code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def A__ ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors _UpperCAmelCase = load_file(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: _UpperCAmelCase = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) _UpperCAmelCase = pipeline.text_encoder else: _UpperCAmelCase = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) _UpperCAmelCase = pipeline.unet # find the target layer _UpperCAmelCase = layer_infos.pop(0 ) while len(SCREAMING_SNAKE_CASE_ ) > -1: try: _UpperCAmelCase = curr_layer.__getattr__(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: _UpperCAmelCase = layer_infos.pop(0 ) elif len(SCREAMING_SNAKE_CASE_ ) == 0: break except Exception: if len(SCREAMING_SNAKE_CASE_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: _UpperCAmelCase = layer_infos.pop(0 ) _UpperCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(SCREAMING_SNAKE_CASE_ ) else: pair_keys.append(SCREAMING_SNAKE_CASE_ ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: _UpperCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) _UpperCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).unsqueeze(2 ).unsqueeze(3 ) else: _UpperCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) _UpperCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # update visited list for item in pair_keys: visited.append(SCREAMING_SNAKE_CASE_ ) return pipeline if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." ) parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" ) parser.add_argument( "--lora_prefix_text_encoder", default="lora_te", type=str, help="The prefix of text encoder weight in safetensors", ) parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW") parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." ) parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = args.base_model_path UpperCAmelCase_ = args.checkpoint_path UpperCAmelCase_ = args.dump_path UpperCAmelCase_ = args.lora_prefix_unet UpperCAmelCase_ = args.lora_prefix_text_encoder UpperCAmelCase_ = args.alpha UpperCAmelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) UpperCAmelCase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
32
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer UpperCAmelCase : str = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart UpperCAmelCase : Tuple = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } UpperCAmelCase : List[Any] = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } class lowerCamelCase__ ( A ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ["""input_ids""", """attention_mask"""] __a = BartTokenizer def __init__( self : int , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[str]=None , UpperCamelCase : Tuple="replace" , UpperCamelCase : Optional[int]="<s>" , UpperCamelCase : str="</s>" , UpperCamelCase : str="</s>" , UpperCamelCase : Optional[Any]="<s>" , UpperCamelCase : Optional[int]="<unk>" , UpperCamelCase : Dict="<pad>" , UpperCamelCase : Any="<mask>" , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Tuple=True , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__( UpperCamelCase , UpperCamelCase , tokenizer_file=UpperCamelCase , errors=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , add_prefix_space=UpperCamelCase , trim_offsets=UpperCamelCase , **UpperCamelCase , ) __UpperCAmelCase : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCamelCase ) != add_prefix_space: __UpperCAmelCase : List[str] = getattr(UpperCamelCase , pre_tok_state.pop("""type""" ) ) __UpperCAmelCase : int = add_prefix_space __UpperCAmelCase : List[Any] = pre_tok_class(**UpperCamelCase ) __UpperCAmelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __UpperCAmelCase : Union[str, Any] = """post_processor""" __UpperCAmelCase : Union[str, Any] = getattr(self.backend_tokenizer , UpperCamelCase , UpperCamelCase ) if tokenizer_component_instance: __UpperCAmelCase : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __UpperCAmelCase : int = tuple(state["""sep"""] ) if "cls" in state: __UpperCAmelCase : Optional[int] = tuple(state["""cls"""] ) __UpperCAmelCase : int = False if state.get("""add_prefix_space""" , UpperCamelCase ) != add_prefix_space: __UpperCAmelCase : Dict = add_prefix_space __UpperCAmelCase : Optional[int] = True if state.get("""trim_offsets""" , UpperCamelCase ) != trim_offsets: __UpperCAmelCase : str = trim_offsets __UpperCAmelCase : int = True if changes_to_apply: __UpperCAmelCase : List[str] = getattr(UpperCamelCase , state.pop("""type""" ) ) __UpperCAmelCase : Tuple = component_class(**UpperCamelCase ) setattr(self.backend_tokenizer , UpperCamelCase , UpperCamelCase ) @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Dict = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else value __UpperCAmelCase : Any = value def lowerCamelCase__ ( self : Optional[Any] , *UpperCamelCase : int , **UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : str = kwargs.get("""is_split_into_words""" , UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Optional[Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Any = kwargs.get("""is_split_into_words""" , UpperCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' __UpperCAmelCase : List[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : int , UpperCamelCase : Dict=None ): '''simple docstring''' __UpperCAmelCase : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self : Tuple , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
139
0
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str ) -> bool: return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def _lowerCAmelCase ( __snake_case : str ) -> bool: __A : Optional[int] = credit_card_number __A : Union[str, Any] = 0 __A : str = len(__snake_case ) - 2 for i in range(__snake_case , -1 , -2 ): # double the value of every second digit __A : str = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 __A : Dict = cc_number[:i] + str(__snake_case ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(__snake_case ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def _lowerCAmelCase ( __snake_case : str ) -> bool: __A : List[str] = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(__snake_case ) <= 16: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(__snake_case ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(__snake_case ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('''4111111111111111''') validate_credit_card_number('''32323''')
721
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : Tuple ) -> Union[str, Any]: __A : Tuple = [0 for i in range(r + 1 )] # nc0 = 1 __A : Dict = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __A : Union[str, Any] = min(__snake_case , __snake_case ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
338
0
