Union[str, Any] = MegatronBertForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Optional[int] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = MegatronBertForNextSentencePrediction(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Dict = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = MegatronBertForPreTraining(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Optional[Any] = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , next_sentence_label=_lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = MegatronBertForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Dict = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = self.num_labels __SCREAMING_SNAKE_CASE: List[Any] = MegatronBertForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Dict = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = self.num_labels __SCREAMING_SNAKE_CASE: Union[str, Any] = MegatronBertForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: List[Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = self.num_choices __SCREAMING_SNAKE_CASE: Union[str, Any] = MegatronBertForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE: Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE: Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE: str = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) , ): List[Any] = config_and_inputs __SCREAMING_SNAKE_CASE: str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( __lowercase ,__lowercase ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ : List[str] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : int = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : int = True # test_resize_embeddings = False SCREAMING_SNAKE_CASE__ : List[Any] = False def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = MegatronBertModelTester(self ) __SCREAMING_SNAKE_CASE: Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def snake_case_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_lowerCAmelCase ) def lowerCAmelCase ( UpperCamelCase__ : str ) -> Any: """simple docstring""" return torch.tensor( UpperCamelCase__ , dtype=torch.long , device=UpperCamelCase__ , ) lowerCAmelCase : Tuple = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): @slow @unittest.skip('''Model is not available.''' ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: __SCREAMING_SNAKE_CASE: List[str] = os.path.join(os.environ['''MYDIR'''] , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[Any] = MegatronBertModel.from_pretrained(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.half() __SCREAMING_SNAKE_CASE: Dict = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE: Optional[int] = model(_lowerCAmelCase )[0] __SCREAMING_SNAKE_CASE: Union[str, Any] = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[int] = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): __SCREAMING_SNAKE_CASE: Any = output[0, ii, jj] __SCREAMING_SNAKE_CASE: Tuple = expected[3 * ii + jj] __SCREAMING_SNAKE_CASE: Tuple = '''ii={} jj={} a={} b={}'''.format(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(math.isclose(_lowerCAmelCase , _lowerCAmelCase , rel_tol=_lowerCAmelCase , abs_tol=_lowerCAmelCase ) , msg=_lowerCAmelCase )
146
1
'''simple docstring''' import argparse import os import re import packaging.version A__ : Any = '''examples/''' A__ : Tuple = { '''examples''': (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), '''release = "VERSION"\n'''), } A__ : Union[str, Any] = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } A__ : Any = '''README.md''' def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int ) -> str: with open(snake_case_ , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Optional[Any] = f.read() __lowerCamelCase : Dict = REPLACE_PATTERNS[pattern] __lowerCamelCase : Tuple = replace.replace('VERSION' , snake_case_ ) __lowerCamelCase : Optional[int] = re_pattern.sub(snake_case_ , snake_case_ ) with open(snake_case_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(snake_case_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> Dict: for folder, directories, fnames in os.walk(snake_case_ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(snake_case_ , snake_case_ ) , snake_case_ , pattern='examples' ) def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]=False ) -> List[Any]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(snake_case_ , snake_case_ , snake_case_ ) if not patch: update_version_in_examples(snake_case_ ) def UpperCAmelCase__ ( ) -> List[Any]: __lowerCamelCase : Union[str, Any] = """🤗 Transformers currently provides the following architectures""" __lowerCamelCase : Tuple = """1. Want to contribute a new model?""" with open(snake_case_ , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Optional[int] = f.readlines() # Find the start of the list. __lowerCamelCase : List[str] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __lowerCamelCase : Union[str, Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): __lowerCamelCase : int = lines[index].replace( 'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , ) index += 1 with open(snake_case_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(snake_case_ ) def UpperCAmelCase__ ( ) -> int: with open(REPLACE_FILES['init'] , 'r' ) as f: __lowerCamelCase : str = f.read() __lowerCamelCase : Tuple = REPLACE_PATTERNS["""init"""][0].search(snake_case_ ).groups()[0] return packaging.version.parse(snake_case_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : int=False ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: __lowerCamelCase : Union[str, Any] = default_version.base_version elif patch: __lowerCamelCase : List[Any] = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: __lowerCamelCase : Dict = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. __lowerCamelCase : List[Any] = input(F'Which version are you releasing? [{default_version}]' ) if len(snake_case_ ) == 0: __lowerCamelCase : int = default_version print(F'Updating version to {version}.' ) global_version_update(snake_case_ , patch=snake_case_ ) def UpperCAmelCase__ ( ) -> List[str]: __lowerCamelCase : Tuple = get_version() __lowerCamelCase : Tuple = F'{current_version.major}.{current_version.minor + 1}.0.dev0' __lowerCamelCase : int = current_version.base_version # Check with the user we got that right. __lowerCamelCase : Any = input(F'Which version are we developing now? [{dev_version}]' ) if len(snake_case_ ) == 0: __lowerCamelCase : Any = dev_version print(F'Updating version to {version}.' ) global_version_update(snake_case_ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": A__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") A__ : int = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
13
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A_ ( snake_case_ : Optional[Any] ,snake_case_ : Optional[int] ,snake_case_ : Dict ,snake_case_ : Any ,snake_case_ : Union[str, Any]=True ,snake_case_ : Dict="pt" ): '''simple docstring''' UpperCamelCase : Optional[Any] = {"""add_prefix_space""": True} if isinstance(snake_case_ ,snake_case_ ) and not line.startswith(""" """ ) else {} UpperCamelCase : Optional[int] = padding_side return tokenizer( [line] ,max_length=snake_case_ ,padding="""max_length""" if pad_to_max_length else None ,truncation=snake_case_ ,return_tensors=snake_case_ ,add_special_tokens=snake_case_ ,**snake_case_ ,) def A_ ( snake_case_ : int ,snake_case_ : Tuple ,snake_case_ : Tuple=None ,): '''simple docstring''' UpperCamelCase : Union[str, Any] = input_ids.ne(snake_case_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCamelCase ( _UpperCAmelCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="train" , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="" , ): super().__init__() UpperCamelCase : str = Path(SCREAMING_SNAKE_CASE_ ).joinpath(type_path + """.source""" ) UpperCamelCase : Optional[int] = Path(SCREAMING_SNAKE_CASE_ ).joinpath(type_path + """.target""" ) UpperCamelCase : List[str] = self.get_char_lens(self.src_file ) UpperCamelCase : List[Any] = max_source_length UpperCamelCase : Optional[Any] = max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' UpperCamelCase : str = tokenizer UpperCamelCase : List[str] = prefix if n_obs is not None: UpperCamelCase : Optional[int] = self.src_lens[:n_obs] UpperCamelCase : Any = src_lang UpperCamelCase : List[Any] = tgt_lang def __len__( self ): return len(self.src_lens ) def __getitem__( self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = index + 1 # linecache starts at 1 UpperCamelCase : Dict = self.prefix + linecache.getline(str(self.src_file ) , SCREAMING_SNAKE_CASE_ ).rstrip("""\n""" ) UpperCamelCase : List[str] = linecache.getline(str(self.tgt_file ) , SCREAMING_SNAKE_CASE_ ).rstrip("""\n""" ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , SCREAMING_SNAKE_CASE_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right UpperCamelCase : Union[str, Any] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , SCREAMING_SNAKE_CASE_ ) else self.tokenizer ) UpperCamelCase : Union[str, Any] = self.tokenizer.generator if isinstance(self.tokenizer , SCREAMING_SNAKE_CASE_ ) else self.tokenizer UpperCamelCase : List[Any] = encode_line(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.max_source_length , """right""" ) UpperCamelCase : int = encode_line(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.max_target_length , """right""" ) UpperCamelCase : Dict = source_inputs["""input_ids"""].squeeze() UpperCamelCase : Tuple = target_inputs["""input_ids"""].squeeze() UpperCamelCase : Tuple = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def a_ ( SCREAMING_SNAKE_CASE_ ): return [len(SCREAMING_SNAKE_CASE_ ) for x in Path(SCREAMING_SNAKE_CASE_ ).open().readlines()] def a_ ( self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = torch.stack([x["""input_ids"""] for x in batch] ) UpperCamelCase : List[Any] = torch.stack([x["""attention_mask"""] for x in batch] ) UpperCamelCase : str = torch.stack([x["""decoder_input_ids"""] for x in batch] ) UpperCamelCase : Optional[int] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , SCREAMING_SNAKE_CASE_ ) else self.tokenizer.pad_token_id ) UpperCamelCase : Any = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , SCREAMING_SNAKE_CASE_ ) else self.tokenizer.pad_token_id ) UpperCamelCase : int = trim_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase : Union[str, Any] = trim_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __A : int = getLogger(__name__) def A_ ( snake_case_ : List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(snake_case_ ) ) def A_ ( snake_case_ : str ): '''simple docstring''' UpperCamelCase : Union[str, Any] = get_git_info() save_json(snake_case_ ,os.path.join(snake_case_ ,"""git_log.json""" ) ) def A_ ( snake_case_ : int ,snake_case_ : int ,snake_case_ : Optional[int]=4 ,**snake_case_ : Optional[int] ): '''simple docstring''' with open(snake_case_ ,"""w""" ) as f: json.dump(snake_case_ ,snake_case_ ,indent=snake_case_ ,**snake_case_ ) def A_ ( snake_case_ : List[Any] ): '''simple docstring''' with open(snake_case_ ) as f: return json.load(snake_case_ ) def A_ ( ): '''simple docstring''' UpperCamelCase : Dict = git.Repo(search_parent_directories=snake_case_ ) UpperCamelCase : Dict = { """repo_id""": str(snake_case_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def A_ ( snake_case_ : Callable ,snake_case_ : Iterable ): '''simple docstring''' return list(map(snake_case_ ,snake_case_ ) ) def A_ ( snake_case_ : str ,snake_case_ : Union[str, Any] ): '''simple docstring''' with open(snake_case_ ,"""wb""" ) as f: return pickle.dump(snake_case_ ,snake_case_ ) def A_ ( snake_case_ : Tuple ): '''simple docstring''' def remove_articles(snake_case_ : Union[str, Any] ): return re.sub(R"""\b(a|an|the)\b""" ,""" """ ,snake_case_ ) def white_space_fix(snake_case_ : Union[str, Any] ): return " ".join(text.split() ) def remove_punc(snake_case_ : Optional[int] ): UpperCamelCase : Tuple = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(snake_case_ : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case_ ) ) ) ) def A_ ( snake_case_ : List[str] ,snake_case_ : List[str] ): '''simple docstring''' UpperCamelCase : int = normalize_answer(snake_case_ ).split() UpperCamelCase : List[Any] = normalize_answer(snake_case_ ).split() UpperCamelCase : List[str] = Counter(snake_case_ ) & Counter(snake_case_ ) UpperCamelCase : Optional[Any] = sum(common.values() ) if num_same == 0: return 0 UpperCamelCase : str = 1.0 * num_same / len(snake_case_ ) UpperCamelCase : Union[str, Any] = 1.0 * num_same / len(snake_case_ ) UpperCamelCase : Tuple = (2 * precision * recall) / (precision + recall) return fa def A_ ( snake_case_ : int ,snake_case_ : Tuple ): '''simple docstring''' return normalize_answer(snake_case_ ) == normalize_answer(snake_case_ ) def A_ ( snake_case_ : List[str] ,snake_case_ : List[str] ): '''simple docstring''' assert len(snake_case_ ) == len(snake_case_ ) UpperCamelCase : Optional[int] = 0 for hypo, pred in zip(snake_case_ ,snake_case_ ): em += exact_match_score(snake_case_ ,snake_case_ ) if len(snake_case_ ) > 0: em /= len(snake_case_ ) return {"em": em} def A_ ( snake_case_ : Optional[int] ): '''simple docstring''' return model_prefix.startswith("""rag""" ) def A_ ( snake_case_ : List[str] ,snake_case_ : List[str] ,snake_case_ : int ): '''simple docstring''' UpperCamelCase : Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead UpperCamelCase : Dict = """dropout_rate""" for p in extra_params: if getattr(snake_case_ ,snake_case_ ,snake_case_ ): if not hasattr(snake_case_ ,snake_case_ ) and not hasattr(snake_case_ ,equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(snake_case_ ) ) delattr(snake_case_ ,snake_case_ ) continue UpperCamelCase : Union[str, Any] = p if hasattr(snake_case_ ,snake_case_ ) else equivalent_param[p] setattr(snake_case_ ,snake_case_ ,getattr(snake_case_ ,snake_case_ ) ) delattr(snake_case_ ,snake_case_ ) return hparams, config
499
0
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class SCREAMING_SNAKE_CASE( __A ): def snake_case__ ( self ) -> Any: """simple docstring""" __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase__ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(lowerCamelCase__ , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(lowerCamelCase__ , """num_encoder_blocks""" ) ) class SCREAMING_SNAKE_CASE: def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=64 , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=[2, 2, 2, 2] , lowerCamelCase__=[8, 4, 2, 1] , lowerCamelCase__=[16, 32, 64, 128] , lowerCamelCase__=[1, 4, 8, 16] , lowerCamelCase__=[1, 2, 4, 8] , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.02 , lowerCamelCase__=3 , lowerCamelCase__=None , ) -> List[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = num_encoder_blocks __lowercase = sr_ratios __lowercase = depths __lowercase = hidden_sizes __lowercase = downsampling_rates __lowercase = num_attention_heads __lowercase = is_training __lowercase = use_labels __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = num_labels __lowercase = scope def snake_case__ ( self ) -> str: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def snake_case__ ( self ) -> Any: """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" __lowercase = SegformerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ ) __lowercase = __lowercase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = SegformerForSemanticSegmentation(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) __lowercase = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: """simple docstring""" __lowercase = 1 __lowercase = SegformerForSemanticSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertGreater(result.loss , 0.0 ) def snake_case__ ( self ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase ,__lowercase ,__lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( __A , __A , unittest.TestCase ): snake_case_ : int = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) snake_case_ : Tuple = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) snake_case_ : List[str] = True snake_case_ : Union[str, Any] = False snake_case_ : str = False snake_case_ : Tuple = False def snake_case__ ( self ) -> List[Any]: """simple docstring""" __lowercase = SegformerModelTester(self ) __lowercase = SegformerConfigTester(self , config_class=lowerCamelCase__ ) def snake_case__ ( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowerCamelCase__ ) def snake_case__ ( self ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowerCamelCase__ ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def snake_case__ ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def snake_case__ ( self ) -> Dict: """simple docstring""" pass def snake_case__ ( self ) -> int: """simple docstring""" __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def snake_case__ ( self ) -> str: """simple docstring""" __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowercase = outputs.attentions __lowercase = sum(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowercase = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # verify the first attentions (first block, first layer) __lowercase = (self.model_tester.image_size // 4) ** 2 __lowercase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) __lowercase = (self.model_tester.image_size // 32) ** 2 __lowercase = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) __lowercase = len(lowerCamelCase__ ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCamelCase__ ) ) __lowercase = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # verify the first attentions (first block, first layer) __lowercase = (self.model_tester.image_size // 4) ** 2 __lowercase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def snake_case__ ( self ) -> Any: """simple docstring""" def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): __lowercase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowercase = outputs.hidden_states __lowercase = self.model_tester.num_encoder_blocks self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" if not self.model_tester.is_training: return __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase__ ): continue __lowercase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() __lowercase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) __lowercase = model(**lowerCamelCase__ ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" pass @slow def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = SegformerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def snake_case_ ( ): """simple docstring""" __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): @slow def snake_case__ ( self ) -> List[Any]: """simple docstring""" __lowercase = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowerCamelCase__ , align=lowerCamelCase__ , do_random_crop=lowerCamelCase__ ) __lowercase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( lowerCamelCase__ ) __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase__ , return_tensors="""pt""" ) __lowercase = encoded_inputs.pixel_values.to(lowerCamelCase__ ) with torch.no_grad(): __lowercase = model(lowerCamelCase__ ) __lowercase = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) __lowercase = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCamelCase__ , atol=1E-4 ) ) @slow def snake_case__ ( self ) -> Optional[int]: """simple docstring""" __lowercase = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowerCamelCase__ , align=lowerCamelCase__ , do_random_crop=lowerCamelCase__ ) __lowercase = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(lowerCamelCase__ ) __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase__ , return_tensors="""pt""" ) __lowercase = encoded_inputs.pixel_values.to(lowerCamelCase__ ) with torch.no_grad(): __lowercase = model(lowerCamelCase__ ) __lowercase = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) __lowercase = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCamelCase__ , atol=1E-1 ) ) @slow def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" __lowercase = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowerCamelCase__ , align=lowerCamelCase__ , do_random_crop=lowerCamelCase__ ) __lowercase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( lowerCamelCase__ ) __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase__ , return_tensors="""pt""" ) __lowercase = encoded_inputs.pixel_values.to(lowerCamelCase__ ) with torch.no_grad(): __lowercase = model(lowerCamelCase__ ) __lowercase = outputs.logits.detach().cpu() __lowercase = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ , target_sizes=[(500, 300)] ) __lowercase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ ) __lowercase = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ ) __lowercase = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ )
163
'''simple docstring''' def snake_case_ ( a__ : int = 1_00 ): """simple docstring""" __lowercase = 0 __lowercase = 0 for i in range(1 ,n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
163
1
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class _snake_case ( __a ): '''simple docstring''' UpperCamelCase__ =42 UpperCamelCase__ =42 UpperCamelCase__ =42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
608
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase_ : Dict = False class __lowerCAmelCase ( unittest.TestCase ): def snake_case_ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case_ (self ): return 1_2 @property def snake_case_ (self ): return 1_2 @property def snake_case_ (self ): return 3_2 @property def snake_case_ (self ): torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def snake_case_ (self ): _UpperCAmelCase : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ (self ): torch.manual_seed(0 ) _UpperCAmelCase : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowerCAmelCase__ ) @property def snake_case_ (self ): torch.manual_seed(0 ) _UpperCAmelCase : int = 1_2 _UpperCAmelCase : Tuple = 1_2 _UpperCAmelCase : Any = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } _UpperCAmelCase : Tuple = TransformeraDModel(**lowerCAmelCase__ ) return model def snake_case_ (self ): _UpperCAmelCase : List[str] = """cpu""" _UpperCAmelCase : Any = self.dummy_vqvae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Tuple = self.dummy_tokenizer _UpperCAmelCase : List[str] = self.dummy_transformer _UpperCAmelCase : Tuple = VQDiffusionScheduler(self.num_embed ) _UpperCAmelCase : int = LearnedClassifierFreeSamplingEmbeddings(learnable=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = VQDiffusionPipeline( vqvae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , transformer=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , learned_classifier_free_sampling_embeddings=lowerCAmelCase__ , ) _UpperCAmelCase : List[Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : int = """teddy bear playing in the pool""" _UpperCAmelCase : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = pipe([prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="""np""" ) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : Optional[int] = pipe( [prompt] , generator=lowerCAmelCase__ , output_type="""np""" , return_dict=lowerCAmelCase__ , num_inference_steps=2 )[0] _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) _UpperCAmelCase : str = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ (self ): _UpperCAmelCase : Optional[Any] = """cpu""" _UpperCAmelCase : Tuple = self.dummy_vqvae _UpperCAmelCase : Dict = self.dummy_text_encoder _UpperCAmelCase : int = self.dummy_tokenizer _UpperCAmelCase : Any = self.dummy_transformer _UpperCAmelCase : List[str] = VQDiffusionScheduler(self.num_embed ) _UpperCAmelCase : str = LearnedClassifierFreeSamplingEmbeddings( learnable=lowerCAmelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) _UpperCAmelCase : Tuple = VQDiffusionPipeline( vqvae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , transformer=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , learned_classifier_free_sampling_embeddings=lowerCAmelCase__ , ) _UpperCAmelCase : List[str] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = """teddy bear playing in the pool""" _UpperCAmelCase : str = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : Dict = pipe([prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : Optional[Any] = pipe( [prompt] , generator=lowerCAmelCase__ , output_type="""np""" , return_dict=lowerCAmelCase__ , num_inference_steps=2 )[0] _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) _UpperCAmelCase : List[str] = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def snake_case_ (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ (self ): _UpperCAmelCase : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) _UpperCAmelCase : List[Any] = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) _UpperCAmelCase : Union[str, Any] = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though _UpperCAmelCase : int = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : Optional[Any] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=lowerCAmelCase__ , output_type="""np""" , ) _UpperCAmelCase : Dict = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
414
0
def a_ ( __magic_name__ ) -> int: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) snake_case : List[str] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
84
import string import numpy def a_ ( __magic_name__ , __magic_name__ ) -> int: """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , __magic_name__ ) class a_ : A__ : List[Any] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) A__ : List[str] = numpy.vectorize(lambda a : x % 36 ) A__ : Dict = numpy.vectorize(a ) def __init__( self : List[str] , UpperCAmelCase__ : numpy.ndarray ): """simple docstring""" snake_case : int = self.modulus(UpperCAmelCase__ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key snake_case : List[str] = encrypt_key.shape[0] def lowerCAmelCase( self : Union[str, Any] , UpperCAmelCase__ : str ): """simple docstring""" return self.key_string.index(UpperCAmelCase__ ) def lowerCAmelCase( self : List[str] , UpperCAmelCase__ : int ): """simple docstring""" return self.key_string[round(UpperCAmelCase__ )] def lowerCAmelCase( self : Optional[Any] ): """simple docstring""" snake_case : List[Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: snake_case : Tuple = det % len(self.key_string ) snake_case : Tuple = len(self.key_string ) if greatest_common_divisor(UpperCAmelCase__ , len(self.key_string ) ) != 1: snake_case : List[Any] = ( F"determinant modular {req_l} of encryption key({det}) " F"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(UpperCAmelCase__ ) def lowerCAmelCase( self : Optional[int] , UpperCAmelCase__ : str ): """simple docstring""" snake_case : Optional[int] = [char for char in text.upper() if char in self.key_string] snake_case : Optional[int] = chars[-1] while len(UpperCAmelCase__ ) % self.break_key != 0: chars.append(UpperCAmelCase__ ) return "".join(UpperCAmelCase__ ) def lowerCAmelCase( self : Optional[int] , UpperCAmelCase__ : str ): """simple docstring""" snake_case : Optional[int] = self.process_text(text.upper() ) snake_case : Optional[int] = '''''' for i in range(0 , len(UpperCAmelCase__ ) - self.break_key + 1 , self.break_key ): snake_case : int = text[i : i + self.break_key] snake_case : int = [self.replace_letters(UpperCAmelCase__ ) for char in batch] snake_case : Tuple = numpy.array([vec] ).T snake_case : Optional[Any] = self.modulus(self.encrypt_key.dot(UpperCAmelCase__ ) ).T.tolist()[ 0 ] snake_case : Dict = ''''''.join( self.replace_digits(UpperCAmelCase__ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowerCAmelCase( self : str ): """simple docstring""" snake_case : Optional[int] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: snake_case : int = det % len(self.key_string ) snake_case : Dict = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: snake_case : Any = i break snake_case : Any = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(UpperCAmelCase__ ) ) def lowerCAmelCase( self : Dict , UpperCAmelCase__ : str ): """simple docstring""" snake_case : Any = self.make_decrypt_key() snake_case : Optional[Any] = self.process_text(text.upper() ) snake_case : int = '''''' for i in range(0 , len(UpperCAmelCase__ ) - self.break_key + 1 , self.break_key ): snake_case : Any = text[i : i + self.break_key] snake_case : int = [self.replace_letters(UpperCAmelCase__ ) for char in batch] snake_case : List[str] = numpy.array([vec] ).T snake_case : Optional[Any] = self.modulus(decrypt_key.dot(UpperCAmelCase__ ) ).T.tolist()[0] snake_case : int = ''''''.join( self.replace_digits(UpperCAmelCase__ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def a_ ( ) -> None: """simple docstring""" snake_case : Any = int(input('''Enter the order of the encryption key: ''' ) ) snake_case : List[Any] = [] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(__magic_name__ ): snake_case : Optional[Any] = [int(__magic_name__ ) for x in input().split()] hill_matrix.append(__magic_name__ ) snake_case : List[str] = HillCipher(numpy.array(__magic_name__ ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) snake_case : int = input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": snake_case : List[Any] = input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(__magic_name__ ) ) elif option == "2": snake_case : int = input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
