code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
class UpperCAmelCase : '''simple docstring''' def __init__( self : Any , __lowercase : int , __lowercase : Any=None , __lowercase : Dict=None ): """simple docstring""" snake_case_ = data snake_case_ = previous snake_case_ = next_node def __str__( self : List[str] ): """simple docstring""" return f"{self.data}" def snake_case__ ( self : List[Any] ): """simple docstring""" return self.data def snake_case__ ( self : Optional[int] ): """simple docstring""" return self.next def snake_case__ ( self : str ): """simple docstring""" return self.previous class UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , __lowercase : Tuple ): """simple docstring""" snake_case_ = head def __iter__( self : List[str] ): """simple docstring""" return self def snake_case__ ( self : Tuple ): """simple docstring""" if not self.current: raise StopIteration else: snake_case_ = self.current.get_data() snake_case_ = self.current.get_next() return value class UpperCAmelCase : '''simple docstring''' def __init__( self : str ): """simple docstring""" snake_case_ = None # First node in list snake_case_ = None # Last node in list def __str__( self : Optional[int] ): """simple docstring""" snake_case_ = self.head snake_case_ = [] while current is not None: nodes.append(current.get_data() ) snake_case_ = current.get_next() return " ".join(str(__lowercase ) for node in nodes ) def __contains__( self : str , __lowercase : int ): """simple docstring""" snake_case_ = self.head while current: if current.get_data() == value: return True snake_case_ = current.get_next() return False def __iter__( self : List[str] ): """simple docstring""" return LinkedListIterator(self.head ) def snake_case__ ( self : List[str] ): """simple docstring""" if self.head: return self.head.get_data() return None def snake_case__ ( self : Tuple ): """simple docstring""" if self.tail: return self.tail.get_data() return None def snake_case__ ( self : Tuple , __lowercase : Node ): """simple docstring""" if self.head is None: snake_case_ = node snake_case_ = node else: self.insert_before_node(self.head , __lowercase ) def snake_case__ ( self : Optional[Any] , __lowercase : Node ): """simple docstring""" if self.head is None: self.set_head(__lowercase ) else: self.insert_after_node(self.tail , __lowercase ) def snake_case__ ( self : Union[str, Any] , __lowercase : int ): """simple docstring""" snake_case_ = Node(__lowercase ) if self.head is None: self.set_head(__lowercase ) else: self.set_tail(__lowercase ) def snake_case__ ( self : List[str] , __lowercase : Node , __lowercase : Node ): """simple docstring""" snake_case_ = node snake_case_ = node.previous if node.get_previous() is None: snake_case_ = node_to_insert else: snake_case_ = node_to_insert snake_case_ = node_to_insert def snake_case__ ( self : str , __lowercase : Node , __lowercase : Node ): """simple docstring""" snake_case_ = node snake_case_ = node.next if node.get_next() is None: snake_case_ = node_to_insert else: snake_case_ = node_to_insert snake_case_ = node_to_insert def snake_case__ ( self : List[str] , __lowercase : int , __lowercase : int ): """simple docstring""" snake_case_ = 1 snake_case_ = Node(__lowercase ) snake_case_ = self.head while node: if current_position == position: self.insert_before_node(__lowercase , __lowercase ) return current_position += 1 snake_case_ = node.next self.insert_after_node(self.tail , __lowercase ) def snake_case__ ( self : str , __lowercase : int ): """simple docstring""" snake_case_ = self.head while node: if node.get_data() == item: return node snake_case_ = node.get_next() raise Exception("Node not found" ) def snake_case__ ( self : Optional[int] , __lowercase : Dict ): """simple docstring""" if (node := self.get_node(__lowercase )) is not None: if node == self.head: snake_case_ = self.head.get_next() if node == self.tail: snake_case_ = self.tail.get_previous() self.remove_node_pointers(__lowercase ) @staticmethod def snake_case__ ( __lowercase : Node ): """simple docstring""" if node.get_next(): snake_case_ = node.previous if node.get_previous(): snake_case_ = node.next snake_case_ = None snake_case_ = None def snake_case__ ( self : Any ): """simple docstring""" return self.head is None def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
376
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase : '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCamelCase__ ( _A ): '''simple docstring''' def is_valid_tree(_A ) -> bool: if node is None: return True if not isinstance(_A , _A ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(_A ): raise ValueError( "Each node should be type of TreeNode and data should be float." ) def is_binary_search_tree_recursive_check( _A , _A , _A ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , _A , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , _A ) ) return is_binary_search_tree_recursive_check(_A , -float("inf" ) , float("inf" ) ) if __name__ == "__main__": import doctest doctest.testmod()
376
1
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil SCREAMING_SNAKE_CASE : str = 100 SCREAMING_SNAKE_CASE : str = set(range(3, NUM_PRIMES, 2)) primes.add(2) SCREAMING_SNAKE_CASE : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def lowercase ( _snake_case : int ) ->set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case : set[int] = set() __snake_case : int __snake_case : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowercase ( _snake_case : int = 5_000 ) ->int | None: """simple docstring""" for number_to_partition in range(1 , _snake_case ): if len(partition(_snake_case ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
229
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller SCREAMING_SNAKE_CASE : Any = 3 def lowercase ( _snake_case : int ) ->int: """simple docstring""" print('''Generating primitive root of p''' ) while True: __snake_case : List[Any] = random.randrange(3 , _snake_case ) if pow(_snake_case , 2 , _snake_case ) == 1: continue if pow(_snake_case , _snake_case , _snake_case ) == 1: continue return g def lowercase ( _snake_case : int ) ->tuple[tuple[int, int, int, int], tuple[int, int]]: """simple docstring""" print('''Generating prime p...''' ) __snake_case : List[str] = rabin_miller.generate_large_prime(_snake_case ) # select large prime number. __snake_case : Optional[int] = primitive_root(_snake_case ) # one primitive root on modulo p. __snake_case : Dict = random.randrange(3 , _snake_case ) # private_key -> have to be greater than 2 for safety. __snake_case : Any = cryptomath.find_mod_inverse(pow(_snake_case , _snake_case , _snake_case ) , _snake_case ) __snake_case : Union[str, Any] = (key_size, e_a, e_a, p) __snake_case : Dict = (key_size, d) return public_key, private_key def lowercase ( _snake_case : str , _snake_case : int ) ->None: """simple docstring""" if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('''\nWARNING:''' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" '''Use a different name or delete these files and re-run this program.''' ) sys.exit() __snake_case , __snake_case : Optional[int] = generate_key(_snake_case ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , '''w''' ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , '''w''' ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def lowercase ( ) ->None: """simple docstring""" print('''Making key files...''' ) make_key_files('''elgamal''' , 2_048 ) print('''Key files generation successful''' ) if __name__ == "__main__": main()
229
1
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput a__ = '''scheduler_config.json''' class snake_case ( lowerCAmelCase_ ): '''simple docstring''' snake_case_ : Optional[Any] = 1 snake_case_ : int = 2 snake_case_ : Tuple = 3 snake_case_ : Any = 4 snake_case_ : Optional[int] = 5 @dataclass class snake_case ( lowerCAmelCase_ ): '''simple docstring''' snake_case_ : int = 42 class snake_case : '''simple docstring''' snake_case_ : Dict = SCHEDULER_CONFIG_NAME snake_case_ : Tuple = ["""dtype"""] snake_case_ : Any = [] snake_case_ : Tuple = True @classmethod def UpperCamelCase_ ( cls : Any , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Tuple = None , lowerCAmelCase : Optional[Any]=False , **lowerCAmelCase : Tuple , ) -> Tuple: """simple docstring""" _snake_case , _snake_case : Any = cls.load_config( pretrained_model_name_or_path=A_ , subfolder=A_ , return_unused_kwargs=A_ , **A_ , ) _snake_case , _snake_case : int = cls.from_config(A_ , return_unused_kwargs=A_ , **A_) if hasattr(A_ , """create_state""") and getattr(A_ , """has_state""" , A_): _snake_case : Union[str, Any] = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCamelCase_ ( self : int , lowerCAmelCase : Dict , lowerCAmelCase : Tuple = False , **lowerCAmelCase : List[str]) -> List[str]: """simple docstring""" self.save_config(save_directory=A_ , push_to_hub=A_ , **A_) @property def UpperCamelCase_ ( self : Tuple) -> Any: """simple docstring""" return self._get_compatibles() @classmethod def UpperCamelCase_ ( cls : List[Any]) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = list(set([cls.__name__] + cls._compatibles)) _snake_case : List[str] = importlib.import_module(__name__.split(""".""")[0]) _snake_case : Dict = [ getattr(A_ , A_) for c in compatible_classes_str if hasattr(A_ , A_) ] return compatible_classes def lowercase ( SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : Tuple[int] ) -> jnp.ndarray: assert len(_UpperCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_UpperCamelCase ) - x.ndim) ) , _UpperCamelCase ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=0.9_9_9 , SCREAMING_SNAKE_CASE__ : Any=jnp.floataa ) -> jnp.ndarray: def alpha_bar(SCREAMING_SNAKE_CASE__ : Any ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 _snake_case : List[str] = [] for i in range(_UpperCamelCase ): _snake_case : int = i / num_diffusion_timesteps _snake_case : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_UpperCamelCase ) / alpha_bar(_UpperCamelCase ) , _UpperCamelCase ) ) return jnp.array(_UpperCamelCase , dtype=_UpperCamelCase ) @flax.struct.dataclass class snake_case : '''simple docstring''' snake_case_ : List[str] = 42 snake_case_ : int = 42 snake_case_ : Any = 42 @classmethod def UpperCamelCase_ ( cls : Optional[Any] , lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = scheduler.config if config.trained_betas is not None: _snake_case : Optional[Any] = jnp.asarray(config.trained_betas , dtype=scheduler.dtype) elif config.beta_schedule == "linear": _snake_case : List[str] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _snake_case : int = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _snake_case : List[str] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''') _snake_case : str = 1.0 - betas _snake_case : Tuple = jnp.cumprod(A_ , axis=0) return cls( alphas=A_ , betas=A_ , alphas_cumprod=A_ , ) def lowercase ( SCREAMING_SNAKE_CASE__ : CommonSchedulerState , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray ) -> List[Any]: _snake_case : Any = state.alphas_cumprod _snake_case : Optional[int] = alphas_cumprod[timesteps] ** 0.5 _snake_case : int = sqrt_alpha_prod.flatten() _snake_case : Any = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) _snake_case : Optional[int] = (1 - alphas_cumprod[timesteps]) ** 0.5 _snake_case : Optional[int] = sqrt_one_minus_alpha_prod.flatten() _snake_case : str = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def lowercase ( SCREAMING_SNAKE_CASE__ : CommonSchedulerState , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray ) -> str: _snake_case , _snake_case : Union[str, Any] = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) _snake_case : Optional[Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def lowercase ( SCREAMING_SNAKE_CASE__ : CommonSchedulerState , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : jnp.ndarray ) -> Any: _snake_case , _snake_case : str = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) _snake_case : Union[str, Any] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
477
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def lowercase__( _UpperCamelCase : Optional[int] , _UpperCamelCase : bool = True , _UpperCamelCase : float = math.inf , _UpperCamelCase : float = -math.inf , _UpperCamelCase : float = math.inf , _UpperCamelCase : float = -math.inf , _UpperCamelCase : bool = False , _UpperCamelCase : float = 100 , _UpperCamelCase : float = 0.01 , _UpperCamelCase : float = 1 , )-> Any: """simple docstring""" _UpperCamelCase = False _UpperCamelCase = search_prob _UpperCamelCase = start_temperate _UpperCamelCase = [] _UpperCamelCase = 0 _UpperCamelCase = None while not search_end: _UpperCamelCase = current_state.score() if best_state is None or current_score > best_state.score(): _UpperCamelCase = current_state scores.append(_UpperCamelCase ) iterations += 1 _UpperCamelCase = None _UpperCamelCase = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _UpperCamelCase = random.randint(0 , len(_UpperCamelCase ) - 1 ) # picking a random neighbor _UpperCamelCase = neighbors.pop(_UpperCamelCase ) _UpperCamelCase = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _UpperCamelCase = change * -1 # in case we are finding minimum if change > 0: # improves the solution _UpperCamelCase = picked_neighbor else: _UpperCamelCase = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _UpperCamelCase = picked_neighbor _UpperCamelCase = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _UpperCamelCase = True else: _UpperCamelCase = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_UpperCamelCase ) , _UpperCamelCase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowercase__( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] )-> Any: """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) snake_case_ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) snake_case_ : Any = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) snake_case_ : Any = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) snake_case_ : List[Any] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowercase__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] )-> Any: """simple docstring""" return (3 * x**2) - (6 * y) snake_case_ : Any = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) snake_case_ : Any = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F"""{local_min.score()}""" ) snake_case_ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) snake_case_ : int = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F"""{local_min.score()}""" )
138
0
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class __snake_case ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ = ['input_values', 'attention_mask'] def __init__( self ,a_ = 1 ,a_ = 1_6000 ,a_ = 0.0 ,a_ = False ,a_ = 80 ,a_ = 16 ,a_ = 64 ,a_ = "hann_window" ,a_ = 1.0 ,a_ = 80 ,a_ = 7600 ,a_ = 1e-1_0 ,a_ = 2 ,a_ = True ,**a_ ,): """simple docstring""" super().__init__(feature_size=a_ ,sampling_rate=a_ ,padding_value=a_ ,**a_ ) lowerCAmelCase__ = do_normalize lowerCAmelCase__ = return_attention_mask lowerCAmelCase__ = num_mel_bins lowerCAmelCase__ = hop_length lowerCAmelCase__ = win_length lowerCAmelCase__ = win_function lowerCAmelCase__ = frame_signal_scale lowerCAmelCase__ = fmin lowerCAmelCase__ = fmax lowerCAmelCase__ = mel_floor lowerCAmelCase__ = reduction_factor lowerCAmelCase__ = win_length * sampling_rate // 1000 lowerCAmelCase__ = hop_length * sampling_rate // 1000 lowerCAmelCase__ = optimal_fft_length(self.sample_size ) lowerCAmelCase__ = (self.n_fft // 2) + 1 lowerCAmelCase__ = window_function(window_length=self.sample_size ,name=self.win_function ,periodic=a_ ) lowerCAmelCase__ = mel_filter_bank( num_frequency_bins=self.n_freqs ,num_mel_filters=self.num_mel_bins ,min_frequency=self.fmin ,max_frequency=self.fmax ,sampling_rate=self.sampling_rate ,norm='slaney' ,mel_scale='slaney' ,) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' ,a_ ,) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' ,a_ ,) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def SCREAMING_SNAKE_CASE_ ( a_ ,a_ ,a_ = 0.0 ): """simple docstring""" if attention_mask is not None: lowerCAmelCase__ = np.array(a_ ,np.intaa ) lowerCAmelCase__ = [] for vector, length in zip(a_ ,attention_mask.sum(-1 ) ): lowerCAmelCase__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCAmelCase__ = padding_value normed_input_values.append(a_ ) else: lowerCAmelCase__ = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def SCREAMING_SNAKE_CASE_ ( self ,a_ ,): """simple docstring""" lowerCAmelCase__ = spectrogram( a_ ,window=self.window ,frame_length=self.sample_size ,hop_length=self.sample_stride ,fft_length=self.n_fft ,mel_filters=self.mel_filters ,mel_floor=self.mel_floor ,log_mel='log10' ,) return log_mel_spec.T def __call__( self ,a_ = None ,a_ = None ,a_ = False ,a_ = None ,a_ = False ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,**a_ ,): """simple docstring""" if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: lowerCAmelCase__ = self._process_audio( a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,**a_ ,) else: lowerCAmelCase__ = None if audio_target is not None: lowerCAmelCase__ = self._process_audio( a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,**a_ ,) if inputs is None: return inputs_target else: lowerCAmelCase__ = inputs_target['input_values'] lowerCAmelCase__ = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: lowerCAmelCase__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ = False ,a_ = False ,a_ = None ,a_ = False ,a_ = None ,a_ = None ,a_ = None ,**a_ ,): """simple docstring""" lowerCAmelCase__ = isinstance(a_ ,np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) lowerCAmelCase__ = is_batched_numpy or ( isinstance(a_ ,(list, tuple) ) and (isinstance(speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase__ = [np.asarray(a_ ,dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(a_ ,np.ndarray ): lowerCAmelCase__ = np.asarray(a_ ,dtype=np.floataa ) elif isinstance(a_ ,np.ndarray ) and speech.dtype is np.dtype(np.floataa ): lowerCAmelCase__ = speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase__ = [speech] # needed to make pad() work on spectrogram inputs lowerCAmelCase__ = self.feature_size # convert into correct format for padding if is_target: lowerCAmelCase__ = [self._extract_mel_features(a_ ) for waveform in speech] lowerCAmelCase__ = BatchFeature({'input_values': features} ) lowerCAmelCase__ = self.num_mel_bins else: lowerCAmelCase__ = BatchFeature({'input_values': speech} ) lowerCAmelCase__ = self.pad( a_ ,padding=a_ ,max_length=a_ ,truncation=a_ ,pad_to_multiple_of=a_ ,return_attention_mask=a_ ,**a_ ,) lowerCAmelCase__ = feature_size_hack # convert input values to correct format lowerCAmelCase__ = padded_inputs['input_values'] if not isinstance(input_values[0] ,np.ndarray ): lowerCAmelCase__ = [np.asarray(a_ ,dtype=np.floataa ) for array in input_values] elif ( not isinstance(a_ ,np.ndarray ) and isinstance(input_values[0] ,np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): lowerCAmelCase__ = [array.astype(np.floataa ) for array in input_values] elif isinstance(a_ ,np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): lowerCAmelCase__ = input_values.astype(np.floataa ) # convert attention_mask to correct format lowerCAmelCase__ = padded_inputs.get('attention_mask' ) if attention_mask is not None: lowerCAmelCase__ = [np.asarray(a_ ,dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowerCAmelCase__ = ( attention_mask if self._get_padding_strategies(a_ ,max_length=a_ ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCAmelCase__ = self.zero_mean_unit_var_norm( padded_inputs['input_values'] ,attention_mask=a_ ,padding_value=self.padding_value ) if return_tensors is not None: lowerCAmelCase__ = padded_inputs.convert_to_tensors(a_ ) return padded_inputs def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = super().to_dict() # Don't serialize these as they are derived from the other properties. lowerCAmelCase__ = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
715
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case : def __init__( self ,a_ ,a_=13 ,a_=32 ,a_=2 ,a_=3 ,a_=16 ,a_=[1, 2, 1] ,a_=[2, 2, 4] ,a_=2 ,a_=2.0 ,a_=True ,a_=0.0 ,a_=0.0 ,a_=0.1 ,a_="gelu" ,a_=False ,a_=True ,a_=0.02 ,a_=1e-5 ,a_=True ,a_=None ,a_=True ,a_=10 ,a_=8 ,): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = embed_dim lowerCAmelCase__ = depths lowerCAmelCase__ = num_heads lowerCAmelCase__ = window_size lowerCAmelCase__ = mlp_ratio lowerCAmelCase__ = qkv_bias lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = drop_path_rate lowerCAmelCase__ = hidden_act lowerCAmelCase__ = use_absolute_embeddings lowerCAmelCase__ = patch_norm lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = initializer_range lowerCAmelCase__ = is_training lowerCAmelCase__ = scope lowerCAmelCase__ = use_labels lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = encoder_stride def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = SwinvaModel(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase__ = model(a_ ) lowerCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = SwinvaForMaskedImageModeling(config=a_ ) model.to(a_ ) model.eval() lowerCAmelCase__ = model(a_ ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = SwinvaForMaskedImageModeling(a_ ) model.to(a_ ) model.eval() lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ = model(a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = SwinvaForImageClassification(a_ ) model.to(a_ ) model.eval() lowerCAmelCase__ = model(a_ ,labels=a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( {'feature-extraction': SwinvaModel, 'image-classification': SwinvaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = SwinvaModelTester(self ) lowerCAmelCase__ = ConfigTester(self ,config_class=a_ ,embed_dim=37 ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ ,nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(a_ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = True for model_class in self.all_model_classes: lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(a_ ,a_ ) ) lowerCAmelCase__ = outputs.attentions lowerCAmelCase__ = len(self.model_tester.depths ) self.assertEqual(len(a_ ) ,a_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ = True lowerCAmelCase__ = config.window_size**2 lowerCAmelCase__ = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(a_ ,a_ ) ) lowerCAmelCase__ = outputs.attentions self.assertEqual(len(a_ ) ,a_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) lowerCAmelCase__ = len(a_ ) # Check attention is always last and order is fine lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(a_ ,a_ ) ) if hasattr(self.model_tester ,'num_hidden_states_types' ): lowerCAmelCase__ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowerCAmelCase__ = 2 self.assertEqual(out_len + added_hidden_states ,len(a_ ) ) lowerCAmelCase__ = outputs.attentions self.assertEqual(len(a_ ) ,a_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(a_ ,a_ ) ) lowerCAmelCase__ = outputs.hidden_states lowerCAmelCase__ = getattr( self.model_tester ,'expected_num_hidden_layers' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a_ ) ,a_ ) # Swinv2 has a different seq_length lowerCAmelCase__ = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) lowerCAmelCase__ = outputs.reshaped_hidden_states self.assertEqual(len(a_ ) ,a_ ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = reshaped_hidden_states[0].shape lowerCAmelCase__ = ( reshaped_hidden_states[0].view(a_ ,a_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase__ = True self.check_hidden_states_output(a_ ,a_ ,a_ ,a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True self.check_hidden_states_output(a_ ,a_ ,a_ ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = 3 lowerCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase__ = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase__ = True self.check_hidden_states_output(a_ ,a_ ,a_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True self.check_hidden_states_output(a_ ,a_ ,a_ ,(padded_height, padded_width) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = SwinvaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = _config_zero_init(a_ ) for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(config=a_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,) @require_vision @require_torch class __snake_case ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( a_ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase__ = image_processor(images=a_ ,return_tensors='pt' ).to(a_ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**a_ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,a_ ) lowerCAmelCase__ = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,a_ ,atol=1e-4 ) )
604
0
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=() ,lowerCAmelCase__=None ,lowerCAmelCase__="no" ,lowerCAmelCase__="29500" ): lowerCamelCase_ = False lowerCamelCase_ = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): lowerCamelCase_ = True elif "IPython" in sys.modules: lowerCamelCase_ = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: lowerCamelCase_ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' ,lowerCAmelCase__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: lowerCamelCase_ = 8 lowerCamelCase_ = PrepareForLaunch(lowerCAmelCase__ ,distributed_type='''TPU''' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(lowerCAmelCase__ ,args=lowerCAmelCase__ ,nprocs=lowerCAmelCase__ ,start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*lowerCAmelCase__ ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCAmelCase__ ,master_addr='''127.0.01''' ,master_port=lowerCAmelCase__ ,mixed_precision=lowerCAmelCase__ ): lowerCamelCase_ = PrepareForLaunch(lowerCAmelCase__ ,distributed_type='''MULTI_GPU''' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(lowerCAmelCase__ ,args=lowerCAmelCase__ ,nprocs=lowerCAmelCase__ ,start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCamelCase_ = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=() ,lowerCAmelCase__=2 ): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCAmelCase__ ,master_addr='''127.0.01''' ,master_port='''29500''' ,accelerate_mixed_precision='''no''' ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu='''yes''' ,): lowerCamelCase_ = PrepareForLaunch(lowerCAmelCase__ ,debug=lowerCAmelCase__ ) start_processes(lowerCAmelCase__ ,args=lowerCAmelCase__ ,nprocs=lowerCAmelCase__ ,start_method='''fork''' )
29
from __future__ import annotations class _A : def __init__( self : List[str] , lowerCamelCase__ : Any=None ): """simple docstring""" __UpperCamelCase : Union[str, Any] = data __UpperCamelCase : Union[str, Any] = None def __repr__( self : int ): """simple docstring""" __UpperCamelCase : Union[str, Any] = [] __UpperCamelCase : Optional[int] = self while temp: string_rep.append(f'{temp.data}' ) __UpperCamelCase : Dict = temp.next return "->".join(lowerCamelCase__ ) def __lowerCamelCase ( __lowerCAmelCase : list ) -> Tuple: if not elements_list: raise Exception("""The Elements List is empty""" ) __UpperCamelCase : Dict = Node(elements_list[0] ) for i in range(1 , len(__lowerCAmelCase ) ): __UpperCamelCase : List[str] = Node(elements_list[i] ) __UpperCamelCase : Optional[int] = current.next return head def __lowerCamelCase ( __lowerCAmelCase : Node ) -> None: if head_node is not None and isinstance(__lowerCAmelCase , __lowerCAmelCase ): print_reverse(head_node.next ) print(head_node.data ) def __lowerCamelCase ( ) -> Union[str, Any]: from doctest import testmod testmod() __UpperCamelCase : Any = make_linked_list([14, 52, 14, 12, 43] ) print("""Linked List:""" ) print(__lowerCAmelCase ) print("""Elements in Reverse:""" ) print_reverse(__lowerCAmelCase ) if __name__ == "__main__": main()
269
0
import numpy # List of input, output pairs __UpperCamelCase : List[str] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) __UpperCamelCase : List[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150)) __UpperCamelCase : List[Any] = [2, 4, 1, 5] __UpperCamelCase : Union[str, Any] = len(train_data) __UpperCamelCase : List[Any] = 0.0_0_9 def snake_case ( lowerCamelCase , lowerCamelCase="train" ): '''simple docstring''' return calculate_hypothesis_value(lowerCamelCase , lowerCamelCase ) - output( lowerCamelCase , lowerCamelCase ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = 0 for i in range(len(lowerCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def snake_case ( lowerCamelCase , lowerCamelCase=m ): '''simple docstring''' __lowercase = 0 for i in range(lowerCamelCase ): if index == -1: summation_value += _error(lowerCamelCase ) else: summation_value += _error(lowerCamelCase ) * train_data[i][0][index] return summation_value def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = summation_of_cost_derivative(lowerCamelCase , lowerCamelCase ) / m return cost_derivative_value def snake_case ( ): '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output __lowercase = 0.000002 __lowercase = 0 __lowercase = 0 while True: j += 1 __lowercase = [0, 0, 0, 0] for i in range(0 , len(lowerCamelCase ) ): __lowercase = get_cost_derivative(i - 1 ) __lowercase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCamelCase , lowerCamelCase , atol=lowerCamelCase , rtol=lowerCamelCase , ): break __lowercase = temp_parameter_vector print(("""Number of iterations:""", j) ) def snake_case ( ): '''simple docstring''' for i in range(len(lowerCamelCase ) ): print(("""Actual output value:""", output(lowerCamelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(lowerCamelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
715
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename="""pytorch_model.bin""" ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
0
import argparse import copy def _lowerCamelCase ( __A : int ) -> Union[str, Any]: _UpperCAmelCase : Optional[Any] = {} with open(__A ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[Any] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : Union[str, Any] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : str = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _lowerCamelCase ( __A : Any , __A : Dict ) -> Optional[Any]: with open(__A ) as f: _UpperCAmelCase : Union[str, Any] = f.read(1 ) _UpperCAmelCase : Union[str, Any] = start_node _UpperCAmelCase : str = [] _UpperCAmelCase : Optional[int] = start_node _UpperCAmelCase : Optional[int] = 0 while visiting not in first_solution: _UpperCAmelCase : int = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__A ) and k[0] not in first_solution: _UpperCAmelCase : Dict = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(__A ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(__A ) _UpperCAmelCase : Any = best_node first_solution.append(__A ) _UpperCAmelCase : Tuple = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : Tuple = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def _lowerCamelCase ( __A : Tuple , __A : List[Any] ) -> Optional[Any]: _UpperCAmelCase : Any = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(__A ) for kn in solution[1:-1]: _UpperCAmelCase : Any = solution.index(__A ) if n == kn: continue _UpperCAmelCase : Union[str, Any] = copy.deepcopy(__A ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : Optional[int] = n _UpperCAmelCase : int = 0 for k in _tmp[:-1]: _UpperCAmelCase : Tuple = _tmp[_tmp.index(__A ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : int = distance + int(i[1] ) _tmp.append(__A ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Tuple = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __A : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _lowerCamelCase ( __A : Any , __A : List[Any] , __A : str , __A : str , __A : str ) -> Any: _UpperCAmelCase : Tuple = 1 _UpperCAmelCase : int = first_solution _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Any = distance_of_first_solution _UpperCAmelCase : Optional[int] = solution while count <= iters: _UpperCAmelCase : Dict = find_neighborhood(__A , __A ) _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : Tuple = neighborhood[index_of_best_solution] _UpperCAmelCase : str = len(__A ) - 1 _UpperCAmelCase : str = False while not found: _UpperCAmelCase : Union[str, Any] = 0 while i < len(__A ): if best_solution[i] != solution[i]: _UpperCAmelCase : Dict = best_solution[i] _UpperCAmelCase : Any = solution[i] break _UpperCAmelCase : Dict = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : str = True _UpperCAmelCase : int = best_solution[:-1] _UpperCAmelCase : Union[str, Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : List[str] = cost _UpperCAmelCase : str = solution else: _UpperCAmelCase : List[Any] = index_of_best_solution + 1 _UpperCAmelCase : Any = neighborhood[index_of_best_solution] if len(__A ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : List[str] = count + 1 return best_solution_ever, best_cost def _lowerCamelCase ( __A : List[str]=None ) -> Dict: _UpperCAmelCase : List[Any] = generate_neighbours(args.File ) _UpperCAmelCase , _UpperCAmelCase : Dict = generate_first_solution( args.File , __A ) _UpperCAmelCase , _UpperCAmelCase : str = tabu_search( __A , __A , __A , args.Iterations , args.Size , ) print(f'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
485
import tensorflow as tf from ...tf_utils import shape_list class A_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , _A , _A , _A , _A , _A=1 , _A=False , **_A) -> Union[str, Any]: """simple docstring""" super().__init__(**_A) _UpperCAmelCase : Dict = vocab_size _UpperCAmelCase : Any = d_embed _UpperCAmelCase : List[Any] = d_proj _UpperCAmelCase : List[Any] = cutoffs + [vocab_size] _UpperCAmelCase : str = [0] + self.cutoffs _UpperCAmelCase : Union[str, Any] = div_val _UpperCAmelCase : Any = self.cutoffs[0] _UpperCAmelCase : Optional[Any] = len(self.cutoffs) - 1 _UpperCAmelCase : Tuple = self.shortlist_size + self.n_clusters _UpperCAmelCase : List[Any] = keep_order _UpperCAmelCase : List[str] = [] _UpperCAmelCase : List[Any] = [] def snake_case__ ( self , _A) -> List[str]: """simple docstring""" if self.n_clusters > 0: _UpperCAmelCase : Union[str, Any] = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=_A , name='''cluster_weight''') _UpperCAmelCase : Tuple = self.add_weight( shape=(self.n_clusters,) , initializer='''zeros''' , trainable=_A , name='''cluster_bias''') if self.div_val == 1: for i in range(len(self.cutoffs)): if self.d_proj != self.d_embed: _UpperCAmelCase : Optional[int] = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=_A , name=f'''out_projs_._{i}''' , ) self.out_projs.append(_A) else: self.out_projs.append(_A) _UpperCAmelCase : str = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=_A , name=f'''out_layers_._{i}_._weight''' , ) _UpperCAmelCase : Optional[Any] = self.add_weight( shape=(self.vocab_size,) , initializer='''zeros''' , trainable=_A , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias)) else: for i in range(len(self.cutoffs)): _UpperCAmelCase , _UpperCAmelCase : str = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase : Optional[Any] = self.d_embed // (self.div_val**i) _UpperCAmelCase : Optional[int] = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=_A , name=f'''out_projs_._{i}''') self.out_projs.append(_A) _UpperCAmelCase : Dict = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=_A , name=f'''out_layers_._{i}_._weight''' , ) _UpperCAmelCase : Any = self.add_weight( shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=_A , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias)) super().build(_A) @staticmethod def snake_case__ ( _A , _A , _A , _A=None) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = x if proj is not None: _UpperCAmelCase : Optional[int] = tf.einsum('''ibd,ed->ibe''' , _A , _A) return tf.einsum('''ibd,nd->ibn''' , _A , _A) + b @staticmethod def snake_case__ ( _A , _A) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = shape_list(_A) _UpperCAmelCase : int = tf.range(lp_size[0] , dtype=target.dtype) _UpperCAmelCase : Optional[Any] = tf.stack([r, target] , 1) return tf.gather_nd(_A , _A) def snake_case__ ( self , _A , _A , _A=True , _A=False) -> int: """simple docstring""" _UpperCAmelCase : Tuple = 0 if self.n_clusters == 0: _UpperCAmelCase : int = self._logit(_A , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0]) if target is not None: _UpperCAmelCase : Any = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_A , logits=_A) _UpperCAmelCase : Union[str, Any] = tf.nn.log_softmax(_A , axis=-1) else: _UpperCAmelCase : Union[str, Any] = shape_list(_A) _UpperCAmelCase : str = [] _UpperCAmelCase : Optional[Any] = tf.zeros(hidden_sizes[:2]) for i in range(len(self.cutoffs)): _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: _UpperCAmelCase : Any = (target >= l_idx) & (target < r_idx) _UpperCAmelCase : str = tf.where(_A) _UpperCAmelCase : Union[str, Any] = tf.boolean_mask(_A , _A) - l_idx if self.div_val == 1: _UpperCAmelCase : str = self.out_layers[0][0][l_idx:r_idx] _UpperCAmelCase : Any = self.out_layers[0][1][l_idx:r_idx] else: _UpperCAmelCase : int = self.out_layers[i][0] _UpperCAmelCase : int = self.out_layers[i][1] if i == 0: _UpperCAmelCase : Optional[Any] = tf.concat([cur_W, self.cluster_weight] , 0) _UpperCAmelCase : Optional[int] = tf.concat([cur_b, self.cluster_bias] , 0) _UpperCAmelCase : int = self._logit(_A , _A , _A , self.out_projs[0]) _UpperCAmelCase : int = tf.nn.log_softmax(_A) out.append(head_logprob[..., : self.cutoffs[0]]) if target is not None: _UpperCAmelCase : List[str] = tf.boolean_mask(_A , _A) _UpperCAmelCase : Optional[Any] = self._gather_logprob(_A , _A) else: _UpperCAmelCase : List[str] = self._logit(_A , _A , _A , self.out_projs[i]) _UpperCAmelCase : Union[str, Any] = tf.nn.log_softmax(_A) _UpperCAmelCase : Optional[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster _UpperCAmelCase : Optional[Any] = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(_A) if target is not None: _UpperCAmelCase : Optional[Any] = tf.boolean_mask(_A , _A) _UpperCAmelCase : str = tf.boolean_mask(_A , _A) _UpperCAmelCase : Optional[Any] = self._gather_logprob(_A , _A) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(_A , -cur_logprob , shape_list(_A)) _UpperCAmelCase : Optional[Any] = tf.concat(_A , axis=-1) if target is not None: if return_mean: _UpperCAmelCase : Optional[int] = tf.reduce_mean(_A) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(_A) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(_A , name=self.name , aggregation='''mean''' if return_mean else '''''') return out
485
1
'''simple docstring''' from math import ceil def __lowerCamelCase ( _UpperCamelCase : int = 1001 ): '''simple docstring''' UpperCAmelCase_ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): UpperCAmelCase_ = 2 * i + 1 UpperCAmelCase_ = 2 * i UpperCAmelCase_ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: lowercase__ : Dict = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
43
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( _UpperCamelCase : tuple[int, int] , _UpperCamelCase : int ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = position UpperCAmelCase_ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCAmelCase_ = [] for position in positions: UpperCAmelCase_ , UpperCAmelCase_ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_UpperCamelCase ) return permissible_positions def __lowerCamelCase ( _UpperCamelCase : list[list[int]] ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def __lowerCamelCase ( _UpperCamelCase : list[list[int]] , _UpperCamelCase : tuple[int, int] , _UpperCamelCase : int ): '''simple docstring''' if is_complete(_UpperCamelCase ): return True for position in get_valid_pos(_UpperCamelCase , len(_UpperCamelCase ) ): UpperCAmelCase_ , UpperCAmelCase_ = position if board[y][x] == 0: UpperCAmelCase_ = curr + 1 if open_knight_tour_helper(_UpperCamelCase , _UpperCamelCase , curr + 1 ): return True UpperCAmelCase_ = 0 return False def __lowerCamelCase ( _UpperCamelCase : int ): '''simple docstring''' UpperCAmelCase_ = [[0 for i in range(_UpperCamelCase )] for j in range(_UpperCamelCase )] for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): UpperCAmelCase_ = 1 if open_knight_tour_helper(_UpperCamelCase , (i, j) , 1 ): return board UpperCAmelCase_ = 0 UpperCAmelCase_ = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
43
1
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch SCREAMING_SNAKE_CASE_ = True except ImportError: SCREAMING_SNAKE_CASE_ = False try: from torch.hub import _get_torch_home SCREAMING_SNAKE_CASE_ = _get_torch_home() except ImportError: SCREAMING_SNAKE_CASE_ = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) SCREAMING_SNAKE_CASE_ = os.path.join(torch_cache_home, 'transformers') SCREAMING_SNAKE_CASE_ = 'https://cdn.huggingface.co' SCREAMING_SNAKE_CASE_ = 'https://s3.amazonaws.com/models.huggingface.co/bert' SCREAMING_SNAKE_CASE_ = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) SCREAMING_SNAKE_CASE_ = os.path.join(PATH, 'config.yaml') SCREAMING_SNAKE_CASE_ = os.path.join(PATH, 'attributes.txt') SCREAMING_SNAKE_CASE_ = os.path.join(PATH, 'objects.txt') SCREAMING_SNAKE_CASE_ = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) SCREAMING_SNAKE_CASE_ = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) SCREAMING_SNAKE_CASE_ = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) SCREAMING_SNAKE_CASE_ = 'pytorch_model.bin' SCREAMING_SNAKE_CASE_ = 'config.yaml' def __snake_case ( _lowercase=OBJECTS ,_lowercase=ATTRIBUTES ): """simple docstring""" UpperCamelCase = [] with open(_lowercase ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) UpperCamelCase = [] with open(_lowercase ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = OrderedDict() with open(_lowercase ,'''rb''' ) as f: UpperCamelCase = pkl.load(_lowercase )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): UpperCamelCase = ckp.pop(_lowercase ) if isinstance(_lowercase ,np.ndarray ): UpperCamelCase = torch.tensor(_lowercase ) else: assert isinstance(_lowercase ,torch.tensor ), type(_lowercase ) UpperCamelCase = v return r class snake_case_ : """simple docstring""" A_ = {} def __init__( self , lowerCamelCase_ , lowerCamelCase_ = "root" , lowerCamelCase_=0) -> str: UpperCamelCase = name UpperCamelCase = level UpperCamelCase = {} for k, v in dictionary.items(): if v is None: raise ValueError() UpperCamelCase = copy.deepcopy(lowerCamelCase_) UpperCamelCase = copy.deepcopy(lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = Config(lowerCamelCase_ , name=lowerCamelCase_ , level=level + 1) UpperCamelCase = v setattr(self , lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = d def __repr__( self) -> List[Any]: return str(list((self._pointer.keys()))) def __setattr__( self , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase = val UpperCamelCase = val UpperCamelCase = key.split('''.''') UpperCamelCase = len(lowerCamelCase_) - 1 UpperCamelCase = self._pointer if len(lowerCamelCase_) > 1: for i, l in enumerate(lowerCamelCase_): if hasattr(self , lowerCamelCase_) and isinstance(getattr(self , lowerCamelCase_) , lowerCamelCase_): setattr(getattr(self , lowerCamelCase_) , '''.'''.join(levels[i:]) , lowerCamelCase_) if l == last_level: UpperCamelCase = val else: UpperCamelCase = pointer[l] def UpperCAmelCase__ ( self) -> Any: return self._pointer def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: with open(F'{file_name}' , '''w''') as stream: dump(lowerCamelCase_ , lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_) -> str: with open(F'{file_name}' , '''w''') as stream: json.dump(lowerCamelCase_ , lowerCamelCase_) @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> Optional[Any]: with open(lowerCamelCase_) as stream: UpperCamelCase = load(lowerCamelCase_ , Loader=lowerCamelCase_) return data def __str__( self) -> List[Any]: UpperCamelCase = ''' ''' if self._name != "root": UpperCamelCase = F'{t * (self._level-1)}{self._name}:\n' else: UpperCamelCase = '''''' UpperCamelCase = self._level for i, (k, v) in enumerate(self._pointer.items()): if isinstance(lowerCamelCase_ , lowerCamelCase_): r += F'{t * (self._level)}{v}\n' self._level += 1 else: r += F'{t * (self._level)}{k}: {v} ({type(lowerCamelCase_).__name__})\n' UpperCamelCase = level return r[:-1] @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , **lowerCamelCase_) -> Optional[int]: UpperCamelCase , UpperCamelCase = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_) return cls(lowerCamelCase_) @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , **lowerCamelCase_) -> Dict: UpperCamelCase = kwargs.pop('''cache_dir''' , lowerCamelCase_) UpperCamelCase = kwargs.pop('''force_download''' , lowerCamelCase_) UpperCamelCase = kwargs.pop('''resume_download''' , lowerCamelCase_) UpperCamelCase = kwargs.pop('''proxies''' , lowerCamelCase_) UpperCamelCase = kwargs.pop('''local_files_only''' , lowerCamelCase_) if os.path.isdir(lowerCamelCase_): UpperCamelCase = os.path.join(lowerCamelCase_ , lowerCamelCase_) elif os.path.isfile(lowerCamelCase_) or is_remote_url(lowerCamelCase_): UpperCamelCase = pretrained_model_name_or_path else: UpperCamelCase = hf_bucket_url(lowerCamelCase_ , filename=lowerCamelCase_ , use_cdn=lowerCamelCase_) try: # Load from URL or cache if already cached UpperCamelCase = cached_path( lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) # Load config dict if resolved_config_file is None: raise EnvironmentError UpperCamelCase = Config.load_yaml(lowerCamelCase_) except EnvironmentError: UpperCamelCase = '''Can\'t load config for''' raise EnvironmentError(lowerCamelCase_) if resolved_config_file == config_file: print('''loading configuration file from path''') else: print('''loading configuration file cache''') return Config.load_yaml(lowerCamelCase_), kwargs def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = torch.load('''dump.pt''' ,map_location=in_tensor.device ) UpperCamelCase = in_tensor.numpy() UpperCamelCase = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(_lowercase ,_lowercase ,rtol=0.01 ,atol=0.1 ), ( f'{sum([1 for x in np.isclose(_lowercase ,_lowercase ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %' " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = urlparse(_lowercase ) return parsed.scheme in ("http", "https") def __snake_case ( _lowercase ,_lowercase ,_lowercase=True ): """simple docstring""" UpperCamelCase = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX UpperCamelCase = '''/''' not in model_id if legacy_format: return f'{endpoint}/{model_id}-{filename}' else: return f'{endpoint}/{model_id}/{filename}' def __snake_case ( _lowercase ,_lowercase ,_lowercase=None ,_lowercase=0 ,_lowercase=None ,): """simple docstring""" UpperCamelCase = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(_lowercase ,_lowercase ): ua += "; " + "; ".join('''{}/{}'''.format(_lowercase ,_lowercase ) for k, v in user_agent.items() ) elif isinstance(_lowercase ,_lowercase ): ua += "; " + user_agent UpperCamelCase = {'''user-agent''': ua} if resume_size > 0: UpperCamelCase = '''bytes=%d-''' % (resume_size,) UpperCamelCase = requests.get(_lowercase ,stream=_lowercase ,proxies=_lowercase ,headers=_lowercase ) if response.status_code == 416: # Range not satisfiable return UpperCamelCase = response.headers.get('''Content-Length''' ) UpperCamelCase = resume_size + int(_lowercase ) if content_length is not None else None UpperCamelCase = tqdm( unit='''B''' ,unit_scale=_lowercase ,total=_lowercase ,initial=_lowercase ,desc='''Downloading''' ,) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(_lowercase ) ) temp_file.write(_lowercase ) progress.close() def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=False ,_lowercase=None ,_lowercase=10 ,_lowercase=False ,_lowercase=None ,_lowercase=False ,): """simple docstring""" if cache_dir is None: UpperCamelCase = TRANSFORMERS_CACHE if isinstance(_lowercase ,_lowercase ): UpperCamelCase = str(_lowercase ) os.makedirs(_lowercase ,exist_ok=_lowercase ) UpperCamelCase = None if not local_files_only: try: UpperCamelCase = requests.head(_lowercase ,allow_redirects=_lowercase ,proxies=_lowercase ,timeout=_lowercase ) if response.status_code == 200: UpperCamelCase = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass UpperCamelCase = url_to_filename(_lowercase ,_lowercase ) # get cache path to put the file UpperCamelCase = os.path.join(_lowercase ,_lowercase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(_lowercase ): return cache_path else: UpperCamelCase = [ file for file in fnmatch.filter(os.listdir(_lowercase ) ,filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(_lowercase ) > 0: return os.path.join(_lowercase ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(_lowercase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. UpperCamelCase = cache_path + '''.lock''' with FileLock(_lowercase ): # If the download just completed while the lock was activated. if os.path.exists(_lowercase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: UpperCamelCase = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(_lowercase ,'''a+b''' ) as f: yield f UpperCamelCase = _resumable_file_manager if os.path.exists(_lowercase ): UpperCamelCase = os.stat(_lowercase ).st_size else: UpperCamelCase = 0 else: UpperCamelCase = partial(tempfile.NamedTemporaryFile ,dir=_lowercase ,delete=_lowercase ) UpperCamelCase = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' ,_lowercase ,temp_file.name ,) http_get( _lowercase ,_lowercase ,proxies=_lowercase ,resume_size=_lowercase ,user_agent=_lowercase ,) os.replace(temp_file.name ,_lowercase ) UpperCamelCase = {'''url''': url, '''etag''': etag} UpperCamelCase = cache_path + '''.json''' with open(_lowercase ,'''w''' ) as meta_file: json.dump(_lowercase ,_lowercase ) return cache_path def __snake_case ( _lowercase ,_lowercase=None ): """simple docstring""" UpperCamelCase = url.encode('''utf-8''' ) UpperCamelCase = shaaaa(_lowercase ) UpperCamelCase = url_hash.hexdigest() if etag: UpperCamelCase = etag.encode('''utf-8''' ) UpperCamelCase = shaaaa(_lowercase ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def __snake_case ( _lowercase ,_lowercase=None ,_lowercase=False ,_lowercase=None ,_lowercase=False ,_lowercase=None ,_lowercase=False ,_lowercase=False ,_lowercase=False ,): """simple docstring""" if cache_dir is None: UpperCamelCase = TRANSFORMERS_CACHE if isinstance(_lowercase ,_lowercase ): UpperCamelCase = str(_lowercase ) if isinstance(_lowercase ,_lowercase ): UpperCamelCase = str(_lowercase ) if is_remote_url(_lowercase ): # URL, so get it from the cache (downloading if necessary) UpperCamelCase = get_from_cache( _lowercase ,cache_dir=_lowercase ,force_download=_lowercase ,proxies=_lowercase ,resume_download=_lowercase ,user_agent=_lowercase ,local_files_only=_lowercase ,) elif os.path.exists(_lowercase ): # File, and it exists. UpperCamelCase = url_or_filename elif urlparse(_lowercase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(_lowercase ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(_lowercase ) ) if extract_compressed_file: if not is_zipfile(_lowercase ) and not tarfile.is_tarfile(_lowercase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" UpperCamelCase , UpperCamelCase = os.path.split(_lowercase ) UpperCamelCase = output_file.replace('''.''' ,'''-''' ) + '''-extracted''' UpperCamelCase = os.path.join(_lowercase ,_lowercase ) if os.path.isdir(_lowercase ) and os.listdir(_lowercase ) and not force_extract: return output_path_extracted # Prevent parallel extractions UpperCamelCase = output_path + '''.lock''' with FileLock(_lowercase ): shutil.rmtree(_lowercase ,ignore_errors=_lowercase ) os.makedirs(_lowercase ) if is_zipfile(_lowercase ): with ZipFile(_lowercase ,'''r''' ) as zip_file: zip_file.extractall(_lowercase ) zip_file.close() elif tarfile.is_tarfile(_lowercase ): UpperCamelCase = tarfile.open(_lowercase ) tar_file.extractall(_lowercase ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(_lowercase ) ) return output_path_extracted return output_path def __snake_case ( _lowercase ,_lowercase="," ): """simple docstring""" assert isinstance(_lowercase ,_lowercase ) if os.path.isfile(_lowercase ): with open(_lowercase ) as f: UpperCamelCase = eval(f.read() ) else: UpperCamelCase = requests.get(_lowercase ) try: UpperCamelCase = requests.json() except Exception: UpperCamelCase = req.content.decode() assert data is not None, "could not connect" try: UpperCamelCase = eval(_lowercase ) except Exception: UpperCamelCase = data.split('''\n''' ) req.close() return data def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = requests.get(_lowercase ) UpperCamelCase = np.array(Image.open(BytesIO(response.content ) ) ) return img def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(_lowercase ) with open(_lowercase ,'''rb''' ) as stream: UpperCamelCase = pkl.load(_lowercase ) UpperCamelCase = weights.pop('''model''' ) UpperCamelCase = {} for k, v in model.items(): UpperCamelCase = torch.from_numpy(_lowercase ) if "running_var" in k: UpperCamelCase = torch.tensor([0] ) UpperCamelCase = k.replace('''running_var''' ,'''num_batches_tracked''' ) UpperCamelCase = zero return new def __snake_case ( ): """simple docstring""" print(f'{os.path.abspath(os.path.join(_lowercase ,os.pardir ) )}/demo.ipynb' ) def __snake_case ( _lowercase ,_lowercase="RGB" ): """simple docstring""" assert isinstance(_lowercase ,_lowercase ) if os.path.isfile(_lowercase ): UpperCamelCase = cva.imread(_lowercase ) else: UpperCamelCase = get_image_from_url(_lowercase ) assert img is not None, f'could not connect to: {im}' UpperCamelCase = cva.cvtColor(_lowercase ,cva.COLOR_BGR2RGB ) if input_format == "RGB": UpperCamelCase = img[:, :, ::-1] return img def __snake_case ( _lowercase ,_lowercase=1 ): """simple docstring""" return (images[i : i + batch] for i in range(0 ,len(_lowercase ) ,_lowercase ))