84
1
'''simple docstring''' def lowercase__( __UpperCamelCase: str ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
28
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[Any] = "data2vec-audio" def __init__( self , _lowerCAmelCase=32 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase="gelu" , _lowerCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase=False , _lowerCAmelCase=16 , _lowerCAmelCase=19 , _lowerCAmelCase=5 , _lowerCAmelCase=0.05 , _lowerCAmelCase=10 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0 , _lowerCAmelCase=10 , _lowerCAmelCase=0 , _lowerCAmelCase="sum" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=256 , _lowerCAmelCase=(512, 512, 512, 512, 1500) , _lowerCAmelCase=(5, 3, 3, 1, 1) , _lowerCAmelCase=(1, 2, 3, 1, 1) , _lowerCAmelCase=512 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=False , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Dict: super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = feat_extract_activation _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = conv_bias _lowerCAmelCase = num_conv_pos_embeddings _lowerCAmelCase = num_conv_pos_embedding_groups _lowerCAmelCase = conv_pos_kernel_size _lowerCAmelCase = len(self.conv_dim ) _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = feat_proj_dropout _lowerCAmelCase = final_dropout _lowerCAmelCase = layerdrop _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = vocab_size _lowerCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase = mask_time_prob _lowerCAmelCase = mask_time_length _lowerCAmelCase = mask_time_min_masks _lowerCAmelCase = mask_feature_prob _lowerCAmelCase = mask_feature_length _lowerCAmelCase = mask_feature_min_masks # ctc loss _lowerCAmelCase = ctc_loss_reduction _lowerCAmelCase = ctc_zero_infinity # adapter _lowerCAmelCase = add_adapter _lowerCAmelCase = adapter_kernel_size _lowerCAmelCase = adapter_stride _lowerCAmelCase = num_adapter_layers _lowerCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = xvector_output_dim @property def _snake_case ( self ) -> str: return math.prod(self.conv_stride )
18
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __SCREAMING_SNAKE_CASE = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
17
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __SCREAMING_SNAKE_CASE = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __SCREAMING_SNAKE_CASE = { """allenai/led-base-16384""": 16384, } class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = LEDTokenizer a__ = ["input_ids", "attention_mask"] def __init__( self : int , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : str="replace" , __lowerCamelCase : Optional[int]="<s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : Any="</s>" , __lowerCamelCase : Dict="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : Union[str, Any]="<pad>" , __lowerCamelCase : Dict="<mask>" , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : str=True , **__lowerCamelCase : Union[str, Any] , ) -> Optional[int]: super().__init__( __lowerCamelCase , __lowerCamelCase , tokenizer_file=__lowerCamelCase , errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase , **__lowerCamelCase , ) A : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __lowerCamelCase ) != add_prefix_space: A : Any = getattr(__lowerCamelCase , pre_tok_state.pop("type" ) ) A : Any = add_prefix_space A : Tuple = pre_tok_class(**__lowerCamelCase ) A : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` A : List[str] = "post_processor" A : Union[str, Any] = getattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase ) if tokenizer_component_instance: A : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A : Union[str, Any] = tuple(state["sep"] ) if "cls" in state: A : str = tuple(state["cls"] ) A : int = False if state.get("add_prefix_space" , __lowerCamelCase ) != add_prefix_space: A : List[Any] = add_prefix_space A : Dict = True if state.get("trim_offsets" , __lowerCamelCase ) != trim_offsets: A : Dict = trim_offsets A : str = True if changes_to_apply: A : int = getattr(__lowerCamelCase , state.pop("type" ) ) A : Dict = component_class(**__lowerCamelCase ) setattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : Any ) -> Dict: A : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else value A : Tuple = value def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : List[str] ) -> BatchEncoding: A : List[str] = kwargs.get("is_split_into_words" , __lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , *__lowerCamelCase : str , **__lowerCamelCase : Optional[Any] ) -> BatchEncoding: A : List[str] = kwargs.get("is_split_into_words" , __lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: A : Optional[Any] = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any]=None ) -> List[str]: A : Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: A : str = [self.sep_token_id] A : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self : str , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ) -> dict: A : Dict = super()._pad( encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: A : List[Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: A : Optional[int] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. A : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase ) if needs_to_be_padded: A : Any = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` A : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": A : Tuple = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
17
1
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __a ( _snake_case, _snake_case ): @register_to_config def __init__( self : Optional[Any] ,lowerCamelCase : int = 768 ,): '''simple docstring''' super().__init__() __SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(1 ,lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = nn.Parameter(torch.ones(1 ,lowerCamelCase ) ) def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : Optional[Union[str, torch.device]] = None ,lowerCamelCase : Optional[torch.dtype] = None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Parameter(self.mean.to(lowerCamelCase ).to(lowerCamelCase ) ) __SCREAMING_SNAKE_CASE = nn.Parameter(self.std.to(lowerCamelCase ).to(lowerCamelCase ) ) return self def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (embeds - self.mean) * 1.0 / self.std return embeds def UpperCAmelCase__ ( self : int ,lowerCamelCase : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (embeds * self.std) + self.mean return embeds
109
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def lowerCAmelCase__ ( self ): _A = self.dummy_uncond_unet _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' ).images _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' , return_dict=snake_case_ )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): _A = 'google/ncsnpp-celebahq-256' _A = UNetaDModel.from_pretrained(snake_case_ ) _A = KarrasVeScheduler() _A = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) _A = torch.manual_seed(0 ) _A = pipe(num_inference_steps=20 , generator=snake_case_ , output_type='numpy' ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
27
0
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} lowerCAmelCase__ = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } lowerCAmelCase__ = { '''abeja/gpt-neox-japanese-2.7b''': 2048, } def _lowerCamelCase ( __a, __a ): with open(_A, '''r''', encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ = collections.OrderedDict() SCREAMING_SNAKE_CASE_ = collections.OrderedDict() SCREAMING_SNAKE_CASE_ = collections.OrderedDict() with open(_A, '''r''', encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ = f.readlines() SCREAMING_SNAKE_CASE_ = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(_A ): SCREAMING_SNAKE_CASE_ = b SCREAMING_SNAKE_CASE_ = idx for wd in b: SCREAMING_SNAKE_CASE_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class snake_case ( _UpperCAmelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ['input_ids', 'attention_mask'] def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_="<|startoftext|>" , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ): """simple docstring""" super().__init__( unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , do_clean_text=__UpperCamelCase , **__UpperCamelCase , ) if not os.path.isfile(__UpperCamelCase ): raise ValueError( f'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(__UpperCamelCase ): raise ValueError( f'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) SCREAMING_SNAKE_CASE_ = do_clean_text SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = load_vocab_and_emoji(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def _lowercase (self ): """simple docstring""" return len(self.raw_vocab ) def _lowercase (self ): """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" return self.subword_tokenizer.tokenize(__UpperCamelCase , clean=self.do_clean_text ) def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" return self.vocab.get(__UpperCamelCase , self.vocab.get(self.unk_token ) ) def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" return self.subword_tokenizer.convert_id_to_token(__UpperCamelCase ) def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ''''''.join(__UpperCamelCase ).strip() return out_string def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) + [self.eos_token_id] ) if len(__UpperCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE_ = input_ids[-self.model_max_length :] return input_ids def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 0 if os.path.isdir(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE_ = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: SCREAMING_SNAKE_CASE_ = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE_ = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''' ) SCREAMING_SNAKE_CASE_ = token_index writer.write(''','''.join(__UpperCamelCase ) + '''\n''' ) index += 1 with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as writer: json.dump(self.emoji , __UpperCamelCase ) return vocab_file, emoji_file class snake_case ( _UpperCAmelCase ): def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = vocab # same as swe SCREAMING_SNAKE_CASE_ = ids_to_tokens # same as bpe SCREAMING_SNAKE_CASE_ = emoji SCREAMING_SNAKE_CASE_ = np.max([len(__UpperCamelCase ) for w in self.vocab.keys()] ) SCREAMING_SNAKE_CASE_ = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) SCREAMING_SNAKE_CASE_ = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) SCREAMING_SNAKE_CASE_ = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) SCREAMING_SNAKE_CASE_ = re.compile( R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) SCREAMING_SNAKE_CASE_ = re.compile( R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) SCREAMING_SNAKE_CASE_ = re.compile( R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) SCREAMING_SNAKE_CASE_ = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' SCREAMING_SNAKE_CASE_ = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' SCREAMING_SNAKE_CASE_ = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__(self ): """simple docstring""" return len(self.ids_to_tokens ) def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.content_repattera.sub('''<URL>''' , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = self.content_repattera.sub('''<EMAIL>''' , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = self.content_repattera.sub('''<TEL>''' , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = self.content_repattera.sub('''<DATE>''' , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = self.content_repattera.sub('''<DATE>''' , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = self.content_repattera.sub('''<PRICE>''' , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: SCREAMING_SNAKE_CASE_ = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' ) return content def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ = text.replace(''' ''' , '''<SP>''' ) SCREAMING_SNAKE_CASE_ = text.replace(''' ''' , '''<SP>''' ) SCREAMING_SNAKE_CASE_ = text.replace('''\r\n''' , '''<BR>''' ) SCREAMING_SNAKE_CASE_ = text.replace('''\n''' , '''<BR>''' ) SCREAMING_SNAKE_CASE_ = text.replace('''\r''' , '''<BR>''' ) SCREAMING_SNAKE_CASE_ = text.replace('''\t''' , '''<TAB>''' ) SCREAMING_SNAKE_CASE_ = text.replace('''—''' , '''ー''' ) SCREAMING_SNAKE_CASE_ = text.replace('''−''' , '''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: SCREAMING_SNAKE_CASE_ = text.replace(__UpperCamelCase , __UpperCamelCase ) if clean: SCREAMING_SNAKE_CASE_ = self.clean_text(__UpperCamelCase ) def check_simbol(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = x.encode() if len(__UpperCamelCase ) == 1 and len(__UpperCamelCase ) == 2: SCREAMING_SNAKE_CASE_ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = x.encode() if len(__UpperCamelCase ) == 1 and len(__UpperCamelCase ) == 3: SCREAMING_SNAKE_CASE_ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE28080 and c <= 0XE2B07F: return True return False SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = [] while pos < len(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = min(len(__UpperCamelCase ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 SCREAMING_SNAKE_CASE_ = [] # (token_id, token, pos) for e in range(__UpperCamelCase , __UpperCamelCase , -1 ): SCREAMING_SNAKE_CASE_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__UpperCamelCase ) > 2: SCREAMING_SNAKE_CASE_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__UpperCamelCase ) > 0: # the smallest token_id is adopted SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = sorted(__UpperCamelCase , key=lambda SCREAMING_SNAKE_CASE_ : x[0] )[0] result.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = e else: SCREAMING_SNAKE_CASE_ = pos + 1 SCREAMING_SNAKE_CASE_ = text[pos:end] if check_simbol(__UpperCamelCase ): result.append('''<KIGOU>''' ) elif checkuae(__UpperCamelCase ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) SCREAMING_SNAKE_CASE_ = end return result def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="\n" ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__UpperCamelCase ) > 0: words.append(bytearray(__UpperCamelCase ).decode('''utf-8''' , errors='''replace''' ) ) SCREAMING_SNAKE_CASE_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(__UpperCamelCase ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: words.append(bytearray(__UpperCamelCase ).decode('''utf-8''' , errors='''replace''' ) ) SCREAMING_SNAKE_CASE_ = ''''''.join(__UpperCamelCase ) return text
719
"""simple docstring""" import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( __a, __a, __a, __a ): # Initialise PyTorch model SCREAMING_SNAKE_CASE_ = BigBirdConfig.from_json_file(__a ) print(F'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: SCREAMING_SNAKE_CASE_ = BigBirdForQuestionAnswering(__a ) else: SCREAMING_SNAKE_CASE_ = BigBirdForPreTraining(__a ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__a, __a, is_trivia_qa=__a ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__a ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--big_bird_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.' ) lowerCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
628
0
def UpperCAmelCase__( __UpperCAmelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __snake_case : Optional[Any] = sorted(string.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == len(set(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": __magic_name__ = input('''Enter a string ''').strip() __magic_name__ = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
576
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : int | float | str , SCREAMING_SNAKE_CASE_ : int | float | str ): '''simple docstring''' if nth_term == "": return [""] _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = [] for temp in range(int(SCREAMING_SNAKE_CASE_ ) ): series.append(F'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE_ ) )}''' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = int(input("Enter the last number (nth term) of the P-Series")) _SCREAMING_SNAKE_CASE = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
18
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :List[str] = '''camembert''' def __init__( self , lowerCAmelCase_=3_05_22 , lowerCAmelCase_=7_68 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=30_72 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_12 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-12 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_="absolute" , lowerCAmelCase_=True , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> int: super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = classifier_dropout class a ( __lowerCAmelCase ): """simple docstring""" @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _A = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
83
from __future__ import annotations from collections.abc import Callable def snake_case ( snake_case__ :Callable[[int | float], int | float] , snake_case__ :int | float , snake_case__ :int | float , snake_case__ :int = 100 , ) -> float: _A = x_start _A = fnc(snake_case__) _A = 0.0 for _ in range(snake_case__): # Approximates small segments of curve as linear and solve # for trapezoidal area _A = (x_end - x_start) / steps + xa _A = fnc(snake_case__) area += abs(fxa + fxa) * (xa - xa) / 2 # Increment step _A = xa _A = fxa return area if __name__ == "__main__": def snake_case ( snake_case__ :Tuple) -> List[str]: return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') _SCREAMING_SNAKE_CASE = 10 while i <= 100_000: print(F'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
83
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __a = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