34
'''simple docstring''' def __lowerCamelCase ( __snake_case : int = 10, __snake_case : int = 22 ) -> int: """simple docstring""" A__ : Any =range(1, __snake_case ) A__ : List[str] =range(1, __snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
215
0
'''simple docstring''' class a_ : def __init__( self : List[Any] , __lowerCAmelCase : int ): __snake_case = size __snake_case = [0] * size __snake_case = [0] * size @staticmethod def lowercase__ ( __lowerCAmelCase : int ): return index | (index + 1) @staticmethod def lowercase__ ( __lowerCAmelCase : int ): return (index & (index + 1)) - 1 def lowercase__ ( self : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : int ): __snake_case = value while index < self.size: __snake_case = self.get_prev(__lowerCAmelCase ) + 1 if current_left_border == index: __snake_case = value else: __snake_case = max(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __snake_case = self.get_next(__lowerCAmelCase ) def lowercase__ ( self : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): right -= 1 # Because of right is exclusive __snake_case = 0 while left <= right: __snake_case = self.get_prev(__lowerCAmelCase ) if left <= current_left: __snake_case = max(__lowerCAmelCase , self.tree[right] ) __snake_case = current_left else: __snake_case = max(__lowerCAmelCase , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
427
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( UpperCAmelCase__ , unittest.TestCase ): lowercase_ : int = RobertaTokenizer lowercase_ : int = RobertaTokenizerFast lowercase_ : int = True lowercase_ : Dict = {'''cls_token''': '''<s>'''} def lowercase__ ( self : Union[str, Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __snake_case = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) __snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __snake_case = {'unk_token': '<unk>'} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__lowerCAmelCase ) ) def lowercase__ ( self : Tuple , **__lowerCAmelCase : List[str] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def lowercase__ ( self : Dict , **__lowerCAmelCase : Tuple ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def lowercase__ ( self : Optional[Any] , __lowerCAmelCase : int ): __snake_case = 'lower newer' __snake_case = 'lower newer' return input_text, output_text def lowercase__ ( self : Union[str, Any] ): __snake_case = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __snake_case = 'lower newer' __snake_case = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] __snake_case = tokenizer.tokenize(__lowerCAmelCase ) # , add_prefix_space=True) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def lowercase__ ( self : Tuple ): __snake_case = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=__lowerCAmelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=__lowerCAmelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def lowercase__ ( self : int ): __snake_case = self.tokenizer_class.from_pretrained('roberta-base' ) __snake_case = tokenizer.encode('sequence builders' , add_special_tokens=__lowerCAmelCase ) __snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=__lowerCAmelCase ) __snake_case = tokenizer.encode( 'sequence builders' , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) __snake_case = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) __snake_case = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase ) __snake_case = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowercase__ ( self : int ): __snake_case = self.get_tokenizer() __snake_case = 'Encode this sequence.' __snake_case = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments __snake_case = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) __snake_case = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing spaces after special tokens __snake_case = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase )} ) # mask token has a left space __snake_case = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) __snake_case = 'Encode <mask> sequence' __snake_case = 'Encode <mask>sequence' __snake_case = tokenizer.encode(__lowerCAmelCase ) __snake_case = encoded.index(__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = tokenizer.encode(__lowerCAmelCase ) __snake_case = encoded.index(__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) def lowercase__ ( self : List[str] ): pass def lowercase__ ( self : Dict ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __snake_case = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __snake_case = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __snake_case = 'A, <mask> AllenNLP sentence.' __snake_case = tokenizer_r.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) __snake_case = tokenizer_p.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) __snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) __snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __lowerCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( __lowerCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def lowercase__ ( self : Optional[int] ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __snake_case = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __snake_case = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , __lowerCAmelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , __lowerCAmelCase ) self.assertEqual(post_processor_state['trim_offsets'] , __lowerCAmelCase ) def lowercase__ ( self : Optional[Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __snake_case = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` __snake_case = F'{text_of_1_token} {text_of_1_token}' __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ) + 1, 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
427
1
from math import isqrt def __UpperCamelCase (lowerCAmelCase : int ) -> list[int]: A = [True] * max_number for i in range(2, isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2, lowerCAmelCase, lowerCAmelCase ): A = False return [i for i in range(2, lowerCAmelCase ) if is_prime[i]] def __UpperCamelCase (lowerCAmelCase : int = 10**8 ) -> int: A = calculate_prime_numbers(max_number // 2 ) A = 0 A = 0 A = len(lowerCAmelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'''{solution() = }''')
699
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
699
1
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex A : int = logging.getLogger(__name__) class lowerCamelCase : def __init__( self : List[str] ): '''simple docstring''' _snake_case: Union[str, Any] = False def SCREAMING_SNAKE_CASE_ ( self : Dict , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Any ): '''simple docstring''' if not self.initialized: _snake_case: Tuple = RagRetriever( UpperCAmelCase__ , question_encoder_tokenizer=UpperCAmelCase__ , generator_tokenizer=UpperCAmelCase__ , index=UpperCAmelCase__ , init_retrieval=UpperCAmelCase__ , ) _snake_case: str = True def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' self.retriever.index.init_index() def SCREAMING_SNAKE_CASE_ ( self : List[str] , __snake_case : Dict , __snake_case : int ): '''simple docstring''' _snake_case: str = self.retriever._main_retrieve(UpperCAmelCase__ , UpperCAmelCase__ ) return doc_ids, retrieved_doc_embeds class lowerCamelCase ( __UpperCAmelCase ): def __init__( self : Optional[int] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[Any]=None ): '''simple docstring''' if index is not None and index.is_initialized() and len(UpperCAmelCase__ ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( UpperCAmelCase__ , question_encoder_tokenizer=UpperCAmelCase__ , generator_tokenizer=UpperCAmelCase__ , index=UpperCAmelCase__ , init_retrieval=UpperCAmelCase__ , ) _snake_case: Union[str, Any] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) for worker in self.retrieval_workers ] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def SCREAMING_SNAKE_CASE_ ( self : Any , __snake_case : Any , __snake_case : List[str] ): '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. _snake_case: Tuple = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] _snake_case: Dict = ray.get(random_worker.retrieve.remote(UpperCAmelCase__ , UpperCAmelCase__ ) ) else: _snake_case: List[Any] = self._main_retrieve(UpperCAmelCase__ , UpperCAmelCase__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCAmelCase__ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , __snake_case : Any , __snake_case : Optional[Any]=None , **__snake_case : str ): '''simple docstring''' return super(UpperCAmelCase__ , cls ).get_tokenizers(UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Any=None , **__snake_case : Optional[Any] ): '''simple docstring''' _snake_case: Union[str, Any] = kwargs.pop('config' , UpperCAmelCase__ ) or RagConfig.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) _snake_case: Any = RagTokenizer.from_pretrained(UpperCAmelCase__ , config=UpperCAmelCase__ ) _snake_case: Tuple = rag_tokenizer.question_encoder _snake_case: int = rag_tokenizer.generator if indexed_dataset is not None: _snake_case: Tuple = '''custom''' _snake_case: Union[str, Any] = CustomHFIndex(config.retrieval_vector_size , UpperCAmelCase__ ) else: _snake_case: List[Any] = cls._build_index(UpperCAmelCase__ ) return cls( UpperCAmelCase__ , question_encoder_tokenizer=UpperCAmelCase__ , generator_tokenizer=UpperCAmelCase__ , retrieval_workers=UpperCAmelCase__ , index=UpperCAmelCase__ , )
718
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A : Dict = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys A : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
273
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( a__ : List[Any] ,a__ : List[Any] ,a__ : List[Any] ) -> List[Any]: __A : List[str] = os.path.abspath(a__ ) logger.info(f"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model __A : Optional[Any] = tf.train.list_variables(a__ ) __A : Union[str, Any] = [] __A : List[str] = [] __A : List[Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") __A : List[str] = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(f"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' __A : int = name[1:] # figure out how many levels deep the name is __A : Optional[Any] = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(a__ ) # read data __A : Optional[Any] = tf.train.load_variable(a__ ,a__ ) names.append("""/""".join(a__ ) ) arrays.append(a__ ) logger.info(f"""Read a total of {len(a__ ):,} layers""" ) # Sanity check if len(set(a__ ) ) != 1: raise ValueError(f"""Found layer names with different depths (layer depth {list(set(a__ ) )})""" ) __A : Union[str, Any] = list(set(a__ ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(a__ ,a__ ): __A : Optional[Any] = full_name.split("""/""" ) __A : Any = model __A : List[str] = [] for i, m_name in enumerate(a__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): __A : Tuple = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) __A : Any = getattr(a__ ,"""embeddings""" ) __A : int = getattr(a__ ,"""LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) __A : Dict = getattr(a__ ,"""encoder""" ) __A : Dict = getattr(a__ ,"""layer""" ) __A : Optional[Any] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) __A : List[str] = getattr(a__ ,"""pooler""" ) __A : str = getattr(a__ ,"""dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) __A : Optional[Any] = getattr(a__ ,"""embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) __A : Any = getattr(a__ ,"""word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) __A : Optional[int] = getattr(a__ ,"""position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) __A : List[Any] = getattr(a__ ,"""token_type_embeddings""" ) else: raise ValueError(f"""Unknown embedding layer with name {full_name}""" ) trace.append("""weight""" ) __A : int = getattr(a__ ,"""weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) __A : Union[str, Any] = getattr(a__ ,"""attention""" ) __A : List[Any] = getattr(a__ ,"""self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) __A : List[str] = getattr(a__ ,"""attention""" ) __A : int = getattr(a__ ,"""output""" ) __A : List[Any] = getattr(a__ ,"""LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) __A : Union[str, Any] = getattr(a__ ,"""attention""" ) __A : List[str] = getattr(a__ ,"""output""" ) __A : Optional[Any] = getattr(a__ ,"""dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) __A : List[Any] = getattr(a__ ,"""output""" ) __A : int = getattr(a__ ,"""dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) __A : int = getattr(a__ ,"""output""" ) __A : Optional[int] = getattr(a__ ,"""LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) __A : Union[str, Any] = getattr(a__ ,"""key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) __A : str = getattr(a__ ,"""query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) __A : List[str] = getattr(a__ ,"""value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) __A : str = getattr(a__ ,"""intermediate""" ) __A : Union[str, Any] = getattr(a__ ,"""dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) __A : Optional[Any] = getattr(a__ ,"""output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) __A : int = getattr(a__ ,"""bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) __A : Any = getattr(a__ ,"""weight""" ) else: logger.warning(f"""Ignored {m_name}""" ) # for certain layers reshape is necessary __A : List[Any] = """.""".join(a__ ) if re.match(r"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" ,a__ ) or re.match( r"""(\S+)\.attention\.output\.dense\.weight""" ,a__ ): __A : int = array.reshape(pointer.data.shape ) if "kernel" in full_name: __A : int = array.transpose() if pointer.shape == array.shape: __A : Dict = torch.from_numpy(a__ ) else: raise ValueError( f"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" f""" {array.shape}""" ) logger.info(f"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : str ,a__ : Optional[int] ) -> Optional[Any]: # Instantiate model logger.info(f"""Loading model based on config from {config_path}...""" ) __A : Tuple = BertConfig.from_json_file(a__ ) __A : Optional[int] = BertModel(a__ ) # Load weights from checkpoint logger.info(f"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(a__ ,a__ ,a__ ) # Save pytorch-model logger.info(f"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() ,a__ ) if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
17
class lowerCamelCase_ : def __init__( self : Dict , __A : int , __A : Tuple , __A : List[Any] ): __A : Optional[int] = None __A : Any = None __A : int = graph self._normalize_graph(__A , __A ) __A : str = len(__A ) __A : Optional[int] = None def lowerCAmelCase_ ( self : int , __A : Any , __A : Optional[Any] ): if sources is int: __A : Dict = [sources] if sinks is int: __A : Optional[int] = [sinks] if len(__A ) == 0 or len(__A ) == 0: return __A : str = sources[0] __A : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(__A ) > 1 or len(__A ) > 1: __A : Optional[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __A : List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __A : str = max_input_flow __A : Union[str, Any] = 0 __A : Any = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __A : int = max_input_flow __A : Optional[Any] = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : Optional[Any] , __A : Dict ): __A : Dict = algorithm(self ) class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : str ): __A : Any = flow_network __A : int = flow_network.verticesCount __A : List[Any] = flow_network.sourceIndex __A : Union[str, Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __A : Optional[int] = flow_network.graph __A : str = False def lowerCAmelCase_ ( self : List[Any] ): if not self.executed: self._algorithm() __A : Any = True def lowerCAmelCase_ ( self : List[str] ): pass class lowerCamelCase_ ( _lowercase ): def __init__( self : Any , __A : List[str] ): super().__init__(__A ) # use this to save your result __A : str = -1 def lowerCAmelCase_ ( self : Any ): if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class lowerCamelCase_ ( _lowercase ): def __init__( self : List[Any] , __A : Dict ): super().__init__(__A ) __A : Tuple = [[0] * self.verticies_count for i in range(self.verticies_count )] __A : Optional[Any] = [0] * self.verticies_count __A : Union[str, Any] = [0] * self.verticies_count def lowerCAmelCase_ ( self : int ): __A : Optional[int] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __A : List[str] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __A : Dict = 0 while i < len(__A ): __A : List[Any] = vertices_list[i] __A : Optional[Any] = self.heights[vertex_index] self.process_vertex(__A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__A ) ) __A : Any = 0 else: i += 1 __A : Optional[int] = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : Optional[Any] , __A : str ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__A , __A ) self.relabel(__A ) def lowerCAmelCase_ ( self : Dict , __A : List[str] , __A : Optional[Any] ): __A : Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Optional[Any] , __A : Tuple ): __A : Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __A : Dict = self.heights[to_index] if min_height is not None: __A : Optional[int] = min_height + 1 if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = [0] UpperCAmelCase_ : Dict = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCAmelCase_ : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCAmelCase_ : str = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCAmelCase_ : int = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
17
1
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowercase : def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> Optional[int]: __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def _a ( self) -> Union[str, Any]: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length]) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __snake_case = ids_tensor([self.batch_size] , self.num_choices) __snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self) -> Tuple: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) -> Optional[Any]: __snake_case = OpenLlamaModel(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_) __snake_case = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[Any]: __snake_case = True __snake_case = OpenLlamaModel(lowercase_) model.to(lowercase_) model.eval() __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) __snake_case = model(lowercase_ , attention_mask=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str: __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _a ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: __snake_case = True __snake_case = True __snake_case = OpenLlamaForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() # first forward pass __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) __snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size) __snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __snake_case = torch.cat([input_ids, next_tokens] , dim=-1) __snake_case = torch.cat([input_mask, next_mask] , dim=-1) __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] __snake_case = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice __snake_case = ids_tensor((1,) , output_from_past.shape[-1]).item() __snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3)) def _a ( self) -> Optional[Any]: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __UpperCAmelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __UpperCAmelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def _a ( self) -> Tuple: __snake_case = OpenLlamaModelTester(self) __snake_case = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7) def _a ( self) -> int: self.config_tester.run_common_tests() def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> Optional[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*lowercase_) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> str: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'single_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _a ( self) -> int: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = 'multi_label_classification' __snake_case = input_dict['input_ids'] __snake_case = input_ids.ne(1).to(lowercase_) __snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __snake_case = OpenLlamaForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() __snake_case = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test') def _a ( self) -> List[Any]: pass @parameterized.expand([('linear',), ('dynamic',)]) def _a ( self , lowercase_) -> Optional[Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = ids_tensor([1, 1_0] , config.vocab_size) __snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = OpenLlamaModel(lowercase_) original_model.to(lowercase_) original_model.eval() __snake_case = original_model(lowercase_).last_hidden_state __snake_case = original_model(lowercase_).last_hidden_state set_seed(4_2) # Fixed seed at init time so the two models get the same random weights __snake_case = {'type': scaling_type, 'factor': 10.0} __snake_case = OpenLlamaModel(lowercase_) scaled_model.to(lowercase_) scaled_model.eval() __snake_case = scaled_model(lowercase_).last_hidden_state __snake_case = scaled_model(lowercase_).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5))
676
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]: '''simple docstring''' __snake_case = args.log_outputs __snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric __snake_case = load_metric('wer' ) __snake_case = load_metric('cer' ) # compute metrics __snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] ) __snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results __snake_case = f"WER: {wer_result}\nCER: {cer_result}" print(snake_case__ ) with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f: f.write(snake_case__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case = f"log_{dataset_id}_predictions.txt" __snake_case = f"log_{dataset_id}_targets.txt" with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t: # mapping function to write output def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ): p.write(f"{i}" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f"{i}" + '\n' ) t.write(batch['target'] + '\n' ) result.map(snake_case__ , with_indices=snake_case__ ) def A ( snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case = re.sub(snake_case__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __snake_case = ' '.join(text.split(snake_case__ ) ) return text def A ( snake_case__ : int ) -> Optional[int]: '''simple docstring''' # load dataset __snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case = feature_extractor.sampling_rate # resample audio __snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) ) # load eval pipeline if args.device is None: __snake_case = 0 if torch.cuda.is_available() else -1 __snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case__ : Optional[Any] ): __snake_case = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case = prediction['text'] __snake_case = normalize_text(batch['sentence'] ) return batch # run inference on all examples __snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case__ , snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCAmelCase__ : str = parser.parse_args() main(args)
676
1
'''simple docstring''' import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy __magic_name__ : Optional[int] = logging.get_logger(__name__) __magic_name__ : Optional[Any] = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } __magic_name__ : List[Any] = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } __magic_name__ : int = { """jukebox""": 512, } class __SCREAMING_SNAKE_CASE ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : List[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Union[str, Any] = PRETRAINED_LYRIC_TOKENS_SIZES UpperCAmelCase__ : int = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=["v3", "v2", "v2"] , lowerCamelCase=512 , lowerCamelCase=5 , lowerCamelCase="<|endoftext|>" , **lowerCamelCase , ): _snake_case = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token super().__init__( unk_token=lowerCamelCase , n_genres=lowerCamelCase , version=lowerCamelCase , max_n_lyric_tokens=lowerCamelCase , **lowerCamelCase , ) _snake_case = version _snake_case = max_n_lyric_tokens _snake_case = n_genres with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: _snake_case = json.load(lowerCamelCase ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: _snake_case = json.load(lowerCamelCase ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: _snake_case = json.load(lowerCamelCase ) _snake_case = R"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: _snake_case = oov.replace(R"\-'" , R"\-+'" ) _snake_case = regex.compile(lowerCamelCase ) _snake_case = {v: k for k, v in self.artists_encoder.items()} _snake_case = {v: k for k, v in self.genres_encoder.items()} _snake_case = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCamelCase( self ): return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCamelCase( self ): return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): _snake_case = [self.artists_encoder.get(lowerCamelCase , 0 ) for artist in list_artists] for genres in range(len(lowerCamelCase ) ): _snake_case = [self.genres_encoder.get(lowerCamelCase , 0 ) for genre in list_genres[genres]] _snake_case = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) _snake_case = [[self.lyrics_encoder.get(lowerCamelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCamelCase( self , lowerCamelCase ): return list(lowerCamelCase ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ): _snake_case , _snake_case , _snake_case = self.prepare_for_tokenization(lowerCamelCase , lowerCamelCase , lowerCamelCase ) _snake_case = self._tokenize(lowerCamelCase ) return artist, genre, lyrics def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): for idx in range(len(self.version ) ): if self.version[idx] == "v3": _snake_case = artists[idx].lower() _snake_case = [genres[idx].lower()] else: _snake_case = self._normalize(artists[idx] ) + ".v2" _snake_case = [ self._normalize(lowerCamelCase ) + ".v2" for genre in genres[idx].split("_" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": _snake_case = regex.compile(R"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" ) _snake_case = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n" _snake_case = {vocab[index]: index + 1 for index in range(len(lowerCamelCase ) )} _snake_case = 0 _snake_case = len(lowerCamelCase ) + 1 _snake_case = self.vocab _snake_case = {v: k for k, v in self.vocab.items()} _snake_case = "" else: _snake_case = regex.compile(R"[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+" ) _snake_case = self._run_strip_accents(lowerCamelCase ) _snake_case = lyrics.replace("\\" , "\n" ) _snake_case = self.out_of_vocab.sub("" , lowerCamelCase ), [], [] return artists, genres, lyrics def UpperCamelCase( self , lowerCamelCase ): _snake_case = unicodedata.normalize("NFD" , lowerCamelCase ) _snake_case = [] for char in text: _snake_case = unicodedata.category(lowerCamelCase ) if cat == "Mn": continue output.append(lowerCamelCase ) return "".join(lowerCamelCase ) def UpperCamelCase( self , lowerCamelCase ): _snake_case = ( [chr(lowerCamelCase ) for i in range(ord("a" ) , ord("z" ) + 1 )] + [chr(lowerCamelCase ) for i in range(ord("A" ) , ord("Z" ) + 1 )] + [chr(lowerCamelCase ) for i in range(ord("0" ) , ord("9" ) + 1 )] + ["."] ) _snake_case = frozenset(lowerCamelCase ) _snake_case = re.compile(R"_+" ) _snake_case = "".join([c if c in accepted else "_" for c in text.lower()] ) _snake_case = pattern.sub("_" , lowerCamelCase ).strip("_" ) return text def UpperCamelCase( self , lowerCamelCase ): return " ".join(lowerCamelCase ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ): # Convert to TensorType if not isinstance(lowerCamelCase , lowerCamelCase ): _snake_case = TensorType(lowerCamelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." ) import tensorflow as tf _snake_case = tf.constant _snake_case = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed." ) import torch _snake_case = torch.tensor _snake_case = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed." ) import jax.numpy as jnp # noqa: F811 _snake_case = jnp.array _snake_case = _is_jax else: _snake_case = np.asarray _snake_case = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: _snake_case = [inputs] if not is_tensor(lowerCamelCase ): _snake_case = as_tensor(lowerCamelCase ) except: # noqa E722 raise ValueError( "Unable to create tensor, you should probably activate truncation and/or padding " "with 'padding=True' 'truncation=True' to have batched tensors with the same length." ) return inputs def __call__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="" , lowerCamelCase="pt" ): _snake_case = [0, 0, 0] _snake_case = [artist] * len(self.version ) _snake_case = [genres] * len(self.version ) _snake_case , _snake_case , _snake_case = self.tokenize(lowerCamelCase , lowerCamelCase , lowerCamelCase ) _snake_case , _snake_case , _snake_case = self._convert_token_to_id(lowerCamelCase , lowerCamelCase , lowerCamelCase ) _snake_case = [-INFINITY] * len(full_tokens[-1] ) _snake_case = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=lowerCamelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({"input_ids": input_ids, "attention_masks": attention_masks} ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase = None ): if not os.path.isdir(lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["artists_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=lowerCamelCase ) ) _snake_case = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["genres_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=lowerCamelCase ) ) _snake_case = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["lyrics_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=lowerCamelCase ) ) return (artists_file, genres_file, lyrics_file) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): _snake_case = self.artists_decoder.get(lowerCamelCase ) _snake_case = [self.genres_decoder.get(lowerCamelCase ) for genre in genres_index] _snake_case = [self.lyrics_decoder.get(lowerCamelCase ) for character in lyric_index] return artist, genres, lyrics
672
'''simple docstring''' import math def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return math.pow(SCREAMING_SNAKE_CASE__ , 2 ) - a def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return 2 * x def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = 2.0 while start <= a: _snake_case = math.pow(SCREAMING_SNAKE_CASE__ , 2 ) return start def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 99_99 , SCREAMING_SNAKE_CASE__ = 0.00000000000001 ): '''simple docstring''' if a < 0: raise ValueError("math domain error" ) _snake_case = get_initial_point(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): _snake_case = value _snake_case = value - fx(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / fx_derivative(SCREAMING_SNAKE_CASE__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
672
1
# using dfs for finding eulerian path traversal def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a=None ): snake_case_ : Union[str, Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: snake_case_ ,snake_case_ : Optional[int] = True, True snake_case_ : Optional[int] = dfs(__a , __a , __a , __a ) return path def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Optional[int] = 0 snake_case_ : Any = -1 for i in range(__a ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 snake_case_ : Optional[Any] = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Dict = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] snake_case_ ,snake_case_ : Any = check_circuit_or_path(__a , __a ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return snake_case_ : Union[str, Any] = 1 if check == 2: snake_case_ : str = odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) snake_case_ : Optional[int] = dfs(__a , __a , __a ) print(__a ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[int] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} snake_case_ : List[Any] = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} snake_case_ : Optional[int] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} snake_case_ : List[str] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} snake_case_ : Dict = { 1: [], 2: [] # all degree is zero } snake_case_ : str = 10 check_euler(__a , __a ) check_euler(__a , __a ) check_euler(__a , __a ) check_euler(__a , __a ) check_euler(__a , __a ) if __name__ == "__main__": main()
534
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = { """configuration_lxmert""": ["""LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LxmertConfig"""], """tokenization_lxmert""": ["""LxmertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""LxmertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """LxmertEncoder""", """LxmertForPreTraining""", """LxmertForQuestionAnswering""", """LxmertModel""", """LxmertPreTrainedModel""", """LxmertVisualFeatureEncoder""", """LxmertXLayer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLxmertForPreTraining""", """TFLxmertMainLayer""", """TFLxmertModel""", """TFLxmertPreTrainedModel""", """TFLxmertVisualFeatureEncoder""", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
534
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: int , _lowerCAmelCase: int ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =jnp.ones((batch_size, length) ) / length return scores def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =None UpperCAmelCase_ =20 UpperCAmelCase_ =self._get_uniform_logits(batch_size=2 , length=_lowerCAmelCase ) # tweak scores to not be uniform anymore UpperCAmelCase_ =scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch UpperCAmelCase_ =scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax UpperCAmelCase_ =jax.nn.softmax(_lowerCAmelCase , axis=-1 ) UpperCAmelCase_ =FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCAmelCase_ =FlaxTemperatureLogitsWarper(temperature=1.3 ) UpperCAmelCase_ =jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) UpperCAmelCase_ =jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def lowerCAmelCase__ ( self: Optional[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ =None UpperCAmelCase_ =10 UpperCAmelCase_ =2 # create ramp distribution UpperCAmelCase_ =np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() UpperCAmelCase_ =ramp_logits[1:, : vocab_size // 2] + vocab_size UpperCAmelCase_ =FlaxTopKLogitsWarper(3 ) UpperCAmelCase_ =top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case UpperCAmelCase_ =5 UpperCAmelCase_ =FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) UpperCAmelCase_ =np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, length) ).copy() UpperCAmelCase_ =top_k_warp_safety_check(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def lowerCAmelCase__ ( self: Tuple ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =None UpperCAmelCase_ =10 UpperCAmelCase_ =2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) UpperCAmelCase_ =np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) UpperCAmelCase_ =FlaxTopPLogitsWarper(0.8 ) UpperCAmelCase_ =np.exp(top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 UpperCAmelCase_ =np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits UpperCAmelCase_ =np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme UpperCAmelCase_ =ramp_logits[1] * 1_00.0 # make sure at least 2 tokens are kept UpperCAmelCase_ =FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) UpperCAmelCase_ =top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =20 UpperCAmelCase_ =4 UpperCAmelCase_ =0 UpperCAmelCase_ =FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 UpperCAmelCase_ =ids_tensor((batch_size, 20) , vocab_size=20 ) UpperCAmelCase_ =5 UpperCAmelCase_ =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 UpperCAmelCase_ =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =15 UpperCAmelCase_ =min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =20 UpperCAmelCase_ =4 UpperCAmelCase_ =0 UpperCAmelCase_ =FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score UpperCAmelCase_ =ids_tensor((batch_size, 1) , vocab_size=20 ) UpperCAmelCase_ =1 UpperCAmelCase_ =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 UpperCAmelCase_ =3 UpperCAmelCase_ =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =20 UpperCAmelCase_ =4 UpperCAmelCase_ =0 UpperCAmelCase_ =5 UpperCAmelCase_ =FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached UpperCAmelCase_ =ids_tensor((batch_size, 4) , vocab_size=20 ) UpperCAmelCase_ =4 UpperCAmelCase_ =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached UpperCAmelCase_ =3 UpperCAmelCase_ =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =4 UpperCAmelCase_ =10 UpperCAmelCase_ =15 UpperCAmelCase_ =2 UpperCAmelCase_ =1 UpperCAmelCase_ =15 # dummy input_ids and scores UpperCAmelCase_ =ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) UpperCAmelCase_ =input_ids.copy() UpperCAmelCase_ =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =scores.copy() # instantiate all dist processors UpperCAmelCase_ =FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCAmelCase_ =FlaxTopKLogitsWarper(3 ) UpperCAmelCase_ =FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCAmelCase_ =FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) UpperCAmelCase_ =FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) UpperCAmelCase_ =FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) UpperCAmelCase_ =10 # no processor list UpperCAmelCase_ =temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # with processor list UpperCAmelCase_ =FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCAmelCase_ =processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def lowerCAmelCase__ ( self: str ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =4 UpperCAmelCase_ =10 UpperCAmelCase_ =15 UpperCAmelCase_ =2 UpperCAmelCase_ =1 UpperCAmelCase_ =15 # dummy input_ids and scores UpperCAmelCase_ =ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) UpperCAmelCase_ =input_ids.copy() UpperCAmelCase_ =self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =scores.copy() # instantiate all dist processors UpperCAmelCase_ =FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCAmelCase_ =FlaxTopKLogitsWarper(3 ) UpperCAmelCase_ =FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCAmelCase_ =FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) UpperCAmelCase_ =FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) UpperCAmelCase_ =FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) UpperCAmelCase_ =10 # no processor list def run_no_processor_list(_lowerCAmelCase: int , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Dict ): UpperCAmelCase_ =temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) UpperCAmelCase_ =eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(_lowerCAmelCase: Optional[int] , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[int] ): UpperCAmelCase_ =FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCAmelCase_ =processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores UpperCAmelCase_ =jax.jit(_lowerCAmelCase ) UpperCAmelCase_ =jax.jit(_lowerCAmelCase ) UpperCAmelCase_ =jitted_run_no_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =jitted_run_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
54
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __snake_case = logging.get_logger(__name__) def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Tuple: return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) ->List[Any]: lowercase_ = tesseract_config if tesseract_config is not None else """""" # apply OCR lowercase_ = to_pil_image(SCREAMING_SNAKE_CASE_ ) lowercase_ , lowercase_ = pil_image.size lowercase_ = pytesseract.image_to_data(SCREAMING_SNAKE_CASE_ , lang=SCREAMING_SNAKE_CASE_ , output_type="""dict""" , config=SCREAMING_SNAKE_CASE_ ) lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates lowercase_ = [idx for idx, word in enumerate(SCREAMING_SNAKE_CASE_ ) if not word.strip()] lowercase_ = [word for idx, word in enumerate(SCREAMING_SNAKE_CASE_ ) if idx not in irrelevant_indices] lowercase_ = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE_ ) if idx not in irrelevant_indices] lowercase_ = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE_ ) if idx not in irrelevant_indices] lowercase_ = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE_ ) if idx not in irrelevant_indices] lowercase_ = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase_ = [] for x, y, w, h in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ = [x, y, x + w, y + h] actual_boxes.append(SCREAMING_SNAKE_CASE_ ) # finally, normalize the bounding boxes lowercase_ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class _a ( __a ): """simple docstring""" A_ = ['''pixel_values'''] def __init__( self : Tuple , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = True , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = "" , **lowercase_ : Optional[int] , ): '''simple docstring''' super().__init__(**lowercase_ ) lowercase_ = size if size is not None else {"""height""": 224, """width""": 224} lowercase_ = get_size_dict(lowercase_ ) lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = apply_ocr lowercase_ = ocr_lang lowercase_ = tesseract_config def lowerCamelCase__ ( self : Optional[int] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : int , ): '''simple docstring''' lowercase_ = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowercase_ = (size["""height"""], size["""width"""]) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase__ ( self : List[Any] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : Dict , ): '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(lowercase_ ) lowercase_ = resample if resample is not None else self.resample lowercase_ = apply_ocr if apply_ocr is not None else self.apply_ocr lowercase_ = ocr_lang if ocr_lang is not None else self.ocr_lang lowercase_ = tesseract_config if tesseract_config is not None else self.tesseract_config lowercase_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(lowercase_ ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) lowercase_ = [] lowercase_ = [] for image in images: lowercase_ , lowercase_ = apply_tesseract(lowercase_ , lowercase_ , lowercase_ ) words_batch.append(lowercase_ ) boxes_batch.append(lowercase_ ) if do_resize: lowercase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) lowercase_ = [flip_channel_order(lowercase_ ) for image in images] lowercase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowercase_ = BatchFeature(data={"""pixel_values""": images} , tensor_type=lowercase_ ) if apply_ocr: lowercase_ = words_batch lowercase_ = boxes_batch return data
451
0
from manim import * class _SCREAMING_SNAKE_CASE ( __snake_case ): def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.2_5 , width=0.2_5 ) lowerCamelCase_ = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text("CPU" , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text("GPU" , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) gpu.move_to([-1, -1, 0] ) self.add(A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text("Model" , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) model.move_to([3, -1.0, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): rect.set_stroke(A_ ) lowerCamelCase_ = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(A_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=A_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=A_ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=A_ , buff=0.0 ) self.add(A_ ) model_cpu_arr.append(A_ ) self.add(*A_ , *A_ , *A_ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text("Loaded Checkpoint" , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) checkpoint.move_to([3, 0.5, 0] ) self.add(A_ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = fill.copy().set_fill(A_ , opacity=0.7 ) target.move_to(A_ ) ckpt_arr.append(A_ ) lowerCamelCase_ = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(A_ ) self.add(*A_ , *A_ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A_ , A_ ) lowerCamelCase_ = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(A_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(A_ ) lowerCamelCase_ = MarkupText( f'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(*A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = VGroup(A_ , A_ ).arrange(A_ , buff=0 ) lowerCamelCase_ = Text("Disk" , font_size=24 ) lowerCamelCase_ = Group(A_ , A_ ).arrange(A_ , buff=0.5 , aligned_edge=A_ ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(A_ , run_time=3 ) , Write(A_ , run_time=1 ) , Create(A_ , run_time=1 ) ) lowerCamelCase_ = [] for i, rect in enumerate(A_ ): lowerCamelCase_ = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(A_ , run_time=1.5 ) ) self.play(*A_ ) self.play(FadeOut(A_ ) ) lowerCamelCase_ = MarkupText(f'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(A_ , run_time=3 ) ) self.play( FadeOut(A_ , A_ , *A_ , *A_ ) , ) self.wait()
716
from typing import Any import numpy as np def lowerCamelCase_ ( lowerCamelCase__ ): return np.array_equal(lowerCamelCase__ , matrix.conjugate().T ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = v.conjugate().T lowerCamelCase_ = v_star.dot(lowerCamelCase__ ) assert isinstance(lowerCamelCase__ , np.ndarray ) return (v_star_dot.dot(lowerCamelCase__ )) / (v_star.dot(lowerCamelCase__ )) def lowerCamelCase_ ( ): lowerCamelCase_ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowerCamelCase_ = np.array([[1], [2], [3]] ) assert is_hermitian(lowerCamelCase__ ), F'{a} is not hermitian.' print(rayleigh_quotient(lowerCamelCase__ , lowerCamelCase__ ) ) lowerCamelCase_ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowerCamelCase__ ), F'{a} is not hermitian.' assert rayleigh_quotient(lowerCamelCase__ , lowerCamelCase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
313
0
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _a ( lowerCAmelCase )-> Optional[int]: SCREAMING_SNAKE_CASE_ = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: SCREAMING_SNAKE_CASE_ = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 48 SCREAMING_SNAKE_CASE_ = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: SCREAMING_SNAKE_CASE_ = [6, 6, 6, 6] SCREAMING_SNAKE_CASE_ = 60 SCREAMING_SNAKE_CASE_ = [6, 6, 6, 6] SCREAMING_SNAKE_CASE_ = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 126 SCREAMING_SNAKE_CASE_ = 7 SCREAMING_SNAKE_CASE_ = 255.0 SCREAMING_SNAKE_CASE_ = '' return config def _a ( lowerCAmelCase , lowerCAmelCase )-> Optional[Any]: if "patch_embed.proj" in name and "layers" not in name: SCREAMING_SNAKE_CASE_ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE_ = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: SCREAMING_SNAKE_CASE_ = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: SCREAMING_SNAKE_CASE_ = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: SCREAMING_SNAKE_CASE_ = name.replace('attn' , 'attention.self' ) if "norm1" in name: SCREAMING_SNAKE_CASE_ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: SCREAMING_SNAKE_CASE_ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_ = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: SCREAMING_SNAKE_CASE_ = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: SCREAMING_SNAKE_CASE_ = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: SCREAMING_SNAKE_CASE_ = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: SCREAMING_SNAKE_CASE_ = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_ = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": SCREAMING_SNAKE_CASE_ = 'layernorm.weight' if name == "norm.bias": SCREAMING_SNAKE_CASE_ = 'layernorm.bias' if "conv_first" in name: SCREAMING_SNAKE_CASE_ = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: SCREAMING_SNAKE_CASE_ = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: SCREAMING_SNAKE_CASE_ = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: SCREAMING_SNAKE_CASE_ = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: SCREAMING_SNAKE_CASE_ = name.replace('upsample.2' , 'upsample.convolution_1' ) SCREAMING_SNAKE_CASE_ = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": SCREAMING_SNAKE_CASE_ = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) SCREAMING_SNAKE_CASE_ = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: SCREAMING_SNAKE_CASE_ = 'swin2sr.' + name return name def _a ( lowerCAmelCase , lowerCAmelCase )-> Tuple: for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_ = orig_state_dict.pop(UpperCamelCase__ ) if "qkv" in key: SCREAMING_SNAKE_CASE_ = key.split('.' ) SCREAMING_SNAKE_CASE_ = int(key_split[1] ) SCREAMING_SNAKE_CASE_ = int(key_split[4] ) SCREAMING_SNAKE_CASE_ = config.embed_dim if "weight" in key: SCREAMING_SNAKE_CASE_ = val[:dim, :] SCREAMING_SNAKE_CASE_ = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_ = val[-dim:, :] else: SCREAMING_SNAKE_CASE_ = val[:dim] SCREAMING_SNAKE_CASE_ = val[dim : dim * 2] SCREAMING_SNAKE_CASE_ = val[-dim:] pass else: SCREAMING_SNAKE_CASE_ = val return orig_state_dict def _a ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )-> str: SCREAMING_SNAKE_CASE_ = get_config(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ = SwinaSRForImageSuperResolution(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='cpu' ) SCREAMING_SNAKE_CASE_ = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError('Missing keys when converting: {}'.format(UpperCamelCase__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'''Unexpected key {key} in state_dict''' ) # verify values SCREAMING_SNAKE_CASE_ = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' SCREAMING_SNAKE_CASE_ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('RGB' ) SCREAMING_SNAKE_CASE_ = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values SCREAMING_SNAKE_CASE_ = 126 if 'Jpeg' in checkpoint_url else 256 SCREAMING_SNAKE_CASE_ = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) SCREAMING_SNAKE_CASE_ = transforms(UpperCamelCase__ ).unsqueeze(0 ) if config.num_channels == 1: SCREAMING_SNAKE_CASE_ = pixel_values[:, 0, :, :].unsqueeze(1 ) SCREAMING_SNAKE_CASE_ = model(UpperCamelCase__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 512, 512] ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 1024, 1024] ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 1024, 1024] ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 512, 512] ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 1024, 1024] ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , UpperCamelCase__ , atol=1E-3 ) print('Looks ok!' ) SCREAMING_SNAKE_CASE_ = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } SCREAMING_SNAKE_CASE_ = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: model.push_to_hub(F'''caidas/{model_name}''' ) processor.push_to_hub(F'''caidas/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') SCREAMING_SNAKE_CASE: Tuple = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
360
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , a__ , a__=2 , a__=56 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=2 , a__=2 , a__=7 , a__="gelu_new" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.02 , a__=4 , a__="block_sparse" , a__=True , a__=False , a__=2 , a__=3 , ) -> List[Any]: A = parent A = batch_size A = seq_length A = is_training A = use_attention_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_choices A = rescale_embeddings A = attention_type A = use_bias A = block_size A = num_random_blocks def _UpperCAmelCase ( self ) -> List[Any]: A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = None if self.use_attention_mask: A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def _UpperCAmelCase ( self ) -> Optional[int]: A = self.prepare_config_and_inputs() A , A , A , A = config_and_inputs A = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class _UpperCamelCase ( __snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowerCAmelCase = False lowerCAmelCase = False def _UpperCAmelCase ( self ) -> Optional[int]: A = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ) -> Tuple: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ) -> Dict: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ) -> str: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ) -> List[Any]: super().test_hidden_states_output() @slow def _UpperCAmelCase ( self ) -> str: for model_class_name in self.all_model_classes: A = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(a__ ) def _UpperCAmelCase ( self ) -> Optional[int]: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _UpperCAmelCase ( self ) -> List[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A = self._prepare_for_class(a__ , a__ ) A = model_class(a__ ) @jax.jit def model_jitted(a__ , a__=None , **a__ ): return model(input_ids=a__ , attention_mask=a__ , **a__ ) with self.subTest("""JIT Enabled""" ): A = model_jitted(**a__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): A = model_jitted(**a__ ).to_tuple() self.assertEqual(len(a__ ) , len(a__ ) ) for jitted_output, output in zip(a__ , a__ ): self.assertEqual(jitted_output.shape , output.shape ) def _UpperCAmelCase ( self , a__ , a__ , a__ , a__=1e-5 , a__="outputs" , a__=None ) -> Tuple: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(a__ , a__ , a__ , a__ , a__ , a__ )
641
0
import warnings from ..trainer import Trainer from ..utils import logging __a : Tuple = logging.get_logger(__name__) class A ( __UpperCAmelCase ): def __init__( self : Dict , __UpperCAmelCase : Union[str, Any]=None , **__UpperCAmelCase : Any ) -> str: """simple docstring""" warnings.warn( '`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ' 'instead.' , _lowerCamelCase , ) super().__init__(args=_lowerCamelCase , **_lowerCamelCase )
701
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = inspect.getfile(accelerate.test_utils ) _SCREAMING_SNAKE_CASE : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) _SCREAMING_SNAKE_CASE : Optional[Any] = ['''accelerate''', '''launch'''] _SCREAMING_SNAKE_CASE : Optional[int] = Path.home() / '''.cache/huggingface/accelerate''' _SCREAMING_SNAKE_CASE : str = '''default_config.yaml''' _SCREAMING_SNAKE_CASE : Optional[int] = config_folder / config_file _SCREAMING_SNAKE_CASE : Optional[Any] = config_folder / '''_default_config.yaml''' _SCREAMING_SNAKE_CASE : Optional[Any] = Path('''tests/test_configs''' ) @classmethod def lowercase__ ( cls : Optional[int] ) -> Optional[int]: """simple docstring""" if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase__ ( cls : Union[str, Any] ) -> str: """simple docstring""" if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : str ) -> Tuple: """simple docstring""" for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=__UpperCAmelCase ): execute_subprocess_async( self.base_cmd + ['--config_file', str(__UpperCAmelCase ), self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[Any] = '''test-tpu''' _SCREAMING_SNAKE_CASE : List[str] = '''us-central1-a''' _SCREAMING_SNAKE_CASE : Optional[int] = '''ls''' _SCREAMING_SNAKE_CASE : Dict = ['''accelerate''', '''tpu-config'''] _SCREAMING_SNAKE_CASE : List[Any] = '''cd /usr/share''' _SCREAMING_SNAKE_CASE : Optional[Any] = '''tests/test_samples/test_command_file.sh''' _SCREAMING_SNAKE_CASE : Dict = '''Running gcloud compute tpus tpu-vm ssh''' def lowercase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=__UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __UpperCAmelCase , ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" UpperCamelCase_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=__UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __UpperCAmelCase , ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=__UpperCAmelCase ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __UpperCAmelCase , ) def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=__UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __UpperCAmelCase , ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=__UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , __UpperCAmelCase , ) def lowercase__ ( self : List[str] ) -> int: """simple docstring""" UpperCamelCase_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=__UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __UpperCAmelCase , ) def lowercase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=__UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __UpperCAmelCase , ) def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" UpperCamelCase_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=__UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , __UpperCAmelCase , ) def lowercase__ ( self : List[str] ) -> Tuple: """simple docstring""" UpperCamelCase_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=__UpperCAmelCase , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , __UpperCAmelCase , )
559
0
'''simple docstring''' class UpperCAmelCase_ : """simple docstring""" def __init__( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] ={} # Mapping from char to TrieNode lowercase : Dict =False def A__ ( self : List[str] , UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' for word in words: self.insert(__UpperCamelCase ) def A__ ( self : int , UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' lowercase : Optional[int] =self for char in word: if char not in curr.nodes: lowercase : Dict =TrieNode() lowercase : Union[str, Any] =curr.nodes[char] lowercase : List[str] =True def A__ ( self : List[Any] , UpperCAmelCase : List[str] ) -> Dict: '''simple docstring''' lowercase : str =self for char in word: if char not in curr.nodes: return False lowercase : Dict =curr.nodes[char] return curr.is_leaf def A__ ( self : List[Any] , UpperCAmelCase : str ) -> int: '''simple docstring''' def _delete(UpperCAmelCase : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict ) -> bool: if index == len(__UpperCamelCase ): # If word does not exist if not curr.is_leaf: return False lowercase : Union[str, Any] =False return len(curr.nodes ) == 0 lowercase : Dict =word[index] lowercase : str =curr.nodes.get(__UpperCamelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted lowercase : Dict =_delete(__UpperCamelCase , __UpperCamelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , __UpperCamelCase , 0 ) def lowercase_ ( __A : Tuple , __A : Tuple ) -> str: """simple docstring""" if node.is_leaf: print(lowercase__ , end=''' ''' ) for key, value in node.nodes.items(): print_words(lowercase__ , word + key ) def lowercase_ ( ) -> List[str]: """simple docstring""" lowercase : int ='''banana bananas bandana band apple all beast'''.split() lowercase : str =TrieNode() root.insert_many(lowercase__ ) # print_words(root, "") assert all(root.find(lowercase__ ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def lowercase_ ( __A : str , __A : int ) -> Dict: """simple docstring""" print(str(lowercase__ ) , '''works!''' if passes else '''doesn\'t work :(''' ) def lowercase_ ( ) -> str: """simple docstring""" assert test_trie() def lowercase_ ( ) -> List[Any]: """simple docstring""" print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
94
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""flax""", """transformers"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""flax""", """transformers"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""flax""", """transformers"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""flax""", """transformers"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['flax', 'transformers'] )
187
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
"""simple docstring""" from math import pow def lowercase ( __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : int , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count lowercase_ : Dict = int(pow(__snake_case , __snake_case ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n lowercase_ , lowercase_ : Optional[int] = backtrack( __snake_case , __snake_case , current_number + 1 , __snake_case , __snake_case ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. lowercase_ , lowercase_ : int = backtrack( __snake_case , __snake_case , current_number + 1 , __snake_case , __snake_case ) return current_sum, solutions_count def lowercase ( __snake_case : int , __snake_case : int ): if not (1 <= needed_sum <= 1_0_0_0 and 2 <= power <= 1_0): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(__snake_case , __snake_case , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
141
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __a : Optional[int] = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[Any] = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Optional[int] = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[str] = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
534
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __a : Union[str, Any] = logging.get_logger(__name__) def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = torch.load(lowercase , map_location='''cpu''' ) if "model" in sd.keys(): __lowercase = torch.load(lowercase , map_location='''cpu''' )['''model'''] # pop unnecessary weights __lowercase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowercase ) __lowercase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowercase = sd.pop(lowercase ) __lowercase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowercase = sd[key] # We split QKV in separate Q,K,V __lowercase = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) __lowercase = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) __lowercase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowercase , __lowercase , __lowercase = torch.split(lowercase , depth // 3 , dim=0 ) __lowercase = q __lowercase = k __lowercase = v del sd[key] return sd @torch.no_grad() def UpperCAmelCase ( lowercase , lowercase , lowercase=None ): """simple docstring""" __lowercase = load_checkpoint(lowercase ) if config is not None: __lowercase = OPTConfig.from_pretrained(lowercase ) else: __lowercase = OPTConfig() __lowercase = OPTModel(lowercase ).half().eval() model.load_state_dict(lowercase ) # Check results Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": __a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __a : Any = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
534
1
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser _a : Union[str, Any] = logging.getLogger(__name__) torch.set_grad_enabled(False) _a : Union[str, Any] = """cuda""" if torch.cuda.is_available() else """cpu""" def snake_case__ ( UpperCAmelCase : str , UpperCAmelCase : Optional[Any]=1_0_0 , UpperCAmelCase : List[Any]=" " ): lowerCAmelCase__ :List[str] = text.split(UpperCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(UpperCAmelCase ) , UpperCAmelCase )] def snake_case__ ( UpperCAmelCase : dict ): lowerCAmelCase__ ,lowerCAmelCase__ :Any = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(UpperCAmelCase ): titles.append(title if title is not None else "" ) texts.append(UpperCAmelCase ) return {"title": titles, "text": texts} def snake_case__ ( UpperCAmelCase : dict , UpperCAmelCase : DPRContextEncoder , UpperCAmelCase : DPRContextEncoderTokenizerFast ): lowerCAmelCase__ :Optional[int] = ctx_tokenizer( documents["title"] , documents["text"] , truncation=UpperCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"] lowerCAmelCase__ :Tuple = ctx_encoder(input_ids.to(device=UpperCAmelCase ) , return_dict=UpperCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def snake_case__ ( UpperCAmelCase : "RagExampleArguments" , UpperCAmelCase : "ProcessingArguments" , UpperCAmelCase : "IndexHnswArguments" , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowerCAmelCase__ :int = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowerCAmelCase__ :Optional[Any] = dataset.map(UpperCAmelCase , batched=UpperCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings lowerCAmelCase__ :List[str] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) lowerCAmelCase__ :List[str] = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space lowerCAmelCase__ :Optional[Any] = dataset.map( partial(UpperCAmelCase , ctx_encoder=UpperCAmelCase , ctx_tokenizer=UpperCAmelCase ) , batched=UpperCAmelCase , batch_size=processing_args.batch_size , features=UpperCAmelCase , ) # And finally save your dataset lowerCAmelCase__ :int = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(UpperCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowerCAmelCase__ :str = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=UpperCAmelCase ) # And save the index lowerCAmelCase__ :Optional[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(UpperCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _UpperCAmelCase : """simple docstring""" A = field( default=str(Path(_A ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) A = field( default=_A , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) A = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) A = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) A = field( default=str(Path(_A ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class _UpperCAmelCase : """simple docstring""" A = field( default=_A , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) A = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class _UpperCAmelCase : """simple docstring""" A = field( default=7_68 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) A = field( default=1_28 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) _a : Optional[Any] = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) _a , _a , _a : Optional[Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: _a : Optional[Any] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
111
from __future__ import annotations import numpy as np def snake_case__ ( UpperCAmelCase : np.ndarray ): lowerCAmelCase__ ,lowerCAmelCase__ :List[str] = np.shape(UpperCAmelCase ) if rows != columns: lowerCAmelCase__ :Tuple = ( "'table' has to be of square shaped array but got a " F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = np.zeros((rows, columns) ) lowerCAmelCase__ :Tuple = np.zeros((rows, columns) ) for i in range(UpperCAmelCase ): for j in range(UpperCAmelCase ): lowerCAmelCase__ :Any = sum(lower[i][k] * upper[k][j] for k in range(UpperCAmelCase ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) lowerCAmelCase__ :Any = (table[i][j] - total) / upper[j][j] lowerCAmelCase__ :Tuple = 1 for j in range(UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase__ :Optional[Any] = sum(lower[i][k] * upper[k][j] for k in range(UpperCAmelCase ) ) lowerCAmelCase__ :Dict = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
111
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a: Dict = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a: Tuple = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a: Union[str, Any] = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a: str = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _a: List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
162
def __lowerCAmelCase ( A , A , A , A ): # Return True if there is node that has not iterated. UpperCAmelCase_ = [False] * len(A ) UpperCAmelCase_ = [] queue.append(A ) UpperCAmelCase_ = True while queue: UpperCAmelCase_ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(A ) UpperCAmelCase_ = True UpperCAmelCase_ = u return visited[t] def __lowerCAmelCase ( A , A , A ): # This array is filled by BFS and to store path UpperCAmelCase_ = [-1] * (len(A )) UpperCAmelCase_ = 0 while bfs(A , A , A , A ): UpperCAmelCase_ = float("Inf" ) UpperCAmelCase_ = sink while s != source: # Find the minimum value in select path UpperCAmelCase_ = min(A , graph[parent[s]][s] ) UpperCAmelCase_ = parent[s] max_flow += path_flow UpperCAmelCase_ = sink while v != source: UpperCAmelCase_ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase_ = parent[v] return max_flow _a: Any = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _a , _a: Optional[int] = 0, 5 print(ford_fulkerson(graph, source, sink))
162
1
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer lowerCamelCase = """bart""" lowerCamelCase = True @st.cache(allow_output_mutation=__UpperCamelCase ) def SCREAMING_SNAKE_CASE( ) -> Dict: if LOAD_DENSE_INDEX: a__ : int = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" ) a__ : Optional[int] = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" ) a__ : Union[str, Any] = qar_model.eval() else: a__ , a__ : Union[str, Any] = (None, None) if MODEL_TYPE == "bart": a__ : Optional[Any] = AutoTokenizer.from_pretrained("yjernite/bart_eli5" ) a__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" ) a__ : Any = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" ) sas_model.load_state_dict(save_dict["model"] ) a__ : int = sas_model.eval() else: a__ , a__ : Dict = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__UpperCamelCase ) def SCREAMING_SNAKE_CASE( ) -> Tuple: if LOAD_DENSE_INDEX: a__ : Optional[Any] = faiss.StandardGpuResources() a__ : Union[str, Any] = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )["train"] a__ : str = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 1_28) , ) a__ : Union[str, Any] = faiss.IndexFlatIP(1_28 ) a__ : Any = faiss.index_cpu_to_gpu(__UpperCamelCase , 1 , __UpperCamelCase ) wikiaab_gpu_index_flat.add(__UpperCamelCase ) # TODO fix for larger GPU else: a__ , a__ : Dict = (None, None) a__ : List[Any] = Elasticsearch([{"host": "localhost", "port": "9200"}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__UpperCamelCase ) def SCREAMING_SNAKE_CASE( ) -> Tuple: a__ : Optional[int] = datasets.load_dataset("eli5" , name="LFQA_reddit" ) a__ : Optional[Any] = elia["train_eli5"] a__ : int = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 1_28) ) a__ : List[str] = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(__UpperCamelCase ) return (elia_train, eli5_train_q_index) lowerCamelCase , lowerCamelCase , lowerCamelCase = load_indexes() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = load_models() lowerCamelCase , lowerCamelCase = load_train_data() def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase=10 ) -> int: a__ : Optional[Any] = embed_questions_for_retrieval([question] , __UpperCamelCase , __UpperCamelCase ) a__ , a__ : int = eli5_train_q_index.search(__UpperCamelCase , __UpperCamelCase ) a__ : Tuple = [elia_train[int(__UpperCamelCase )] for i in I[0]] return nn_examples def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase="wiki40b" , __UpperCamelCase="dense" , __UpperCamelCase=10 ) -> int: if source == "none": a__ , a__ : List[str] = (" <P> ".join(["" for _ in range(11 )] ).strip(), []) else: if method == "dense": a__ , a__ : str = query_qa_dense_index( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: a__ , a__ : str = query_es_index( __UpperCamelCase , __UpperCamelCase , index_name="english_wiki40b_snippets_100w" , n_results=__UpperCamelCase , ) a__ : str = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] a__ : Union[str, Any] = "question: {} context: {}".format(__UpperCamelCase , __UpperCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __UpperCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __UpperCamelCase : None), } ) def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=64 , __UpperCamelCase=2_56 , __UpperCamelCase=False , __UpperCamelCase=2 , __UpperCamelCase=0.9_5 , __UpperCamelCase=0.8 ) -> Any: with torch.no_grad(): a__ : int = qa_sas_generate( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , num_answers=1 , num_beams=__UpperCamelCase , min_len=__UpperCamelCase , max_len=__UpperCamelCase , do_sample=__UpperCamelCase , temp=__UpperCamelCase , top_p=__UpperCamelCase , top_k=__UpperCamelCase , max_input_length=10_24 , device="cuda:0" , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar lowerCamelCase = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" lowerCamelCase = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia lowerCamelCase = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) lowerCamelCase = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] lowerCamelCase = st.sidebar.checkbox("""Demo options""") if demo_options: lowerCamelCase = st.sidebar.selectbox( """""", action_list, index=3, ) lowerCamelCase = action_list.index(action_st) lowerCamelCase = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) lowerCamelCase = show_type == """Show full text of passages""" else: lowerCamelCase = 3 lowerCamelCase = True lowerCamelCase = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: lowerCamelCase = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) lowerCamelCase = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) lowerCamelCase = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: lowerCamelCase = """wiki40b""" lowerCamelCase = """dense""" lowerCamelCase = """beam""" lowerCamelCase = 2 lowerCamelCase = 64 lowerCamelCase = 2_56 lowerCamelCase = None lowerCamelCase = None lowerCamelCase = st.sidebar.checkbox("""Generation options""") if generate_options: lowerCamelCase = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) lowerCamelCase = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) lowerCamelCase = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) lowerCamelCase = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": lowerCamelCase = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: lowerCamelCase = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) lowerCamelCase = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) lowerCamelCase = None # start main text lowerCamelCase = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] lowerCamelCase = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": lowerCamelCase = st.text_input("""Enter your question here:""", """""") else: lowerCamelCase = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": lowerCamelCase , lowerCamelCase = make_support(question, source=wiki_source, method="""dense""", n_results=10) lowerCamelCase , lowerCamelCase = make_support(question, source=wiki_source, method="""sparse""", n_results=10) lowerCamelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] lowerCamelCase = support_list[:10] lowerCamelCase = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: lowerCamelCase , lowerCamelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: lowerCamelCase , lowerCamelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): lowerCamelCase = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) lowerCamelCase = res[1].strip() if sec_titles == "": lowerCamelCase = """[{}]({})""".format(res[0], wiki_url) else: lowerCamelCase = sec_titles.split(""" & """) lowerCamelCase = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: lowerCamelCase = find_nearest_training(question) lowerCamelCase = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) lowerCamelCase = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) lowerCamelCase = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
207
import sys def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> Dict: a__ : List[Any] = len(__UpperCamelCase ) a__ : Optional[Any] = [[0 for x in range(__UpperCamelCase )] for x in range(__UpperCamelCase )] a__ : Optional[int] = [[0 for x in range(__UpperCamelCase )] for x in range(__UpperCamelCase )] for chain_length in range(2 , __UpperCamelCase ): for a in range(1 , n - chain_length + 1 ): a__ : int = a + chain_length - 1 a__ : Tuple = sys.maxsize for c in range(__UpperCamelCase , __UpperCamelCase ): a__ : Any = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: a__ : str = cost a__ : Union[str, Any] = c return matrix, sol def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: if i == j: print("A" + str(__UpperCamelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(__UpperCamelCase , __UpperCamelCase , optimal_solution[i][j] ) print_optiomal_solution(__UpperCamelCase , optimal_solution[i][j] + 1 , __UpperCamelCase ) print(")" , end=" " ) def SCREAMING_SNAKE_CASE( ) -> Any: a__ : Optional[int] = [30, 35, 15, 5, 10, 20, 25] a__ : Optional[int] = len(__UpperCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 a__ , a__ : Union[str, Any] = matrix_chain_order(__UpperCamelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(__UpperCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
207
1
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = False ) -> list[float]: """simple docstring""" if radian_mode: return [magnitude * cos(lowercase_ ), magnitude * sin(lowercase_ )] return [magnitude * cos(radians(lowercase_ ) ), magnitude * sin(radians(lowercase_ ) )] def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 10**-1 ) -> bool: """simple docstring""" A__ = cross(lowercase_ , lowercase_ ) A__ = sum(lowercase_ ) return abs(lowercase_ ) < eps if __name__ == "__main__": # Test to check if it works _lowerCamelCase : int = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) _lowerCamelCase : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg _lowerCamelCase : str = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) _lowerCamelCase : str = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg _lowerCamelCase : Tuple = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) _lowerCamelCase : str = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
87
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Union[str, Any] = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class _UpperCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase = 'efficientformer' def __init__( self , a__ = [3, 2, 6, 4] , a__ = [48, 96, 224, 448] , a__ = [True, True, True, True] , a__ = 448 , a__ = 32 , a__ = 4 , a__ = 7 , a__ = 5 , a__ = 8 , a__ = 4 , a__ = 0.0 , a__ = 16 , a__ = 3 , a__ = 3 , a__ = 3 , a__ = 2 , a__ = 1 , a__ = 0.0 , a__ = 1 , a__ = True , a__ = True , a__ = 1e-5 , a__ = "gelu" , a__ = 0.02 , a__ = 1e-12 , a__ = 224 , a__ = 1e-05 , **a__ , ) -> None: super().__init__(**a__ ) A = hidden_act A = hidden_dropout_prob A = hidden_sizes A = num_hidden_layers A = num_attention_heads A = initializer_range A = layer_norm_eps A = patch_size A = num_channels A = depths A = mlp_expansion_ratio A = downsamples A = dim A = key_dim A = attention_ratio A = resolution A = pool_size A = downsample_patch_size A = downsample_stride A = downsample_pad A = drop_path_rate A = num_metaad_blocks A = distillation A = use_layer_scale A = layer_scale_init_value A = image_size A = batch_norm_eps
641
0
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] ): '''simple docstring''' return EnvironmentCommand() class a ( UpperCamelCase_ ): @staticmethod def UpperCamelCase_ ( _lowerCamelCase ): lowercase = parser.add_parser('env' ) download_parser.set_defaults(func=_lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = huggingface_hub.__version__ lowercase = '''not installed''' lowercase = '''NA''' if is_torch_available(): import torch lowercase = torch.__version__ lowercase = torch.cuda.is_available() lowercase = '''not installed''' if is_transformers_available(): import transformers lowercase = transformers.__version__ lowercase = '''not installed''' if is_accelerate_available(): import accelerate lowercase = accelerate.__version__ lowercase = '''not installed''' if is_xformers_available(): import xformers lowercase = xformers.__version__ lowercase = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': F'{pt_version} ({pt_cuda_available})', '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(_lowerCamelCase ) ) return info @staticmethod def UpperCamelCase_ ( _lowerCamelCase ): return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
719
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE ( __snake_case : list[int] ): '''simple docstring''' if len(__snake_case ) == 0: return array lowercase , lowercase = min(__snake_case ), max(__snake_case ) # Compute the variables lowercase = _max - _min + 1 lowercase , lowercase = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: lowercase = i - _min lowercase = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. lowercase = 0 for i in range(__snake_case ): while holes_repeat[i] > 0: lowercase = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase : Optional[Any] = input('Enter numbers separated by comma:\n') _UpperCamelCase : Any = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
134
0
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def A ( self : Optional[Any] ) -> List[str]: UpperCAmelCase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__snake_case , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(__snake_case , '''depth_multiplier''' ) ) class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : Dict , __snake_case : Union[str, Any] , __snake_case : Optional[Any]=13 , __snake_case : Union[str, Any]=3 , __snake_case : List[Any]=32 , __snake_case : Dict=0.25 , __snake_case : Tuple=8 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=1024 , __snake_case : Tuple=32 , __snake_case : Optional[Any]="relu6" , __snake_case : str=0.1 , __snake_case : Tuple=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : str=10 , __snake_case : Optional[int]=None , ) -> List[Any]: UpperCAmelCase : List[str] = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Optional[int] = image_size UpperCAmelCase : Union[str, Any] = depth_multiplier UpperCAmelCase : Union[str, Any] = min_depth UpperCAmelCase : Tuple = tf_padding UpperCAmelCase : Any = int(last_hidden_size * depth_multiplier ) UpperCAmelCase : Dict = output_stride UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = classifier_dropout_prob UpperCAmelCase : List[Any] = use_labels UpperCAmelCase : Any = is_training UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Dict = initializer_range UpperCAmelCase : str = scope def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : int = None UpperCAmelCase : Optional[Any] = None if self.use_labels: UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def A ( self : Union[str, Any] ) -> Union[str, Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def A ( self : Dict , __snake_case : int , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Any ) -> int: UpperCAmelCase : List[str] = MobileNetVaModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : int = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def A ( self : Dict , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Any ) -> List[Any]: UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : Dict = MobileNetVaForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Any = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase : Any = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = config_and_inputs UpperCAmelCase : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () lowerCamelCase__ = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : int = MobileNetVaModelTester(self ) UpperCAmelCase : List[str] = MobileNetVaConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def A ( self : List[Any] ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''' ) def A ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''' ) def A ( self : List[str] ) -> Tuple: pass @unittest.skip(reason='''MobileNetV1 does not output attentions''' ) def A ( self : List[str] ) -> Optional[int]: pass def A ( self : str ) -> Tuple: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = model_class(__snake_case ) UpperCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Any = [*signature.parameters.keys()] UpperCAmelCase : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def A ( self : int ) -> str: def check_hidden_states_output(__snake_case : str , __snake_case : Tuple , __snake_case : str ): UpperCAmelCase : Any = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase : int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) UpperCAmelCase : Tuple = outputs.hidden_states UpperCAmelCase : List[str] = 26 self.assertEqual(len(__snake_case ) , __snake_case ) UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Optional[Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def A ( self : Dict ) -> Union[str, Any]: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def A ( self : Union[str, Any] ) -> Any: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : List[Any] = MobileNetVaModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def snake_case_ ( ) -> Union[str, Any]: UpperCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @cached_property def A ( self : int ) -> int: return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''' ) if is_vision_available() else None ) @slow def A ( self : int ) -> Tuple: UpperCAmelCase : List[Any] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''' ).to(__snake_case ) UpperCAmelCase : Optional[int] = self.default_image_processor UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : str = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[int] = model(**__snake_case ) # verify the logits UpperCAmelCase : Tuple = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __snake_case ) UpperCAmelCase : Union[str, Any] = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) )
127
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : int ) -> list: UpperCAmelCase : Union[str, Any] = int(_lowerCAmelCase ) if n_element < 1: UpperCAmelCase : int = ValueError('''a should be a positive number''' ) raise my_error UpperCAmelCase : str = [1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = (0, 0, 0) UpperCAmelCase : Any = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": UpperCamelCase__: List[str] = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") UpperCamelCase__: str = hamming(int(n)) print("-----------------------------------------------------") print(F"The list with nth numbers is: {hamming_numbers}") print("-----------------------------------------------------")
127
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : List[str] = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys snake_case_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
644
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) class __a (lowerCamelCase ): __a : Tuple = ["pixel_values"] def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Union[str, Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> None: """simple docstring""" UpperCAmelCase_ : int = do_resize UpperCAmelCase_ : Tuple = do_rescale UpperCAmelCase_ : List[Any] = size_divisor UpperCAmelCase_ : Any = resample super().__init__(**__magic_name__ ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Tuple ) -> np.ndarray: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_image_size(__magic_name__ ) # Rounds the height and width down to the closest multiple of size_divisor UpperCAmelCase_ : Dict = height // size_divisor * size_divisor UpperCAmelCase_ : Dict = width // size_divisor * size_divisor UpperCAmelCase_ : Any = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) return image def UpperCAmelCase__ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[Any] ) -> np.ndarray: """simple docstring""" return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def UpperCAmelCase__ ( self : str , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Any=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> BatchFeature: """simple docstring""" UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Any = size_divisor if size_divisor is not None else self.size_divisor UpperCAmelCase_ : Dict = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) UpperCAmelCase_ : Optional[int] = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. UpperCAmelCase_ : List[str] = [to_numpy_array(__magic_name__ ) for img in images] if do_resize: UpperCAmelCase_ : str = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images] if do_rescale: UpperCAmelCase_ : Tuple = [self.rescale(__magic_name__ , scale=1 / 2_55 ) for image in images] UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] UpperCAmelCase_ : int = {'''pixel_values''': images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
644
1
'''simple docstring''' def _A ( A__ , A__ ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def _A ( ): """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
41
'''simple docstring''' _UpperCamelCase : Dict = range(2, 20 + 1) _UpperCamelCase : str = [10**k for k in range(ks[-1] + 1)] _UpperCamelCase : dict[int, dict[int, list[list[int]]]] = {} def __UpperCAmelCase ( A : List[Any] , A : str , A : Union[str, Any] , A : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = sum(a_i[j] for j in range(A , len(A ) ) ) UpperCAmelCase_ : Union[str, Any] = sum(a_i[j] * base[j] for j in range(min(len(A ) , A ) ) ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = 0, 0 UpperCAmelCase_ : str = n - i UpperCAmelCase_ : Union[str, Any] = memo.get(A ) if sub_memo is not None: UpperCAmelCase_ : Dict = sub_memo.get(A ) if jumps is not None and len(A ) > 0: # find and make the largest jump without going over UpperCAmelCase_ : str = -1 for _k in range(len(A ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCAmelCase_ : Any = _k break if max_jump >= 0: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = jumps[max_jump] # since the difference between jumps is cached, add c UpperCAmelCase_ : Union[str, Any] = diff + c for j in range(min(A , len(A ) ) ): UpperCAmelCase_ , UpperCAmelCase_ : Tuple = divmod(A , 1_0 ) if new_c > 0: add(A , A , A ) else: UpperCAmelCase_ : Tuple = [] else: UpperCAmelCase_ : List[str] = {c: []} UpperCAmelCase_ : List[str] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = next_term(A , k - 1 , i + dn , A ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCAmelCase_ , UpperCAmelCase_ : int = compute(A , A , i + dn , A ) diff += _diff dn += terms_jumped UpperCAmelCase_ : List[str] = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCAmelCase_ : List[Any] = 0 while j < len(A ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(A , (diff, dn, k) ) return (diff, dn) def __UpperCAmelCase ( A : List[str] , A : Dict , A : List[str] , A : Union[str, Any] ) -> str: if i >= n: return 0, i if k > len(A ): a_i.extend([0 for _ in range(k - len(A ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCAmelCase_ : int = i UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = 0, 0, 0 for j in range(len(A ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCAmelCase_ : Optional[int] = ds_c + ds_b diff += addend UpperCAmelCase_ : Any = 0 for j in range(A ): UpperCAmelCase_ : Dict = a_i[j] + addend UpperCAmelCase_ , UpperCAmelCase_ : Tuple = divmod(A , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(A , A , A ) return diff, i - start_i def __UpperCAmelCase ( A : Dict , A : Union[str, Any] , A : str ) -> List[Any]: for j in range(A , len(A ) ): UpperCAmelCase_ : List[str] = digits[j] + addend if s >= 1_0: UpperCAmelCase_ , UpperCAmelCase_ : Any = divmod(A , 1_0 ) UpperCAmelCase_ : str = addend // 1_0 + quotient else: UpperCAmelCase_ : Any = s UpperCAmelCase_ : Any = addend // 1_0 if addend == 0: break while addend > 0: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = divmod(A , 1_0 ) digits.append(A ) def __UpperCAmelCase ( A : int = 1_0**1_5 ) -> int: UpperCAmelCase_ : Any = [1] UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : List[Any] = 0 while True: UpperCAmelCase_ , UpperCAmelCase_ : str = next_term(A , 2_0 , i + dn , A ) dn += terms_jumped if dn == n - i: break UpperCAmelCase_ : Any = 0 for j in range(len(A ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
541
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer lowercase : int = logging.get_logger(__name__) lowercase : Union[str, Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase : Union[str, Any] = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } lowercase : int = { """squeezebert/squeezebert-uncased""": 5_1_2, """squeezebert/squeezebert-mnli""": 5_1_2, """squeezebert/squeezebert-mnli-headless""": 5_1_2, } lowercase : Union[str, Any] = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class a__ ( __SCREAMING_SNAKE_CASE ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = SqueezeBertTokenizer def __init__( self : Optional[Any] , A_ : Tuple=None , A_ : Union[str, Any]=None , A_ : Optional[Any]=True , A_ : Optional[Any]="[UNK]" , A_ : List[str]="[SEP]" , A_ : List[str]="[PAD]" , A_ : List[str]="[CLS]" , A_ : int="[MASK]" , A_ : Dict=True , A_ : str=None , **A_ : List[Any] , ) -> Any: """simple docstring""" super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) lowerCamelCase_: str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , A_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , A_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , A_ ) != tokenize_chinese_chars ): lowerCamelCase_: List[str] = getattr(A_ , normalizer_state.pop("""type""" ) ) lowerCamelCase_: Dict = do_lower_case lowerCamelCase_: Optional[Any] = strip_accents lowerCamelCase_: str = tokenize_chinese_chars lowerCamelCase_: List[Any] = normalizer_class(**A_ ) lowerCamelCase_: List[Any] = do_lower_case def lowerCAmelCase ( self : Optional[Any] , A_ : List[str] , A_ : Optional[int]=None ) -> List[str]: """simple docstring""" lowerCamelCase_: Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase ( self : int , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_: Tuple = [self.sep_token_id] lowerCamelCase_: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowerCamelCase_: int = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
584
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
584
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy A__ = logging.get_logger(__name__) class _lowerCAmelCase ( _UpperCamelCase ): def __init__( self : str , __snake_case : int , __snake_case : int , __snake_case : float , **__snake_case : List[str] ): lowerCamelCase :Optional[Any] = feature_size lowerCamelCase :Optional[int] = sampling_rate lowerCamelCase :Union[str, Any] = padding_value lowerCamelCase :Optional[Any] = kwargs.pop('''padding_side''' , '''right''' ) lowerCamelCase :List[str] = kwargs.pop('''return_attention_mask''' , lowerCAmelCase_ ) super().__init__(**lowerCAmelCase_ ) def snake_case ( self : Union[str, Any] , __snake_case : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case : Union[bool, str, PaddingStrategy] = True , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Union[str, TensorType]] = None , ): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowerCAmelCase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): lowerCamelCase :List[Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' F" to this method that includes {self.model_input_names[0]}, but you provided" F" {list(processed_features.keys() )}" ) lowerCamelCase :str = processed_features[self.model_input_names[0]] lowerCamelCase :List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowerCAmelCase_ ) == 0: if return_attention_mask: lowerCamelCase :int = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch lowerCamelCase :Tuple = required_input[0] if isinstance(lowerCAmelCase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. lowerCamelCase :List[Any] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowerCAmelCase_ ): lowerCamelCase :Any = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowerCAmelCase_ ): lowerCamelCase :Optional[int] = '''tf''' elif is_torch_tensor(lowerCAmelCase_ ): lowerCamelCase :int = '''pt''' elif isinstance(lowerCAmelCase_ , (int, float, list, tuple, np.ndarray) ): lowerCamelCase :Tuple = '''np''' else: raise ValueError( F"type of {first_element} unknown: {type(lowerCAmelCase_ )}. " '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): lowerCamelCase :str = to_numpy(lowerCAmelCase_ ) else: lowerCamelCase :Optional[Any] = [to_numpy(lowerCAmelCase_ ) for v in value] # Convert padding_strategy in PaddingStrategy lowerCamelCase :List[str] = self._get_padding_strategies(padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) lowerCamelCase :Optional[Any] = processed_features[self.model_input_names[0]] lowerCamelCase :List[str] = len(lowerCAmelCase_ ) if not all(len(lowerCAmelCase_ ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) lowerCamelCase :int = [] for i in range(lowerCAmelCase_ ): lowerCamelCase :Any = {k: v[i] for k, v in processed_features.items()} # truncation lowerCamelCase :Tuple = self._truncate( lowerCAmelCase_ , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , truncation=lowerCAmelCase_ , ) truncated_inputs.append(lowerCAmelCase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length lowerCamelCase :Tuple = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) lowerCamelCase :int = PaddingStrategy.MAX_LENGTH lowerCamelCase :Union[str, Any] = {} for i in range(lowerCAmelCase_ ): # padding lowerCamelCase :List[str] = self._pad( truncated_inputs[i] , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) for key, value in outputs.items(): if key not in batch_outputs: lowerCamelCase :str = [] if value.dtype is np.dtype(np.floataa ): lowerCamelCase :Optional[Any] = value.astype(np.floataa ) batch_outputs[key].append(lowerCAmelCase_ ) return BatchFeature(lowerCAmelCase_ , tensor_type=lowerCAmelCase_ ) def snake_case ( self : Tuple , __snake_case : Union[Dict[str, np.ndarray], BatchFeature] , __snake_case : Optional[int] = None , __snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ): lowerCamelCase :List[Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: lowerCamelCase :List[str] = len(lowerCAmelCase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowerCamelCase :List[str] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowerCamelCase :Optional[int] = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowerCAmelCase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: lowerCamelCase :int = np.ones(len(lowerCAmelCase_ ) , dtype=np.intaa ) if needs_to_be_padded: lowerCamelCase :Any = max_length - len(lowerCAmelCase_ ) if self.padding_side == "right": if return_attention_mask: lowerCamelCase :Optional[Any] = np.pad( processed_features['''attention_mask'''] , (0, difference) ) lowerCamelCase :str = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) lowerCamelCase :Any = np.pad( lowerCAmelCase_ , lowerCAmelCase_ , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: lowerCamelCase :Optional[Any] = np.pad( processed_features['''attention_mask'''] , (difference, 0) ) lowerCamelCase :str = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) lowerCamelCase :Tuple = np.pad( lowerCAmelCase_ , lowerCAmelCase_ , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def snake_case ( self : Union[str, Any] , __snake_case : Union[Dict[str, np.ndarray], BatchFeature] , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) lowerCamelCase :Tuple = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowerCamelCase :Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowerCamelCase :List[Any] = len(lowerCAmelCase_ ) > max_length if needs_to_be_truncated: lowerCamelCase :Any = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: lowerCamelCase :int = processed_features['''attention_mask'''][:max_length] return processed_features def snake_case ( self : Tuple , __snake_case : str=False , __snake_case : Optional[Any]=None ): # Get padding strategy if padding is not False: if padding is True: lowerCamelCase :str = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): lowerCamelCase :Tuple = PaddingStrategy(lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): lowerCamelCase :Dict = padding else: lowerCamelCase :int = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
166
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _snake_case : Any = logging.get_logger(__name__) _snake_case : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[Any] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _snake_case : str = { 'yjernite/retribert-base-uncased': 512, } _snake_case : Optional[int] = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = RetriBertTokenizer a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : List[str]="[PAD]" , lowerCAmelCase_ : Optional[int]="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
0
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ : str = 16 lowerCAmelCase_ : str = 32 def _lowerCamelCase ( lowercase : Accelerator , lowercase : int = 16 ) -> Optional[Any]: _a = AutoTokenizer.from_pretrained("bert-base-cased" ) _a = load_dataset("glue" , "mrpc" ) def tokenize_function(lowercase : int ): # max_length=None => use the model max length (it's actually the default) _a = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a = datasets.map( lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. _a = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a = 16 elif accelerator.mixed_precision != "no": _a = 8 else: _a = None return tokenizer.pad( lowercase , padding="longest" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="pt" , ) # Instantiate dataloaders. _a = DataLoader( tokenized_datasets["train"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase , drop_last=lowercase ) _a = DataLoader( tokenized_datasets["validation"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def _lowerCamelCase ( lowercase : Any , lowercase : Tuple ) -> Any: # Initialize accelerator _a = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a = config["lr"] _a = int(config["num_epochs"] ) _a = int(config["seed"] ) _a = int(config["batch_size"] ) _a = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation _a = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a = batch_size // MAX_GPU_BATCH_SIZE _a = MAX_GPU_BATCH_SIZE set_seed(lowercase ) _a , _a = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a = model.to(accelerator.device ) # Instantiate optimizer _a = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler _a = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a = model(**lowercase ) _a = outputs.loss _a = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a = model(**lowercase ) _a = outputs.logits.argmax(dim=-1 ) _a , _a = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowercase , references=lowercase , ) _a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowercase ) def _lowerCamelCase ( ) -> int: _a = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) _a = parser.parse_args() _a = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