from __future__ import annotations _a : Dict = list[list[int]] # assigning initial values to the grid _a : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution _a : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def UpperCamelCase__ ( _A: Matrix , _A: int , _A: int , _A: int ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def UpperCamelCase__ ( _A: Matrix ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def UpperCamelCase__ ( _A: Matrix ): '''simple docstring''' if location := find_empty_location(_A ): __lowerCamelCase , __lowerCamelCase = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(_A , _A , _A , _A ): __lowerCamelCase = digit if sudoku(_A ) is not None: return grid __lowerCamelCase = 0 return None def UpperCamelCase__ ( _A: Matrix ): '''simple docstring''' for row in grid: for cell in row: print(_A , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') _a : int = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
479
0
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _A = NewType('DataClass', Any) _A = NewType('DataClassType', Any) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Tuple ) -> int: """simple docstring""" if isinstance(UpperCamelCase , UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : list ) -> Callable[[str], Any]: """simple docstring""" a_ = {str(UpperCamelCase ): choice for choice in choices} return lambda UpperCamelCase : str_to_choice.get(UpperCamelCase , UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( *, UpperCamelCase : Union[str, List[str]] = None , UpperCamelCase : str = None , UpperCamelCase : Any = dataclasses.MISSING , UpperCamelCase : Callable[[], Any] = dataclasses.MISSING , UpperCamelCase : dict = None , **UpperCamelCase : Tuple , ) -> dataclasses.Field: """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls a_ = {} if aliases is not None: a_ = aliases if help is not None: a_ = help return dataclasses.field(metadata=UpperCamelCase , default=UpperCamelCase , default_factory=UpperCamelCase , **UpperCamelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): _lowerCamelCase : Iterable[DataClassType] def __init__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): # To make the default appear when using --help if "formatter_class" not in kwargs: a_ = ArgumentDefaultsHelpFormatter super().__init__(**_SCREAMING_SNAKE_CASE ) if dataclasses.is_dataclass(_SCREAMING_SNAKE_CASE ): a_ = [dataclass_types] a_ = list(_SCREAMING_SNAKE_CASE ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_SCREAMING_SNAKE_CASE ) @staticmethod def __magic_name__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a_ = f"""--{field.name}""" a_ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _SCREAMING_SNAKE_CASE ): raise RuntimeError( """Unresolved type detected, which should have been done with the help of """ """`typing.get_type_hints` method by default""" ) a_ = kwargs.pop("""aliases""" , [] ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a_ = [aliases] a_ = getattr(field.type , """__origin__""" , field.type ) if origin_type is Union or (hasattr(_SCREAMING_SNAKE_CASE , """UnionType""" ) and isinstance(_SCREAMING_SNAKE_CASE , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_SCREAMING_SNAKE_CASE ) not in field.type.__args__ ): raise ValueError( """Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because""" """ the argument parser only supports one type per argument.""" f""" Problem encountered in field '{field.name}'.""" ) if type(_SCREAMING_SNAKE_CASE ) not in field.type.__args__: # filter `str` in Union a_ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] a_ = getattr(field.type , """__origin__""" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) a_ = ( field.type.__args__[0] if isinstance(_SCREAMING_SNAKE_CASE , field.type.__args__[1] ) else field.type.__args__[1] ) a_ = getattr(field.type , """__origin__""" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) a_ = {} if origin_type is Literal or (isinstance(field.type , _SCREAMING_SNAKE_CASE ) and issubclass(field.type , _SCREAMING_SNAKE_CASE )): if origin_type is Literal: a_ = field.type.__args__ else: a_ = [x.value for x in field.type] a_ = make_choice_type_function(kwargs["""choices"""] ) if field.default is not dataclasses.MISSING: a_ = field.default else: a_ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument a_ = copy(_SCREAMING_SNAKE_CASE ) # Hack because type=bool in argparse does not behave as we want. a_ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. a_ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way a_ = default # This tells argparse we accept 0 or 1 value after --field_name a_ = """?""" # This is the value that will get picked if we do --field_name (without value) a_ = True elif isclass(_SCREAMING_SNAKE_CASE ) and issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a_ = field.type.__args__[0] a_ = """+""" if field.default_factory is not dataclasses.MISSING: a_ = field.default_factory() elif field.default is dataclasses.MISSING: a_ = True else: a_ = field.type if field.default is not dataclasses.MISSING: a_ = field.default elif field.default_factory is not dataclasses.MISSING: a_ = field.default_factory() else: a_ = True parser.add_argument(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): a_ = False parser.add_argument(f"""--no_{field.name}""" , action="""store_false""" , dest=field.name , **_SCREAMING_SNAKE_CASE ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE ): if hasattr(_SCREAMING_SNAKE_CASE , """_argument_group_name""" ): a_ = self.add_argument_group(dtype._argument_group_name ) else: a_ = self try: a_ = get_type_hints(_SCREAMING_SNAKE_CASE ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ """removing line of `from __future__ import annotations` which opts in Postponed """ """Evaluation of Annotations (PEP 563)""" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_SCREAMING_SNAKE_CASE ): a_ = """.""".join(map(_SCREAMING_SNAKE_CASE , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ """line of `from __future__ import annotations` which opts in union types as """ """`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To """ """support Python versions that lower than 3.10, you need to use """ """`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of """ """`X | None`.""" ) from ex raise for field in dataclasses.fields(_SCREAMING_SNAKE_CASE ): if not field.init: continue a_ = type_hints[field.name] self._parse_dataclass_field(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): a_ = [] if args_filename: args_files.append(Path(_SCREAMING_SNAKE_CASE ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(""".args""" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values a_ = ArgumentParser() args_file_parser.add_argument(_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , action="""append""" ) # Use only remaining args for further parsing (remove the args_file_flag) a_ , a_ = args_file_parser.parse_known_args(args=_SCREAMING_SNAKE_CASE ) a_ = vars(_SCREAMING_SNAKE_CASE ).get(args_file_flag.lstrip("""-""" ) , _SCREAMING_SNAKE_CASE ) if cmd_args_file_paths: args_files.extend([Path(_SCREAMING_SNAKE_CASE ) for p in cmd_args_file_paths] ) a_ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last a_ = file_args + args if args is not None else file_args + sys.argv[1:] a_ , a_ = self.parse_known_args(args=_SCREAMING_SNAKE_CASE ) a_ = [] for dtype in self.dataclass_types: a_ = {f.name for f in dataclasses.fields(_SCREAMING_SNAKE_CASE ) if f.init} a_ = {k: v for k, v in vars(_SCREAMING_SNAKE_CASE ).items() if k in keys} for k in keys: delattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a_ = dtype(**_SCREAMING_SNAKE_CASE ) outputs.append(_SCREAMING_SNAKE_CASE ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_SCREAMING_SNAKE_CASE ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ): a_ = set(args.keys() ) a_ = [] for dtype in self.dataclass_types: a_ = {f.name for f in dataclasses.fields(_SCREAMING_SNAKE_CASE ) if f.init} a_ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) a_ = dtype(**_SCREAMING_SNAKE_CASE ) outputs.append(_SCREAMING_SNAKE_CASE ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(_SCREAMING_SNAKE_CASE )}""" ) return tuple(_SCREAMING_SNAKE_CASE ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ): with open(Path(_SCREAMING_SNAKE_CASE ) , encoding="""utf-8""" ) as open_json_file: a_ = json.loads(open_json_file.read() ) a_ = self.parse_dict(_SCREAMING_SNAKE_CASE , allow_extra_keys=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ): a_ = self.parse_dict(yaml.safe_load(Path(_SCREAMING_SNAKE_CASE ).read_text() ) , allow_extra_keys=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
403