521
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowerCAmelCase_ : Dict = datasets.utils.logging.get_logger(__name__) lowerCAmelCase_ : str = ['names', 'prefix'] lowerCAmelCase_ : List[Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] lowerCAmelCase_ : Tuple = ['encoding_errors', 'on_bad_lines'] lowerCAmelCase_ : Dict = ['date_format'] @dataclass class __SCREAMING_SNAKE_CASE (datasets.BuilderConfig ): """simple docstring""" __a ="," __a =None __a ="infer" __a =None __a =None __a =None __a =None __a =None __a =True __a =None __a =None __a =None __a =None __a =False __a =None __a =None __a =None __a =True __a =True __a =False __a =True __a =None __a ="." __a =None __a ='"' __a =0 __a =None __a =None __a =None __a =None __a =True __a =True __a =0 __a =True __a =False __a =None __a =1_0000 __a =None __a ="strict" __a ="error" __a =None def UpperCamelCase__ ( self : Dict ): if self.delimiter is not None: _a = self.delimiter if self.column_names is not None: _a = self.column_names @property def UpperCamelCase__ ( self : List[Any] ): _a = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , __a ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __SCREAMING_SNAKE_CASE (datasets.ArrowBasedBuilder ): """simple docstring""" __a =CsvConfig def UpperCamelCase__ ( self : Dict ): return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase__ ( self : int , __a : List[Any] ): if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) _a = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__a , (str, list, tuple) ): _a = data_files if isinstance(__a , __a ): _a = [files] _a = [dl_manager.iter_files(__a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _a = [] for split_name, files in data_files.items(): if isinstance(__a , __a ): _a = [files] _a = [dl_manager.iter_files(__a ) for file in files] splits.append(datasets.SplitGenerator(name=__a , gen_kwargs={"files": files} ) ) return splits def UpperCamelCase__ ( self : Dict , __a : pa.Table ): if self.config.features is not None: _a = self.config.features.arrow_schema if all(not require_storage_cast(__a ) for feature in self.config.features.values() ): # cheaper cast _a = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=__a ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _a = table_cast(__a , __a ) return pa_table def UpperCamelCase__ ( self : Tuple , __a : str ): _a = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _a = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(__a ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(__a ) ): _a = pd.read_csv(__a , iterator=__a , dtype=__a , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(__a ): _a = pa.Table.from_pandas(__a ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__a ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(__a )}: {e}' ) raise
521
1
# using dfs for finding eulerian path traversal def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): """simple docstring""" lowercase__ = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowercase__ , lowercase__ = True, True lowercase__ = dfs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return path def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = 0 lowercase__ = -1 for i in range(SCREAMING_SNAKE_CASE ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowercase__ = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowercase__ , lowercase__ = check_circuit_or_path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return lowercase__ = 1 if check == 2: lowercase__ = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) lowercase__ = dfs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(SCREAMING_SNAKE_CASE ) def _a ( ): """simple docstring""" lowercase__ = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowercase__ = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowercase__ = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowercase__ = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowercase__ = { 1: [], 2: [] # all degree is zero } lowercase__ = 10 check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_euler(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
43
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowerCAmelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowerCAmelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Tuple ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def lowerCamelCase_ ( self: str , UpperCamelCase_: List[List[List[str]]] , UpperCamelCase_: List[List[str]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase_ , hypotheses=UpperCamelCase_ , min_len=UpperCamelCase_ , max_len=UpperCamelCase_ ) }
43
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : int = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : Tuple = """deberta-v2""" def __init__( self , snake_case__=12_8100 , snake_case__=1536 , snake_case__=24 , snake_case__=24 , snake_case__=6144 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0 , snake_case__=0.0_2 , snake_case__=1e-7 , snake_case__=False , snake_case__=-1 , snake_case__=0 , snake_case__=True , snake_case__=None , snake_case__=0 , snake_case__="gelu" , **snake_case__ , ): super().__init__(**snake_case__ ) lowerCAmelCase : str = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Tuple = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : Tuple = max_position_embeddings lowerCAmelCase : Tuple = type_vocab_size lowerCAmelCase : str = initializer_range lowerCAmelCase : Any = relative_attention lowerCAmelCase : Dict = max_relative_positions lowerCAmelCase : int = pad_token_id lowerCAmelCase : Union[str, Any] = position_biased_input # Backwards compatibility if type(snake_case__ ) == str: lowerCAmelCase : int = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCAmelCase : List[str] = pos_att_type lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Tuple = layer_norm_eps lowerCAmelCase : Dict = kwargs.get('pooler_hidden_size' , snake_case__ ) lowerCAmelCase : Optional[int] = pooler_dropout lowerCAmelCase : Optional[Any] = pooler_hidden_act class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def lowercase ( self ): return 12 def lowercase ( self , snake_case__ , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = False , snake_case__ = None , snake_case__ = 3 , snake_case__ = 40 , snake_case__ = 40 , snake_case__ = None , ): lowerCAmelCase : Tuple = super().generate_dummy_inputs(preprocessor=snake_case__ , framework=snake_case__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
646
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase ( a ): _lowerCamelCase : Any = """deformable_detr""" _lowerCamelCase : List[str] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0_2 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.2_5 , snake_case__=False , **snake_case__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = backbone_config.get('model_type' ) lowerCAmelCase : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase : Optional[Any] = config_class.from_dict(snake_case__ ) lowerCAmelCase : Union[str, Any] = use_timm_backbone lowerCAmelCase : List[Any] = backbone_config lowerCAmelCase : Any = num_channels lowerCAmelCase : Tuple = num_queries lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : int = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : List[str] = encoder_layers lowerCAmelCase : int = encoder_attention_heads lowerCAmelCase : str = decoder_ffn_dim lowerCAmelCase : str = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : str = dropout lowerCAmelCase : List[str] = attention_dropout lowerCAmelCase : Union[str, Any] = activation_dropout lowerCAmelCase : str = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : Any = init_xavier_std lowerCAmelCase : Dict = encoder_layerdrop lowerCAmelCase : int = auxiliary_loss lowerCAmelCase : Optional[Any] = position_embedding_type lowerCAmelCase : List[str] = backbone lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : int = dilation # deformable attributes lowerCAmelCase : List[str] = num_feature_levels lowerCAmelCase : List[str] = encoder_n_points lowerCAmelCase : Union[str, Any] = decoder_n_points lowerCAmelCase : Tuple = two_stage lowerCAmelCase : Dict = two_stage_num_proposals lowerCAmelCase : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase : Union[str, Any] = class_cost lowerCAmelCase : Dict = bbox_cost lowerCAmelCase : List[Any] = giou_cost # Loss coefficients lowerCAmelCase : Dict = mask_loss_coefficient lowerCAmelCase : Any = dice_loss_coefficient lowerCAmelCase : str = bbox_loss_coefficient lowerCAmelCase : Tuple = giou_loss_coefficient lowerCAmelCase : List[str] = eos_coefficient lowerCAmelCase : Any = focal_alpha lowerCAmelCase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase ( self ): return self.encoder_attention_heads @property def lowercase ( self ): return self.d_model def lowercase ( self ): lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase : List[Any] = self.backbone_config.to_dict() lowerCAmelCase : str = self.__class__.model_type return output
646
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A : int = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
394
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A : str = logging.get_logger(__name__) __A : Optional[Any] = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:Optional[Any] = 'blip_text_model' def __init__( self , _a=3_0524 , _a=768 , _a=768 , _a=3072 , _a=768 , _a=12 , _a=8 , _a=512 , _a="gelu" , _a=1e-12 , _a=0.0 , _a=0.0 , _a=0.02 , _a=3_0522 , _a=2 , _a=0 , _a=102 , _a=True , _a=True , **_a , ): """simple docstring""" super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , sep_token_id=_a , **_a , ) a__ = vocab_size a__ = hidden_size a__ = encoder_hidden_size a__ = intermediate_size a__ = projection_dim a__ = hidden_dropout_prob a__ = num_hidden_layers a__ = num_attention_heads a__ = max_position_embeddings a__ = layer_norm_eps a__ = hidden_act a__ = initializer_range a__ = attention_probs_dropout_prob a__ = is_decoder a__ = use_cache @classmethod def lowercase__ ( cls , _a , **_a ): """simple docstring""" cls._set_token_in_kwargs(_a ) a__ , a__ = cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": a__ = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:str = 'blip_vision_model' def __init__( self , _a=768 , _a=3072 , _a=512 , _a=12 , _a=12 , _a=384 , _a=16 , _a="gelu" , _a=1e-5 , _a=0.0 , _a=1e-10 , **_a , ): """simple docstring""" super().__init__(**_a ) a__ = hidden_size a__ = intermediate_size a__ = projection_dim a__ = num_hidden_layers a__ = num_attention_heads a__ = patch_size a__ = image_size a__ = initializer_range a__ = attention_dropout a__ = layer_norm_eps a__ = hidden_act @classmethod def lowercase__ ( cls , _a , **_a ): """simple docstring""" cls._set_token_in_kwargs(_a ) a__ , a__ = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": a__ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:Any = 'blip' SCREAMING_SNAKE_CASE:List[str] = True def __init__( self , _a=None , _a=None , _a=512 , _a=2.6592 , _a=256 , **_a , ): """simple docstring""" super().__init__(**_a ) if text_config is None: a__ = {} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: a__ = {} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) a__ = BlipTextConfig(**_a ) a__ = BlipVisionConfig(**_a ) a__ = self.vision_config.hidden_size a__ = projection_dim a__ = logit_scale_init_value a__ = 1.0 a__ = 0.02 a__ = image_text_hidden_size @classmethod def lowercase__ ( cls , _a , _a , **_a ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_a ) def lowercase__ ( self ): """simple docstring""" a__ = copy.deepcopy(self.__dict__ ) a__ = self.text_config.to_dict() a__ = self.vision_config.to_dict() a__ = self.__class__.model_type return output
394
1
def lowerCamelCase_ ( lowerCAmelCase: float , lowerCAmelCase: float )-> float: if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
719
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
0
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def __lowerCamelCase ( UpperCAmelCase_ : int = 8 ): """simple docstring""" a :Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ) ) def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : int ): """simple docstring""" i -= len(UpperCAmelCase_ ) a :Tuple = i // 3 a :int = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) a :Union[str, Any] = ( chars_incl + random(UpperCAmelCase_ , quotient + remainder ) + random(UpperCAmelCase_ , UpperCAmelCase_ ) + random(UpperCAmelCase_ , UpperCAmelCase_ ) ) a :Dict = list(UpperCAmelCase_ ) shuffle(UpperCAmelCase_ ) return "".join(UpperCAmelCase_ ) # random is a generalised function for letters, characters and numbers def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : int ): """simple docstring""" return "".join(secrets.choice(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ) ) def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple ): """simple docstring""" pass # Put your code here... def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ): """simple docstring""" pass # Put your code here... def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ): """simple docstring""" pass # Put your code here... def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : int = 8 ): """simple docstring""" if len(UpperCAmelCase_ ) < min_length: # Your Password must be at least 8 characters long return False a :Dict = any(char in ascii_uppercase for char in password ) a :Optional[int] = any(char in ascii_lowercase for char in password ) a :Tuple = any(char in digits for char in password ) a :Any = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def __lowerCamelCase ( ): """simple docstring""" a :int = int(input('''Please indicate the max length of your password: ''' ).strip() ) a :Union[str, Any] = input( '''Please indicate the characters that must be in your password: ''' ).strip() print('''Password generated:''' , password_generator(UpperCAmelCase_ ) ) print( '''Alternative Password generated:''' , alternative_password_generator(UpperCAmelCase_ , UpperCAmelCase_ ) , ) print('''[If you are thinking of using this passsword, You better save it.]''' ) if __name__ == "__main__": main()
445
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Optional[int] = logging.get_logger(__name__) snake_case : Optional[int] = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'unispeech' def __init__( self , _lowerCamelCase=32 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-5 , _lowerCamelCase="group" , _lowerCamelCase="gelu" , _lowerCamelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCamelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCamelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCamelCase=False , _lowerCamelCase=128 , _lowerCamelCase=16 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.05 , _lowerCamelCase=10 , _lowerCamelCase=2 , _lowerCamelCase=0.0 , _lowerCamelCase=10 , _lowerCamelCase=0 , _lowerCamelCase=320 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=100 , _lowerCamelCase=256 , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase="mean" , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=256 , _lowerCamelCase=80 , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=0.5 , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase ) a :Any = hidden_size a :str = feat_extract_norm a :List[Any] = feat_extract_activation a :Tuple = list(_lowerCamelCase ) a :Any = list(_lowerCamelCase ) a :List[Any] = list(_lowerCamelCase ) a :Union[str, Any] = conv_bias a :str = num_conv_pos_embeddings a :str = num_conv_pos_embedding_groups a :Tuple = len(self.conv_dim ) a :int = num_hidden_layers a :Any = intermediate_size a :Optional[Any] = hidden_act a :Tuple = num_attention_heads a :Any = hidden_dropout a :Any = attention_dropout a :Optional[Any] = activation_dropout a :Optional[Any] = feat_proj_dropout a :Any = final_dropout a :int = layerdrop a :int = layer_norm_eps a :Dict = initializer_range a :Dict = num_ctc_classes a :Optional[Any] = vocab_size a :str = do_stable_layer_norm a :Tuple = use_weighted_layer_sum a :Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a :List[Any] = apply_spec_augment a :Any = mask_time_prob a :Union[str, Any] = mask_time_length a :str = mask_time_min_masks a :Tuple = mask_feature_prob a :Dict = mask_feature_length a :int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations a :Union[str, Any] = num_codevectors_per_group a :Dict = num_codevector_groups a :List[Any] = contrastive_logits_temperature a :Union[str, Any] = feat_quantizer_dropout a :Optional[Any] = num_negatives a :Tuple = codevector_dim a :Optional[Any] = proj_codevector_dim a :Union[str, Any] = diversity_loss_weight # ctc loss a :List[Any] = ctc_loss_reduction a :Union[str, Any] = ctc_zero_infinity # pretraining loss a :int = replace_prob @property def SCREAMING_SNAKE_CASE__ ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
445
1
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _a : def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , ): lowerCamelCase__ = parent lowerCamelCase__ = 13 lowerCamelCase__ = 7 lowerCamelCase__ = 30 lowerCamelCase__ = self.seq_length + self.mem_len lowerCamelCase__ = 15 lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = 99 lowerCamelCase__ = [10, 50, 80] lowerCamelCase__ = 32 lowerCamelCase__ = 32 lowerCamelCase__ = 4 lowerCamelCase__ = 8 lowerCamelCase__ = 1_28 lowerCamelCase__ = 2 lowerCamelCase__ = 2 lowerCamelCase__ = None lowerCamelCase__ = 1 lowerCamelCase__ = 0 lowerCamelCase__ = 3 lowerCamelCase__ = self.vocab_size - 1 lowerCamelCase__ = 0.01 def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def _UpperCamelCase ( self : Union[str, Any] ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def _UpperCamelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): lowerCamelCase__ = TFTransfoXLModel(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ , lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ).to_tuple() lowerCamelCase__ = {'input_ids': input_ids_a, 'mems': mems_a} lowerCamelCase__ , lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): lowerCamelCase__ = TFTransfoXLLMHeadModel(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ , lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ).to_tuple() lowerCamelCase__ = {'input_ids': input_ids_a, 'labels': lm_labels} lowerCamelCase__ , lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ).to_tuple() lowerCamelCase__ , lowerCamelCase__ = model([input_ids_a, mems_a] ).to_tuple() lowerCamelCase__ = {'input_ids': input_ids_a, 'mems': mems_a, 'labels': lm_labels} lowerCamelCase__ , lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _UpperCamelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): lowerCamelCase__ = TFTransfoXLForSequenceClassification(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : List[Any] ): lowerCamelCase__ = self.prepare_config_and_inputs() ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = config_and_inputs lowerCamelCase__ = {'input_ids': input_ids_a} return config, inputs_dict @require_tf class _a ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) a_ : int = () if is_tf_available() else () a_ : List[Any] = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented a_ : Optional[Any] = False a_ : Dict = False a_ : Any = False a_ : Any = False def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = TFTransfoXLModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , d_embed=37 ) def _UpperCamelCase ( self : Any ): self.config_tester.run_common_tests() def _UpperCamelCase ( self : List[str] ): self.model_tester.set_seed() lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Union[str, Any] ): self.model_tester.set_seed() lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : int ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: lowerCamelCase__ = model.get_output_embeddings() assert isinstance(SCREAMING_SNAKE_CASE__ , tf.keras.layers.Layer ) lowerCamelCase__ = model.get_bias() assert name is None else: lowerCamelCase__ = model.get_output_embeddings() assert x is None lowerCamelCase__ = model.get_bias() assert name is None def _UpperCamelCase ( self : int ): # TODO JP: Make TransfoXL XLA compliant pass @slow def _UpperCamelCase ( self : str ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFTransfoXLModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @unittest.skip(reason='This model doesn\'t play well with fit() due to not returning a single loss.' ) def _UpperCamelCase ( self : Dict ): pass @require_tf class _a ( unittest.TestCase ): @unittest.skip('Skip test until #12651 is resolved.' ) @slow def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = TFTransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103' ) # fmt: off lowerCamelCase__ = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off lowerCamelCase__ = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> lowerCamelCase__ = model.generate(SCREAMING_SNAKE_CASE__ , max_length=2_00 , do_sample=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE__ )
703
"""simple docstring""" from __future__ import annotations from math import gcd def snake_case ( _a: int , _a: int = 2 , _a: int = 1 , _a: int = 3 , )-> int | None: '''simple docstring''' if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(_a: int , _a: int , _a: int ) -> int: return (pow(_a , 2 ) + step) % modulus for _ in range(_a ): # These track the position within the cycle detection logic. lowerCamelCase__ = seed lowerCamelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCamelCase__ = rand_fn(_a , _a , _a ) lowerCamelCase__ = rand_fn(_a , _a , _a ) lowerCamelCase__ = rand_fn(_a , _a , _a ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCamelCase__ = gcd(hare - tortoise , _a ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCamelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse _snake_case = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) _snake_case = parser.parse_args() _snake_case = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: _snake_case = args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
659
0
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer snake_case_ : int = 'bart' snake_case_ : str = True @st.cache(allow_output_mutation=_UpperCAmelCase) def __snake_case ( ): if LOAD_DENSE_INDEX: UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''') UpperCamelCase = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''').to('''cuda:0''') UpperCamelCase = qar_model.eval() else: UpperCamelCase , UpperCamelCase = (None, None) if MODEL_TYPE == "bart": UpperCamelCase = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''') UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''').to('''cuda:0''') UpperCamelCase = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''') sas_model.load_state_dict(save_dict['''model''']) UpperCamelCase = sas_model.eval() else: UpperCamelCase , UpperCamelCase = make_qa_sas_model( model_name='''t5-small''', from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''', device='''cuda:0''') return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_UpperCAmelCase) def __snake_case ( ): if LOAD_DENSE_INDEX: UpperCamelCase = faiss.StandardGpuResources() UpperCamelCase = datasets.load_dataset(path='''wiki_snippets''', name='''wiki40b_en_100_0''')['''train'''] UpperCamelCase = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''', dtype='''float32''', mode='''r''', shape=(wikiaab_passages.num_rows, 128), ) UpperCamelCase = faiss.IndexFlatIP(128) UpperCamelCase = faiss.index_cpu_to_gpu(_UpperCAmelCase, 1, _UpperCAmelCase) wikiaab_gpu_index_flat.add(_UpperCAmelCase) # TODO fix for larger GPU else: UpperCamelCase , UpperCamelCase = (None, None) UpperCamelCase = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}]) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_UpperCAmelCase) def __snake_case ( ): UpperCamelCase = datasets.load_dataset('''eli5''', name='''LFQA_reddit''') UpperCamelCase = elia['''train_eli5'''] UpperCamelCase = np.memmap( '''eli5_questions_reps.dat''', dtype='''float32''', mode='''r''', shape=(elia_train.num_rows, 128)) UpperCamelCase = faiss.IndexFlatIP(128) eli5_train_q_index.add(_UpperCAmelCase) return (elia_train, eli5_train_q_index) snake_case_ , snake_case_ , snake_case_ : Optional[Any] = load_indexes() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = load_models() snake_case_ , snake_case_ : Tuple = load_train_data() def __snake_case ( _UpperCAmelCase : int, _UpperCAmelCase : Tuple=10): UpperCamelCase = embed_questions_for_retrieval([question], _UpperCAmelCase, _UpperCAmelCase) UpperCamelCase , UpperCamelCase = eli5_train_q_index.search(_UpperCAmelCase, _UpperCAmelCase) UpperCamelCase = [elia_train[int(_UpperCAmelCase)] for i in I[0]] return nn_examples def __snake_case ( _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : int="wiki40b", _UpperCAmelCase : List[Any]="dense", _UpperCAmelCase : List[str]=10): if source == "none": UpperCamelCase , UpperCamelCase = (''' <P> '''.join(['''''' for _ in range(11)]).strip(), []) else: if method == "dense": UpperCamelCase , UpperCamelCase = query_qa_dense_index( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase) else: UpperCamelCase , UpperCamelCase = query_es_index( _UpperCAmelCase, _UpperCAmelCase, index_name='''english_wiki40b_snippets_100w''', n_results=_UpperCAmelCase, ) UpperCamelCase = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] UpperCamelCase = '''question: {} context: {}'''.format(_UpperCAmelCase, _UpperCAmelCase) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _UpperCAmelCase: None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _UpperCAmelCase: None), }) def __snake_case ( _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : List[Any], _UpperCAmelCase : int, _UpperCAmelCase : Optional[Any]=64, _UpperCAmelCase : int=256, _UpperCAmelCase : int=False, _UpperCAmelCase : Dict=2, _UpperCAmelCase : Tuple=0.9_5, _UpperCAmelCase : Tuple=0.8): with torch.no_grad(): UpperCamelCase = qa_sas_generate( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, num_answers=1, num_beams=_UpperCAmelCase, min_len=_UpperCAmelCase, max_len=_UpperCAmelCase, do_sample=_UpperCAmelCase, temp=_UpperCAmelCase, top_p=_UpperCAmelCase, top_k=_UpperCAmelCase, max_input_length=1024, device='''cuda:0''', )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar snake_case_ : str = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' snake_case_ : List[Any] = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia snake_case_ : Tuple = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) snake_case_ : Tuple = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] snake_case_ : Union[str, Any] = st.sidebar.checkbox('Demo options') if demo_options: snake_case_ : List[Any] = st.sidebar.selectbox( '', action_list, index=3, ) snake_case_ : int = action_list.index(action_st) snake_case_ : int = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) snake_case_ : List[str] = show_type == 'Show full text of passages' else: snake_case_ : Dict = 3 snake_case_ : Dict = True snake_case_ : Tuple = st.sidebar.checkbox('Retrieval options') if retrieval_options: snake_case_ : Tuple = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) snake_case_ : str = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) snake_case_ : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: snake_case_ : int = 'wiki40b' snake_case_ : Union[str, Any] = 'dense' snake_case_ : int = 'beam' snake_case_ : List[Any] = 2 snake_case_ : Union[str, Any] = 64 snake_case_ : Union[str, Any] = 256 snake_case_ : Dict = None snake_case_ : Optional[int] = None snake_case_ : Any = st.sidebar.checkbox('Generation options') if generate_options: snake_case_ : Tuple = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) snake_case_ : Union[str, Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) snake_case_ : int = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) snake_case_ : Optional[int] = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": snake_case_ : List[Any] = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: snake_case_ : List[Any] = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) snake_case_ : int = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) snake_case_ : int = None # start main text snake_case_ : Any = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] snake_case_ : Tuple = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": snake_case_ : Union[str, Any] = st.text_input('Enter your question here:', '') else: snake_case_ : Union[str, Any] = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": snake_case_ , snake_case_ : Any = make_support(question, source=wiki_source, method='dense', n_results=10) snake_case_ , snake_case_ : Tuple = make_support(question, source=wiki_source, method='sparse', n_results=10) snake_case_ : Tuple = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] snake_case_ : Optional[Any] = support_list[:10] snake_case_ : int = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: snake_case_ , snake_case_ : Tuple = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: snake_case_ , snake_case_ : str = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): snake_case_ : Dict = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) snake_case_ : int = res[1].strip() if sec_titles == "": snake_case_ : Tuple = '[{}]({})'.format(res[0], wiki_url) else: snake_case_ : List[Any] = sec_titles.split(' & ') snake_case_ : List[Any] = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: snake_case_ : Dict = find_nearest_training(question) snake_case_ : Union[str, Any] = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) snake_case_ : Tuple = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) snake_case_ : Any = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
212
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''', [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''', num_bytes=1337, num_examples=42, dataset_name='''my_dataset''')}), SplitDict({'''train''': SplitInfo(name='''train''', num_bytes=1337, num_examples=42)}), SplitDict({'''train''': SplitInfo()}), ], ) def __snake_case ( _UpperCAmelCase : SplitDict): UpperCamelCase = split_dict._to_yaml_list() assert len(_UpperCAmelCase) == len(_UpperCAmelCase) UpperCamelCase = SplitDict._from_yaml_list(_UpperCAmelCase) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCamelCase = None # the split name of split_dict takes over the name of the split info object UpperCamelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''', [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase), SplitInfo(dataset_name='''my_dataset''')]) def __snake_case ( _UpperCAmelCase : Dict): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCamelCase = asdict(SplitDict({'''train''': split_info})) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
212
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : List[Any] = { 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys UpperCAmelCase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
713
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _lowercase ( UpperCamelCase__ : Optional[int], UpperCamelCase__ : Tuple, UpperCamelCase__ : Tuple, UpperCamelCase__ : List[Any], UpperCamelCase__ : Optional[int] ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __A : Optional[int] = TapasConfig.from_json_file(UpperCamelCase__ ) # set absolute/relative position embeddings parameter __A : List[str] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __A : Optional[int] = TapasForQuestionAnswering(config=UpperCamelCase__ ) elif task == "WTQ": # run_task_main.py hparams __A : List[str] = 4 __A : Any = True # hparam_utils.py hparams __A : Any = 0.664694 __A : Dict = 0.207951 __A : Optional[Any] = 0.121194 __A : Any = True __A : Any = True __A : int = False __A : Optional[int] = 0.0352513 __A : List[Any] = TapasForQuestionAnswering(config=UpperCamelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __A : Tuple = 4 __A : Optional[int] = False # hparam_utils.py hparams __A : List[str] = 36.4519 __A : Union[str, Any] = 0.903421 __A : List[str] = 222.088 __A : Optional[Any] = True __A : Optional[int] = True __A : Union[str, Any] = True __A : str = 0.763141 __A : Union[str, Any] = TapasForQuestionAnswering(config=UpperCamelCase__ ) elif task == "TABFACT": __A : Union[str, Any] = TapasForSequenceClassification(config=UpperCamelCase__ ) elif task == "MLM": __A : Any = TapasForMaskedLM(config=UpperCamelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": __A : List[Any] = TapasModel(config=UpperCamelCase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCamelCase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) __A : int = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt', model_max_length=512 ) tokenizer.save_pretrained(UpperCamelCase__ ) print('Used relative position embeddings:', model.config.reset_position_index_per_cell ) if __name__ == "__main__": UpperCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCAmelCase_ : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
540
0
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" def __init__( self :Dict, snake_case :int, snake_case :int, snake_case :float, **snake_case :Tuple): """simple docstring""" _lowercase =feature_size _lowercase =sampling_rate _lowercase =padding_value _lowercase =kwargs.pop('padding_side', 'right') _lowercase =kwargs.pop('return_attention_mask', snake_case) super().__init__(**snake_case) def UpperCamelCase__ ( self :Any, snake_case :Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ], snake_case :Union[bool, str, PaddingStrategy] = True, snake_case :Optional[int] = None, snake_case :bool = False, snake_case :Optional[int] = None, snake_case :Optional[bool] = None, snake_case :Optional[Union[str, TensorType]] = None, ): """simple docstring""" if isinstance(snake_case, (list, tuple)) and isinstance(processed_features[0], (dict, BatchFeature)): _lowercase ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' f''' to this method that includes {self.model_input_names[0]}, but you provided''' f''' {list(processed_features.keys())}''') _lowercase =processed_features[self.model_input_names[0]] _lowercase =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(snake_case) == 0: if return_attention_mask: _lowercase =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _lowercase =required_input[0] if isinstance(snake_case, (list, tuple)): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _lowercase =0 while len(required_input[index]) == 0: index += 1 if index < len(snake_case): _lowercase =required_input[index][0] if return_tensors is None: if is_tf_tensor(snake_case): _lowercase ='tf' elif is_torch_tensor(snake_case): _lowercase ='pt' elif isinstance(snake_case, (int, float, list, tuple, np.ndarray)): _lowercase ='np' else: raise ValueError( f'''type of {first_element} unknown: {type(snake_case)}. ''' 'Should be one of a python, numpy, pytorch or tensorflow object.') for key, value in processed_features.items(): if isinstance(value[0], (int, float)): _lowercase =to_numpy(snake_case) else: _lowercase =[to_numpy(snake_case) for v in value] # Convert padding_strategy in PaddingStrategy _lowercase =self._get_padding_strategies(padding=snake_case, max_length=snake_case) _lowercase =processed_features[self.model_input_names[0]] _lowercase =len(snake_case) if not all(len(snake_case) == batch_size for v in processed_features.values()): raise ValueError('Some items in the output dictionary have a different batch size than others.') _lowercase =[] for i in range(snake_case): _lowercase ={k: v[i] for k, v in processed_features.items()} # truncation _lowercase =self._truncate( snake_case, max_length=snake_case, pad_to_multiple_of=snake_case, truncation=snake_case, ) truncated_inputs.append(snake_case) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _lowercase =max(len(input_slice[self.model_input_names[0]]) for input_slice in truncated_inputs) _lowercase =PaddingStrategy.MAX_LENGTH _lowercase ={} for i in range(snake_case): # padding _lowercase =self._pad( truncated_inputs[i], max_length=snake_case, padding_strategy=snake_case, pad_to_multiple_of=snake_case, return_attention_mask=snake_case, ) for key, value in outputs.items(): if key not in batch_outputs: _lowercase =[] if value.dtype is np.dtype(np.floataa): _lowercase =value.astype(np.floataa) batch_outputs[key].append(snake_case) return BatchFeature(snake_case, tensor_type=snake_case) def UpperCamelCase__ ( self :List[Any], snake_case :Union[Dict[str, np.ndarray], BatchFeature], snake_case :Optional[int] = None, snake_case :PaddingStrategy = PaddingStrategy.DO_NOT_PAD, snake_case :Optional[int] = None, snake_case :Optional[bool] = None, ): """simple docstring""" _lowercase =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _lowercase =len(snake_case) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowercase =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(snake_case) < max_length if return_attention_mask and "attention_mask" not in processed_features: _lowercase =np.ones(len(snake_case), dtype=np.intaa) if needs_to_be_padded: _lowercase =max_length - len(snake_case) if self.padding_side == "right": if return_attention_mask: _lowercase =np.pad( processed_features['attention_mask'], (0, difference)) _lowercase =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _lowercase =np.pad( snake_case, snake_case, 'constant', constant_values=self.padding_value) elif self.padding_side == "left": if return_attention_mask: _lowercase =np.pad( processed_features['attention_mask'], (difference, 0)) _lowercase =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _lowercase =np.pad( snake_case, snake_case, 'constant', constant_values=self.padding_value) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side)) return processed_features def UpperCamelCase__ ( self :Any, snake_case :Union[Dict[str, np.ndarray], BatchFeature], snake_case :Optional[int] = None, snake_case :Optional[int] = None, snake_case :Optional[bool] = None, ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.') _lowercase =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowercase =len(snake_case) > max_length if needs_to_be_truncated: _lowercase =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _lowercase =processed_features['attention_mask'][:max_length] return processed_features def UpperCamelCase__ ( self :List[str], snake_case :Dict=False, snake_case :Tuple=None): """simple docstring""" if padding is not False: if padding is True: _lowercase =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(snake_case, snake_case): _lowercase =PaddingStrategy(snake_case) elif isinstance(snake_case, snake_case): _lowercase =padding else: _lowercase =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''') # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.') return padding_strategy
181
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : Dict =['''image_processor''', '''tokenizer'''] __lowerCAmelCase : List[Any] ='''BlipImageProcessor''' __lowerCAmelCase : Union[str, Any] =('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self :Optional[int], snake_case :int, snake_case :Optional[int]): """simple docstring""" _lowercase =False super().__init__(snake_case, snake_case) _lowercase =self.image_processor def __call__( self :Dict, snake_case :ImageInput = None, snake_case :Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, snake_case :bool = True, snake_case :Union[bool, str, PaddingStrategy] = False, snake_case :Union[bool, str, TruncationStrategy] = None, snake_case :Optional[int] = None, snake_case :int = 0, snake_case :Optional[int] = None, snake_case :Optional[bool] = None, snake_case :bool = False, snake_case :bool = False, snake_case :bool = False, snake_case :bool = False, snake_case :bool = False, snake_case :bool = True, snake_case :Optional[Union[str, TensorType]] = None, **snake_case :str, ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.') # Get only text if images is None: _lowercase =self.tokenizer _lowercase =self.tokenizer( text=snake_case, add_special_tokens=snake_case, padding=snake_case, truncation=snake_case, max_length=snake_case, stride=snake_case, pad_to_multiple_of=snake_case, return_attention_mask=snake_case, return_overflowing_tokens=snake_case, return_special_tokens_mask=snake_case, return_offsets_mapping=snake_case, return_token_type_ids=snake_case, return_length=snake_case, verbose=snake_case, return_tensors=snake_case, **snake_case, ) return text_encoding # add pixel_values _lowercase =self.image_processor(snake_case, return_tensors=snake_case) if text is not None: _lowercase =self.tokenizer( text=snake_case, add_special_tokens=snake_case, padding=snake_case, truncation=snake_case, max_length=snake_case, stride=snake_case, pad_to_multiple_of=snake_case, return_attention_mask=snake_case, return_overflowing_tokens=snake_case, return_special_tokens_mask=snake_case, return_offsets_mapping=snake_case, return_token_type_ids=snake_case, return_length=snake_case, verbose=snake_case, return_tensors=snake_case, **snake_case, ) else: _lowercase =None if text_encoding is not None: encoding_image_processor.update(snake_case) return encoding_image_processor def UpperCamelCase__ ( self :List[Any], *snake_case :int, **snake_case :str): """simple docstring""" return self.tokenizer.batch_decode(*snake_case, **snake_case) def UpperCamelCase__ ( self :Tuple, *snake_case :List[str], **snake_case :str): """simple docstring""" return self.tokenizer.decode(*snake_case, **snake_case) @property def UpperCamelCase__ ( self :List[Any]): """simple docstring""" _lowercase =self.tokenizer.model_input_names _lowercase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
181
1
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class lowerCamelCase (yaml.SafeLoader ): def UpperCAmelCase_ ( self , lowercase__ ) -> Any: """simple docstring""" _snake_case : int = [self.constructed_objects[key_node] for key_node, _ in node.value] _snake_case : str = [tuple(lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else key for key in keys] _snake_case : str = Counter(lowercase__ ) _snake_case : List[str] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'''Got duplicate yaml keys: {duplicate_keys}''' ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__=False ) -> Tuple: """simple docstring""" _snake_case : Tuple = super().construct_mapping(lowercase__ , deep=lowercase__ ) self._check_no_duplicates_on_constructed_node(lowercase__ ) return mapping def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : int = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: _snake_case : int = full_content[1:].index('''---''' ) + 1 _snake_case : Optional[Any] = '''\n'''.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase_ ) class lowerCamelCase (a__ ): # class attributes _lowercase : Tuple = {"""train_eval_index"""} # train-eval-index in the YAML metadata @classmethod def UpperCAmelCase_ ( cls , lowercase__ ) -> "DatasetMetadata": """simple docstring""" with open(lowercase__ , encoding='''utf-8''' ) as readme_file: _snake_case , _snake_case : Tuple = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowercase__ ) else: return cls() def UpperCAmelCase_ ( self , lowercase__ ) -> Dict: """simple docstring""" if path.exists(): with open(lowercase__ , encoding='''utf-8''' ) as readme_file: _snake_case : Any = readme_file.read() else: _snake_case : int = None _snake_case : Optional[int] = self._to_readme(lowercase__ ) with open(lowercase__ , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(lowercase__ ) def UpperCAmelCase_ ( self , lowercase__ = None ) -> str: """simple docstring""" if readme_content is not None: _snake_case , _snake_case : Any = _split_yaml_from_readme(lowercase__ ) _snake_case : Tuple = '''---\n''' + self.to_yaml_string() + '''---\n''' + content else: _snake_case : int = '''---\n''' + self.to_yaml_string() + '''---\n''' return full_content @classmethod def UpperCAmelCase_ ( cls , lowercase__ ) -> "DatasetMetadata": """simple docstring""" _snake_case : Optional[int] = yaml.load(lowercase__ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields _snake_case : Optional[Any] = { (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowercase__ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowercase__ , allow_unicode=lowercase__ , encoding='''utf-8''' , ).decode('''utf-8''' ) UpperCAmelCase : Optional[Any] = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser UpperCAmelCase : Optional[Any] = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') UpperCAmelCase : Optional[int] = ap.parse_args() UpperCAmelCase : int = Path(args.readme_filepath) UpperCAmelCase : Optional[int] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
47
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase : str = logging.getLogger(__name__) UpperCAmelCase : Dict = 5_0 # max width of layer names UpperCAmelCase : Union[str, Any] = 7_0 # max width of quantizer names def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Dict = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=lowerCAmelCase_ , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=lowerCAmelCase_ , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=lowerCAmelCase_ , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=lowerCAmelCase_ , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=lowerCAmelCase_ , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=lowerCAmelCase_ , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def _a ( lowerCAmelCase_ ): """simple docstring""" if args.calibrator == "max": _snake_case : Optional[int] = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) _snake_case : Tuple = '''histogram''' elif args.calibrator == "mse": _snake_case : int = '''histogram''' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) _snake_case : Tuple = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCAmelCase_ ) _snake_case : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCAmelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ): """simple docstring""" logger.info('''Configuring Model for Quantization''' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCAmelCase_ , ['''embeddings'''] , which='''weight''' , _disabled=lowerCAmelCase_ ) if args.quant_disable: set_quantizer_by_name(lowerCAmelCase_ , [''''''] , _disabled=lowerCAmelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCAmelCase_ , args.quant_disable_keyword , _disabled=lowerCAmelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=lowerCAmelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCAmelCase_ , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=lowerCAmelCase_ ) if args.recalibrate_weights: recalibrate_weights(lowerCAmelCase_ ) if args.fuse_qkv: fuse_qkv(lowerCAmelCase_ , lowerCAmelCase_ ) if args.clip_gelu: clip_gelu(lowerCAmelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" def fusea(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): for mod in [qq, qk, qv]: if not hasattr(lowerCAmelCase_ , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return _snake_case : Tuple = qq._amax.detach().item() _snake_case : Tuple = qk._amax.detach().item() _snake_case : List[Any] = qv._amax.detach().item() _snake_case : List[str] = max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) qq._amax.fill_(lowerCAmelCase_ ) qk._amax.fill_(lowerCAmelCase_ ) qv._amax.fill_(lowerCAmelCase_ ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): _snake_case : List[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCAmelCase_ ) _snake_case : List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: _snake_case : Dict = mod.weight.shape[0] _snake_case : Optional[int] = mod._weight_quantizer._amax.detach() _snake_case : Optional[int] = torch.ones(lowerCAmelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _snake_case : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _snake_case : Dict = set(range(len(mod.weight.size() ) ) ) - axis_set _snake_case : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCAmelCase_ , keepdims=lowerCAmelCase_ ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _snake_case : Tuple = amax def _a ( lowerCAmelCase_ , lowerCAmelCase_=25 , lowerCAmelCase_=180 , lowerCAmelCase_=None ): """simple docstring""" if ignore is None: _snake_case : Dict = [] elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Optional[int] = [ignore] _snake_case : str = 0 for name, mod in model.named_modules(): if not hasattr(lowerCAmelCase_ , '''weight''' ): continue _snake_case : Optional[int] = max(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) for name, mod in model.named_modules(): _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ ) _snake_case : Tuple = getattr(lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ ) if not hasattr(lowerCAmelCase_ , '''weight''' ): continue if type(lowerCAmelCase_ ) in ignore: continue if [True for s in ignore if type(lowerCAmelCase_ ) is str and s in name]: continue _snake_case : Optional[int] = f'''Act:{input_q.extra_repr()}''' _snake_case : Any = f'''Wgt:{weight_q.extra_repr()}''' _snake_case : Optional[int] = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(lowerCAmelCase_ ) <= line_width: logger.info(lowerCAmelCase_ ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{" ":{name_width}} {wgt_str}''' ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : str = 0 for name, mod in model.named_modules(): if isinstance(lowerCAmelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if quantizer_mod is not None: assert hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: logger.warning(f'''{name} has no {quantizer}''' ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="both" , **lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_input_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) if which in ["weight", "both"]: set_quantizer(lowerCAmelCase_ , lowerCAmelCase_ , '''_weight_quantizer''' , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCAmelCase_ , '''_input_quantizer''' ) or hasattr(lowerCAmelCase_ , '''_weight_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): set_quantizers(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Any = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info(lowerCAmelCase_ )
47
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = KandinskyVaaControlnetImgaImgPipeline __UpperCamelCase = ["image_embeds", "negative_image_embeds", "image", "hint"] __UpperCamelCase = ["image_embeds", "negative_image_embeds", "image", "hint"] __UpperCamelCase = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __UpperCamelCase = False @property def _UpperCamelCase ( self ): '''simple docstring''' return 32 @property def _UpperCamelCase ( self ): '''simple docstring''' return 32 @property def _UpperCamelCase ( self ): '''simple docstring''' return self.time_input_dim @property def _UpperCamelCase ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def _UpperCamelCase ( self ): '''simple docstring''' return 1_00 @property def _UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) snake_case: List[Any] = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } snake_case: Union[str, Any] = UNetaDConditionModel(**_snake_case ) return model @property def _UpperCamelCase ( self ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _UpperCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) snake_case: str = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.dummy_unet snake_case: Dict = self.dummy_movq snake_case: Dict = { "num_train_timesteps": 10_00, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } snake_case: Any = DDIMScheduler(**_snake_case ) snake_case: Any = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ): '''simple docstring''' snake_case: Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_snake_case ) ).to(_snake_case ) snake_case: int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _snake_case ) # create init_image snake_case: int = floats_tensor((1, 3, 64, 64) , rng=random.Random(_snake_case ) ).to(_snake_case ) snake_case: str = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case: Optional[Any] = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' ).resize((2_56, 2_56) ) # create hint snake_case: Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_snake_case ) ).to(_snake_case ) if str(_snake_case ).startswith('mps' ): snake_case: int = torch.manual_seed(_snake_case ) else: snake_case: str = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) snake_case: Optional[Any] = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = "cpu" snake_case: Tuple = self.get_dummy_components() snake_case: List[Any] = self.pipeline_class(**_snake_case ) snake_case: List[Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) snake_case: List[str] = pipe(**self.get_dummy_inputs(_snake_case ) ) snake_case: Optional[Any] = output.images snake_case: Dict = pipe( **self.get_dummy_inputs(_snake_case ) , return_dict=_snake_case , )[0] snake_case: Optional[Any] = image[0, -3:, -3:, -1] snake_case: int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case: Union[str, Any] = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) snake_case: Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) snake_case: List[Any] = init_image.resize((5_12, 5_12) ) snake_case: Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) snake_case: int = torch.from_numpy(np.array(_snake_case ) ).float() / 2_55.0 snake_case: Tuple = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case: Optional[int] = "A robot, 4k photo" snake_case: str = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_snake_case ) snake_case: int = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) snake_case: Dict = pipeline.to(_snake_case ) pipeline.set_progress_bar_config(disable=_snake_case ) snake_case: Any = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case: Tuple = pipe_prior( _snake_case , image=_snake_case , strength=0.85 , generator=_snake_case , negative_prompt='' , ).to_tuple() snake_case: Optional[Any] = pipeline( image=_snake_case , image_embeds=_snake_case , negative_image_embeds=_snake_case , hint=_snake_case , generator=_snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type='np' , ) snake_case: Optional[Any] = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(_snake_case , _snake_case )
329
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError("Input value must be an 'int' type" ) UpperCAmelCase_ : Union[str, Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
71
0
"""simple docstring""" from math import log from scipy.constants import Boltzmann, physical_constants _a : List[Any]= 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float , ) -> float: '''simple docstring''' if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
192
"""simple docstring""" import string import numpy def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , UpperCAmelCase_ ) class UpperCamelCase : UpperCAmelCase : Any = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCAmelCase : List[Any] = numpy.vectorize(lambda lowercase : x % 36 ) UpperCAmelCase : Dict = numpy.vectorize(lowercase ) def __init__(self : str , _A : numpy.ndarray) -> None: __snake_case : str = self.modulus(_A) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __snake_case : Optional[Any] = encrypt_key.shape[0] def _lowercase (self : Any , _A : str) -> int: return self.key_string.index(_A) def _lowercase (self : Union[str, Any] , _A : int) -> str: return self.key_string[round(_A)] def _lowercase (self : Optional[int]) -> None: __snake_case : Any = round(numpy.linalg.det(self.encrypt_key)) if det < 0: __snake_case : Any = det % len(self.key_string) __snake_case : Tuple = len(self.key_string) if greatest_common_divisor(_A , len(self.key_string)) != 1: __snake_case : List[str] = ( f"determinant modular {req_l} of encryption key({det}) " f"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(_A) def _lowercase (self : Dict , _A : str) -> str: __snake_case : str = [char for char in text.upper() if char in self.key_string] __snake_case : int = chars[-1] while len(_A) % self.break_key != 0: chars.append(_A) return "".join(_A) def _lowercase (self : Union[str, Any] , _A : str) -> str: __snake_case : Any = self.process_text(text.upper()) __snake_case : Dict = '' for i in range(0 , len(_A) - self.break_key + 1 , self.break_key): __snake_case : Dict = text[i : i + self.break_key] __snake_case : List[str] = [self.replace_letters(_A) for char in batch] __snake_case : str = numpy.array([vec]).T __snake_case : List[Any] = self.modulus(self.encrypt_key.dot(_A)).T.tolist()[ 0 ] __snake_case : str = ''.join( self.replace_digits(_A) for num in batch_encrypted) encrypted += encrypted_batch return encrypted def _lowercase (self : Optional[int]) -> numpy.ndarray: __snake_case : List[Any] = round(numpy.linalg.det(self.encrypt_key)) if det < 0: __snake_case : int = det % len(self.key_string) __snake_case : Optional[Any] = None for i in range(len(self.key_string)): if (det * i) % len(self.key_string) == 1: __snake_case : Dict = i break __snake_case : List[str] = ( det_inv * numpy.linalg.det(self.encrypt_key) * numpy.linalg.inv(self.encrypt_key) ) return self.to_int(self.modulus(_A)) def _lowercase (self : int , _A : str) -> str: __snake_case : int = self.make_decrypt_key() __snake_case : List[str] = self.process_text(text.upper()) __snake_case : str = '' for i in range(0 , len(_A) - self.break_key + 1 , self.break_key): __snake_case : Optional[Any] = text[i : i + self.break_key] __snake_case : Union[str, Any] = [self.replace_letters(_A) for char in batch] __snake_case : Tuple = numpy.array([vec]).T __snake_case : List[str] = self.modulus(decrypt_key.dot(_A)).T.tolist()[0] __snake_case : str = ''.join( self.replace_digits(_A) for num in batch_decrypted) decrypted += decrypted_batch return decrypted def __UpperCAmelCase ( ) -> None: '''simple docstring''' __snake_case : List[str] = int(input('Enter the order of the encryption key: ' ) ) __snake_case : str = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(UpperCAmelCase_ ): __snake_case : Union[str, Any] = [int(UpperCAmelCase_ ) for x in input().split()] hill_matrix.append(UpperCAmelCase_ ) __snake_case : Dict = HillCipher(numpy.array(UpperCAmelCase_ ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) __snake_case : Optional[Any] = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": __snake_case : int = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(UpperCAmelCase_ ) ) elif option == "2": __snake_case : Tuple = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(UpperCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
192
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class a__( unittest.TestCase ): def _lowercase ( self ) -> int: if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='utf-8' , check=_UpperCAmelCase , ) assert hasattr(self , 'env' ) def _lowercase ( self , _UpperCAmelCase=1 ) -> Any: # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-single""" , instance_count=_UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=_UpperCAmelCase , hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='py36' , ) def _lowercase ( self , _UpperCAmelCase ) -> Any: TrainingJobAnalytics(_UpperCAmelCase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) def _lowercase ( self ) -> List[str]: # create estimator snake_case__ =self.create_estimator() # run training estimator.fit() # result dataframe snake_case__ =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis snake_case__ =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) snake_case__ =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping snake_case__ =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , _UpperCAmelCase )
538
'''simple docstring''' from timeit import timeit def a ( UpperCamelCase_ : int ) -> int: if number < 0: raise ValueError('the value of input must not be negative' ) snake_case__ =0 while number: number &= number - 1 result += 1 return result def a ( UpperCamelCase_ : int ) -> int: if number < 0: raise ValueError('the value of input must not be negative' ) snake_case__ =0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a ( ) -> None: def do_benchmark(UpperCamelCase_ : int ) -> None: snake_case__ ='import __main__ as z' print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(UpperCamelCase_ ) = }""" ) snake_case__ =timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=UpperCamelCase_ ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(UpperCamelCase_ ) = }""" ) snake_case__ =timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=UpperCamelCase_ , ) print(f"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(UpperCamelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
538
1
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = StableDiffusionDiffEditPipeline _SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} _SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} _SCREAMING_SNAKE_CASE = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _SCREAMING_SNAKE_CASE = frozenset([] ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) _snake_case: Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__snake_case , ) _snake_case: str = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) _snake_case: Optional[int] = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__snake_case , set_alpha_to_zero=__snake_case , ) torch.manual_seed(0 ) _snake_case: Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _snake_case: Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) _snake_case: Optional[int] = CLIPTextModel(__snake_case ) _snake_case: Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case: int = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def SCREAMING_SNAKE_CASE_ ( self : Tuple , __snake_case : Optional[int] , __snake_case : Optional[Any]=0 ): '''simple docstring''' _snake_case: Optional[int] = floats_tensor((1, 16, 16) , rng=random.Random(__snake_case ) ).to(__snake_case ) _snake_case: Optional[Any] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith('mps' ): _snake_case: Union[str, Any] = torch.manual_seed(__snake_case ) else: _snake_case: str = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _snake_case: List[str] = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE_ ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[int]=0 ): '''simple docstring''' _snake_case: Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) _snake_case: Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case: List[str] = Image.fromarray(np.uinta(__snake_case ) ).convert('RGB' ) if str(__snake_case ).startswith('mps' ): _snake_case: Tuple = torch.manual_seed(__snake_case ) else: _snake_case: Dict = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _snake_case: Dict = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE_ ( self : List[str] , __snake_case : Tuple , __snake_case : str=0 ): '''simple docstring''' _snake_case: List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) _snake_case: Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case: List[Any] = Image.fromarray(np.uinta(__snake_case ) ).convert('RGB' ) if str(__snake_case ).startswith('mps' ): _snake_case: Any = torch.manual_seed(__snake_case ) else: _snake_case: List[Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _snake_case: Dict = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' if not hasattr(self.pipeline_class , '_optional_components' ): return _snake_case: List[str] = self.get_dummy_components() _snake_case: str = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(__snake_case , __snake_case , __snake_case ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) _snake_case: List[Any] = self.get_dummy_inputs(__snake_case ) _snake_case: Optional[Any] = pipe(**__snake_case )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__snake_case ) _snake_case: Any = self.pipeline_class.from_pretrained(__snake_case ) pipe_loaded.to(__snake_case ) pipe_loaded.set_progress_bar_config(disable=__snake_case ) for optional_component in pipe._optional_components: self.assertTrue( getattr(__snake_case , __snake_case ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) _snake_case: Any = self.get_dummy_inputs(__snake_case ) _snake_case: List[str] = pipe_loaded(**__snake_case )[0] _snake_case: List[str] = np.abs(output - output_loaded ).max() self.assertLess(__snake_case , 1e-4 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' _snake_case: Dict = 'cpu' _snake_case: int = self.get_dummy_components() _snake_case: Union[str, Any] = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _snake_case: Dict = self.get_dummy_mask_inputs(__snake_case ) _snake_case: Dict = pipe.generate_mask(**__snake_case ) _snake_case: Dict = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) _snake_case: Tuple = np.array([0] * 9 ) _snake_case: Any = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' _snake_case: Optional[int] = 'cpu' _snake_case: Tuple = self.get_dummy_components() _snake_case: Optional[int] = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _snake_case: int = self.get_dummy_inversion_inputs(__snake_case ) _snake_case: Optional[Any] = pipe.invert(**__snake_case ).images _snake_case: Optional[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) _snake_case: str = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) _snake_case: Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case , 1e-3 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: Optional[int] = 'cpu' _snake_case: Optional[Any] = self.get_dummy_components() _snake_case: int = {'beta_start': 0.00_085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} _snake_case: str = DPMSolverMultistepScheduler(**__snake_case ) _snake_case: Any = DPMSolverMultistepInverseScheduler(**__snake_case ) _snake_case: Union[str, Any] = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _snake_case: Dict = self.get_dummy_inversion_inputs(__snake_case ) _snake_case: Optional[Any] = pipe.invert(**__snake_case ).images _snake_case: Dict = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) _snake_case: Any = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) _snake_case: str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case , 1e-3 ) @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int ): '''simple docstring''' _snake_case: Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) _snake_case: str = raw_image.convert('RGB' ).resize((7_68, 7_68) ) _snake_case: List[Any] = raw_image def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: List[str] = torch.manual_seed(0 ) _snake_case: str = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=__snake_case , torch_dtype=torch.floataa ) _snake_case: Union[str, Any] = DDIMScheduler.from_config(pipe.scheduler.config ) _snake_case: Optional[int] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__snake_case ) _snake_case: Optional[int] = 'a bowl of fruit' _snake_case: Tuple = 'a bowl of pears' _snake_case: Dict = pipe.generate_mask( image=self.raw_image , source_prompt=__snake_case , target_prompt=__snake_case , generator=__snake_case , ) _snake_case: Tuple = pipe.invert( prompt=__snake_case , image=self.raw_image , inpaint_strength=0.7 , generator=__snake_case ).latents _snake_case: List[str] = pipe( prompt=__snake_case , mask_image=__snake_case , image_latents=__snake_case , generator=__snake_case , negative_prompt=__snake_case , inpaint_strength=0.7 , output_type='numpy' , ).images[0] _snake_case: Optional[Any] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: List[Any] = torch.manual_seed(0 ) _snake_case: Any = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=__snake_case , torch_dtype=torch.floataa ) _snake_case: Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _snake_case: Dict = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__snake_case ) _snake_case: int = 'a bowl of fruit' _snake_case: str = 'a bowl of pears' _snake_case: Union[str, Any] = pipe.generate_mask( image=self.raw_image , source_prompt=__snake_case , target_prompt=__snake_case , generator=__snake_case , ) _snake_case: int = pipe.invert( prompt=__snake_case , image=self.raw_image , inpaint_strength=0.7 , generator=__snake_case , num_inference_steps=25 , ).latents _snake_case: Optional[int] = pipe( prompt=__snake_case , mask_image=__snake_case , image_latents=__snake_case , generator=__snake_case , negative_prompt=__snake_case , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0] _snake_case: Optional[int] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
273
'''simple docstring''' A : str = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } A : Union[str, Any] = {value: key for key, value in encode_dict.items()} def lowercase_ ( lowercase__ ) ->str: _snake_case: Union[str, Any] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def lowercase_ ( lowercase__ ) ->str: if set(lowercase__ ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) _snake_case: List[Any] = '' for word in coded.split(): while len(lowercase__ ) != 0: decoded += decode_dict[word[:5]] _snake_case: Optional[int] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
273
1
SCREAMING_SNAKE_CASE__ = [ '''DownloadConfig''', '''DownloadManager''', '''DownloadMode''', '''StreamingDownloadManager''', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
9
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowercase (self ) -> Optional[Any]: torch.manual_seed(0 ) _snake_case = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def lowercase (self ) -> Dict: _snake_case = self.dummy_uncond_unet _snake_case = PNDMScheduler() _snake_case = PNDMPipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) pndm.to(UpperCAmelCase ) pndm.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , num_inference_steps=20 , output_type="""numpy""" ).images _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , num_inference_steps=20 , output_type="""numpy""" , return_dict=UpperCAmelCase )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: _snake_case = """google/ddpm-cifar10-32""" _snake_case = UNetaDModel.from_pretrained(UpperCAmelCase ) _snake_case = PNDMScheduler() _snake_case = PNDMPipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) pndm.to(UpperCAmelCase ) pndm.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , output_type="""numpy""" ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
585
0
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging _lowercase : Tuple = logging.get_logger(__name__) class lowerCamelCase_( lowerCAmelCase ): __magic_name__ : str = ["audio_values", "audio_mask"] def __init__( self : Tuple , lowerCAmelCase : str=2048 , lowerCAmelCase : str=1 , lowerCAmelCase : Any=[16, 16] , lowerCAmelCase : List[str]=128 , lowerCAmelCase : Tuple=44100 , lowerCAmelCase : Dict=86 , lowerCAmelCase : List[str]=2048 , lowerCAmelCase : int=0.0 , **lowerCAmelCase : Optional[Any] , )-> Dict: """simple docstring""" super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = spectrogram_length UpperCAmelCase = num_channels UpperCAmelCase = patch_size UpperCAmelCase = feature_size // self.patch_size[1] UpperCAmelCase = n_fft UpperCAmelCase = sampling_rate // hop_length_to_sampling_rate UpperCAmelCase = sampling_rate UpperCAmelCase = padding_value UpperCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=lowerCAmelCase , norm='''slaney''' , mel_scale='''slaney''' , ).T def a__( self : Optional[int] , lowerCAmelCase : np.array )-> np.ndarray: """simple docstring""" UpperCAmelCase = spectrogram( lowerCAmelCase , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , ) UpperCAmelCase = log_spec[:, :-1] UpperCAmelCase = log_spec - 20.0 UpperCAmelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Dict , lowerCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : Optional[bool] = True , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , **lowerCAmelCase : Optional[int] , )-> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' F""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" F""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCAmelCase = isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) UpperCAmelCase = is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): UpperCAmelCase = np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis UpperCAmelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase ): UpperCAmelCase = [np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask UpperCAmelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: UpperCAmelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] UpperCAmelCase = np.array(lowerCAmelCase ).astype(np.floataa ) # convert into correct format for padding UpperCAmelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch UpperCAmelCase = np.ones([len(lowerCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) UpperCAmelCase = padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase ) ): UpperCAmelCase = audio_features[i] UpperCAmelCase = feature # return as BatchFeature if return_attention_mask: UpperCAmelCase = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: UpperCAmelCase = {'''audio_values''': padded_audio_features} UpperCAmelCase = BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) return encoded_inputs
713
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' def _lowercase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) __A : Dict = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(SCREAMING_SNAKE_CASE ) ) return round(SCREAMING_SNAKE_CASE , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
111
'''simple docstring''' def _lowercase (SCREAMING_SNAKE_CASE ): '''simple docstring''' __A : List[str] = 1 __A : Union[str, Any] = 2 while i * i <= n: __A : List[Any] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _lowercase (): '''simple docstring''' __A : Optional[Any] = 1 __A : Dict = 1 while True: i += 1 t_num += i if count_divisors(SCREAMING_SNAKE_CASE ) > 500: break return t_num if __name__ == "__main__": print(solution())
111
1
'''simple docstring''' def __magic_name__( _A ): '''simple docstring''' UpperCamelCase__ = current_set.copy() for row_index, row in enumerate(lowerCamelCase__ ): UpperCamelCase__ = row[0] for column_index, column in enumerate(lowerCamelCase__ ): if magnitude == 0: UpperCamelCase__ = column continue UpperCamelCase__ = column / magnitude # Subtract to cancel term UpperCamelCase__ = current_set[0] UpperCamelCase__ = [first_row] UpperCamelCase__ = current_set[1::] for row in current_set: UpperCamelCase__ = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase__ ) continue for column_index in range(len(lowerCamelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: UpperCamelCase__ = final_set[0] UpperCamelCase__ = [] UpperCamelCase__ = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) UpperCamelCase__ = simplify(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCamelCase__ ) UpperCamelCase__ = resultant return final_set def __magic_name__( _A ): '''simple docstring''' if len(lowerCamelCase__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) UpperCamelCase__ = len(lowerCamelCase__ ) + 1 if any(len(lowerCamelCase__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCamelCase__ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCamelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] UpperCamelCase__ = equations.copy() if any(0 in row for row in data_set ): UpperCamelCase__ = data_set.copy() UpperCamelCase__ = [] for row_index, row in enumerate(lowerCamelCase__ ): if 0 not in row: UpperCamelCase__ = data_set.pop(lowerCamelCase__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCamelCase__ ) UpperCamelCase__ = data_set.copy() UpperCamelCase__ = simplify(lowerCamelCase__ ) UpperCamelCase__ = simplified[::-1] UpperCamelCase__ = [] for row in simplified: UpperCamelCase__ = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue UpperCamelCase__ = row.copy()[: len(lowerCamelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase__ ) == 0: solutions.append(0 ) continue UpperCamelCase__ = temp_row[1::] UpperCamelCase__ = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase__ ) UpperCamelCase__ = [] for item in solutions: final.append(float(round(lowerCamelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : Optional[int] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
715
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Tuple , lowercase : pyspark.sql.DataFrame , lowercase : Optional[NamedSplit] = None , lowercase : Optional[Features] = None , lowercase : bool = True , lowercase : str = None , lowercase : bool = False , lowercase : str = None , lowercase : bool = True , lowercase : str = "arrow" , **lowercase : Any , ) -> Optional[int]: '''simple docstring''' super().__init__( split=lowercase , features=lowercase , cache_dir=lowercase , keep_in_memory=lowercase , streaming=lowercase , **lowercase , ) UpperCamelCase__ = load_from_cache_file UpperCamelCase__ = file_format UpperCamelCase__ = Spark( df=lowercase , features=lowercase , cache_dir=lowercase , working_dir=lowercase , **lowercase , ) def A ( self : int ) -> Any: '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) UpperCamelCase__ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowercase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
265
0
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __A ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase = VQModel UpperCamelCase = 'sample' @property def A__ ( self :Dict , __snake_case :Union[str, Any]=(32, 32) ): '''simple docstring''' __magic_name__ : Optional[Any] =4 __magic_name__ : Optional[Any] =3 __magic_name__ : Optional[int] =floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) return {"sample": image} @property def A__ ( self :List[str] ): '''simple docstring''' return (3, 32, 32) @property def A__ ( self :Optional[int] ): '''simple docstring''' return (3, 32, 32) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] ={ """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } __magic_name__ : Tuple =self.dummy_input return init_dict, inputs_dict def A__ ( self :Dict ): '''simple docstring''' pass def A__ ( self :Optional[int] ): '''simple docstring''' pass def A__ ( self :str ): '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] =VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(__snake_case ) __magic_name__ : Optional[int] =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : str =VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(__snake_case ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) __magic_name__ : Any =torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) __magic_name__ : int =image.to(__snake_case ) with torch.no_grad(): __magic_name__ : List[Any] =model(__snake_case ).sample __magic_name__ : Tuple =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __magic_name__ : List[str] =torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-3 ) )
21
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=30 , lowerCamelCase=4_00 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=True , lowerCamelCase=1 / 2_55 , lowerCamelCase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} snake_case__ = parent snake_case__ = batch_size snake_case__ = num_channels snake_case__ = min_resolution snake_case__ = max_resolution snake_case__ = do_resize snake_case__ = size snake_case__ = do_normalize snake_case__ = image_mean snake_case__ = image_std snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_pad def A_ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A_ ( self , lowerCamelCase , lowerCamelCase=False ): if not batched: snake_case__ = image_inputs[0] if isinstance(lowerCamelCase , Image.Image ): snake_case__ , snake_case__ = image.size else: snake_case__ , snake_case__ = image.shape[1], image.shape[2] if w < h: snake_case__ = int(self.size["shortest_edge"] * h / w ) snake_case__ = self.size["shortest_edge"] elif w > h: snake_case__ = self.size["shortest_edge"] snake_case__ = int(self.size["shortest_edge"] * w / h ) else: snake_case__ = self.size["shortest_edge"] snake_case__ = self.size["shortest_edge"] else: snake_case__ = [] for image in image_inputs: snake_case__ , snake_case__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ = max(lowerCamelCase , key=lambda lowerCamelCase : item[0] )[0] snake_case__ = max(lowerCamelCase , key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __UpperCamelCase , unittest.TestCase ): _A : List[str] = DetaImageProcessor if is_vision_available() else None def A_ ( self ): snake_case__ = DetaImageProcessingTester(self ) @property def A_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self ): snake_case__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_rescale" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_pad" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) def A_ ( self ): snake_case__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) def A_ ( self ): pass def A_ ( self ): # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) snake_case__ = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self ): # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self ): # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def A_ ( self ): # prepare image and target snake_case__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ = json.loads(f.read() ) snake_case__ = {"image_id": 3_97_69, "annotations": target} # encode them snake_case__ = DetaImageProcessor() snake_case__ = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , return_tensors="pt" ) # verify pixel values snake_case__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) snake_case__ = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1e-4 ) ) # verify area snake_case__ = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes snake_case__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) snake_case__ = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1e-3 ) ) # verify image_id snake_case__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd snake_case__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels snake_case__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify orig_size snake_case__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size snake_case__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) ) @slow def A_ ( self ): # prepare image, target and masks_path snake_case__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ = json.loads(f.read() ) snake_case__ = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} snake_case__ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ = DetaImageProcessor(format="coco_panoptic" ) snake_case__ = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , masks_path=lowerCamelCase , return_tensors="pt" ) # verify pixel values snake_case__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) snake_case__ = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1e-4 ) ) # verify area snake_case__ = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes snake_case__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) snake_case__ = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1e-3 ) ) # verify image_id snake_case__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd snake_case__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels snake_case__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify masks snake_case__ = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCamelCase ) # verify orig_size snake_case__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size snake_case__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) )
276
0
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
447
from math import sqrt def _lowerCAmelCase ( __lowerCamelCase : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( __lowerCamelCase : int = 10001 ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = 0 __SCREAMING_SNAKE_CASE : Dict = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
447
1
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _snake_case ( A__ , A__ ): '''simple docstring''' @register_to_config def __init__( self : Tuple , snake_case : int = 128 , snake_case : int = 256 , snake_case : float = 2_000.0 , snake_case : int = 768 , snake_case : int = 12 , snake_case : int = 12 , snake_case : int = 64 , snake_case : int = 2_048 , snake_case : float = 0.1 , ): super().__init__() UpperCAmelCase_ :Optional[Any] = nn.Sequential( nn.Linear(snake_case , d_model * 4 , bias=snake_case ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=snake_case ) , nn.SiLU() , ) UpperCAmelCase_ :Optional[int] = nn.Embedding(snake_case , snake_case ) UpperCAmelCase_ :Any = False UpperCAmelCase_ :Union[str, Any] = nn.Linear(snake_case , snake_case , bias=snake_case ) UpperCAmelCase_ :Any = nn.Dropout(p=snake_case ) UpperCAmelCase_ :Any = nn.ModuleList() for lyr_num in range(snake_case ): # FiLM conditional T5 decoder UpperCAmelCase_ :List[str] = DecoderLayer(d_model=snake_case , d_kv=snake_case , num_heads=snake_case , d_ff=snake_case , dropout_rate=snake_case ) self.decoders.append(snake_case ) UpperCAmelCase_ :List[Any] = TaLayerNorm(snake_case ) UpperCAmelCase_ :str = nn.Dropout(p=snake_case ) UpperCAmelCase_ :str = nn.Linear(snake_case , snake_case , bias=snake_case ) def snake_case_ ( self : str , snake_case : Tuple , snake_case : Optional[int] ): UpperCAmelCase_ :Optional[Any] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def snake_case_ ( self : Optional[Any] , snake_case : str , snake_case : str , snake_case : Optional[Any] ): UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ :int = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCAmelCase_ :Union[str, Any] = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) UpperCAmelCase_ :Tuple = self.conditioning_emb(snake_case ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCAmelCase_ :Tuple = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCAmelCase_ :List[str] = torch.broadcast_to( torch.arange(snake_case , device=decoder_input_tokens.device ) , (batch, seq_length) , ) UpperCAmelCase_ :int = self.position_encoding(snake_case ) UpperCAmelCase_ :int = self.continuous_inputs_projection(snake_case ) inputs += position_encodings UpperCAmelCase_ :Dict = self.dropout(snake_case ) # decoder: No padding present. UpperCAmelCase_ :int = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. UpperCAmelCase_ :int = [(x, self.encoder_decoder_mask(snake_case , snake_case )) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCAmelCase_ :Tuple = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) UpperCAmelCase_ :List[Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: UpperCAmelCase_ :Optional[Any] = lyr( snake_case , conditioning_emb=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , )[0] UpperCAmelCase_ :List[str] = self.decoder_norm(snake_case ) UpperCAmelCase_ :Dict = self.post_dropout(snake_case ) UpperCAmelCase_ :Optional[int] = self.spec_out(snake_case ) return spec_out class _snake_case ( nn.Module ): '''simple docstring''' def __init__( self : str , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : str , snake_case : Any , snake_case : Optional[Any] , snake_case : int=1e-6 ): super().__init__() UpperCAmelCase_ :Tuple = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=snake_case , d_kv=snake_case , num_heads=snake_case , dropout_rate=snake_case ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=snake_case , d_kv=snake_case , num_heads=snake_case , dropout_rate=snake_case , layer_norm_epsilon=snake_case , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=snake_case , d_ff=snake_case , dropout_rate=snake_case , layer_norm_epsilon=snake_case ) ) def snake_case_ ( self : List[str] , snake_case : Dict , snake_case : Tuple=None , snake_case : int=None , snake_case : Dict=None , snake_case : Dict=None , snake_case : Optional[int]=None , ): UpperCAmelCase_ :str = self.layer[0]( snake_case , conditioning_emb=snake_case , attention_mask=snake_case , ) if encoder_hidden_states is not None: UpperCAmelCase_ :Dict = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) UpperCAmelCase_ :str = self.layer[1]( snake_case , key_value_states=snake_case , attention_mask=snake_case , ) # Apply Film Conditional Feed Forward layer UpperCAmelCase_ :Union[str, Any] = self.layer[-1](snake_case , snake_case ) return (hidden_states,) class _snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , snake_case : Dict , snake_case : str , snake_case : int , snake_case : Union[str, Any] ): super().__init__() UpperCAmelCase_ :List[Any] = TaLayerNorm(snake_case ) UpperCAmelCase_ :str = TaFiLMLayer(in_features=d_model * 4 , out_features=snake_case ) UpperCAmelCase_ :Optional[int] = Attention(query_dim=snake_case , heads=snake_case , dim_head=snake_case , out_bias=snake_case , scale_qk=snake_case ) UpperCAmelCase_ :Dict = nn.Dropout(snake_case ) def snake_case_ ( self : Any , snake_case : Tuple , snake_case : Tuple=None , snake_case : List[Any]=None , ): # pre_self_attention_layer_norm UpperCAmelCase_ :List[Any] = self.layer_norm(snake_case ) if conditioning_emb is not None: UpperCAmelCase_ :Optional[int] = self.FiLMLayer(snake_case , snake_case ) # Self-attention block UpperCAmelCase_ :Any = self.attention(snake_case ) UpperCAmelCase_ :str = hidden_states + self.dropout(snake_case ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , snake_case : List[Any] , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Tuple , snake_case : Optional[int] ): super().__init__() UpperCAmelCase_ :List[Any] = Attention(query_dim=snake_case , heads=snake_case , dim_head=snake_case , out_bias=snake_case , scale_qk=snake_case ) UpperCAmelCase_ :Optional[int] = TaLayerNorm(snake_case , eps=snake_case ) UpperCAmelCase_ :int = nn.Dropout(snake_case ) def snake_case_ ( self : str , snake_case : List[str] , snake_case : List[str]=None , snake_case : str=None , ): UpperCAmelCase_ :List[Any] = self.layer_norm(snake_case ) UpperCAmelCase_ :Any = self.attention( snake_case , encoder_hidden_states=snake_case , attention_mask=attention_mask.squeeze(1 ) , ) UpperCAmelCase_ :str = hidden_states + self.dropout(snake_case ) return layer_output class _snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , snake_case : int , snake_case : Optional[Any] , snake_case : Dict , snake_case : Tuple ): super().__init__() UpperCAmelCase_ :Dict = TaDenseGatedActDense(d_model=snake_case , d_ff=snake_case , dropout_rate=snake_case ) UpperCAmelCase_ :List[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=snake_case ) UpperCAmelCase_ :Union[str, Any] = TaLayerNorm(snake_case , eps=snake_case ) UpperCAmelCase_ :Optional[int] = nn.Dropout(snake_case ) def snake_case_ ( self : Union[str, Any] , snake_case : Union[str, Any] , snake_case : Optional[int]=None ): UpperCAmelCase_ :List[Any] = self.layer_norm(snake_case ) if conditioning_emb is not None: UpperCAmelCase_ :Tuple = self.film(snake_case , snake_case ) UpperCAmelCase_ :Any = self.DenseReluDense(snake_case ) UpperCAmelCase_ :List[Any] = hidden_states + self.dropout(snake_case ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , snake_case : Optional[int] , snake_case : int , snake_case : str ): super().__init__() UpperCAmelCase_ :Any = nn.Linear(snake_case , snake_case , bias=snake_case ) UpperCAmelCase_ :Optional[int] = nn.Linear(snake_case , snake_case , bias=snake_case ) UpperCAmelCase_ :Dict = nn.Linear(snake_case , snake_case , bias=snake_case ) UpperCAmelCase_ :Optional[int] = nn.Dropout(snake_case ) UpperCAmelCase_ :str = NewGELUActivation() def snake_case_ ( self : int , snake_case : Any ): UpperCAmelCase_ :List[str] = self.act(self.wi_a(snake_case ) ) UpperCAmelCase_ :str = self.wi_a(snake_case ) UpperCAmelCase_ :str = hidden_gelu * hidden_linear UpperCAmelCase_ :Any = self.dropout(snake_case ) UpperCAmelCase_ :int = self.wo(snake_case ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , snake_case : Tuple , snake_case : Any=1e-6 ): super().__init__() UpperCAmelCase_ :List[str] = nn.Parameter(torch.ones(snake_case ) ) UpperCAmelCase_ :List[str] = eps def snake_case_ ( self : Union[str, Any] , snake_case : Union[str, Any] ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 UpperCAmelCase_ :str = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=snake_case ) UpperCAmelCase_ :int = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCAmelCase_ :List[str] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _snake_case ( nn.Module ): '''simple docstring''' def snake_case_ ( self : int , snake_case : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(snake_case , 3.0 )) )) class _snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Any , snake_case : Optional[Any] , snake_case : Tuple ): super().__init__() UpperCAmelCase_ :Optional[int] = nn.Linear(snake_case , out_features * 2 , bias=snake_case ) def snake_case_ ( self : Optional[Any] , snake_case : Any , snake_case : Tuple ): UpperCAmelCase_ :Tuple = self.scale_bias(snake_case ) UpperCAmelCase_ ,UpperCAmelCase_ :Union[str, Any] = torch.chunk(snake_case , 2 , -1 ) UpperCAmelCase_ :List[Any] = x * (1 + scale) + shift return x
608
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __lowerCamelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __lowerCamelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __lowerCamelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __lowerCamelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __lowerCamelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def a ( __snake_case : Tuple, __snake_case : str ): '''simple docstring''' for tf_name, hf_name in patterns: UpperCAmelCase_ :Optional[int] = k.replace(__snake_case, __snake_case ) return k def a ( __snake_case : dict, __snake_case : dict ): '''simple docstring''' UpperCAmelCase_ :str = BigBirdPegasusConfig(**__snake_case ) UpperCAmelCase_ :Optional[Any] = BigBirdPegasusForConditionalGeneration(__snake_case ) UpperCAmelCase_ :Dict = torch_model.state_dict() UpperCAmelCase_ :List[Any] = {} # separating decoder weights UpperCAmelCase_ :Tuple = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCAmelCase_ :Dict = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items(), '''tf -> hf conversion''' ): UpperCAmelCase_ :int = [k.endswith(__snake_case ) for ending in KEYS_TO_IGNORE] if any(__snake_case ): continue UpperCAmelCase_ :Union[str, Any] = DECODER_PATTERNS UpperCAmelCase_ :Any = rename_state_dict_key(__snake_case, __snake_case ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCAmelCase_ :Tuple = v.T UpperCAmelCase_ :str = torch.from_numpy(__snake_case ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items(), '''tf -> hf conversion''' ): UpperCAmelCase_ :Any = [k.endswith(__snake_case ) for ending in KEYS_TO_IGNORE] if any(__snake_case ): continue UpperCAmelCase_ :str = REMAINING_PATTERNS UpperCAmelCase_ :Dict = rename_state_dict_key(__snake_case, __snake_case ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCAmelCase_ :Tuple = v.T UpperCAmelCase_ :Any = torch.from_numpy(__snake_case ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' UpperCAmelCase_ :Optional[int] = mapping['''model.embed_positions.weight'''] UpperCAmelCase_ :Tuple = mapping.pop('''model.embed_positions.weight''' ) UpperCAmelCase_ ,UpperCAmelCase_ :List[str] = torch_model.load_state_dict(__snake_case, strict=__snake_case ) UpperCAmelCase_ :List[Any] = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def a ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ :Tuple = tf.train.list_variables(__snake_case ) UpperCAmelCase_ :Optional[int] = {} UpperCAmelCase_ :Optional[Any] = ['''global_step'''] for name, shape in tqdm(__snake_case, desc='''converting tf checkpoint to dict''' ): UpperCAmelCase_ :int = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase_ :List[str] = tf.train.load_variable(__snake_case, __snake_case ) UpperCAmelCase_ :str = array return tf_weights def a ( __snake_case : str, __snake_case : str, __snake_case : dict ): '''simple docstring''' UpperCAmelCase_ :Any = get_tf_weights_as_numpy(__snake_case ) UpperCAmelCase_ :Union[str, Any] = convert_bigbird_pegasus(__snake_case, __snake_case ) torch_model.save_pretrained(__snake_case ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") __lowerCamelCase = parser.parse_args() __lowerCamelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
608
1
from collections import defaultdict from math import ceil, sqrt def snake_case_ ( _SCREAMING_SNAKE_CASE = 1_0_0_0_0_0_0 , _SCREAMING_SNAKE_CASE = 1_0 ): __lowercase = defaultdict(_SCREAMING_SNAKE_CASE ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: __lowercase = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: __lowercase = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(F'''{solution() = }''')
702
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): model.train() __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): set_seed(4_2 ) __lowercase = RegressionModel() __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __lowercase = AdamW(params=model.parameters() , lr=1E-3 ) __lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case_ ( ): __lowercase = Accelerator() __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase = RegressionDataset(length=9_6 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): __lowercase = Accelerator() __lowercase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
0
'''simple docstring''' def _snake_case ( A_ : int ): """simple docstring""" if not isinstance(A_ , A_ ): a_ : str = f'''Input value of [number={number}] must be an integer''' raise TypeError(A_ ) if number < 0: return False a_ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
577
'''simple docstring''' import os def _snake_case ( ): """simple docstring""" with open(os.path.dirname(A_ ) + """/grid.txt""" ) as f: a_ : Dict = [] # noqa: E741 for _ in range(20 ): l.append([int(A_ ) for x in f.readline().split()] ) a_ : Dict = 0 # right for i in range(20 ): for j in range(17 ): a_ : Optional[int] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: a_ : List[str] = temp # down for i in range(17 ): for j in range(20 ): a_ : str = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: a_ : Optional[int] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): a_ : Optional[int] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: a_ : str = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): a_ : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: a_ : List[Any] = temp return maximum if __name__ == "__main__": print(solution())
577
1
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _A = logging.get_logger("""transformers.models.speecht5""") _A = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } _A = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } _A = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } _A = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } _A = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } _A = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } _A = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } _A = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } _A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _A = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _A = [] _A = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] _A = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] _A = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] _A = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: for attribute in key.split(""".""" ): lowerCAmelCase__ : Optional[Any] = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: lowerCAmelCase__ : Optional[Any] = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: lowerCAmelCase__ : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ : Dict = value elif weight_type == "weight_g": lowerCAmelCase__ : Any = value elif weight_type == "weight_v": lowerCAmelCase__ : int = value elif weight_type == "bias": lowerCAmelCase__ : List[str] = value elif weight_type == "running_mean": lowerCAmelCase__ : int = value elif weight_type == "running_var": lowerCAmelCase__ : Dict = value elif weight_type == "num_batches_tracked": lowerCAmelCase__ : List[str] = value else: lowerCAmelCase__ : List[str] = value logger.info(f"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase__ : Union[str, Any] = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: lowerCAmelCase__ : Optional[int] = [] if task == "s2t": lowerCAmelCase__ : int = hf_model.speechta.encoder.prenet.feature_encoder lowerCAmelCase__ : Optional[int] = MAPPING_S2T lowerCAmelCase__ : List[str] = IGNORE_KEYS_S2T elif task == "t2s": lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Tuple = MAPPING_T2S lowerCAmelCase__ : Optional[int] = IGNORE_KEYS_T2S elif task == "s2s": lowerCAmelCase__ : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder lowerCAmelCase__ : Union[str, Any] = MAPPING_S2S lowerCAmelCase__ : Optional[int] = IGNORE_KEYS_S2S else: raise ValueError(f"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(__UpperCAmelCase , __UpperCAmelCase ): logger.info(f"""{name} was ignored""" ) continue lowerCAmelCase__ : Tuple = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) lowerCAmelCase__ : List[str] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: lowerCAmelCase__ : int = key.split(""".*.""" ) if prefix in name and suffix in name: lowerCAmelCase__ : List[str] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: lowerCAmelCase__ : Dict = True if "*" in mapped_key: lowerCAmelCase__ : List[Any] = name.split(__UpperCAmelCase )[0].split(""".""" )[-2] lowerCAmelCase__ : Any = mapped_key.replace("""*""" , __UpperCAmelCase ) if "weight_g" in name: lowerCAmelCase__ : Any = """weight_g""" elif "weight_v" in name: lowerCAmelCase__ : Tuple = """weight_v""" elif "bias" in name: lowerCAmelCase__ : Dict = """bias""" elif "weight" in name: lowerCAmelCase__ : Any = """weight""" elif "running_mean" in name: lowerCAmelCase__ : Any = """running_mean""" elif "running_var" in name: lowerCAmelCase__ : List[Any] = """running_var""" elif "num_batches_tracked" in name: lowerCAmelCase__ : Tuple = """num_batches_tracked""" else: lowerCAmelCase__ : str = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : List[Any] = full_name.split("""conv_layers.""" )[-1] lowerCAmelCase__ : int = name.split(""".""" ) lowerCAmelCase__ : Optional[Any] = int(items[0] ) lowerCAmelCase__ : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCAmelCase__ : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[Any]: if config_path is not None: lowerCAmelCase__ : Dict = SpeechTaConfig.from_pretrained(__UpperCAmelCase ) else: lowerCAmelCase__ : str = SpeechTaConfig() if task == "s2t": lowerCAmelCase__ : int = config.max_text_positions lowerCAmelCase__ : Union[str, Any] = SpeechTaForSpeechToText(__UpperCAmelCase ) elif task == "t2s": lowerCAmelCase__ : Any = 1876 lowerCAmelCase__ : Dict = 600 lowerCAmelCase__ : Union[str, Any] = config.max_speech_positions lowerCAmelCase__ : List[Any] = SpeechTaForTextToSpeech(__UpperCAmelCase ) elif task == "s2s": lowerCAmelCase__ : Optional[Any] = 1876 lowerCAmelCase__ : Optional[Any] = config.max_speech_positions lowerCAmelCase__ : Dict = SpeechTaForSpeechToSpeech(__UpperCAmelCase ) else: raise ValueError(f"""Unknown task name: {task}""" ) if vocab_path: lowerCAmelCase__ : int = SpeechTaTokenizer(__UpperCAmelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it lowerCAmelCase__ : Optional[int] = AddedToken("""<mask>""" , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) lowerCAmelCase__ : Dict = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) lowerCAmelCase__ : Union[str, Any] = SpeechTaFeatureExtractor() lowerCAmelCase__ : Optional[int] = SpeechTaProcessor(tokenizer=__UpperCAmelCase , feature_extractor=__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = torch.load(__UpperCAmelCase ) recursively_load_weights(fairseq_checkpoint["""model"""] , __UpperCAmelCase , __UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(__UpperCAmelCase ) model.push_to_hub(__UpperCAmelCase ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _A = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