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase_ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=1000 , _SCREAMING_SNAKE_CASE=[3, 3, 6, 4] , _SCREAMING_SNAKE_CASE=[48, 56, 112, 220] , ): a_ = parent a_ = batch_size a_ = num_channels a_ = is_training a_ = use_labels a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = num_labels a_ = image_size a_ = layer_depths a_ = embed_dims def __magic_name__ ( self ): a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.num_labels ) a_ = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_SCREAMING_SNAKE_CASE , layer_scale_init_value=1E-5 , ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a_ = SwiftFormerModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __magic_name__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a_ = self.num_labels a_ = SwiftFormerForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) a_ = SwiftFormerForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self ): ((a_) , (a_) , (a_)) = self.prepare_config_and_inputs() a_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCamelCase : List[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () _lowerCamelCase : Optional[Any] = ( {"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification} if is_torch_available() else {} ) _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Dict = False _lowerCamelCase : Any = False _lowerCamelCase : Tuple = False _lowerCamelCase : List[Any] = False def __magic_name__ ( self ): a_ = SwiftFormerModelTester(self ) a_ = ConfigTester( self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def __magic_name__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def __magic_name__ ( self ): pass def __magic_name__ ( self ): a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(_SCREAMING_SNAKE_CASE ) a_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __magic_name__ ( self ): a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(_SCREAMING_SNAKE_CASE ) a_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def __magic_name__ ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = SwiftFormerModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def __magic_name__ ( self ): pass def __magic_name__ ( self ): def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): a_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) a_ = outputs.hidden_states a_ = 8 self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_SCREAMING_SNAKE_CASE ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): def _config_zero_init(_SCREAMING_SNAKE_CASE ): a_ = copy.deepcopy(_SCREAMING_SNAKE_CASE ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1E-10 ) if isinstance(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ): a_ = _config_zero_init(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return configs_no_init a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: a_ = model_class(config=_SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __magic_name__ ( self ): pass def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: """simple docstring""" a_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ): return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def __magic_name__ ( self ): a_ = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_SCREAMING_SNAKE_CASE ) a_ = self.default_image_processor a_ = prepare_img() a_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): a_ = model(**_SCREAMING_SNAKE_CASE ) # verify the logits a_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) a_ = torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
403
1
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join(sorted(__SCREAMING_SNAKE_CASE ) ) def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" return word_by_signature[signature(__SCREAMING_SNAKE_CASE )] __lowerCamelCase : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') __lowerCamelCase : int = sorted({word.strip().lower() for word in data.splitlines()}) __lowerCamelCase : Optional[Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __lowerCamelCase : Any = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
404
'''simple docstring''' def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =[0] * len(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): # use last results for better performance - dynamic programming _UpperCamelCase =prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _UpperCamelCase =prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _UpperCamelCase =j return prefix_result def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" return max(prefix_function(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod()
404
1
"""simple docstring""" class _a : """simple docstring""" def __init__( self : Dict )->str: _UpperCAmelCase = '''''' _UpperCAmelCase = '''''' _UpperCAmelCase = [] def lowercase__ ( self : List[Any] , __UpperCamelCase : int , __UpperCamelCase : int )->int: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _UpperCAmelCase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: _UpperCAmelCase = self.__min_dist_top_down_dp(__UpperCamelCase , n - 1 ) _UpperCAmelCase = self.__min_dist_top_down_dp(m - 1 , __UpperCamelCase ) _UpperCAmelCase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) _UpperCAmelCase = 1 + min(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self.dp[m][n] def lowercase__ ( self : List[Any] , __UpperCamelCase : str , __UpperCamelCase : str )->int: _UpperCAmelCase = worda _UpperCAmelCase = worda _UpperCAmelCase = [[-1 for _ in range(len(__UpperCamelCase ) )] for _ in range(len(__UpperCamelCase ) )] return self.__min_dist_top_down_dp(len(__UpperCamelCase ) - 1 , len(__UpperCamelCase ) - 1 ) def lowercase__ ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : str )->int: _UpperCAmelCase = worda _UpperCAmelCase = worda _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _UpperCAmelCase = j elif j == 0: # second string is empty _UpperCAmelCase = i elif worda[i - 1] == worda[j - 1]: # last characters are equal _UpperCAmelCase = self.dp[i - 1][j - 1] else: _UpperCAmelCase = self.dp[i][j - 1] _UpperCAmelCase = self.dp[i - 1][j] _UpperCAmelCase = self.dp[i - 1][j - 1] _UpperCAmelCase = 1 + min(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self.dp[m][n] if __name__ == "__main__": __A : List[Any] = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() __A : Dict = input("Enter the first string: ").strip() __A : str = input("Enter the second string: ").strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
95
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Tuple , __UpperCamelCase : str )->Tuple: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): _UpperCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Optional[Any]: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : Tuple )->Optional[Any]: _UpperCAmelCase = '''sgugger/tiny-distilbert-classification''' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , only_pretrain_model=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : Tuple )->str: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , torchscript=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , fpaa=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : Tuple )->Any: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) # set architectures equal to `None` _UpperCAmelCase = None _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def lowercase__ ( self : List[str] )->int: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__UpperCamelCase , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase__ ( self : str )->Dict: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : Optional[int] )->Optional[Any]: _UpperCAmelCase = '''sshleifer/tinier_bart''' _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self : List[str] )->str: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = '''sshleifer/tinier_bart''' _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) _UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase__ ( self : Optional[Any] )->int: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , save_to_csv=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__UpperCamelCase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(__UpperCamelCase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(__UpperCamelCase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(__UpperCamelCase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(__UpperCamelCase , '''env.csv''' ) , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCamelCase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''env.csv''' ) ).exists() ) def lowercase__ ( self : Tuple )->List[Any]: _UpperCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(__UpperCamelCase : str ): self.assertTrue(hasattr(__UpperCamelCase , '''sequential''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''cumulative''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''current''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__UpperCamelCase , '''log.txt''' ) , log_print=__UpperCamelCase , trace_memory_line_by_line=__UpperCamelCase , multi_process=__UpperCamelCase , ) _UpperCAmelCase = PyTorchBenchmark(__UpperCamelCase ) _UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(__UpperCamelCase , '''log.txt''' ) ).exists() )
95
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
"""simple docstring""" from __future__ import annotations import requests def lowercase ( lowerCAmelCase__ : str ) -> dict: __a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase__ ).json() def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]: __a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' __a = requests.get(lowerCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids] def lowercase ( lowerCAmelCase__ : int = 10 ) -> str: __a = hackernews_top_stories(lowerCAmelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
695
1
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : str = "cpu" , snake_case : Union[str, None] = None )-> None: _lowerCamelCase = torch.load(snake_case , map_location=snake_case ) for k, v in tqdm(state_dict.items() ): if not isinstance(snake_case , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) _lowerCamelCase = v.half() if save_path is None: # overwrite src_path _lowerCamelCase = src_path torch.save(snake_case , snake_case ) if __name__ == "__main__": fire.Fire(convert)
720