713
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowercase_ ( ) -> Tuple: lowerCAmelCase__ : Any = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__UpperCAmelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__UpperCAmelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__UpperCAmelCase ) return parser.parse_args() def lowercase_ ( ) -> str: lowerCAmelCase__ : Optional[int] = parse_args() # Import training_script as a module. lowerCAmelCase__ : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCAmelCase__ : Optional[int] = script_fpath.stem lowerCAmelCase__ : Dict = importlib.import_module(__UpperCAmelCase ) # Patch sys.argv lowerCAmelCase__ : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
507
0
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def _lowerCamelCase( __snake_case ) -> Optional[int]: return x + 2 class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase_ ( self : Dict ): """simple docstring""" __snake_case = "x = 3" __snake_case = {} __snake_case = evaluate(_lowerCAmelCase ,{} ,state=_lowerCAmelCase ) assert result == 3 self.assertDictEqual(_lowerCAmelCase ,{"x": 3} ) __snake_case = "x = y" __snake_case = {"y": 5} __snake_case = evaluate(_lowerCAmelCase ,{} ,state=_lowerCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowerCAmelCase ,{"x": 5, "y": 5} ) def UpperCamelCase_ ( self : Optional[Any] ): """simple docstring""" __snake_case = "y = add_two(x)" __snake_case = {"x": 3} __snake_case = evaluate(_lowerCAmelCase ,{"add_two": add_two} ,state=_lowerCAmelCase ) assert result == 5 self.assertDictEqual(_lowerCAmelCase ,{"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: __snake_case = evaluate(_lowerCAmelCase ,{} ,state=_lowerCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def UpperCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __snake_case = "x = 3" __snake_case = {} __snake_case = evaluate(_lowerCAmelCase ,{} ,state=_lowerCAmelCase ) assert result == 3 self.assertDictEqual(_lowerCAmelCase ,{"x": 3} ) def UpperCamelCase_ ( self : List[Any] ): """simple docstring""" __snake_case = "test_dict = {'x': x, 'y': add_two(x)}" __snake_case = {"x": 3} __snake_case = evaluate(_lowerCAmelCase ,{"add_two": add_two} ,state=_lowerCAmelCase ) self.assertDictEqual(_lowerCAmelCase ,{"x": 3, "y": 5} ) self.assertDictEqual(_lowerCAmelCase ,{"x": 3, "test_dict": {"x": 3, "y": 5}} ) def UpperCamelCase_ ( self : List[Any] ): """simple docstring""" __snake_case = "x = 3\ny = 5" __snake_case = {} __snake_case = evaluate(_lowerCAmelCase ,{} ,state=_lowerCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowerCAmelCase ,{"x": 3, "y": 5} ) def UpperCamelCase_ ( self : Optional[Any] ): """simple docstring""" __snake_case = "text = f'This is x: {x}.'" __snake_case = {"x": 3} __snake_case = evaluate(_lowerCAmelCase ,{} ,state=_lowerCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_lowerCAmelCase ,{"x": 3, "text": "This is x: 3."} ) def UpperCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __snake_case = "if x <= 3:\n y = 2\nelse:\n y = 5" __snake_case = {"x": 3} __snake_case = evaluate(_lowerCAmelCase ,{} ,state=_lowerCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_lowerCAmelCase ,{"x": 3, "y": 2} ) __snake_case = {"x": 8} __snake_case = evaluate(_lowerCAmelCase ,{} ,state=_lowerCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowerCAmelCase ,{"x": 8, "y": 5} ) def UpperCamelCase_ ( self : Dict ): """simple docstring""" __snake_case = "test_list = [x, add_two(x)]" __snake_case = {"x": 3} __snake_case = evaluate(_lowerCAmelCase ,{"add_two": add_two} ,state=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,[3, 5] ) self.assertDictEqual(_lowerCAmelCase ,{"x": 3, "test_list": [3, 5]} ) def UpperCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __snake_case = "y = x" __snake_case = {"x": 3} __snake_case = evaluate(_lowerCAmelCase ,{} ,state=_lowerCAmelCase ) assert result == 3 self.assertDictEqual(_lowerCAmelCase ,{"x": 3, "y": 3} ) def UpperCamelCase_ ( self : Optional[int] ): """simple docstring""" __snake_case = "test_list = [x, add_two(x)]\ntest_list[1]" __snake_case = {"x": 3} __snake_case = evaluate(_lowerCAmelCase ,{"add_two": add_two} ,state=_lowerCAmelCase ) assert result == 5 self.assertDictEqual(_lowerCAmelCase ,{"x": 3, "test_list": [3, 5]} ) __snake_case = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" __snake_case = {"x": 3} __snake_case = evaluate(_lowerCAmelCase ,{"add_two": add_two} ,state=_lowerCAmelCase ) assert result == 5 self.assertDictEqual(_lowerCAmelCase ,{"x": 3, "test_dict": {"x": 3, "y": 5}} ) def UpperCamelCase_ ( self : Optional[Any] ): """simple docstring""" __snake_case = "x = 0\nfor i in range(3):\n x = i" __snake_case = {} __snake_case = evaluate(_lowerCAmelCase ,{"range": range} ,state=_lowerCAmelCase ) assert result == 2 self.assertDictEqual(_lowerCAmelCase ,{"x": 2, "i": 2} )
524
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class UpperCamelCase ( snake_case__ ): def __init__( self : Union[str, Any] ,_lowerCAmelCase : Optional[int] ): """simple docstring""" __snake_case = data def __iter__( self : Optional[Any] ): """simple docstring""" for element in self.data: yield element def _lowerCamelCase( __snake_case=True ) -> str: __snake_case = Accelerator(even_batches=__snake_case ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def _lowerCamelCase( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> int: if iterable: __snake_case = DummyIterableDataset(torch.as_tensor(range(__snake_case ) ) ) else: __snake_case = TensorDataset(torch.as_tensor(range(__snake_case ) ) ) __snake_case = DataLoader(__snake_case , batch_size=__snake_case ) __snake_case = accelerator.prepare(__snake_case ) return dl def _lowerCamelCase( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> str: __snake_case = create_dataloader(accelerator=__snake_case , dataset_size=__snake_case , batch_size=__snake_case ) __snake_case = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def _lowerCamelCase( ) -> Optional[Any]: __snake_case = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __snake_case , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __snake_case , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def _lowerCamelCase( ) -> List[Any]: __snake_case = create_accelerator(even_batches=__snake_case ) verify_dataloader_batch_sizes( __snake_case , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __snake_case , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def _lowerCamelCase( ) -> Optional[Any]: __snake_case = create_accelerator(even_batches=__snake_case ) __snake_case = torch.nn.Linear(1 , 1 ) __snake_case = accelerator.prepare(__snake_case ) __snake_case = create_dataloader(__snake_case , dataset_size=3 , batch_size=1 ) __snake_case = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__snake_case ): __snake_case = ddp_model(batch[0].float() ) __snake_case = output.sum() loss.backward() batch_idxs.append(__snake_case ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def _lowerCamelCase( __snake_case ) -> Any: with warnings.catch_warnings(record=__snake_case ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __snake_case ) assert "only supported for multi-GPU" in str(w[-1].message ) def _lowerCamelCase( ) -> List[str]: __snake_case = True __snake_case = False __snake_case = create_accelerator(even_batches=__snake_case ) __snake_case = torch.nn.Linear(1 , 1 ) __snake_case = accelerator.prepare(__snake_case ) __snake_case = create_dataloader(__snake_case , dataset_size=3 , batch_size=1 ) __snake_case = create_dataloader(__snake_case , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__snake_case ): __snake_case = train_dl.batch_sampler.even_batches __snake_case = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def _lowerCamelCase( ) -> List[str]: __snake_case = True __snake_case = False __snake_case = create_accelerator(even_batches=__snake_case ) __snake_case = torch.nn.Linear(1 , 1 ) __snake_case = accelerator.prepare(__snake_case ) create_dataloader(__snake_case , dataset_size=3 , batch_size=1 , iterable=__snake_case ) __snake_case = create_dataloader(__snake_case , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__snake_case ): __snake_case = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def _lowerCamelCase( ) -> Optional[Any]: __snake_case = create_accelerator() __snake_case = torch.nn.Linear(1 , 1 ) __snake_case = accelerator.prepare(__snake_case ) create_dataloader(__snake_case , dataset_size=3 , batch_size=1 , iterable=__snake_case ) with warnings.catch_warnings(record=__snake_case ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__snake_case ): pass assert issubclass(w[-1].category , __snake_case ) assert "only supported for map-style datasets" in str(w[-1].message ) def _lowerCamelCase( ) -> Optional[Any]: __snake_case = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) __snake_case = accelerator.state.distributed_type __snake_case = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__snake_case ) __snake_case = original_state if __name__ == "__main__": main()
524
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __lowercase ( UpperCAmelCase__ ): """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase__ ) def __lowercase ( UpperCAmelCase__ ): """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main __lowerCAmelCase = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase__ , id=UpperCAmelCase__ )
709
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class snake_case_ : """simple docstring""" def __init__( self , _A , _A=None , _A=None , _A=None , _A="resnet50" , _A=3 , _A=3_2 , _A=3 , _A=True , _A=True , ): __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def A__ ( self ): __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def A__ ( self ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def A__ ( self , _A , _A ): __lowerCAmelCase = TimmBackbone(config=_A ) model.to(_A ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(_A ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def A__ ( self ): __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase, __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class snake_case_ ( _a , _a , _a , unittest.TestCase ): """simple docstring""" __UpperCAmelCase =(TimmBackbone,) if is_torch_available() else () __UpperCAmelCase ={"""feature-extraction""": TimmBackbone} if is_torch_available() else {} __UpperCAmelCase =False __UpperCAmelCase =False __UpperCAmelCase =False __UpperCAmelCase =False def A__ ( self ): __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=_A , has_text_modality=_A ) def A__ ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ): __lowerCAmelCase = 'resnet18' __lowerCAmelCase = 'microsoft/resnet-18' __lowerCAmelCase = AutoBackbone.from_pretrained(_A , use_timm_backbone=_A ) __lowerCAmelCase = AutoBackbone.from_pretrained(_A ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(_A , use_timm_backbone=_A , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(_A , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def A__ ( self ): pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def A__ ( self ): pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def A__ ( self ): pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def A__ ( self ): pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def A__ ( self ): pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def A__ ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def A__ ( self ): pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def A__ ( self ): pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def A__ ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def A__ ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def A__ ( self ): pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def A__ ( self ): pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def A__ ( self ): pass @unittest.skip('Safetensors is not supported by timm.' ) def A__ ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def A__ ( self ): pass def A__ ( self ): __lowerCAmelCase, __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def A__ ( self ): __lowerCAmelCase, __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(_A ) model.to(_A ) __lowerCAmelCase = self._prepare_for_class(_A , _A ) __lowerCAmelCase = model(**_A ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_A ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def A__ ( self ): __lowerCAmelCase, __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(**_A ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(_A ) __lowerCAmelCase = None __lowerCAmelCase = model_class(_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(**_A ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(_A ) __lowerCAmelCase = False __lowerCAmelCase = model_class(_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(**_A )
102
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowercase__ =logging.get_logger(__name__) class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Dict = ["pixel_values"] def __init__(self : Dict , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = PILImageResampling.BILINEAR , snake_case_ : bool = True , snake_case_ : Union[int, float] = 1 / 2_5_5 , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : bool = True , **snake_case_ : str , ): super().__init__(**snake_case_ ) __a : List[Any] = size if size is not None else {'''shortest_edge''': 2_2_4} __a : int = get_size_dict(snake_case_ , default_to_square=snake_case_ ) __a : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 2_5_6, '''width''': 2_5_6} __a : List[Any] = get_size_dict(snake_case_ , param_name='''crop_size''' ) __a : Tuple = do_resize __a : int = size __a : Optional[Any] = resample __a : Optional[Any] = do_rescale __a : List[str] = rescale_factor __a : Any = do_center_crop __a : Optional[int] = crop_size __a : List[Any] = do_flip_channel_order def lowerCAmelCase (self : int , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : PILImageResampling = PIL.Image.BILINEAR , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Optional[int] , ): __a : str = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" not in size: raise ValueError(f"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}" ) __a : Optional[Any] = get_resize_output_image_size(snake_case_ , size=size['''shortest_edge'''] , default_to_square=snake_case_ ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase (self : Optional[Any] , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Any , ): __a : Union[str, Any] = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(snake_case_ , size=(size['''height'''], size['''width''']) , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase (self : Any , snake_case_ : np.ndarray , snake_case_ : Union[int, float] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : str , ): return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCAmelCase (self : List[str] , snake_case_ : np.ndarray , snake_case_ : Optional[Union[str, ChannelDimension]] = None ): return flip_channel_order(snake_case_ , data_format=snake_case_ ) def lowerCAmelCase (self : List[str] , snake_case_ : ImageInput , snake_case_ : bool = None , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = None , snake_case_ : bool = None , snake_case_ : float = None , snake_case_ : bool = None , snake_case_ : Dict[str, int] = None , snake_case_ : bool = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : ChannelDimension = ChannelDimension.FIRST , **snake_case_ : Union[str, Any] , ): __a : Dict = do_resize if do_resize is not None else self.do_resize __a : List[Any] = resample if resample is not None else self.resample __a : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __a : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __a : int = do_center_crop if do_center_crop is not None else self.do_center_crop __a : int = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) __a : List[str] = size if size is not None else self.size __a : int = get_size_dict(snake_case_ , default_to_square=snake_case_ ) __a : int = crop_size if crop_size is not None else self.crop_size __a : Any = get_size_dict(snake_case_ , param_name='''crop_size''' ) __a : Dict = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. __a : Optional[int] = [to_numpy_array(snake_case_ ) for image in images] if do_resize: __a : Any = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_center_crop: __a : str = [self.center_crop(image=snake_case_ , size=snake_case_ ) for image in images] if do_rescale: __a : List[Any] = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: __a : Dict = [self.flip_channel_order(image=snake_case_ ) for image in images] __a : List[str] = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] __a : str = {'''pixel_values''': images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ ) def lowerCAmelCase (self : Optional[int] , snake_case_ : List[str] , snake_case_ : List[Tuple] = None ): __a : Optional[int] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(snake_case_ ) != len(snake_case_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(snake_case_ ): __a : Optional[int] = target_sizes.numpy() __a : int = [] for idx in range(len(snake_case_ ) ): __a : int = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=snake_case_ ) __a : int = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(snake_case_ ) else: __a : List[str] = logits.argmax(dim=1 ) __a : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
521
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP lowercase__ =False try: lowercase__ =_is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class UpperCamelCase__ : def __init__(self : Dict , snake_case_ : str = None , snake_case_ : list = [] ): __a : List[Any] = 0 __a : Optional[int] = choices __a : int = prompt if sys.platform == "win32": __a : int = '''*''' else: __a : List[Any] = '''➔ ''' def lowerCAmelCase (self : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : str = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 3_2 , snake_case_ ) else: forceWrite(self.choices[index] , snake_case_ ) def lowerCAmelCase (self : str , snake_case_ : int ): if index == self.position: forceWrite(f" {self.arrow_char} " ) self.write_choice(snake_case_ ) else: forceWrite(f" {self.choices[index]}" ) reset_cursor() def lowerCAmelCase (self : Any , snake_case_ : Direction , snake_case_ : int = 1 ): __a : Dict = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(snake_case_ ) move_cursor(snake_case_ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def lowerCAmelCase (self : Optional[Any] ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def lowerCAmelCase (self : List[str] ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def lowerCAmelCase (self : List[Any] ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def lowerCAmelCase (self : int ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(snake_case_ )] for number in range(1_0 )] ) def lowerCAmelCase (self : int ): __a : str = int(chr(self.current_selection ) ) __a : Any = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , snake_case_ ) else: return else: return def lowerCAmelCase (self : List[Any] , snake_case_ : int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) __a : Dict = default_choice for i in range(len(self.choices ) ): self.print_choice(snake_case_ ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: __a : str = int(builtins.input() ) except ValueError: __a : Dict = default_choice else: __a : Union[str, Any] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(snake_case_ , '''\n''' ) return choice
521
1
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput snake_case__ : str = """scheduler_config.json""" class _A ( _lowercase ): '''simple docstring''' _snake_case : Union[str, Any] = 1 _snake_case : int = 2 _snake_case : Optional[int] = 3 _snake_case : Optional[int] = 4 _snake_case : int = 5 @dataclass class _A ( _lowercase ): '''simple docstring''' _snake_case : jnp.ndarray class _A : '''simple docstring''' _snake_case : Optional[int] = SCHEDULER_CONFIG_NAME _snake_case : Dict = ["""dtype"""] _snake_case : Dict = [] _snake_case : Union[str, Any] = True @classmethod def _snake_case ( cls : Dict , lowerCamelCase : Dict[str, Any] = None , lowerCamelCase : Optional[str] = None , lowerCamelCase : Optional[Any]=False , **lowerCamelCase : Union[str, Any] , ): '''simple docstring''' __lowercase , __lowercase = cls.load_config( pretrained_model_name_or_path=lowerCamelCase , subfolder=lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase , ) __lowercase , __lowercase = cls.from_config(lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase ) if hasattr(lowerCamelCase , "create_state" ) and getattr(lowerCamelCase , "has_state" , lowerCamelCase ): __lowercase = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def _snake_case ( self : List[str] , lowerCamelCase : Union[str, os.PathLike] , lowerCamelCase : bool = False , **lowerCamelCase : List[str] ): '''simple docstring''' self.save_config(save_directory=lowerCamelCase , push_to_hub=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : int ): '''simple docstring''' return self._get_compatibles() @classmethod def _snake_case ( cls : Union[str, Any] ): '''simple docstring''' __lowercase = list(set([cls.__name__] + cls._compatibles ) ) __lowercase = importlib.import_module(__name__.split("." )[0] ) __lowercase = [ getattr(lowerCamelCase , lowerCamelCase ) for c in compatible_classes_str if hasattr(lowerCamelCase , lowerCamelCase ) ] return compatible_classes def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert len(_SCREAMING_SNAKE_CASE ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_SCREAMING_SNAKE_CASE ) - x.ndim) ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.9_9_9 , _SCREAMING_SNAKE_CASE=jnp.floataa ): def alpha_bar(_SCREAMING_SNAKE_CASE ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __lowercase = [] for i in range(_SCREAMING_SNAKE_CASE ): __lowercase = i / num_diffusion_timesteps __lowercase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_SCREAMING_SNAKE_CASE ) / alpha_bar(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return jnp.array(_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) @flax.struct.dataclass class _A : '''simple docstring''' _snake_case : jnp.ndarray _snake_case : jnp.ndarray _snake_case : jnp.ndarray @classmethod def _snake_case ( cls : str , lowerCamelCase : Any ): '''simple docstring''' __lowercase = scheduler.config if config.trained_betas is not None: __lowercase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __lowercase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowercase = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowercase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" ) __lowercase = 1.0 - betas __lowercase = jnp.cumprod(lowerCamelCase , axis=0 ) return cls( alphas=lowerCamelCase , betas=lowerCamelCase , alphas_cumprod=lowerCamelCase , ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = state.alphas_cumprod __lowercase = alphas_cumprod[timesteps] ** 0.5 __lowercase = sqrt_alpha_prod.flatten() __lowercase = broadcast_to_shape_from_left(_SCREAMING_SNAKE_CASE , original_samples.shape ) __lowercase = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowercase = sqrt_one_minus_alpha_prod.flatten() __lowercase = broadcast_to_shape_from_left(_SCREAMING_SNAKE_CASE , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = get_sqrt_alpha_prod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = get_sqrt_alpha_prod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
720
from __future__ import annotations import bisect def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 0 __lowercase = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: __lowercase = left + (right - left) // 2 __lowercase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowercase = midpoint - 1 else: __lowercase = midpoint + 1 return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if right < left: return None __lowercase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() snake_case__ : Any = sorted(int(item) for item in user_input.split(""",""")) snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n""")) snake_case__ : List[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
655
0
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: int ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("Input value must be an 'int' type" ) snake_case_ : Dict = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
666
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: int = 1_0_0_0 ): snake_case_ ,snake_case_ : List[str] = 1, 1 snake_case_ : List[str] = 2 while True: snake_case_ : Tuple = 0 snake_case_ : Union[str, Any] = fa + fa snake_case_ ,snake_case_ : str = fa, f index += 1 for _ in str(lowerCAmelCase_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
666
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase__ = get_tests_dir("fixtures") class _a ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): # A mock response for an HTTP head request to emulate server down _lowercase =mock.Mock() _lowercase =500 _lowercase ={} _lowercase =HTTPError _lowercase ={} # Download this model to make sure it's in the cache. _lowercase =WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowerCAmelCase_ ) as mock_head: _lowercase =WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def __lowerCAmelCase ( self ): # This test is for deprecated behavior and can be removed in v5 _lowercase =WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class _a ( unittest.TestCase ): """simple docstring""" @classmethod def __lowerCAmelCase ( cls ): _lowercase =TOKEN HfFolder.save_token(lowerCAmelCase_ ) @classmethod def __lowerCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def __lowerCAmelCase ( self ): _lowercase =WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase_ ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) _lowercase =WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase_ , repo_id="test-feature-extractor" , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token ) _lowercase =WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) def __lowerCAmelCase ( self ): _lowercase =WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase_ ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) _lowercase =WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase_ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token ) _lowercase =WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) def __lowerCAmelCase ( self ): CustomFeatureExtractor.register_for_auto_class() _lowercase =CustomFeatureExtractor.from_pretrained(lowerCAmelCase_ ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) _lowercase =AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=lowerCAmelCase_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
594
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __lowerCamelCase ( __a : List[Any] , __a : Dict , __a : Optional[Any]=None , __a : List[Any]=None ) -> str: if attention_mask is None: _lowercase =tf.cast(tf.math.not_equal(__a , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _a : """simple docstring""" __SCREAMING_SNAKE_CASE = OPTConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 'gelu' def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=99 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=4 , lowerCAmelCase_=4 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=20 , lowerCAmelCase_=2 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=16 , lowerCAmelCase_=16 , ): _lowercase =parent _lowercase =batch_size _lowercase =seq_length _lowercase =is_training _lowercase =use_labels _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =eos_token_id _lowercase =pad_token_id _lowercase =bos_token_id _lowercase =embed_dim _lowercase =word_embed_proj_dim _lowercase =False def __lowerCAmelCase ( self ): _lowercase =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowercase =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowercase =tf.concat([input_ids, eos_tensor] , axis=1 ) _lowercase =self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCAmelCase_ , **self.config_updates , ) _lowercase =prepare_opt_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase =TFOPTModel(config=lowerCAmelCase_ ) _lowercase =inputs_dict["input_ids"] _lowercase =input_ids[:1, :] _lowercase =inputs_dict["attention_mask"][:1, :] _lowercase =1 # first forward pass _lowercase =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _lowercase , _lowercase =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowercase =ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowercase =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowercase =tf.concat([input_ids, next_tokens] , axis=-1 ) _lowercase =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowercase =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] _lowercase =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowercase =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowercase =output_from_no_past[:, -3:, random_slice_idx] _lowercase =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-3 ) @require_tf class _a ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __SCREAMING_SNAKE_CASE = (TFOPTForCausalLM,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = 10 def __lowerCAmelCase ( self ): _lowercase =TFOPTModelTester(self ) _lowercase =ConfigTester(self , config_class=lowerCAmelCase_ ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): _lowercase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) def __lowerCAmelCase ( self ): _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCAmelCase_ , lowerCAmelCase_ ): if hasattr(lowerCAmelCase_ , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCAmelCase_ , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowercase =model_class(config=lowerCAmelCase_ ) _lowercase =_get_word_embedding_weight(lowerCAmelCase_ , model.get_input_embeddings() ) _lowercase =_get_word_embedding_weight(lowerCAmelCase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowerCAmelCase_ ) _lowercase =_get_word_embedding_weight(lowerCAmelCase_ , model.get_input_embeddings() ) _lowercase =_get_word_embedding_weight(lowerCAmelCase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowercase =size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCAmelCase_ ) # check that weights remain the same after resizing _lowercase =True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowercase =False self.assertTrue(lowerCAmelCase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCAmelCase_ ) _lowercase =True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowercase =False self.assertTrue(lowerCAmelCase_ ) def __lowerCamelCase ( __a : Tuple ) -> Dict: return tf.constant(__a , dtype=tf.intaa ) @require_tf class _a ( unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE = 99 def __lowerCAmelCase ( self ): _lowercase =tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowercase =tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowercase =input_ids.shape[0] _lowercase =OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self ): _lowercase =TFOPTModel.from_pretrained("facebook/opt-350m" ) _lowercase =_long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowercase =tf.not_equal(lowerCAmelCase_ , model.config.pad_token_id ) with tf.GradientTape(): _lowercase =model(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ).last_hidden_state _lowercase =(1, 11, 512) self.assertEqual(output.shape , lowerCAmelCase_ ) _lowercase =tf.constant( [[-0.2_8_7_3, -1.9_2_1_8, -0.3_0_3_3], [-1.2_7_1_0, -0.1_3_3_8, -0.1_9_0_2], [0.4_0_9_5, 0.1_2_1_4, -1.3_1_2_1]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=4e-3 ) ) _lowercase =tf.function(lowerCAmelCase_ , jit_compile=lowerCAmelCase_ ) _lowercase =xla_generate(lowerCAmelCase_ , lowerCAmelCase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=4e-2 ) ) @require_tf @slow class _a ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): super().setUp() _lowercase ="facebook/opt-350m" def __lowerCAmelCase ( self ): _lowercase =TFOPTForCausalLM.from_pretrained(self.path_model ) _lowercase =GPTaTokenizer.from_pretrained(self.path_model ) _lowercase =[ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowercase =tokenizer(lowerCAmelCase_ , return_tensors="tf" , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _lowercase =tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowercase =tf.constant( [ [1.3_8_5_1, -1_3.8_9_2_3, -1_0.5_2_2_9, -1_0.7_5_3_3, -0.2_3_0_9, -1_0.2_3_8_4, -0.5_3_6_5, -9.0_9_4_7, -5.1_6_7_0], [-4.7_0_7_3, -1_0.6_2_7_6, -3.9_4_1_5, -2_1.5_2_4_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2], [0.6_2_4_7, -3.4_2_2_9, -8.9_1_7_9, -1.4_2_9_7, -1_4.1_6_5_0, 1.4_1_4_6, -9.0_2_1_8, -0.2_7_0_3, -0.2_7_0_3], [6.4_7_8_3, -1.9_9_1_3, -1_0.7_9_2_6, -2.3_3_3_6, 1.5_0_9_2, -0.9_9_7_4, -6.8_2_1_3, 1.3_4_7_7, 1.3_4_7_7], ] ) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4 ) ) _lowercase =tf.function(lowerCAmelCase_ , jit_compile=lowerCAmelCase_ ) _lowercase =tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4 ) ) @require_tf @slow class _a ( unittest.TestCase ): """simple docstring""" @property def __lowerCAmelCase ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def __lowerCAmelCase ( self ): _lowercase ="facebook/opt-125m" _lowercase =[ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] _lowercase =[] _lowercase =GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) _lowercase =TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) for prompt in self.prompts: _lowercase =tokenizer(lowerCAmelCase_ , return_tensors="tf" ).input_ids _lowercase =model.generate(lowerCAmelCase_ , max_length=10 ) _lowercase =tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self ): _lowercase ="facebook/opt-350m" _lowercase =GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) _lowercase =TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) _lowercase ="left" # use different length sentences to test batching _lowercase =[ "Hello, my dog is a little", "Today, I", ] _lowercase =tokenizer(lowerCAmelCase_ , return_tensors="tf" , padding=lowerCAmelCase_ ) _lowercase =inputs["input_ids"] _lowercase =model.generate(input_ids=lowerCAmelCase_ , attention_mask=inputs["attention_mask"] ) _lowercase =tokenizer(sentences[0] , return_tensors="tf" ).input_ids _lowercase =model.generate(input_ids=lowerCAmelCase_ ) _lowercase =inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) _lowercase =tokenizer(sentences[1] , return_tensors="tf" ).input_ids _lowercase =model.generate(input_ids=lowerCAmelCase_ , max_length=model.config.max_length - num_paddings ) _lowercase =tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) _lowercase =tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase_ ) _lowercase =tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase_ ) _lowercase =[ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , [non_padded_sentence, padded_sentence] ) def __lowerCAmelCase ( self ): _lowercase ="facebook/opt-350m" _lowercase =[ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] _lowercase =[] _lowercase =GPTaTokenizer.from_pretrained(lowerCAmelCase_ ) _lowercase =TFOPTForCausalLM.from_pretrained(lowerCAmelCase_ ) for prompt in self.prompts: _lowercase =tokenizer(lowerCAmelCase_ , return_tensors="tf" ).input_ids _lowercase =model.generate(lowerCAmelCase_ , max_length=10 ) _lowercase =tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
594
1
def A ( ) -> Optional[Any]: UpperCamelCase__ :int = 0 for i in range(1 , 1001 ): total += i**i return str(lowercase__ )[-10:] if __name__ == "__main__": print(solution())
45
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowercase = ["""text""", """image""", """audio"""] def lowerCamelCase_ ( UpperCamelCase__ : List[str] ): '''simple docstring''' UpperCamelCase__ = [] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(UpperCamelCase__, UpperCamelCase__ ): inputs.append(create_inputs(UpperCamelCase__ ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def lowerCamelCase_ ( UpperCamelCase__ : List ): '''simple docstring''' UpperCamelCase__ = [] for output in outputs: if isinstance(UpperCamelCase__, (str, AgentText) ): output_types.append('''text''' ) elif isinstance(UpperCamelCase__, (Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(UpperCamelCase__, (torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class __lowercase : '''simple docstring''' def A_ ( self : List[str] ): self.assertTrue(hasattr(self.tool , '''inputs''' ) ) self.assertTrue(hasattr(self.tool , '''outputs''' ) ) UpperCamelCase__ = self.tool.inputs for _input in inputs: if isinstance(_input , _a ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) UpperCamelCase__ = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def A_ ( self : str ): UpperCamelCase__ = create_inputs(self.tool.inputs ) UpperCamelCase__ = self.tool(*_a ) # There is a single output if len(self.tool.outputs ) == 1: UpperCamelCase__ = [outputs] self.assertListEqual(output_types(_a ) , self.tool.outputs ) def A_ ( self : List[str] ): self.assertTrue(hasattr(self.tool , '''description''' ) ) self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) ) self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) ) def A_ ( self : List[str] ): UpperCamelCase__ = create_inputs(self.tool.inputs ) UpperCamelCase__ = self.tool(*_a ) if not isinstance(_a , _a ): UpperCamelCase__ = [outputs] self.assertEqual(len(_a ) , len(self.tool.outputs ) ) for output, output_type in zip(_a , self.tool.outputs ): UpperCamelCase__ = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_a , _a ) ) def A_ ( self : Optional[int] ): UpperCamelCase__ = create_inputs(self.tool.inputs ) UpperCamelCase__ = [] for _input, input_type in zip(_a , self.tool.inputs ): if isinstance(_a , _a ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error UpperCamelCase__ = self.tool(*_a ) if not isinstance(_a , _a ): UpperCamelCase__ = [outputs] self.assertEqual(len(_a ) , len(self.tool.outputs ) )
240
0
'''simple docstring''' def snake_case ( a_ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" UpperCamelCase_ : str = set() # Replace all the whitespace in our sentence UpperCamelCase_ : Dict = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(a_ ) == 26 def snake_case ( a_ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" UpperCamelCase_ : List[Any] = [False] * 26 for char in input_str: if char.islower(): UpperCamelCase_ : Dict = True elif char.isupper(): UpperCamelCase_ : Optional[int] = True return all(a_ ) def snake_case ( a_ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def snake_case ( ) -> None: """simple docstring""" from timeit import timeit UpperCamelCase_ : Dict = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=a_ ) ) print(timeit("""is_pangram_faster()""" , setup=a_ ) ) print(timeit("""is_pangram_fastest()""" , setup=a_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
543
'''simple docstring''' from itertools import count def snake_case ( a_ : int = 50 ) -> int: """simple docstring""" UpperCamelCase_ : int = [1] * min_block_length for n in count(a_ ): fill_count_functions.append(1 ) for block_length in range(a_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_000_000: break return n if __name__ == "__main__": print(f"{solution() = }")
543
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=_lowercase ): """simple docstring""" snake_case = ["torch", "scipy"] def __init__( self : Optional[Any] , *_snake_case : List[Any] , **_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" requires_backends(self , ["torch", "scipy"] ) @classmethod def lowerCamelCase__ ( cls : Dict , *_snake_case : Any , **_snake_case : Dict ) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch", "scipy"] ) @classmethod def lowerCamelCase__ ( cls : List[str] , *_snake_case : str , **_snake_case : Optional[int] ) -> List[str]: """simple docstring""" requires_backends(cls , ["torch", "scipy"] )
115
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: UpperCamelCase_ : Dict = None UpperCamelCase_ : int = logging.get_logger(__name__) UpperCamelCase_ : str = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase_ : List[Any] = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } UpperCamelCase_ : Optional[Any] = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off UpperCamelCase_ : str = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowerCAmelCase ( _lowercase ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = ["input_ids", "attention_mask"] snake_case = MBartTokenizer snake_case = [] snake_case = [] def __init__( self : List[str] , _snake_case : Tuple=None , _snake_case : int=None , _snake_case : List[Any]="<s>" , _snake_case : Tuple="</s>" , _snake_case : str="</s>" , _snake_case : List[Any]="<s>" , _snake_case : Dict="<unk>" , _snake_case : str="<pad>" , _snake_case : Any="<mask>" , _snake_case : int=None , _snake_case : Optional[int]=None , _snake_case : Any=None , **_snake_case : Union[str, Any] , ) -> List[str]: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it A_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token super().__init__( vocab_file=_snake_case , tokenizer_file=_snake_case , bos_token=_snake_case , eos_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , src_lang=_snake_case , tgt_lang=_snake_case , additional_special_tokens=_snake_case , **_snake_case , ) A_ = vocab_file A_ = False if not self.vocab_file else True A_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) A_ = { lang_code: self.convert_tokens_to_ids(_snake_case ) for lang_code in FAIRSEQ_LANGUAGE_CODES } A_ = src_lang if src_lang is not None else "en_XX" A_ = self.convert_tokens_to_ids(self._src_lang ) A_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase__ ( self : Dict ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def lowerCamelCase__ ( self : Tuple , _snake_case : str ) -> None: """simple docstring""" A_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase__ ( self : Optional[Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__ ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : List[Any] , _snake_case : str , _snake_case : str , _snake_case : Optional[str] , _snake_case : Optional[str] , **_snake_case : Optional[int] ) -> str: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) A_ = src_lang A_ = self(_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , **_snake_case ) A_ = self.convert_tokens_to_ids(_snake_case ) A_ = tgt_lang_id return inputs def lowerCamelCase__ ( self : Dict , _snake_case : List[str] , _snake_case : str = "en_XX" , _snake_case : Optional[List[str]] = None , _snake_case : str = "ro_RO" , **_snake_case : str , ) -> BatchEncoding: """simple docstring""" A_ = src_lang A_ = tgt_lang return super().prepare_seqaseq_batch(_snake_case , _snake_case , **_snake_case ) def lowerCamelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__ ( self : Dict ) -> List[Any]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__ ( self : Tuple , _snake_case : List[str] ) -> None: """simple docstring""" A_ = self.convert_tokens_to_ids(_snake_case ) A_ = [] A_ = [self.eos_token_id, self.cur_lang_code] A_ = self.convert_ids_to_tokens(self.prefix_tokens ) A_ = self.convert_ids_to_tokens(self.suffix_tokens ) A_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase__ ( self : List[str] , _snake_case : str ) -> None: """simple docstring""" A_ = self.convert_tokens_to_ids(_snake_case ) A_ = [] A_ = [self.eos_token_id, self.cur_lang_code] A_ = self.convert_ids_to_tokens(self.prefix_tokens ) A_ = self.convert_ids_to_tokens(self.suffix_tokens ) A_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase__ ( self : Union[str, Any] , _snake_case : str , _snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return A_ = os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ): copyfile(self.vocab_file , _snake_case ) return (out_vocab_file,)
115
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def lowerCamelCase ( SCREAMING_SNAKE_CASE = 3 ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(SCREAMING_SNAKE_CASE ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) __UpperCamelCase :Tuple = QuantumRegister(SCREAMING_SNAKE_CASE , '''qr''' ) __UpperCamelCase :Dict = ClassicalRegister(SCREAMING_SNAKE_CASE , '''cr''' ) __UpperCamelCase :Union[str, Any] = QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Union[str, Any] = number_of_qubits for i in range(SCREAMING_SNAKE_CASE ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(SCREAMING_SNAKE_CASE ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(SCREAMING_SNAKE_CASE , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # simulate with 10000 shots __UpperCamelCase :str = Aer.get_backend('''qasm_simulator''' ) __UpperCamelCase :Union[str, Any] = execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=10_000 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print( F'Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}' )
702
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Dict = """unispeech""" def __init__( self , __lowercase=32 , __lowercase=768 , __lowercase=12 , __lowercase=12 , __lowercase=3_072 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.02 , __lowercase=1E-5 , __lowercase="group" , __lowercase="gelu" , __lowercase=(512, 512, 512, 512, 512, 512, 512) , __lowercase=(5, 2, 2, 2, 2, 2, 2) , __lowercase=(10, 3, 3, 3, 3, 2, 2) , __lowercase=False , __lowercase=128 , __lowercase=16 , __lowercase=False , __lowercase=True , __lowercase=0.05 , __lowercase=10 , __lowercase=2 , __lowercase=0.0 , __lowercase=10 , __lowercase=0 , __lowercase=320 , __lowercase=2 , __lowercase=0.1 , __lowercase=100 , __lowercase=256 , __lowercase=256 , __lowercase=0.1 , __lowercase="mean" , __lowercase=False , __lowercase=False , __lowercase=256 , __lowercase=80 , __lowercase=0 , __lowercase=1 , __lowercase=2 , __lowercase=0.5 , **__lowercase , ) -> Optional[int]: super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase) __UpperCamelCase :str = hidden_size __UpperCamelCase :List[str] = feat_extract_norm __UpperCamelCase :str = feat_extract_activation __UpperCamelCase :str = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :Any = conv_bias __UpperCamelCase :List[Any] = num_conv_pos_embeddings __UpperCamelCase :Tuple = num_conv_pos_embedding_groups __UpperCamelCase :Optional[int] = len(self.conv_dim) __UpperCamelCase :Optional[int] = num_hidden_layers __UpperCamelCase :Union[str, Any] = intermediate_size __UpperCamelCase :Tuple = hidden_act __UpperCamelCase :Optional[int] = num_attention_heads __UpperCamelCase :Any = hidden_dropout __UpperCamelCase :List[str] = attention_dropout __UpperCamelCase :int = activation_dropout __UpperCamelCase :int = feat_proj_dropout __UpperCamelCase :Any = final_dropout __UpperCamelCase :Optional[Any] = layerdrop __UpperCamelCase :Any = layer_norm_eps __UpperCamelCase :List[str] = initializer_range __UpperCamelCase :Tuple = num_ctc_classes __UpperCamelCase :Union[str, Any] = vocab_size __UpperCamelCase :List[Any] = do_stable_layer_norm __UpperCamelCase :Dict = use_weighted_layer_sum __UpperCamelCase :str = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase :List[Any] = apply_spec_augment __UpperCamelCase :Optional[int] = mask_time_prob __UpperCamelCase :int = mask_time_length __UpperCamelCase :Any = mask_time_min_masks __UpperCamelCase :Any = mask_feature_prob __UpperCamelCase :str = mask_feature_length __UpperCamelCase :Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __UpperCamelCase :Optional[Any] = num_codevectors_per_group __UpperCamelCase :Dict = num_codevector_groups __UpperCamelCase :Optional[int] = contrastive_logits_temperature __UpperCamelCase :Union[str, Any] = feat_quantizer_dropout __UpperCamelCase :List[str] = num_negatives __UpperCamelCase :Union[str, Any] = codevector_dim __UpperCamelCase :int = proj_codevector_dim __UpperCamelCase :Tuple = diversity_loss_weight # ctc loss __UpperCamelCase :List[Any] = ctc_loss_reduction __UpperCamelCase :int = ctc_zero_infinity # pretraining loss __UpperCamelCase :Optional[Any] = replace_prob @property def UpperCamelCase__ ( self) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1)
452
0
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def __A ( a_ : Any = 1_00_00_00 , a_ : Dict = 10 )-> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : defaultdict = defaultdict(a__ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: SCREAMING_SNAKE_CASE : Dict = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: SCREAMING_SNAKE_CASE : str = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(a__ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f'''{solution() = }''')
698
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case : int = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __snake_case : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
540
0
'''simple docstring''' from ...processing_utils import ProcessorMixin class __magic_name__( __lowerCAmelCase ): UpperCAmelCase_ : Optional[Any] = ["""image_processor""", """feature_extractor"""] UpperCAmelCase_ : str = """TvltImageProcessor""" UpperCAmelCase_ : Dict = """TvltFeatureExtractor""" def __init__( self : str , __UpperCamelCase : Dict , __UpperCamelCase : str ): '''simple docstring''' super().__init__(image_processor=__UpperCamelCase , feature_extractor=__UpperCamelCase ) snake_case__ = image_processor snake_case__ = feature_extractor def __call__( self : Tuple , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Any=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : List[str]=False , __UpperCamelCase : Any=False , *__UpperCamelCase : str , **__UpperCamelCase : Optional[int] , ): '''simple docstring''' if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) snake_case__ = None if images is not None: snake_case__ = self.image_processor(__UpperCamelCase , mask_pixel=__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) if images_mixed is not None: snake_case__ = self.image_processor(__UpperCamelCase , is_mixed=__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) if audio is not None: snake_case__ = self.feature_extractor( __UpperCamelCase , *__UpperCamelCase , sampling_rate=__UpperCamelCase , mask_audio=__UpperCamelCase , **__UpperCamelCase ) snake_case__ = {} if audio is not None: output_dict.update(__UpperCamelCase ) if images is not None: output_dict.update(__UpperCamelCase ) if images_mixed_dict is not None: output_dict.update(__UpperCamelCase ) return output_dict @property def __lowerCAmelCase( self : List[str] ): '''simple docstring''' snake_case__ = self.image_processor.model_input_names snake_case__ = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
705