"""simple docstring""" A_ : List[Any] =9.8_0665 def SCREAMING_SNAKE_CASE_ ( snake_case : float , snake_case : float , snake_case : float = g )-> float: if fluid_density <= 0: raise ValueError('Impossible fluid density' ) if volume < 0: raise ValueError('Impossible Object volume' ) if gravity <= 0: raise ValueError('Impossible Gravity' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
222
0
"""simple docstring""" import numpy as np def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
532
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : Dict ): """simple docstring""" UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = BlipImageProcessor() UpperCamelCase = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) UpperCamelCase = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) UpperCamelCase = InstructBlipProcessor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def A ( self : Tuple , **UpperCamelCase__ : str ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).tokenizer def A ( self : Any , **UpperCamelCase__ : Tuple ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).image_processor def A ( self : List[Any] , **UpperCamelCase__ : Optional[Any] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).qformer_tokenizer def A ( self : Any ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] UpperCamelCase = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self : Any ): """simple docstring""" UpperCamelCase = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCamelCase = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) UpperCamelCase = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor.qformer_tokenizer , UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = image_processor(UpperCamelCase__ , return_tensors='np' ) UpperCamelCase = processor(images=UpperCamelCase__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = 'lower newer' UpperCamelCase = processor(text=UpperCamelCase__ ) UpperCamelCase = tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) UpperCamelCase = qformer_tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = 'lower newer' UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase = processor.batch_decode(UpperCamelCase__ ) UpperCamelCase = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) UpperCamelCase = 'lower newer' UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
430
0
"""simple docstring""" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES lowerCamelCase_ = '''tiny-wmt19-en-ru''' # Build # borrowed from a test lowerCamelCase_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowerCamelCase_ = dict(zip(vocab, range(len(vocab)))) lowerCamelCase_ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = Path(tmpdirname) lowerCamelCase_ = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] lowerCamelCase_ = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] lowerCamelCase_ = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) lowerCamelCase_ = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) lowerCamelCase_ = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) lowerCamelCase_ = FSMTForConditionalGeneration(config) print(f'num of params {tiny_model.num_parameters()}') # Test lowerCamelCase_ = tokenizer(['''Making tiny model'''], return_tensors='''pt''') lowerCamelCase_ = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-ru
713
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ (__A ): __magic_name__ = '''levit''' def __init__( self : List[str] , lowerCAmelCase_ : int=224 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=16 , lowerCAmelCase_ : Tuple=[128, 256, 384] , lowerCAmelCase_ : Optional[int]=[4, 8, 12] , lowerCAmelCase_ : str=[4, 4, 4] , lowerCAmelCase_ : Dict=[16, 16, 16] , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : Optional[int]=[2, 2, 2] , lowerCAmelCase_ : Any=[2, 2, 2] , lowerCAmelCase_ : int=0.0_2 , **lowerCAmelCase_ : List[Any] , ) -> List[str]: super().__init__(**lowerCAmelCase_ ) UpperCAmelCase_ : int = image_size UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : str = kernel_size UpperCAmelCase_ : List[Any] = stride UpperCAmelCase_ : List[str] = padding UpperCAmelCase_ : Any = hidden_sizes UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : List[str] = depths UpperCAmelCase_ : int = key_dim UpperCAmelCase_ : List[str] = drop_path_rate UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : Tuple = attention_ratio UpperCAmelCase_ : Optional[int] = mlp_ratio UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : List[Any] = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ (__A ): __magic_name__ = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : int ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> float: return 1e-4
463
0
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A = ["image_processor", "tokenizer"] _A = "FlavaImageProcessor" _A = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : Any=None , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): _a = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , SCREAMING_SNAKE_CASE_ , ) _a = kwargs.pop('feature_extractor' ) _a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _a = self.image_processor def __call__( self : str , SCREAMING_SNAKE_CASE_ : Optional[ImageInput] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE_ : Union[bool, str, TruncationStrategy] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , **SCREAMING_SNAKE_CASE_ : Dict , ): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _a = self.tokenizer( text=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_overflowing_tokens=SCREAMING_SNAKE_CASE_ , return_special_tokens_mask=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , return_length=SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) if images is not None: _a = self.image_processor( SCREAMING_SNAKE_CASE_ , return_image_mask=SCREAMING_SNAKE_CASE_ , return_codebook_pixels=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) if text is not None and images is not None: encoding.update(SCREAMING_SNAKE_CASE_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_ ) , tensor_type=SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Any ): return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : int , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def _UpperCAmelCase ( self : Tuple ): _a = self.tokenizer.model_input_names _a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _UpperCAmelCase ( self : int ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , SCREAMING_SNAKE_CASE_ , ) return self.image_processor_class @property def _UpperCAmelCase ( self : int ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , SCREAMING_SNAKE_CASE_ , ) return self.image_processor
562
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase_ = TypeVar('T') class _UpperCamelCase ( Generic[T] ): '''simple docstring''' _A = 42 # Cache store of keys _A = 42 # References of the keys in cache _A = 1_0 # Maximum capacity of cache def __init__( self : str , SCREAMING_SNAKE_CASE_ : int ): _a = deque() _a = set() if not n: _a = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: _a = n def _UpperCAmelCase ( self : Any , SCREAMING_SNAKE_CASE_ : T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _a = self.dq_store.pop() self.key_reference.remove(SCREAMING_SNAKE_CASE_ ) else: self.dq_store.remove(SCREAMING_SNAKE_CASE_ ) self.dq_store.appendleft(SCREAMING_SNAKE_CASE_ ) self.key_reference.add(SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : Optional[int] ): for k in self.dq_store: print(SCREAMING_SNAKE_CASE_ ) def __repr__( self : Optional[int] ): return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
562
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A: Dict = logging.get_logger(__name__) _A: str = { """google/vivit-b-16x2-kinetics400""": ( """https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json""" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class UpperCAmelCase ( UpperCAmelCase_ ): _A : str = """vivit""" def __init__( self , __A=224 , __A=32 , __A=[2, 16, 16] , __A=3 , __A=768 , __A=12 , __A=12 , __A=3_072 , __A="gelu_fast" , __A=0.0 , __A=0.0 , __A=0.0_2 , __A=1E-06 , __A=True , **__A , ): __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = image_size __UpperCAmelCase = num_frames __UpperCAmelCase = tubelet_size __UpperCAmelCase = num_channels __UpperCAmelCase = qkv_bias super().__init__(**__A )
617
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A: str = { """configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""], """feature_extraction_whisper""": ["""WhisperFeatureExtractor"""], """processing_whisper""": ["""WhisperProcessor"""], """tokenization_whisper""": ["""WhisperTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A: Union[str, Any] = ["""WhisperTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A: Optional[Any] = [ """WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """WhisperForConditionalGeneration""", """WhisperModel""", """WhisperPreTrainedModel""", """WhisperForAudioClassification""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A: Dict = [ """TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWhisperForConditionalGeneration""", """TFWhisperModel""", """TFWhisperPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A: Union[str, Any] = [ """FlaxWhisperForConditionalGeneration""", """FlaxWhisperModel""", """FlaxWhisperPreTrainedModel""", """FlaxWhisperForAudioClassification""", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _A: int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
617
1