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType a__ = logging.get_logger(__name__) a__ = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class __magic_name__( __lowerCAmelCase ): UpperCAmelCase_ : Dict = """layoutlmv3""" def __init__( self : Dict , __UpperCamelCase : Tuple=5_0_2_6_5 , __UpperCamelCase : Dict=7_6_8 , __UpperCamelCase : Dict=1_2 , __UpperCamelCase : Dict=1_2 , __UpperCamelCase : Any=3_0_7_2 , __UpperCamelCase : Optional[int]="gelu" , __UpperCamelCase : int=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Dict=5_1_2 , __UpperCamelCase : Any=2 , __UpperCamelCase : Optional[int]=0.02 , __UpperCamelCase : List[str]=1E-5 , __UpperCamelCase : Dict=1 , __UpperCamelCase : Dict=0 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : Dict=1_0_2_4 , __UpperCamelCase : Dict=1_2_8 , __UpperCamelCase : str=1_2_8 , __UpperCamelCase : str=True , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : str=1_2_8 , __UpperCamelCase : List[str]=6_4 , __UpperCamelCase : Optional[int]=2_5_6 , __UpperCamelCase : List[str]=True , __UpperCamelCase : Tuple=True , __UpperCamelCase : Tuple=True , __UpperCamelCase : Dict=2_2_4 , __UpperCamelCase : Tuple=3 , __UpperCamelCase : Union[str, Any]=1_6 , __UpperCamelCase : int=None , **__UpperCamelCase : Tuple , ): '''simple docstring''' super().__init__( vocab_size=__UpperCamelCase , hidden_size=__UpperCamelCase , num_hidden_layers=__UpperCamelCase , num_attention_heads=__UpperCamelCase , intermediate_size=__UpperCamelCase , hidden_act=__UpperCamelCase , hidden_dropout_prob=__UpperCamelCase , attention_probs_dropout_prob=__UpperCamelCase , max_position_embeddings=__UpperCamelCase , type_vocab_size=__UpperCamelCase , initializer_range=__UpperCamelCase , layer_norm_eps=__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ = max_ad_position_embeddings snake_case__ = coordinate_size snake_case__ = shape_size snake_case__ = has_relative_attention_bias snake_case__ = rel_pos_bins snake_case__ = max_rel_pos snake_case__ = has_spatial_attention_bias snake_case__ = rel_ad_pos_bins snake_case__ = max_rel_ad_pos snake_case__ = text_embed snake_case__ = visual_embed snake_case__ = input_size snake_case__ = num_channels snake_case__ = patch_size snake_case__ = classifier_dropout class __magic_name__( __lowerCAmelCase ): UpperCAmelCase_ : List[Any] = version.parse("""1.12""" ) @property def __lowerCAmelCase( self : Optional[int] ): '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def __lowerCAmelCase( self : List[Any] ): '''simple docstring''' return 1E-5 @property def __lowerCAmelCase( self : Dict ): '''simple docstring''' return 1_2 def __lowerCAmelCase( self : str , __UpperCamelCase : "ProcessorMixin" , __UpperCamelCase : int = -1 , __UpperCamelCase : int = -1 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional["TensorType"] = None , __UpperCamelCase : int = 3 , __UpperCamelCase : int = 4_0 , __UpperCamelCase : int = 4_0 , ): '''simple docstring''' setattr(processor.image_processor , """apply_ocr""" , __UpperCamelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case__ = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case__ = processor.tokenizer.num_special_tokens_to_add(__UpperCamelCase ) snake_case__ = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence snake_case__ = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes snake_case__ = [[[4_8, 8_4, 7_3, 1_2_8]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) snake_case__ = self._generate_dummy_images(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case__ = dict( processor( __UpperCamelCase , text=__UpperCamelCase , boxes=__UpperCamelCase , return_tensors=__UpperCamelCase , ) ) return inputs
566
0
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCAmelCase__ ( lowerCamelCase_ : int ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict ): return max(metric_fn(lowerCamelCase_ , lowerCamelCase_ ) for gt in ground_truths ) def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] ): __a : Optional[Any] = [line.strip() for line in open(lowerCamelCase_ , 'r' ).readlines()] __a : Any = [] if args.gold_data_mode == "qa": __a : str = pd.read_csv(lowerCamelCase_ , sep='\t' , header=lowerCamelCase_ ) for answer_list in data[1]: __a : List[str] = ast.literal_eval(lowerCamelCase_ ) answers.append(lowerCamelCase_ ) else: __a : List[str] = [line.strip() for line in open(lowerCamelCase_ , 'r' ).readlines()] __a : Optional[Any] = [[reference] for reference in references] __a : Tuple = 0 for prediction, ground_truths in zip(lowerCamelCase_ , lowerCamelCase_ ): total += 1 em += metric_max_over_ground_truths(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) fa += metric_max_over_ground_truths(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __a : List[Any] = 100.0 * em / total __a : int = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : int ): __a : str = args.k __a : Optional[Any] = [line.strip() for line in open(lowerCamelCase_ , 'r' ).readlines()] __a : Tuple = [line.strip() for line in open(lowerCamelCase_ , 'r' ).readlines()] __a : Optional[Any] = 0 for hypo, reference in zip(lowerCamelCase_ , lowerCamelCase_ ): __a : Dict = set(hypo.split('\t' )[:k] ) __a : List[str] = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __a : List[Any] = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] ): def strip_title(lowerCamelCase_ : Dict ): if title.startswith('"' ): __a : List[str] = title[1:] if title.endswith('"' ): __a : str = title[:-1] return title __a : List[str] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCamelCase_ , return_tensors='pt' , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , )['input_ids'].to(args.device ) __a : Union[str, Any] = rag_model.rag.question_encoder(lowerCamelCase_ ) __a : List[Any] = question_enc_outputs[0] __a : str = rag_model.retriever( lowerCamelCase_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) __a : str = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __a : List[Any] = [] for docs in all_docs: __a : Tuple = [strip_title(lowerCamelCase_ ) for title in docs['title']] provenance_strings.append('\t'.join(lowerCamelCase_ ) ) return provenance_strings def UpperCAmelCase__ ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] ): with torch.no_grad(): __a : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCamelCase_ , return_tensors='pt' , padding=lowerCamelCase_ , truncation=lowerCamelCase_ ) __a : int = inputs_dict.input_ids.to(args.device ) __a : Dict = inputs_dict.attention_mask.to(args.device ) __a : List[str] = rag_model.generate( # rag_model overwrites generate lowerCamelCase_ , attention_mask=lowerCamelCase_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCamelCase_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __a : Optional[int] = rag_model.retriever.generator_tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) if args.print_predictions: for q, a in zip(lowerCamelCase_ , lowerCamelCase_ ): logger.info('Q: {} - A: {}'.format(lowerCamelCase_ , lowerCamelCase_ ) ) return answers def UpperCAmelCase__ ( ): __a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=lowerCamelCase_ , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=lowerCamelCase_ , choices=['exact', 'compressed', 'legacy'] , type=lowerCamelCase_ , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=lowerCamelCase_ , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=lowerCamelCase_ , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=lowerCamelCase_ , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=lowerCamelCase_ , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=lowerCamelCase_ , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=lowerCamelCase_ , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=lowerCamelCase_ , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=lowerCamelCase_ , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=5_0 , type=lowerCamelCase_ , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) __a : Tuple = parser.parse_args() __a : List[Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def UpperCAmelCase__ ( lowerCamelCase_ : List[str] ): __a : Union[str, Any] = {} if args.model_type is None: __a : List[Any] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): __a : Union[str, Any] = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration __a : List[Any] = args.n_docs if args.index_name is not None: __a : Union[str, Any] = args.index_name if args.index_path is not None: __a : Union[str, Any] = args.index_path else: __a : List[Any] = BartForConditionalGeneration __a : Optional[int] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , lowerCamelCase_ ) __a : Tuple = get_scores if args.eval_mode == 'e2e' else get_precision_at_k __a : int = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(lowerCamelCase_ , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(lowerCamelCase_ ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): __a : Union[str, Any] = RagRetriever.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) __a : List[Any] = model_class.from_pretrained(lowerCamelCase_ , retriever=lowerCamelCase_ , **lowerCamelCase_ ) model.retriever.init_retrieval() else: __a : List[str] = model_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: __a : List[Any] = [] for line in tqdm(lowerCamelCase_ ): questions.append(line.strip() ) if len(lowerCamelCase_ ) == args.eval_batch_size: __a : Tuple = evaluate_batch_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) preds_file.write('\n'.join(lowerCamelCase_ ) + '\n' ) preds_file.flush() __a : Optional[int] = [] if len(lowerCamelCase_ ) > 0: __a : int = evaluate_batch_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) preds_file.write('\n'.join(lowerCamelCase_ ) ) preds_file.flush() score_fn(lowerCamelCase_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = get_args() main(args)
47
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int SCREAMING_SNAKE_CASE__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _UpperCamelCase( datasets.BuilderConfig ): __SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None def UpperCAmelCase__ ( lowerCamelCase_ : "pyspark.sql.DataFrame" , lowerCamelCase_ : List[int] , ): import pyspark def generate_fn(): __a : List[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: __a : Optional[int] = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) __a : Optional[Any] = partition_df.collect() __a : Union[str, Any] = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class _UpperCamelCase( _BaseExamplesIterable ): def __init__( self : Any , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : Dict=None , ): '''simple docstring''' __a : List[str] = df __a : Tuple = partition_order or range(self.df.rdd.getNumPartitions() ) __a : List[Any] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Tuple ): '''simple docstring''' yield from self.generate_examples_fn() def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : np.random.Generator ): '''simple docstring''' __a : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(SCREAMING_SNAKE_CASE__ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : Union[str, Any] = self.split_shard_indices_by_worker(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return SparkExamplesIterable(self.df , partition_order=SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self : Dict ): '''simple docstring''' return len(self.partition_order ) class _UpperCamelCase( datasets.DatasetBuilder ): __SCREAMING_SNAKE_CASE : List[str] = SparkConfig def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : "pyspark.sql.DataFrame" , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : str = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ): '''simple docstring''' import pyspark __a : int = pyspark.sql.SparkSession.builder.getOrCreate() __a : Optional[int] = df __a : List[Any] = working_dir super().__init__( cache_dir=SCREAMING_SNAKE_CASE__ , config_name=str(self.df.semanticHash() ) , **SCREAMING_SNAKE_CASE__ , ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' def create_cache_and_write_probe(SCREAMING_SNAKE_CASE__ : List[str] ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) __a : List[Any] = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(SCREAMING_SNAKE_CASE__ , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __a : List[Any] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(SCREAMING_SNAKE_CASE__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : datasets.download.download_manager.DownloadManager ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' import pyspark def get_arrow_batch_size(SCREAMING_SNAKE_CASE__ : int ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) __a : List[str] = self.df.count() __a : Dict = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __a : List[str] = ( self.df.limit(SCREAMING_SNAKE_CASE__ ) .repartition(1 ) .mapInArrow(SCREAMING_SNAKE_CASE__ , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) __a : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __a : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ , int(approx_total_size / max_shard_size ) ) __a : int = self.df.repartition(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , ): '''simple docstring''' import pyspark __a : Any = ParquetWriter if file_format == 'parquet' else ArrowWriter __a : Union[str, Any] = os.path.join(self._working_dir , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) if self._working_dir else fpath __a : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __a : List[str] = self.config.features __a : int = self._writer_batch_size __a : Union[str, Any] = self._fs.storage_options def write_arrow(SCREAMING_SNAKE_CASE__ : Optional[int] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __a : Any = pyspark.TaskContext().taskAttemptId() __a : str = next(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) __a : Any = 0 __a : List[str] = writer_class( features=SCREAMING_SNAKE_CASE__ , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , ) __a : Optional[Any] = pa.Table.from_batches([first_batch] ) writer.write_table(SCREAMING_SNAKE_CASE__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __a , __a : Optional[int] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 __a : Optional[Any] = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , writer_batch_size=SCREAMING_SNAKE_CASE__ , storage_options=SCREAMING_SNAKE_CASE__ , embed_local_files=SCREAMING_SNAKE_CASE__ , ) __a : Union[str, Any] = pa.Table.from_batches([batch] ) writer.write_table(SCREAMING_SNAKE_CASE__ ) if writer._num_bytes > 0: __a , __a : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(SCREAMING_SNAKE_CASE__ ) ): __a : Any = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE__ ) , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) shutil.move(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a : Dict = ( self.df.mapInArrow(SCREAMING_SNAKE_CASE__ , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , SCREAMING_SNAKE_CASE__ : str = "arrow" , SCREAMING_SNAKE_CASE__ : Optional[Union[str, int]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): '''simple docstring''' self._validate_cache_dir() __a : List[str] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = not is_remote_filesystem(self._fs ) __a : Optional[Any] = os.path.join if is_local else posixpath.join __a : Any = '-TTTTT-SSSSS-of-NNNNN' __a : Union[str, Any] = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' __a : Any = path_join(self._output_dir , SCREAMING_SNAKE_CASE__ ) __a : Any = 0 __a : Dict = 0 __a : int = 0 __a : List[str] = [] __a : Optional[int] = [] for task_id, content in self._prepare_split_single(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Optional[int] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(SCREAMING_SNAKE_CASE__ ) __a : List[str] = total_num_examples __a : Optional[int] = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: __a : Any = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __a : Dict = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , ): rename( SCREAMING_SNAKE_CASE__ , fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace('TTTTT-SSSSS' , f'''{global_shard_id:05d}''' ).replace('NNNNN' , f'''{total_shards:05d}''' ) , ) __a : Union[str, Any] = [] __a : List[str] = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __a , __a : Union[str, Any] = task_id_and_num_shards[i] for shard_id in range(SCREAMING_SNAKE_CASE__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ).map(lambda SCREAMING_SNAKE_CASE__ : _rename_shard(*SCREAMING_SNAKE_CASE__ ) ).collect() else: # don't use any pattern __a : List[Any] = 0 __a : Any = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , f'''{shard_id:05d}''' ).replace('TTTTT' , f'''{task_id:05d}''' ) , fpath.replace(SCREAMING_SNAKE_CASE__ , '' ) , ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : "datasets.SplitGenerator" , ): '''simple docstring''' return SparkExamplesIterable(self.df )
47
1
'''simple docstring''' def _A ( snake_case__ : int , snake_case__ : int , snake_case__ : list[list[int]] ): def update_area_of_max_square(snake_case__ : int , snake_case__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 snake_case__ : List[Any] = update_area_of_max_square(snake_case__ , col + 1 ) snake_case__ : int = update_area_of_max_square(row + 1 , col + 1 ) snake_case__ : Dict = update_area_of_max_square(row + 1 , snake_case__ ) if mat[row][col]: snake_case__ : Union[str, Any] = 1 + min([right, diagonal, down] ) snake_case__ : List[Any] = max(largest_square_area[0] , snake_case__ ) return sub_problem_sol else: return 0 snake_case__ : Dict = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _A ( snake_case__ : int , snake_case__ : int , snake_case__ : list[list[int]] ): def update_area_of_max_square_using_dp_array( snake_case__ : int , snake_case__ : int , snake_case__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] snake_case__ : List[str] = update_area_of_max_square_using_dp_array(snake_case__ , col + 1 , snake_case__ ) snake_case__ : Any = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , snake_case__ ) snake_case__ : str = update_area_of_max_square_using_dp_array(row + 1 , snake_case__ , snake_case__ ) if mat[row][col]: snake_case__ : Optional[int] = 1 + min([right, diagonal, down] ) snake_case__ : Dict = max(largest_square_area[0] , snake_case__ ) snake_case__ : List[Any] = sub_problem_sol return sub_problem_sol else: return 0 snake_case__ : Tuple = [0] snake_case__ : List[str] = [[-1] * cols for _ in range(snake_case__ )] update_area_of_max_square_using_dp_array(0 , 0 , snake_case__ ) return largest_square_area[0] def _A ( snake_case__ : int , snake_case__ : int , snake_case__ : list[list[int]] ): snake_case__ : Dict = [[0] * (cols + 1) for _ in range(rows + 1 )] snake_case__ : Union[str, Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case__ : int = dp_array[row][col + 1] snake_case__ : Optional[Any] = dp_array[row + 1][col + 1] snake_case__ : Any = dp_array[row + 1][col] if mat[row][col] == 1: snake_case__ : Union[str, Any] = 1 + min(snake_case__ , snake_case__ , snake_case__ ) snake_case__ : Union[str, Any] = max(dp_array[row][col] , snake_case__ ) else: snake_case__ : Dict = 0 return largest_square_area def _A ( snake_case__ : int , snake_case__ : int , snake_case__ : list[list[int]] ): snake_case__ : int = [0] * (cols + 1) snake_case__ : Optional[int] = [0] * (cols + 1) snake_case__ : Tuple = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case__ : Optional[Any] = current_row[col + 1] snake_case__ : str = next_row[col + 1] snake_case__ : Optional[Any] = next_row[col] if mat[row][col] == 1: snake_case__ : Union[str, Any] = 1 + min(snake_case__ , snake_case__ , snake_case__ ) snake_case__ : List[str] = max(current_row[col] , snake_case__ ) else: snake_case__ : Dict = 0 snake_case__ : List[str] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
717
'''simple docstring''' import socket def _A ( ): snake_case__ : Any = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) snake_case__ : str = socket.gethostname() snake_case__ : Union[str, Any] = 1_23_12 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: snake_case__ : int = sock.recv(10_24 ) if not data: break out_file.write(snake_case__ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
694
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self: Optional[int] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: Optional[Any]=12 ,__lowerCAmelCase: List[Any]=7 ,__lowerCAmelCase: str=True ,__lowerCAmelCase: Union[str, Any]=True ,__lowerCAmelCase: Optional[Any]=True ,__lowerCAmelCase: str=99 ,__lowerCAmelCase: Any=32 ,__lowerCAmelCase: Dict=32 ,__lowerCAmelCase: List[Any]=2 ,__lowerCAmelCase: List[Any]=4 ,__lowerCAmelCase: Optional[Any]=37 ,__lowerCAmelCase: Dict=0.1 ,__lowerCAmelCase: List[Any]=0.1 ,__lowerCAmelCase: List[str]=512 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: int=0 ,__lowerCAmelCase: Optional[int]=None ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Dict = batch_size _lowerCamelCase : str = seq_length _lowerCamelCase : Any = is_training _lowerCamelCase : List[str] = use_input_mask _lowerCamelCase : Optional[int] = use_labels _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Any = projection_dim _lowerCamelCase : Optional[Any] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : Dict = dropout _lowerCamelCase : Union[str, Any] = attention_dropout _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : Optional[Any] = scope _lowerCamelCase : Optional[int] = bos_token_id def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowerCamelCase : List[str] = None if self.use_input_mask: _lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _lowerCamelCase : Optional[int] = input_mask.numpy() _lowerCamelCase, _lowerCamelCase : str = input_mask.shape _lowerCamelCase : Tuple = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(__lowerCAmelCase ): _lowerCamelCase : List[Any] = 1 _lowerCamelCase : int = 0 _lowerCamelCase : Dict = self.get_config() return config, input_ids, tf.convert_to_tensor(__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,) def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : str = TFBlipTextModel(config=__lowerCAmelCase ) _lowerCamelCase : str = model(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ,training=__lowerCAmelCase ) _lowerCamelCase : List[str] = model(__lowerCAmelCase ,training=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Tuple = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = config_and_inputs _lowerCamelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = (TFBlipTextModel,) if is_tf_available() else () lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = BlipTextModelTester(self ) _lowerCamelCase : Dict = ConfigTester(self ,config_class=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def _lowercase ( self: int ): '''simple docstring''' pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def _lowercase ( self: Any ): '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def _lowercase ( self: Optional[int] ): '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass @slow def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : int = TFBlipTextModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def _lowercase ( self: Any ,__lowerCAmelCase: Dict=True ): '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=__lowerCAmelCase )
46
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=True ,UpperCAmelCase="pt" ): '''simple docstring''' A__ = {'add_prefix_space': True} if isinstance(UpperCAmelCase ,UpperCAmelCase ) and not line.startswith(' ' ) else {} A__ = padding_side return tokenizer( [line] ,max_length=UpperCAmelCase ,padding='max_length' if pad_to_max_length else None ,truncation=UpperCAmelCase ,return_tensors=UpperCAmelCase ,add_special_tokens=UpperCAmelCase ,**UpperCAmelCase ,) def _A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=None ,): '''simple docstring''' A__ = input_ids.ne(UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _snake_case( UpperCAmelCase ): def __init__(self : List[str] , a : Any , a : Union[str, Any] , a : int , a : Optional[int] , a : Optional[Any]="train" , a : Optional[int]=None , a : Tuple=None , a : str=None , a : Dict="" , ) -> Dict: """simple docstring""" super().__init__() A__ = Path(a ).joinpath(type_path + '.source' ) A__ = Path(a ).joinpath(type_path + '.target' ) A__ = self.get_char_lens(self.src_file ) A__ = max_source_length A__ = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" A__ = tokenizer A__ = prefix if n_obs is not None: A__ = self.src_lens[:n_obs] A__ = src_lang A__ = tgt_lang def __len__(self : Optional[Any] ) -> List[str]: """simple docstring""" return len(self.src_lens ) def __getitem__(self : Any , a : str ) -> Dict[str, torch.Tensor]: """simple docstring""" A__ = index + 1 # linecache starts at 1 A__ = self.prefix + linecache.getline(str(self.src_file ) , a ).rstrip('\n' ) A__ = linecache.getline(str(self.tgt_file ) , a ).rstrip('\n' ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , a ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A__ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , a ) else self.tokenizer ) A__ = self.tokenizer.generator if isinstance(self.tokenizer , a ) else self.tokenizer A__ = encode_line(a , a , self.max_source_length , 'right' ) A__ = encode_line(a , a , self.max_target_length , 'right' ) A__ = source_inputs['input_ids'].squeeze() A__ = target_inputs['input_ids'].squeeze() A__ = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _UpperCamelCase (a : Tuple ) -> Tuple: """simple docstring""" return [len(a ) for x in Path(a ).open().readlines()] def _UpperCamelCase (self : str , a : int ) -> Dict[str, torch.Tensor]: """simple docstring""" A__ = torch.stack([x['input_ids'] for x in batch] ) A__ = torch.stack([x['attention_mask'] for x in batch] ) A__ = torch.stack([x['decoder_input_ids'] for x in batch] ) A__ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , a ) else self.tokenizer.pad_token_id ) A__ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , a ) else self.tokenizer.pad_token_id ) A__ = trim_batch(a , a ) A__ , A__ = trim_batch(a , a , attention_mask=a ) A__ = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch lowerCAmelCase_ = getLogger(__name__) def _A ( UpperCAmelCase ): '''simple docstring''' return list(itertools.chain.from_iterable(UpperCAmelCase ) ) def _A ( UpperCAmelCase ): '''simple docstring''' A__ = get_git_info() save_json(UpperCAmelCase ,os.path.join(UpperCAmelCase ,'git_log.json' ) ) def _A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase=4 ,**UpperCAmelCase ): '''simple docstring''' with open(UpperCAmelCase ,'w' ) as f: json.dump(UpperCAmelCase ,UpperCAmelCase ,indent=UpperCAmelCase ,**UpperCAmelCase ) def _A ( UpperCAmelCase ): '''simple docstring''' with open(UpperCAmelCase ) as f: return json.load(UpperCAmelCase ) def _A ( ): '''simple docstring''' A__ = git.Repo(search_parent_directories=UpperCAmelCase ) A__ = { 'repo_id': str(UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' return list(map(UpperCAmelCase ,UpperCAmelCase ) ) def _A ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' with open(UpperCAmelCase ,'wb' ) as f: return pickle.dump(UpperCAmelCase ,UpperCAmelCase ) def _A ( UpperCAmelCase ): '''simple docstring''' def remove_articles(UpperCAmelCase ): return re.sub(r'\b(a|an|the)\b' ,' ' ,UpperCAmelCase ) def white_space_fix(UpperCAmelCase ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase ): A__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCAmelCase ) ) ) ) def _A ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' A__ = normalize_answer(UpperCAmelCase ).split() A__ = normalize_answer(UpperCAmelCase ).split() A__ = Counter(UpperCAmelCase ) & Counter(UpperCAmelCase ) A__ = sum(common.values() ) if num_same == 0: return 0 A__ = 1.0 * num_same / len(UpperCAmelCase ) A__ = 1.0 * num_same / len(UpperCAmelCase ) A__ = (2 * precision * recall) / (precision + recall) return fa def _A ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' return normalize_answer(UpperCAmelCase ) == normalize_answer(UpperCAmelCase ) def _A ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' assert len(UpperCAmelCase ) == len(UpperCAmelCase ) A__ = 0 for hypo, pred in zip(UpperCAmelCase ,UpperCAmelCase ): em += exact_match_score(UpperCAmelCase ,UpperCAmelCase ) if len(UpperCAmelCase ) > 0: em /= len(UpperCAmelCase ) return {"em": em} def _A ( UpperCAmelCase ): '''simple docstring''' return model_prefix.startswith('rag' ) def _A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' A__ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A__ = 'dropout_rate' for p in extra_params: if getattr(UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ): if not hasattr(UpperCAmelCase ,UpperCAmelCase ) and not hasattr(UpperCAmelCase ,equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(UpperCAmelCase ) ) delattr(UpperCAmelCase ,UpperCAmelCase ) continue A__ = p if hasattr(UpperCAmelCase ,UpperCAmelCase ) else equivalent_param[p] setattr(UpperCAmelCase ,UpperCAmelCase ,getattr(UpperCAmelCase ,UpperCAmelCase ) ) delattr(UpperCAmelCase ,UpperCAmelCase ) return hparams, config
531
0
"""simple docstring""" import colorsys from PIL import Image # type: ignore def __lowercase ( _a , _a , _a ): snake_case_ : List[str] = x snake_case_ : Tuple = y for step in range(_a ): # noqa: B007 snake_case_ : Tuple = a * a - b * b + x snake_case_ : Dict = 2 * a * b + y snake_case_ : Any = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __lowercase ( _a ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def __lowercase ( _a ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(_a , 1 , 1 ) ) def __lowercase ( _a = 800 , _a = 600 , _a = -0.6 , _a = 0 , _a = 3.2 , _a = 50 , _a = True , ): snake_case_ : Tuple = Image.new('''RGB''' , (image_width, image_height) ) snake_case_ : Union[str, Any] = img.load() # loop through the image-coordinates for image_x in range(_a ): for image_y in range(_a ): # determine the figure-coordinates based on the image-coordinates snake_case_ : Tuple = figure_width / image_width * image_height snake_case_ : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width snake_case_ : Optional[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height snake_case_ : Dict = get_distance(_a , _a , _a ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: snake_case_ : str = get_color_coded_rgb(_a ) else: snake_case_ : int = get_black_and_white_rgb(_a ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowercase__ : List[Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
485
"""simple docstring""" lowercase__ : Union[str, Any] = { '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
485
1
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
27
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case__ : Dict = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
392
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ : Union[str, Any] = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] a_ : List[str] = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] a_ : int = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): a_ : Any = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys a_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
148
import random def __a ( __UpperCAmelCase , __UpperCAmelCase ): a__ , a__ , a__ = [], [], [] for element in data: if element < pivot: less.append(__UpperCAmelCase ) elif element > pivot: greater.append(__UpperCAmelCase ) else: equal.append(__UpperCAmelCase ) return less, equal, greater def __a ( __UpperCAmelCase , __UpperCAmelCase ): # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__UpperCAmelCase ) or index < 0: return None a__ = items[random.randint(0 , len(__UpperCAmelCase ) - 1 )] a__ = 0 a__ , a__ , a__ = _partition(__UpperCAmelCase , __UpperCAmelCase ) a__ = len(__UpperCAmelCase ) a__ = len(__UpperCAmelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__UpperCAmelCase , __UpperCAmelCase ) # must be in larger else: return quick_select(__UpperCAmelCase , index - (m + count) )
148
1
import os def lowerCamelCase__ ( snake_case_ : str = "input.txt" ) -> List[Any]: with open(os.path.join(os.path.dirname(__lowerCAmelCase ) , __lowerCAmelCase ) ) as input_file: __snake_case = [ [int(__lowerCAmelCase ) for element in line.split(''',''' )] for line in input_file.readlines() ] __snake_case = len(__lowerCAmelCase ) __snake_case = len(matrix[0] ) __snake_case = [[-1 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): __snake_case = matrix[i][0] for j in range(1 , __lowerCAmelCase ): for i in range(__lowerCAmelCase ): __snake_case = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __lowerCAmelCase ): __snake_case = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __snake_case = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'{solution() = }')
592
'''simple docstring''' def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
50
0
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def __magic_name__( ): '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
700
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
638
0
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = FileLock(str(tmpdir / """foo.lock""" ) ) _SCREAMING_SNAKE_CASE = FileLock(str(tmpdir / """foo.lock""" ) ) _SCREAMING_SNAKE_CASE = 0.01 with locka.acquire(): with pytest.raises(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = time.time() locka.acquire(SCREAMING_SNAKE_CASE_ ) assert time.time() - _start > timeout def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = """a""" * 10_00 + """.lock""" _SCREAMING_SNAKE_CASE = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(SCREAMING_SNAKE_CASE_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 _SCREAMING_SNAKE_CASE = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(SCREAMING_SNAKE_CASE_ ): locka.acquire(0 )
591
'''simple docstring''' import gc import threading import time import psutil import torch class _a : """simple docstring""" def __init__( self ) -> str: _SCREAMING_SNAKE_CASE = psutil.Process() _SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = -1 while True: _SCREAMING_SNAKE_CASE = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = threading.Thread(target=self.peak_monitor ) _SCREAMING_SNAKE_CASE = True self.thread.start() def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = False self.thread.join() return self.cpu_memory_peak UpperCamelCase__ : Tuple = PeakCPUMemory() def lowerCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" # Time _SCREAMING_SNAKE_CASE = {"""time""": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _SCREAMING_SNAKE_CASE = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _SCREAMING_SNAKE_CASE = torch.cuda.memory_allocated(SCREAMING_SNAKE_CASE_ ) torch.cuda.reset_peak_memory_stats() return measures def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: """simple docstring""" # Time _SCREAMING_SNAKE_CASE = {"""time""": time.time() - start_measures["""time"""]} gc.collect() torch.cuda.empty_cache() # CPU mem _SCREAMING_SNAKE_CASE = (psutil.Process().memory_info().rss - start_measures["""cpu"""]) / 2**20 _SCREAMING_SNAKE_CASE = (cpu_peak_tracker.stop() - start_measures["""cpu"""]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _SCREAMING_SNAKE_CASE = (torch.cuda.memory_allocated(SCREAMING_SNAKE_CASE_ ) - start_measures[str(SCREAMING_SNAKE_CASE_ )]) / 2**20 _SCREAMING_SNAKE_CASE = (torch.cuda.max_memory_allocated(SCREAMING_SNAKE_CASE_ ) - start_measures[str(SCREAMING_SNAKE_CASE_ )]) / 2**20 return measures def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" print(F"{description}:" ) print(F"- Time: {measures['time']:.2f}s" ) for i in range(torch.cuda.device_count() ): print(F"- GPU {i} allocated: {measures[str(SCREAMING_SNAKE_CASE_ )]:.2f}MiB" ) _SCREAMING_SNAKE_CASE = measures[F"{i}-peak"] print(F"- GPU {i} peak: {peak:.2f}MiB" ) print(F"- CPU RAM allocated: {measures['cpu']:.2f}MiB" ) print(F"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB" )
591
1
'''simple docstring''' def snake_case__ ( _A: list , _A: list , _A: int , _A: int , _A: int ) -> int: '''simple docstring''' if index == number_of_items: return 0 lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = knapsack(_A , _A , _A , _A , index + 1 ) if weights[index] <= max_weight: lowerCAmelCase = values[index] + knapsack( _A , _A , _A , max_weight - weights[index] , index + 1 ) return max(_A , _A ) if __name__ == "__main__": import doctest doctest.testmod()
605
'''simple docstring''' from __future__ import annotations from typing import Any def snake_case__ ( _A: list ) -> int: '''simple docstring''' if not postfix_notation: return 0 lowerCAmelCase = {"""+""", """-""", """*""", """/"""} lowerCAmelCase = [] for token in postfix_notation: if token in operations: lowerCAmelCase , lowerCAmelCase = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_A ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
605
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> List[Any]: '''simple docstring''' if "img_encoder.pos_embed" in name: UpperCAmelCase_ = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: UpperCAmelCase_ = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: UpperCAmelCase_ = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: UpperCAmelCase_ = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: UpperCAmelCase_ = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: UpperCAmelCase_ = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: UpperCAmelCase_ = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: UpperCAmelCase_ = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: UpperCAmelCase_ = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: UpperCAmelCase_ = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: UpperCAmelCase_ = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: UpperCAmelCase_ = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: UpperCAmelCase_ = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: UpperCAmelCase_ = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: UpperCAmelCase_ = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: UpperCAmelCase_ = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: UpperCAmelCase_ = name.replace("c_fc" , "fc1" ) if "c_proj" in name: UpperCAmelCase_ = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: UpperCAmelCase_ = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: UpperCAmelCase_ = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: UpperCAmelCase_ = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: UpperCAmelCase_ = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: UpperCAmelCase_ = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: UpperCAmelCase_ = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : List[str] ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_ = orig_state_dict.pop(snake_case_ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors UpperCAmelCase_ = key.split("." ) UpperCAmelCase_ , UpperCAmelCase_ = int(key_split[2] ), int(key_split[4] ) UpperCAmelCase_ = config.vision_config.hidden_size if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[dim : dim * 2, :] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[dim : dim * 2] UpperCAmelCase_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors UpperCAmelCase_ = key.split("." ) UpperCAmelCase_ = int(key_split[3] ) UpperCAmelCase_ = config.text_config.hidden_size if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[ dim : dim * 2, : ] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[dim : dim * 2] UpperCAmelCase_ = val[-dim:] else: UpperCAmelCase_ = rename_key(snake_case_ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): UpperCAmelCase_ = val.squeeze_() else: UpperCAmelCase_ = val return orig_state_dict def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Dict="groupvit-gcc-yfcc" , snake_case_ : Any=False ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = GroupViTConfig() UpperCAmelCase_ = GroupViTModel(snake_case_ ).eval() UpperCAmelCase_ = torch.load(snake_case_ , map_location="cpu" )["model"] UpperCAmelCase_ = convert_state_dict(snake_case_ , snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(snake_case_ , strict=snake_case_ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(snake_case_ ) == 0) # verify result UpperCAmelCase_ = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = processor(text=["a photo of a cat", "a photo of a dog"] , images=snake_case_ , padding=snake_case_ , return_tensors="pt" ) with torch.no_grad(): UpperCAmelCase_ = model(**snake_case_ ) if model_name == "groupvit-gcc-yfcc": UpperCAmelCase_ = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": UpperCAmelCase_ = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(f"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , snake_case_ , atol=1E-3 ) processor.save_pretrained(snake_case_ ) model.save_pretrained(snake_case_ ) print("Successfully saved processor and model to" , snake_case_ ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(snake_case_ , organization="nielsr" ) model.push_to_hub(snake_case_ , organization="nielsr" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Union[str, Any] =argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) SCREAMING_SNAKE_CASE_: Union[str, Any] =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
78
'''simple docstring''' import os def _snake_case ( ): """simple docstring""" with open(os.path.dirname(A_ ) + """/grid.txt""" ) as f: a_ : Dict = [] # noqa: E741 for _ in range(20 ): l.append([int(A_ ) for x in f.readline().split()] ) a_ : Dict = 0 # right for i in range(20 ): for j in range(17 ): a_ : Optional[int] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: a_ : List[str] = temp # down for i in range(17 ): for j in range(20 ): a_ : str = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: a_ : Optional[int] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): a_ : Optional[int] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: a_ : str = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): a_ : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: a_ : List[Any] = temp return maximum if __name__ == "__main__": print(solution())
577
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCAmelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> Any: if isinstance(UpperCamelCase ,torch.Tensor ): return image elif isinstance(UpperCamelCase ,PIL.Image.Image ): UpperCAmelCase_ : Dict = [image] UpperCAmelCase_ : Any = [trans(img.convert('RGB' ) ) for img in image] UpperCAmelCase_ : str = torch.stack(UpperCamelCase ) return image class lowercase ( a_ ): def __init__( self , _snake_case , _snake_case) -> Optional[Any]: super().__init__() # make sure scheduler can always be converted to DDIM UpperCAmelCase_ : Any = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=_snake_case , scheduler=_snake_case) def _snake_case ( self , _snake_case) -> Optional[int]: if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""") def _snake_case ( self , _snake_case , _snake_case , _snake_case) -> Tuple: # get the original timestep using init_timestep UpperCAmelCase_ : List[str] = min(int(num_inference_steps * strength) , _snake_case) UpperCAmelCase_ : Any = max(num_inference_steps - init_timestep , 0) UpperCAmelCase_ : List[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None) -> Optional[int]: if not isinstance(_snake_case , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_snake_case)}""") UpperCAmelCase_ : Optional[Any] = image.to(device=_snake_case , dtype=_snake_case) if isinstance(_snake_case , _snake_case) and len(_snake_case) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(_snake_case)}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""") UpperCAmelCase_ : List[str] = init_latents.shape UpperCAmelCase_ : List[str] = randn_tensor(_snake_case , generator=_snake_case , device=_snake_case , dtype=_snake_case) # get latents print('add noise to latents at timestep' , _snake_case) UpperCAmelCase_ : Optional[Any] = self.scheduler.add_noise(_snake_case , _snake_case , _snake_case) UpperCAmelCase_ : str = init_latents return latents @torch.no_grad() def __call__( self , _snake_case = None , _snake_case = 0.8 , _snake_case = 1 , _snake_case = None , _snake_case = 0.0 , _snake_case = 50 , _snake_case = None , _snake_case = "pil" , _snake_case = True , ) -> Union[ImagePipelineOutput, Tuple]: self.check_inputs(_snake_case) # 2. Preprocess image UpperCAmelCase_ : Tuple = preprocess(_snake_case) # 3. set timesteps self.scheduler.set_timesteps(_snake_case , device=self.device) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.get_timesteps(_snake_case , _snake_case , self.device) UpperCAmelCase_ : List[Any] = timesteps[:1].repeat(_snake_case) # 4. Prepare latent variables UpperCAmelCase_ : List[Any] = self.prepare_latents(_snake_case , _snake_case , _snake_case , self.unet.dtype , self.device , _snake_case) UpperCAmelCase_ : List[str] = latents # 5. Denoising loop for t in self.progress_bar(_snake_case): # 1. predict noise model_output UpperCAmelCase_ : Optional[Any] = self.unet(_snake_case , _snake_case).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCAmelCase_ : List[Any] = self.scheduler.step( _snake_case , _snake_case , _snake_case , eta=_snake_case , use_clipped_model_output=_snake_case , generator=_snake_case , ).prev_sample UpperCAmelCase_ : Optional[int] = (image / 2 + 0.5).clamp(0 , 1) UpperCAmelCase_ : Any = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": UpperCAmelCase_ : Optional[int] = self.numpy_to_pil(_snake_case) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_snake_case)
471
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class lowercase : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ) -> str: UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Tuple = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : Tuple = use_input_mask UpperCAmelCase_ : List[Any] = use_token_type_ids UpperCAmelCase_ : Optional[int] = use_labels UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Dict = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_vocab_size UpperCAmelCase_ : int = type_sequence_label_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Any = num_labels UpperCAmelCase_ : Optional[Any] = num_choices UpperCAmelCase_ : str = scope def _snake_case ( self) -> Tuple: UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase_ : Any = None if self.use_input_mask: UpperCAmelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase_ : Union[str, Any] = None if self.use_token_type_ids: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Optional[Any] = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size] , self.num_choices) UpperCAmelCase_ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self) -> Optional[Any]: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , ) def _snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case) -> Union[str, Any]: UpperCAmelCase_ : str = OpenLlamaModel(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ : Dict = model(_snake_case , attention_mask=_snake_case) UpperCAmelCase_ : List[str] = model(_snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) -> int: UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : List[Any] = OpenLlamaModel(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ : Optional[int] = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) UpperCAmelCase_ : Any = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , ) UpperCAmelCase_ : Optional[int] = model(_snake_case , attention_mask=_snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) -> Any: UpperCAmelCase_ : Optional[int] = OpenLlamaForCausalLM(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ : Optional[int] = model(_snake_case , attention_mask=_snake_case , labels=_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) -> Union[str, Any]: UpperCAmelCase_ : Any = True UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : int = OpenLlamaForCausalLM(config=_snake_case) model.to(_snake_case) model.eval() # first forward pass UpperCAmelCase_ : List[str] = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , ) UpperCAmelCase_ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ : str = ids_tensor((self.batch_size, 3) , config.vocab_size) UpperCAmelCase_ : int = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and UpperCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1) UpperCAmelCase_ : List[str] = torch.cat([input_mask, next_mask] , dim=-1) UpperCAmelCase_ : Optional[Any] = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] UpperCAmelCase_ : List[str] = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )['hidden_states'][0] # select random slice UpperCAmelCase_ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1]).item() UpperCAmelCase_ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1e-3)) def _snake_case ( self) -> List[Any]: UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( a_, a_, a_, unittest.TestCase ): _lowerCamelCase : Dict= ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) _lowerCamelCase : str= (OpenLlamaForCausalLM,) if is_torch_available() else () _lowerCamelCase : Optional[int]= ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : Tuple= False _lowerCamelCase : int= False def _snake_case ( self) -> int: UpperCAmelCase_ : Any = OpenLlamaModelTester(self) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self , config_class=_snake_case , hidden_size=37) def _snake_case ( self) -> Optional[Any]: self.config_tester.run_common_tests() def _snake_case ( self) -> str: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def _snake_case ( self) -> Union[str, Any]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : List[Any] = type self.model_tester.create_and_check_model(*_snake_case) def _snake_case ( self) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = 3 UpperCAmelCase_ : List[str] = input_dict['input_ids'] UpperCAmelCase_ : Optional[Any] = input_ids.ne(1).to(_snake_case) UpperCAmelCase_ : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) UpperCAmelCase_ : List[Any] = OpenLlamaForSequenceClassification(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ : Tuple = model(_snake_case , attention_mask=_snake_case , labels=_snake_case) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _snake_case ( self) -> Any: UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : int = 'single_label_classification' UpperCAmelCase_ : int = input_dict['input_ids'] UpperCAmelCase_ : Any = input_ids.ne(1).to(_snake_case) UpperCAmelCase_ : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) UpperCAmelCase_ : int = OpenLlamaForSequenceClassification(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ : List[str] = model(_snake_case , attention_mask=_snake_case , labels=_snake_case) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _snake_case ( self) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : int = 3 UpperCAmelCase_ : Any = 'multi_label_classification' UpperCAmelCase_ : Tuple = input_dict['input_ids'] UpperCAmelCase_ : str = input_ids.ne(1).to(_snake_case) UpperCAmelCase_ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) UpperCAmelCase_ : Optional[Any] = OpenLlamaForSequenceClassification(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ : List[Any] = model(_snake_case , attention_mask=_snake_case , labels=_snake_case) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test') def _snake_case ( self) -> Optional[int]: pass @parameterized.expand([('linear',), ('dynamic',)]) def _snake_case ( self , _snake_case) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[Any] = ids_tensor([1, 10] , config.vocab_size) UpperCAmelCase_ : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ : int = OpenLlamaModel(_snake_case) original_model.to(_snake_case) original_model.eval() UpperCAmelCase_ : Optional[Any] = original_model(_snake_case).last_hidden_state UpperCAmelCase_ : Tuple = original_model(_snake_case).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ : Dict = {'type': scaling_type, 'factor': 10.0} UpperCAmelCase_ : Union[str, Any] = OpenLlamaModel(_snake_case) scaled_model.to(_snake_case) scaled_model.eval() UpperCAmelCase_ : Dict = scaled_model(_snake_case).last_hidden_state UpperCAmelCase_ : Optional[int] = scaled_model(_snake_case).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1e-5)) else: self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1e-5))
471
1
import requests from bsa import BeautifulSoup def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = BeautifulSoup(requests.get(lowercase , params=lowercase ).content , "html.parser" ) SCREAMING_SNAKE_CASE : Union[str, Any] = soup.find("div" , attrs={"class": "gs_ri"} ) SCREAMING_SNAKE_CASE : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": snake_case = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2_018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
62
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000 ) -> int: _lowerCAmelCase : Optional[int] = 2**power _lowerCAmelCase : str = str(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = list(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = 0 for i in list_num: sum_of_num += int(_lowerCamelCase ) return sum_of_num if __name__ == "__main__": _a : str = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) _a : Tuple = solution(power) print('Sum of the digits is: ', result)
213
0
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] ): for param in module.parameters(): lowercase = False def SCREAMING_SNAKE_CASE ( ): lowercase = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase = """mps""" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def SCREAMING_SNAKE_CASE ( lowercase_ : Any ): lowercase = plt.imshow(__UpperCAmelCase ) fig.axes.get_xaxis().set_visible(__UpperCAmelCase ) fig.axes.get_yaxis().set_visible(__UpperCAmelCase ) plt.show() def SCREAMING_SNAKE_CASE ( ): lowercase = datetime.now() lowercase = current_time.strftime("""%H:%M:%S""" ) return timestamp
713
'''simple docstring''' import requests def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = {"""Content-Type""": """application/json"""} lowercase = requests.post(lowercase_ , json={"""text""": message_body} , headers=lowercase_ ) if response.status_code != 200: lowercase = ( """Request to slack returned an error """ F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowercase_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
653
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = "mgp-str" def __init__( self , A_=[32, 128] , A_=4 , A_=3 , A_=27 , A_=38 , A_=5_0257 , A_=3_0522 , A_=768 , A_=12 , A_=12 , A_=4.0 , A_=True , A_=False , A_=1e-5 , A_=0.0 , A_=0.0 , A_=0.0 , A_=False , A_=0.0_2 , **A_ , ) -> List[str]: super().__init__(**A_ ) lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = max_token_length lowerCAmelCase = num_character_labels lowerCAmelCase = num_bpe_labels lowerCAmelCase = num_wordpiece_labels lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = mlp_ratio lowerCAmelCase = distilled lowerCAmelCase = layer_norm_eps lowerCAmelCase = drop_rate lowerCAmelCase = qkv_bias lowerCAmelCase = attn_drop_rate lowerCAmelCase = drop_path_rate lowerCAmelCase = output_aa_attentions lowerCAmelCase = initializer_range
433
'''simple docstring''' import warnings from .generation import TFGenerationMixin class __snake_case( _lowerCAmelCase ): '''simple docstring''' warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , _lowerCAmelCase , )
433
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} lowerCamelCase_ = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } lowerCamelCase_ = { "allenai/longformer-base-4096": 4096, "allenai/longformer-large-4096": 4096, "allenai/longformer-large-4096-finetuned-triviaqa": 4096, "allenai/longformer-base-4096-extra.pos.embd.only": 4096, "allenai/longformer-large-4096-extra.pos.embd.only": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCAmelCase_ ( ): SCREAMING_SNAKE_CASE__ =( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) SCREAMING_SNAKE_CASE__ =bs[:] SCREAMING_SNAKE_CASE__ =0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE__ =[chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase, __UpperCamelCase ) ) def UpperCAmelCase_ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =set() SCREAMING_SNAKE_CASE__ =word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE__ =char return pairs class __a ( __lowerCamelCase ): """simple docstring""" _A : Optional[Any] = VOCAB_FILES_NAMES _A : Dict = PRETRAINED_VOCAB_FILES_MAP _A : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : int = ["input_ids", "attention_mask"] def __init__( self : Optional[int] ,_UpperCamelCase : Dict ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Optional[int]="replace" ,_UpperCamelCase : List[str]="<s>" ,_UpperCamelCase : Any="</s>" ,_UpperCamelCase : Union[str, Any]="</s>" ,_UpperCamelCase : List[str]="<s>" ,_UpperCamelCase : int="<unk>" ,_UpperCamelCase : str="<pad>" ,_UpperCamelCase : int="<mask>" ,_UpperCamelCase : Optional[int]=False ,**_UpperCamelCase : Dict ,) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ =AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else bos_token SCREAMING_SNAKE_CASE__ =AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else eos_token SCREAMING_SNAKE_CASE__ =AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else sep_token SCREAMING_SNAKE_CASE__ =AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else cls_token SCREAMING_SNAKE_CASE__ =AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else unk_token SCREAMING_SNAKE_CASE__ =AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ =AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else mask_token super().__init__( errors=_UpperCamelCase ,bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,sep_token=_UpperCamelCase ,cls_token=_UpperCamelCase ,pad_token=_UpperCamelCase ,mask_token=_UpperCamelCase ,add_prefix_space=_UpperCamelCase ,**_UpperCamelCase ,) with open(_UpperCamelCase ,encoding="""utf-8""" ) as vocab_handle: SCREAMING_SNAKE_CASE__ =json.load(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ ={v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE__ =errors # how to handle errors in decoding SCREAMING_SNAKE_CASE__ =bytes_to_unicode() SCREAMING_SNAKE_CASE__ ={v: k for k, v in self.byte_encoder.items()} with open(_UpperCamelCase ,encoding="""utf-8""" ) as merges_handle: SCREAMING_SNAKE_CASE__ =merges_handle.read().split("""\n""" )[1:-1] SCREAMING_SNAKE_CASE__ =[tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE__ =dict(zip(_UpperCamelCase ,range(len(_UpperCamelCase ) ) ) ) SCREAMING_SNAKE_CASE__ ={} SCREAMING_SNAKE_CASE__ =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE__ =re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __A ( self : Optional[Any] ) -> str: '''simple docstring''' return len(self.encoder ) def __A ( self : str ) -> Any: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def __A ( self : List[str] ,_UpperCamelCase : List[Any] ) -> str: '''simple docstring''' if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE__ =tuple(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =get_pairs(_UpperCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE__ =min(_UpperCamelCase ,key=lambda _UpperCamelCase : self.bpe_ranks.get(_UpperCamelCase ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ =bigram SCREAMING_SNAKE_CASE__ =[] SCREAMING_SNAKE_CASE__ =0 while i < len(_UpperCamelCase ): try: SCREAMING_SNAKE_CASE__ =word.index(_UpperCamelCase ,_UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE__ =j if word[i] == first and i < len(_UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE__ =tuple(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =new_word if len(_UpperCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE__ =get_pairs(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =""" """.join(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =word return word def __A ( self : str ,_UpperCamelCase : str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =[] for token in re.findall(self.pat ,_UpperCamelCase ): SCREAMING_SNAKE_CASE__ ="""""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCamelCase ).split(""" """ ) ) return bpe_tokens def __A ( self : Any ,_UpperCamelCase : Tuple ) -> Dict: '''simple docstring''' return self.encoder.get(_UpperCamelCase ,self.encoder.get(self.unk_token ) ) def __A ( self : int ,_UpperCamelCase : Dict ) -> List[str]: '''simple docstring''' return self.decoder.get(_UpperCamelCase ) def __A ( self : str ,_UpperCamelCase : int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ ="""""".join(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors ) return text def __A ( self : int ,_UpperCamelCase : str ,_UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_UpperCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE__ =os.path.join( _UpperCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ =os.path.join( _UpperCamelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_UpperCamelCase ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_UpperCamelCase ,ensure_ascii=_UpperCamelCase ) + """\n""" ) SCREAMING_SNAKE_CASE__ =0 with open(_UpperCamelCase ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _UpperCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) SCREAMING_SNAKE_CASE__ =token_index writer.write(""" """.join(_UpperCamelCase ) + """\n""" ) index += 1 return vocab_file, merge_file def __A ( self : Union[str, Any] ,_UpperCamelCase : List[int] ,_UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ =[self.cls_token_id] SCREAMING_SNAKE_CASE__ =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A ( self : str ,_UpperCamelCase : List[int] ,_UpperCamelCase : Optional[List[int]] = None ,_UpperCamelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase ,token_ids_a=_UpperCamelCase ,already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) + [1] def __A ( self : Any ,_UpperCamelCase : List[int] ,_UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =[self.sep_token_id] SCREAMING_SNAKE_CASE__ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self : Dict ,_UpperCamelCase : List[Any] ,_UpperCamelCase : List[Any]=False ,**_UpperCamelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =kwargs.pop("""add_prefix_space""" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCamelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE__ =""" """ + text return (text, kwargs)
709
import math def UpperCAmelCase_ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =[] SCREAMING_SNAKE_CASE__ =2 SCREAMING_SNAKE_CASE__ =int(math.sqrt(__UpperCamelCase ) ) # Size of every segment SCREAMING_SNAKE_CASE__ =[True] * (end + 1) SCREAMING_SNAKE_CASE__ =[] while start <= end: if temp[start] is True: in_prime.append(__UpperCamelCase ) for i in range(start * start, end + 1, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =False start += 1 prime += in_prime SCREAMING_SNAKE_CASE__ =end + 1 SCREAMING_SNAKE_CASE__ =min(2 * end, __UpperCamelCase ) while low <= n: SCREAMING_SNAKE_CASE__ =[True] * (high - low + 1) for each in in_prime: SCREAMING_SNAKE_CASE__ =math.floor(low / each ) * each if t < low: t += each for j in range(__UpperCamelCase, high + 1, __UpperCamelCase ): SCREAMING_SNAKE_CASE__ =False for j in range(len(__UpperCamelCase ) ): if temp[j] is True: prime.append(j + low ) SCREAMING_SNAKE_CASE__ =high + 1 SCREAMING_SNAKE_CASE__ =min(high + end, __UpperCamelCase ) return prime print(sieve(10**6))
588
0
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) @dataclass class snake_case_ ( _lowerCAmelCase ): __lowerCAmelCase = field( default=0.0 ,metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) __lowerCAmelCase = field(default=_lowerCAmelCase ,metadata={"help": "Whether to SortishSamler or not."} ) __lowerCAmelCase = field( default=_lowerCAmelCase ,metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) __lowerCAmelCase = field(default=_lowerCAmelCase ,metadata={"help": "whether to use adafactor"} ) __lowerCAmelCase = field( default=_lowerCAmelCase ,metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) __lowerCAmelCase = field( default=_lowerCAmelCase ,metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) __lowerCAmelCase = field(default=_lowerCAmelCase ,metadata={"help": "Dropout probability. Goes into model.config."} ) __lowerCAmelCase = field( default=_lowerCAmelCase ,metadata={"help": "Attention dropout probability. Goes into model.config."} ) __lowerCAmelCase = field( default="linear" ,metadata={"help": f"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} ,)
237
import numpy as np def lowerCAmelCase_ (lowerCAmelCase__: np.ndarray , lowerCAmelCase__: float ): """simple docstring""" return np.where(vector > 0 , lowerCAmelCase__ , (alpha * (np.exp(lowerCAmelCase__ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
556
0
'''simple docstring''' from __future__ import annotations from math import gcd def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] = 2 , __lowerCAmelCase : Optional[int] = 1 , __lowerCAmelCase : List[Any] = 3 , ): if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(__lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ) -> int: return (pow(A_ , 2 ) + step) % modulus for _ in range(A_ ): # These track the position within the cycle detection logic. lowerCamelCase__ = seed lowerCamelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCamelCase__ = rand_fn(A_ , A_ , A_ ) lowerCamelCase__ = rand_fn(A_ , A_ , A_ ) lowerCamelCase__ = rand_fn(A_ , A_ , A_ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCamelCase__ = gcd(hare - tortoise , A_ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCamelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse UpperCamelCase : str = argparse.ArgumentParser() parser.add_argument( 'num', type=int, help='The value to find a divisor of', ) parser.add_argument( '--attempts', type=int, default=3, help='The number of attempts before giving up', ) UpperCamelCase : Dict = parser.parse_args() UpperCamelCase : List[Any] = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'{args.num} is probably prime') else: UpperCamelCase : Tuple = args.num // divisor print(F'{args.num} = {divisor} * {quotient}')
709
'''simple docstring''' from manim import * class UpperCamelCase__ (a ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = Rectangle(height=0.5 ,width=0.5 ) lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = VGroup(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""CPU""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(1 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""GPU""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) gpu.align_to(_lowerCAmelCase ,_lowerCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [mem.copy() for i in range(6 )] lowerCamelCase__ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0 ) lowerCamelCase__ = Text("""Model""" ,font_size=24 ) lowerCamelCase__ = Group(_lowerCAmelCase ,_lowerCAmelCase ).arrange(_lowerCAmelCase ,buff=0.5 ,aligned_edge=_lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,Create(_lowerCAmelCase ,run_time=1 ) ,) lowerCamelCase__ = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' ,font_size=24 ,) lowerCamelCase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase__ = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase ,run_time=2.5 ) ,Write(_lowerCAmelCase ) ,Write(_lowerCAmelCase ) ) self.add(_lowerCAmelCase ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = [] for i, rect in enumerate(_lowerCAmelCase ): lowerCamelCase__ = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase ,opacity=0.7 ) cpu_target.move_to(_lowerCAmelCase ) cpu_target.generate_target() lowerCamelCase__ = 0.46 / 4 lowerCamelCase__ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=_lowerCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target ,direction=_lowerCAmelCase ,buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target ,direction=_lowerCAmelCase ,buff=0.0 ) cpu_targs.append(_lowerCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCAmelCase ) ) second_animations.append(MoveToTarget(_lowerCAmelCase ,run_time=1.5 ) ) self.play(*_lowerCAmelCase ) self.play(*_lowerCAmelCase ) self.wait()
9
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowerCamelCase_ = logging.get_logger(__name__) @dataclass class __a ( __lowerCamelCase ): """simple docstring""" _A : str = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : Optional[Any] ,**_UpperCamelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE__ =deprecated_arg[3:] SCREAMING_SNAKE_CASE__ =not kwargs.pop(_UpperCamelCase ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) SCREAMING_SNAKE_CASE__ =kwargs.pop("""tpu_name""" ,self.tpu_name ) SCREAMING_SNAKE_CASE__ =kwargs.pop("""device_idx""" ,self.device_idx ) SCREAMING_SNAKE_CASE__ =kwargs.pop("""eager_mode""" ,self.eager_mode ) SCREAMING_SNAKE_CASE__ =kwargs.pop("""use_xla""" ,self.use_xla ) super().__init__(**_UpperCamelCase ) _A : str = field( default=__lowerCamelCase , metadata={"help": "Name of TPU"} , ) _A : int = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) _A : bool = field(default=__lowerCamelCase , metadata={"help": "Benchmark models in eager model."} ) _A : bool = field( default=__lowerCamelCase , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def __A ( self : List[str] ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self ,["""tf"""] ) SCREAMING_SNAKE_CASE__ =None if self.tpu: try: if self.tpu_name: SCREAMING_SNAKE_CASE__ =tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: SCREAMING_SNAKE_CASE__ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: SCREAMING_SNAKE_CASE__ =None return tpu @cached_property def __A ( self : Dict ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self ,["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) SCREAMING_SNAKE_CASE__ =tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] ,"""GPU""" ) SCREAMING_SNAKE_CASE__ =tf.distribute.OneDeviceStrategy(device=f"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] ,"""GPU""" ) # disable GPU SCREAMING_SNAKE_CASE__ =tf.distribute.OneDeviceStrategy(device=f"""/cpu:{self.device_idx}""" ) return strategy @property def __A ( self : Dict ) -> bool: '''simple docstring''' requires_backends(self ,["""tf"""] ) return self._setup_tpu is not None @property def __A ( self : Any ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self ,["""tf"""] ) return self._setup_strategy @property def __A ( self : List[Any] ) -> List[str]: '''simple docstring''' requires_backends(self ,["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def __A ( self : Dict ) -> int: '''simple docstring''' requires_backends(self ,["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __A ( self : List[Any] ) -> bool: '''simple docstring''' return self.n_gpu > 0
151
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def UpperCAmelCase_ ( __UpperCamelCase = 8 ): SCREAMING_SNAKE_CASE__ =ascii_letters + digits + punctuation return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase ): # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ =i // 3 SCREAMING_SNAKE_CASE__ =i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) SCREAMING_SNAKE_CASE__ =( chars_incl + random(__UpperCamelCase, quotient + remainder ) + random(__UpperCamelCase, __UpperCamelCase ) + random(__UpperCamelCase, __UpperCamelCase ) ) SCREAMING_SNAKE_CASE__ =list(__UpperCamelCase ) shuffle(__UpperCamelCase ) return "".join(__UpperCamelCase ) # random is a generalised function for letters, characters and numbers def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase ): return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase ): pass # Put your code here... def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase ): pass # Put your code here... def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase ): pass # Put your code here... def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase = 8 ): if len(__UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False SCREAMING_SNAKE_CASE__ =any(char in ascii_uppercase for char in password ) SCREAMING_SNAKE_CASE__ =any(char in ascii_lowercase for char in password ) SCREAMING_SNAKE_CASE__ =any(char in digits for char in password ) SCREAMING_SNAKE_CASE__ =any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def UpperCAmelCase_ ( ): SCREAMING_SNAKE_CASE__ =int(input("""Please indicate the max length of your password: """ ).strip() ) SCREAMING_SNAKE_CASE__ =input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""", password_generator(__UpperCamelCase ) ) print( """Alternative Password generated:""", alternative_password_generator(__UpperCamelCase, __UpperCamelCase ), ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
151
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
322
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def lowerCamelCase_ ( _a : Optional[int] ): '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(F'''could not parse string as bool {string}''' ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
322
1
from typing import TYPE_CHECKING from ...utils import _LazyModule SCREAMING_SNAKE_CASE : int = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
89
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1_3 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=9_9 , SCREAMING_SNAKE_CASE=1_6 , SCREAMING_SNAKE_CASE=3_6 , SCREAMING_SNAKE_CASE=6 , SCREAMING_SNAKE_CASE=6 , SCREAMING_SNAKE_CASE=6 , SCREAMING_SNAKE_CASE=3_7 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=5_1_2 , SCREAMING_SNAKE_CASE=1_6 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=None , ) -> Union[str, Any]: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_input_mask a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = embedding_size a__ = hidden_size a__ = num_hidden_layers a__ = num_hidden_groups a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope def _UpperCAmelCase ( self ) -> List[str]: a__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ = ids_tensor([self.batch_size] , self.num_choices ) a__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Any: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: a__ = AlbertModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() a__ = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE ) a__ = model(SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE ) a__ = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: a__ = AlbertForPreTraining(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() a__ = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , sentence_order_label=SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: a__ = AlbertForMaskedLM(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() a__ = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: a__ = AlbertForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() a__ = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , start_positions=SCREAMING_SNAKE_CASE , end_positions=SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: a__ = self.num_labels a__ = AlbertForSequenceClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() a__ = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: a__ = self.num_labels a__ = AlbertForTokenClassification(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() a__ = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: a__ = self.num_choices a__ = AlbertForMultipleChoice(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() a__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a__ = model( SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> Tuple: a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" _lowercase : List[str] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _lowercase : List[str] = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) _lowercase : List[str] = True def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[str]: a__ = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE ): a__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE ) a__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE ) return inputs_dict def _UpperCAmelCase ( self ) -> Dict: a__ = AlbertModelTester(self ) a__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Union[str, Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Union[str, Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> List[Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Union[str, Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Optional[Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> List[Any]: a__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) @slow def _UpperCAmelCase ( self ) -> List[str]: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = AlbertModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_torch class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def _UpperCAmelCase ( self ) -> Optional[Any]: a__ = AlbertModel.from_pretrained('''albert-base-v2''' ) a__ = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) a__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): a__ = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )[0] a__ = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE ) a__ = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
194
0
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A = logging.get_logger(__name__) A = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } A = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } A = {'facebook/blenderbot_small-90M': 5_1_2} def lowerCAmelCase__ ( lowerCamelCase__ ) -> Optional[Any]: A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char A = set(lowerCamelCase__ ) return pairs class UpperCAmelCase__ ( UpperCamelCase ): lowerCAmelCase_ : Any = VOCAB_FILES_NAMES lowerCAmelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , snake_case : Optional[int] , snake_case : Dict , snake_case : Optional[Any]="__start__" , snake_case : Optional[int]="__end__" , snake_case : Tuple="__unk__" , snake_case : List[Any]="__null__" , **snake_case : str , ) -> Optional[Any]: '''simple docstring''' super().__init__(unk_token=snake_case , bos_token=snake_case , eos_token=snake_case , pad_token=snake_case , **snake_case ) with open(snake_case , encoding='utf-8' ) as vocab_handle: A = json.load(snake_case ) A = {v: k for k, v in self.encoder.items()} with open(snake_case , encoding='utf-8' ) as merges_handle: A = merges_handle.read().split('\n' )[1:-1] A = [tuple(merge.split() ) for merge in merges] A = dict(zip(snake_case , range(len(snake_case ) ) ) ) A = {} @property def A_ ( self : Tuple ) -> int: '''simple docstring''' return len(self.encoder ) def A_ ( self : Tuple ) -> Dict: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A_ ( self : str , snake_case : str ) -> str: '''simple docstring''' if token in self.cache: return self.cache[token] A = re.sub('([.,!?()])' , r' \1' , snake_case ) A = re.sub('(\')' , r' \1 ' , snake_case ) A = re.sub(r'\s{2,}' , ' ' , snake_case ) if "\n" in token: A = token.replace('\n' , ' __newln__' ) A = token.split(' ' ) A = [] for token in tokens: if not len(snake_case ): continue A = token.lower() A = tuple(snake_case ) A = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) A = get_pairs(snake_case ) if not pairs: words.append(snake_case ) continue while True: A = min(snake_case , key=lambda snake_case : self.bpe_ranks.get(snake_case , float('inf' ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(snake_case ): try: A = word.index(snake_case , snake_case ) new_word.extend(word[i:j] ) A = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(snake_case ) A = new_word if len(snake_case ) == 1: break else: A = get_pairs(snake_case ) A = '@@ '.join(snake_case ) A = word[:-4] A = word words.append(snake_case ) return " ".join(snake_case ) def A_ ( self : Tuple , snake_case : str ) -> List[str]: '''simple docstring''' A = [] A = re.findall(r'\S+\n?' , snake_case ) for token in words: split_tokens.extend(list(self.bpe(snake_case ).split(' ' ) ) ) return split_tokens def A_ ( self : Optional[Any] , snake_case : str ) -> int: '''simple docstring''' A = token.lower() return self.encoder.get(snake_case , self.encoder.get(self.unk_token ) ) def A_ ( self : Any , snake_case : int ) -> str: '''simple docstring''' return self.decoder.get(snake_case , self.unk_token ) def A_ ( self : List[str] , snake_case : List[str] ) -> str: '''simple docstring''' A = ' '.join(snake_case ).replace('@@ ' , '' ).strip() return out_string def A_ ( self : List[str] , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case , ensure_ascii=snake_case ) + '\n' ) A = 0 with open(snake_case , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) A = token_index writer.write(' '.join(snake_case ) + '\n' ) index += 1 return vocab_file, merge_file
109
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure)
109
1
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM SCREAMING_SNAKE_CASE_ : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) @torch.no_grad() def __call__( self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 5_0 , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ): """simple docstring""" if isinstance(self.unet.config.sample_size , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Any = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: SCREAMING_SNAKE_CASE_ : Dict = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowerCAmelCase__ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) SCREAMING_SNAKE_CASE_ : List[Any] = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output SCREAMING_SNAKE_CASE_ : List[str] = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 SCREAMING_SNAKE_CASE_ : List[str] = self.scheduler.step( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , eta=lowerCAmelCase__ , use_clipped_model_output=lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample SCREAMING_SNAKE_CASE_ : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ : str = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
101
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _A ( ): """simple docstring""" lowerCAmelCase__ = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=lowerCAmelCase_ , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=lowerCAmelCase_ , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=lowerCAmelCase_ ) return parser.parse_args() def _A ( ): """simple docstring""" lowerCAmelCase__ = parse_args() # Import training_script as a module. lowerCAmelCase__ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCAmelCase__ = script_fpath.stem lowerCAmelCase__ = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv lowerCAmelCase__ = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
61
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : Any ={ """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict =[ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __lowercase : Any =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
707
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A ( unittest.TestCase ): def __init__( self: Optional[Any] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Dict=7 , _lowerCAmelCase: int=3 , _lowerCAmelCase: int=18 , _lowerCAmelCase: Optional[int]=30 , _lowerCAmelCase: List[str]=400 , _lowerCAmelCase: Tuple=True , _lowerCAmelCase: Optional[Any]=None , _lowerCAmelCase: Optional[int]=True , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =size if size is not None else {"height": 18, "width": 18} UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =image_size UpperCAmelCase_ =min_resolution UpperCAmelCase_ =max_resolution UpperCAmelCase_ =do_resize UpperCAmelCase_ =size UpperCAmelCase_ =apply_ocr def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A ( __lowercase , unittest.TestCase ): _snake_case =LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase__ ( self: str ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "size" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "apply_ocr" ) ) def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) UpperCAmelCase_ =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def lowerCAmelCase__ ( self: List[Any] ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input UpperCAmelCase_ =image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , _lowerCAmelCase ) self.assertIsInstance(encoding.boxes , _lowerCAmelCase ) # Test batched UpperCAmelCase_ =image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input UpperCAmelCase_ =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCAmelCase_ =image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ =prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input UpperCAmelCase_ =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCAmelCase_ =image_processing(_lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =LayoutLMvaImageProcessor() from datasets import load_dataset UpperCAmelCase_ =load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) UpperCAmelCase_ =Image.open(ds[0]["file"] ).convert("RGB" ) UpperCAmelCase_ =image_processing(_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCAmelCase_ =[["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 UpperCAmelCase_ =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _lowerCAmelCase ) self.assertListEqual(encoding.boxes , _lowerCAmelCase ) # with apply_OCR = False UpperCAmelCase_ =LayoutLMvaImageProcessor(apply_ocr=_lowerCAmelCase ) UpperCAmelCase_ =image_processing(_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
550
0
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() A_ : Union[str, Any] =logging.get_logger() @dataclass class __a : SCREAMING_SNAKE_CASE__ : nn.Module SCREAMING_SNAKE_CASE__ : List[nn.Module] = field(default_factory=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE__ : list = field(default_factory=lowerCAmelCase__ ) def snake_case_ ( self , a__ , a__ , a__ ): _lowerCamelCase = len(list(m.modules() ) ) == 1 or isinstance(a__ , nn.Convad ) or isinstance(a__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(a__ ) def __call__( self , a__ ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a__ ) [x.remove() for x in self.handles] return self @property def snake_case_ ( self ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda a__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __a : SCREAMING_SNAKE_CASE__ : nn.Module SCREAMING_SNAKE_CASE__ : nn.Module SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : List = field(default_factory=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE__ : List = field(default_factory=lowerCAmelCase__ ) def __call__( self , a__ ): _lowerCamelCase = Tracker(self.dest )(a__ ).parametrized _lowerCamelCase = Tracker(self.src )(a__ ).parametrized _lowerCamelCase = list(filter(lambda a__ : type(a__ ) not in self.src_skip , a__ ) ) _lowerCamelCase = list(filter(lambda a__ : type(a__ ) not in self.dest_skip , a__ ) ) if len(a__ ) != len(a__ ): raise Exception( F'Numbers of operations are different. Source module has {len(a__ )} operations while' F' destination module has {len(a__ )}.' ) for dest_m, src_m in zip(a__ , a__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : ResNetConfig , snake_case : Path , snake_case : bool = True )-> List[str]: print(f'Converting {name}...' ) with torch.no_grad(): _lowerCamelCase = timm.create_model(snake_case , pretrained=snake_case ).eval() _lowerCamelCase = ResNetForImageClassification(snake_case ).eval() _lowerCamelCase = ModuleTransfer(src=snake_case , dest=snake_case ) _lowerCamelCase = torch.randn((1, 3, 224, 224) ) module_transfer(snake_case ) assert torch.allclose(from_model(snake_case ) , our_model(snake_case ).logits ), "The model logits don't match the original one." _lowerCamelCase = f'resnet{"-".join(name.split("resnet" ) )}' print(snake_case ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=snake_case , ) # we can use the convnext one _lowerCamelCase = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=snake_case , ) print(f'Pushed {checkpoint_name}' ) def SCREAMING_SNAKE_CASE_ ( snake_case : Path , snake_case : str = None , snake_case : bool = True )-> Tuple: _lowerCamelCase = 'imagenet-1k-id2label.json' _lowerCamelCase = 1_000 _lowerCamelCase = (1, num_labels) _lowerCamelCase = 'huggingface/label-files' _lowerCamelCase = num_labels _lowerCamelCase = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase = {int(snake_case ): v for k, v in idalabel.items()} _lowerCamelCase = idalabel _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = partial(snake_case , num_labels=snake_case , idalabel=snake_case , labelaid=snake_case ) _lowerCamelCase = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(snake_case , names_to_config[model_name] , snake_case , snake_case ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(snake_case , snake_case , snake_case , snake_case ) return config, expected_shape if __name__ == "__main__": A_ : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) A_ : Dict =parser.parse_args() A_ : Path =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
650
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING A_ : int =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class __a ( lowerCAmelCase__ ): def __init__( self , *a__ , **a__ ): super().__init__(*a__ , **a__ ) self.check_model_type(a__ ) def snake_case_ ( self , a__=None , a__=None , a__=None , **a__ ): _lowerCamelCase , _lowerCamelCase = {}, {} if padding is not None: _lowerCamelCase = padding if truncation is not None: _lowerCamelCase = truncation if top_k is not None: _lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self , a__ , a__ = None , **a__ ): if isinstance(a__ , (Image.Image, str) ) and isinstance(a__ , a__ ): _lowerCamelCase = {'image': image, 'question': question} else: _lowerCamelCase = image _lowerCamelCase = super().__call__(a__ , **a__ ) return results def snake_case_ ( self , a__ , a__=False , a__=False ): _lowerCamelCase = load_image(inputs['image'] ) _lowerCamelCase = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=a__ , truncation=a__ ) _lowerCamelCase = self.image_processor(images=a__ , return_tensors=self.framework ) model_inputs.update(a__ ) return model_inputs def snake_case_ ( self , a__ ): _lowerCamelCase = self.model(**a__ ) return model_outputs def snake_case_ ( self , a__ , a__=5 ): if top_k > self.model.config.num_labels: _lowerCamelCase = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase = model_outputs.logits.sigmoid()[0] _lowerCamelCase , _lowerCamelCase = probs.topk(a__ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) _lowerCamelCase = scores.tolist() _lowerCamelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(a__ , a__ )]
650
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : Any = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[Any] = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
91
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """lilt""" def __init__( self : Optional[Any] , _lowercase : Dict=30_522 , _lowercase : Any=768 , _lowercase : Union[str, Any]=12 , _lowercase : List[str]=12 , _lowercase : str=3_072 , _lowercase : int="gelu" , _lowercase : Union[str, Any]=0.1 , _lowercase : Dict=0.1 , _lowercase : Optional[Any]=512 , _lowercase : Optional[Any]=2 , _lowercase : Tuple=0.0_2 , _lowercase : int=1e-12 , _lowercase : Any=0 , _lowercase : List[str]="absolute" , _lowercase : Dict=None , _lowercase : Optional[int]=4 , _lowercase : Optional[int]=1_024 , **_lowercase : Union[str, Any] , ): super().__init__(pad_token_id=_lowercase , **_lowercase ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = position_embedding_type A = classifier_dropout A = channel_shrink_ratio A = max_ad_position_embeddings
91
1
from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase( a__ ,a__): _SCREAMING_SNAKE_CASE =list(a__) _SCREAMING_SNAKE_CASE =list(a__) _SCREAMING_SNAKE_CASE =0 for i in range(len(a__)): if lista[i] != lista[i]: count += 1 _SCREAMING_SNAKE_CASE ='''_''' if count > 1: return False else: return "".join(a__) def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =[] while True: _SCREAMING_SNAKE_CASE =['''$'''] * len(a__) _SCREAMING_SNAKE_CASE =[] for i in range(len(a__)): for j in range(i + 1 ,len(a__)): _SCREAMING_SNAKE_CASE =compare_string(binary[i] ,binary[j]) if k is False: _SCREAMING_SNAKE_CASE ='''*''' _SCREAMING_SNAKE_CASE ='''*''' temp.append('''X''') for i in range(len(a__)): if checka[i] == "$": pi.append(binary[i]) if len(a__) == 0: return pi _SCREAMING_SNAKE_CASE =list(set(a__)) def lowerCamelCase( a__ ,a__): _SCREAMING_SNAKE_CASE =[] for minterm in minterms: _SCREAMING_SNAKE_CASE ='''''' for _ in range(a__): _SCREAMING_SNAKE_CASE =str(minterm % 2) + string minterm //= 2 temp.append(a__) return temp def lowerCamelCase( a__ ,a__ ,a__): _SCREAMING_SNAKE_CASE =list(a__) _SCREAMING_SNAKE_CASE =list(a__) _SCREAMING_SNAKE_CASE =0 for i in range(len(a__)): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase( a__ ,a__): _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[0] * len(a__) for i in range(len(chart[0])): _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =-1 for j in range(len(a__)): if chart[j][i] == 1: count += 1 _SCREAMING_SNAKE_CASE =j if count == 1: _SCREAMING_SNAKE_CASE =1 for i in range(len(a__)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(a__)): _SCREAMING_SNAKE_CASE =0 temp.append(prime_implicants[i]) while True: _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =-1 _SCREAMING_SNAKE_CASE =0 for i in range(len(a__)): _SCREAMING_SNAKE_CASE =chart[i].count(1) if count_n > max_n: _SCREAMING_SNAKE_CASE =count_n _SCREAMING_SNAKE_CASE =i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(a__)): _SCREAMING_SNAKE_CASE =0 def lowerCamelCase( a__ ,a__): _SCREAMING_SNAKE_CASE =[[0 for x in range(len(a__))] for x in range(len(a__))] for i in range(len(a__)): _SCREAMING_SNAKE_CASE =prime_implicants[i].count('''_''') for j in range(len(a__)): if is_for_table(prime_implicants[i] ,binary[j] ,a__): _SCREAMING_SNAKE_CASE =1 return chart def lowerCamelCase( ): _SCREAMING_SNAKE_CASE =int(input('''Enter the no. of variables\n''')) _SCREAMING_SNAKE_CASE =[ float(a__) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''').split() ] _SCREAMING_SNAKE_CASE =decimal_to_binary(a__ ,a__) _SCREAMING_SNAKE_CASE =check(a__) print('''Prime Implicants are:''') print(a__) _SCREAMING_SNAKE_CASE =prime_implicant_chart(a__ ,a__) _SCREAMING_SNAKE_CASE =selection(a__ ,a__) print('''Essential Prime Implicants are:''') print(a__) if __name__ == "__main__": import doctest doctest.testmod() main()
691
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase( a__): def wrapper(*a__ ,**a__): _SCREAMING_SNAKE_CASE =timeit.default_timer() _SCREAMING_SNAKE_CASE =func(*a__ ,**a__) _SCREAMING_SNAKE_CASE =timeit.default_timer() - starttime return delta _SCREAMING_SNAKE_CASE =func.__name__ return wrapper def lowerCamelCase( a__ ,a__=100 ,a__=None): _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =seq_shapes or {} for i in range(a__): _SCREAMING_SNAKE_CASE ={} for col_id, (k, v) in enumerate(features.items()): if isinstance(a__ ,_ArrayXD): _SCREAMING_SNAKE_CASE =np.random.rand(*v.shape).astype(v.dtype) elif isinstance(a__ ,datasets.Value): if v.dtype == "string": _SCREAMING_SNAKE_CASE ='''The small grey turtle was surprisingly fast when challenged.''' else: _SCREAMING_SNAKE_CASE =np.random.randint(10 ,size=1).astype(v.dtype).item() elif isinstance(a__ ,datasets.Sequence): while isinstance(a__ ,datasets.Sequence): _SCREAMING_SNAKE_CASE =v.feature _SCREAMING_SNAKE_CASE =seq_shapes[k] _SCREAMING_SNAKE_CASE =np.random.rand(*a__).astype(v.dtype) _SCREAMING_SNAKE_CASE =data dummy_data.append((i, example)) return dummy_data def lowerCamelCase( a__ ,a__ ,a__=100 ,a__=None): _SCREAMING_SNAKE_CASE =generate_examples(a__ ,num_examples=a__ ,seq_shapes=a__) with ArrowWriter(features=a__ ,path=a__) as writer: for key, record in dummy_data: _SCREAMING_SNAKE_CASE =features.encode_example(a__) writer.write(a__) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.") _SCREAMING_SNAKE_CASE =datasets.Dataset.from_file(filename=a__ ,info=datasets.DatasetInfo(features=a__)) return dataset
691
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A_ = { "configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["MobileViTFeatureExtractor"] A_ = ["MobileViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
384
'''simple docstring''' A_ = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} A_ = ["a", "b", "c", "d", "e"] def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[str]: lowerCamelCase_ = start # add current to visited visited.append(__UpperCamelCase ) lowerCamelCase_ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowerCamelCase_ = topological_sort(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # if all neighbors visited add current to sort sort.append(__UpperCamelCase ) # if all vertices haven't been visited select a new one to visit if len(__UpperCamelCase ) != len(__UpperCamelCase ): for vertice in vertices: if vertice not in visited: lowerCamelCase_ = topological_sort(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # return sort return sort if __name__ == "__main__": A_ = topological_sort("a", [], []) print(sort)
384
1
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class UpperCAmelCase_ ( __lowerCamelCase ): __lowerCamelCase = 'EncodecFeatureExtractor' __lowerCamelCase = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = self.feature_extractor UpperCAmelCase__ : Optional[int] = False def __UpperCAmelCase ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True ): return self.tokenizer.get_decoder_prompt_ids(task=_lowerCAmelCase , language=_lowerCAmelCase , no_timestamps=_lowerCAmelCase ) def __call__( self , *_lowerCAmelCase , **_lowerCAmelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = kwargs.pop("""audio""" , _lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = kwargs.pop("""sampling_rate""" , _lowerCAmelCase ) UpperCAmelCase__ : int = kwargs.pop("""text""" , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: UpperCAmelCase__ : Union[str, Any] = args[0] UpperCAmelCase__ : Optional[Any] = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: UpperCAmelCase__ : Tuple = self.tokenizer(_lowerCAmelCase , **_lowerCAmelCase ) if audio is not None: UpperCAmelCase__ : Union[str, Any] = self.feature_extractor(_lowerCAmelCase , *_lowerCAmelCase , sampling_rate=_lowerCAmelCase , **_lowerCAmelCase ) if audio is None: return inputs elif text is None: return audio_inputs else: UpperCAmelCase__ : List[str] = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: UpperCAmelCase__ : Union[str, Any] = audio_inputs["""padding_mask"""] return inputs def __UpperCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): UpperCAmelCase__ : Any = kwargs.pop("""audio""" , _lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = kwargs.pop("""padding_mask""" , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: UpperCAmelCase__ : Optional[Any] = args[0] UpperCAmelCase__ : Tuple = args[1:] if audio_values is not None: return self._decode_audio(_lowerCAmelCase , padding_mask=_lowerCAmelCase ) else: return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __UpperCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): UpperCAmelCase__ : Dict = to_numpy(_lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = audio_values.shape if padding_mask is None: return list(_lowerCAmelCase ) UpperCAmelCase__ : int = to_numpy(_lowerCAmelCase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) UpperCAmelCase__ : Any = seq_len - padding_mask.shape[-1] UpperCAmelCase__ : Optional[Any] = 1 - self.feature_extractor.padding_value UpperCAmelCase__ : List[str] = np.pad(_lowerCAmelCase , ((0, 0), (0, difference)) , """constant""" , constant_values=_lowerCAmelCase ) UpperCAmelCase__ : str = audio_values.tolist() for i in range(_lowerCAmelCase ): UpperCAmelCase__ : Union[str, Any] = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] UpperCAmelCase__ : Optional[Any] = sliced_audio.reshape(_lowerCAmelCase , -1 ) return audio_values
79
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class UpperCAmelCase_ ( __lowerCamelCase ): __lowerCamelCase = 'van' def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=3 , _lowerCAmelCase=[7, 3, 3, 3] , _lowerCAmelCase=[4, 2, 2, 2] , _lowerCAmelCase=[64, 128, 320, 512] , _lowerCAmelCase=[3, 3, 12, 3] , _lowerCAmelCase=[8, 8, 4, 4] , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0_2 , _lowerCAmelCase=1e-6 , _lowerCAmelCase=1e-2 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase ) UpperCAmelCase__ : Tuple = image_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Optional[int] = patch_sizes UpperCAmelCase__ : int = strides UpperCAmelCase__ : Optional[int] = hidden_sizes UpperCAmelCase__ : str = depths UpperCAmelCase__ : Optional[Any] = mlp_ratios UpperCAmelCase__ : List[Any] = hidden_act UpperCAmelCase__ : Tuple = initializer_range UpperCAmelCase__ : Any = layer_norm_eps UpperCAmelCase__ : List[Any] = layer_scale_init_value UpperCAmelCase__ : int = drop_path_rate UpperCAmelCase__ : Dict = dropout_rate
79
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCAmelCase_ ( lowercase__ ): snake_case_ = """microsoft/speecht5_tts""" snake_case_ = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) snake_case_ = """text_reader""" snake_case_ = SpeechTaProcessor snake_case_ = SpeechTaForTextToSpeech snake_case_ = SpeechTaHifiGan snake_case_ = ["""text"""] snake_case_ = ["""audio"""] def _lowerCamelCase ( self : str ) -> List[str]: if self.post_processor is None: _lowercase = "microsoft/speecht5_hifigan" super().setup() def _lowerCamelCase ( self : int , _lowercase : int , _lowercase : List[str]=None ) -> Tuple: _lowercase = self.pre_processor(text=_lowercase , return_tensors="pt" , truncation=_lowercase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) _lowercase = load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation" ) _lowercase = torch.tensor(embeddings_dataset[7_3_0_5]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _lowerCamelCase ( self : str , _lowercase : int ) -> List[Any]: with torch.no_grad(): return self.model.generate_speech(**_lowercase ) def _lowerCamelCase ( self : int , _lowercase : Optional[Any] ) -> List[str]: with torch.no_grad(): return self.post_processor(_lowercase ).cpu().detach()
227
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) __UpperCamelCase : List[str] = logging.getLogger(__name__) __UpperCamelCase : List[Any] = "Hello world! cécé herlolip" __UpperCamelCase : Any = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def __UpperCAmelCase ( _snake_case : Union[str, Any], _snake_case : str ): _lowercase = BertAbsConfig( temp_dir=".", finetune_bert=_snake_case, large=_snake_case, share_emb=_snake_case, use_bert_emb=_snake_case, encoder="bert", max_pos=5_1_2, enc_layers=6, enc_hidden_size=5_1_2, enc_heads=8, enc_ff_size=5_1_2, enc_dropout=0.2, dec_layers=6, dec_hidden_size=7_6_8, dec_heads=8, dec_ff_size=2_0_4_8, dec_dropout=0.2, ) _lowercase = torch.load(_snake_case, lambda _snake_case, _snake_case : storage ) _lowercase = AbsSummarizer(_snake_case, torch.device("cpu" ), _snake_case ) original.eval() _lowercase = BertAbsSummarizer(_snake_case, torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical" ) _lowercase = BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs _lowercase = tokenizer.encode("This is sample éàalj'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_snake_case )) ) _lowercase = torch.tensor(_snake_case ).unsqueeze(0 ) _lowercase = tokenizer.encode("This is sample 3 éàalj'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_snake_case )) ) _lowercase = torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass _lowercase = encoder_input_ids _lowercase = decoder_input_ids _lowercase = _lowercase = None _lowercase = None _lowercase = _lowercase = None _lowercase = _lowercase = None _lowercase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical _lowercase = original(_snake_case, _snake_case, _snake_case, _snake_case, _snake_case, _snake_case, _snake_case )[0] _lowercase = original.generator(_snake_case ) _lowercase = new_model( _snake_case, _snake_case, _snake_case, _snake_case, _snake_case )[0] _lowercase = new_model.generator(_snake_case ) _lowercase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(_snake_case ) ) _lowercase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(_snake_case ) ) _lowercase = torch.allclose(_snake_case, _snake_case, atol=1e-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary" ) torch.save( new_model.state_dict(), "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) __UpperCamelCase : List[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
227
1