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness __SCREAMING_SNAKE_CASE :str = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' __SCREAMING_SNAKE_CASE :Any = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' __SCREAMING_SNAKE_CASE :int = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' __SCREAMING_SNAKE_CASE :Dict = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' __SCREAMING_SNAKE_CASE :List[str] = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def lowercase ( self : List[Any] ): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def lowercase ( self : List[Any] , snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Dict=[1, 1_0, 1_0_0] , snake_case_ : Optional[int]=4 , snake_case_ : Union[str, Any]=3.0 ): if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=snake_case_ ) as executor: _UpperCAmelCase = [] _UpperCAmelCase = Counter() _UpperCAmelCase = 0 _UpperCAmelCase = defaultdict(snake_case_ ) for task_id, (candidates, test_case) in enumerate(zip(snake_case_ , snake_case_ ) ): for candidate in candidates: _UpperCAmelCase = candidate + "\n" + test_case _UpperCAmelCase = (test_program, timeout, task_id, completion_id[task_id]) _UpperCAmelCase = executor.submit(snake_case_ , *snake_case_ ) futures.append(snake_case_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(snake_case_ ): _UpperCAmelCase = future.result() results[result["task_id"]].append((result["completion_id"], result) ) _UpperCAmelCase , _UpperCAmelCase = [], [] for result in results.values(): result.sort() _UpperCAmelCase = [r[1]["passed"] for r in result] total.append(len(snake_case_ ) ) correct.append(sum(snake_case_ ) ) _UpperCAmelCase = np.array(snake_case_ ) _UpperCAmelCase = np.array(snake_case_ ) _UpperCAmelCase = k _UpperCAmelCase = {f'pass@{k}': estimate_pass_at_k(snake_case_ , snake_case_ , snake_case_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def UpperCAmelCase_ ( __lowercase : int , __lowercase : Any , __lowercase : Tuple ) -> str: '''simple docstring''' def estimator(__lowercase : int , __lowercase : int , __lowercase : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(__lowercase , __lowercase ): _UpperCAmelCase = itertools.repeat(__lowercase , len(__lowercase ) ) else: assert len(__lowercase ) == len(__lowercase ) _UpperCAmelCase = iter(__lowercase ) return np.array([estimator(int(__lowercase ) , int(__lowercase ) , __lowercase ) for n, c in zip(__lowercase , __lowercase )] )
236
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __SCREAMING_SNAKE_CASE :Tuple = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __SCREAMING_SNAKE_CASE :Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __SCREAMING_SNAKE_CASE :Dict = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') __SCREAMING_SNAKE_CASE :Any = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __SCREAMING_SNAKE_CASE :Dict = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __SCREAMING_SNAKE_CASE :Any = [ ('''pretraining''', '''MODEL_FOR_PRETRAINING_MAPPING_NAMES''', '''AutoModelForPreTraining'''), ('''feature-extraction''', '''MODEL_MAPPING_NAMES''', '''AutoModel'''), ('''audio-classification''', '''MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioClassification'''), ('''text-generation''', '''MODEL_FOR_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForCausalLM'''), ('''automatic-speech-recognition''', '''MODEL_FOR_CTC_MAPPING_NAMES''', '''AutoModelForCTC'''), ('''image-classification''', '''MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForImageClassification'''), ('''image-segmentation''', '''MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES''', '''AutoModelForImageSegmentation'''), ('''fill-mask''', '''MODEL_FOR_MASKED_LM_MAPPING_NAMES''', '''AutoModelForMaskedLM'''), ('''object-detection''', '''MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForObjectDetection'''), ( '''zero-shot-object-detection''', '''MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForZeroShotObjectDetection''', ), ('''question-answering''', '''MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForQuestionAnswering'''), ('''text2text-generation''', '''MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForSeq2SeqLM'''), ('''text-classification''', '''MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForSequenceClassification'''), ('''automatic-speech-recognition''', '''MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES''', '''AutoModelForSpeechSeq2Seq'''), ( '''table-question-answering''', '''MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForTableQuestionAnswering''', ), ('''token-classification''', '''MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForTokenClassification'''), ('''multiple-choice''', '''MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES''', '''AutoModelForMultipleChoice'''), ( '''next-sentence-prediction''', '''MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES''', '''AutoModelForNextSentencePrediction''', ), ( '''audio-frame-classification''', '''MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioFrameClassification''', ), ('''audio-xvector''', '''MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES''', '''AutoModelForAudioXVector'''), ( '''document-question-answering''', '''MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForDocumentQuestionAnswering''', ), ( '''visual-question-answering''', '''MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForVisualQuestionAnswering''', ), ('''image-to-text''', '''MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES''', '''AutoModelForVision2Seq'''), ( '''zero-shot-image-classification''', '''MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForZeroShotImageClassification''', ), ('''depth-estimation''', '''MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES''', '''AutoModelForDepthEstimation'''), ('''video-classification''', '''MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForVideoClassification'''), ('''mask-generation''', '''MODEL_FOR_MASK_GENERATION_MAPPING_NAMES''', '''AutoModelForMaskGeneration'''), ] def UpperCAmelCase_ ( __lowercase : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , __lowercase ) return [m.group(0 ) for m in matches] def UpperCAmelCase_ ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCAmelCase = { config.replace("Config" , "" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _UpperCAmelCase = collections.defaultdict(__lowercase ) _UpperCAmelCase = collections.defaultdict(__lowercase ) _UpperCAmelCase = collections.defaultdict(__lowercase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(__lowercase ): _UpperCAmelCase = None if _re_tf_models.match(__lowercase ) is not None: _UpperCAmelCase = tf_models _UpperCAmelCase = _re_tf_models.match(__lowercase ).groups()[0] elif _re_flax_models.match(__lowercase ) is not None: _UpperCAmelCase = flax_models _UpperCAmelCase = _re_flax_models.match(__lowercase ).groups()[0] elif _re_pt_models.match(__lowercase ) is not None: _UpperCAmelCase = pt_models _UpperCAmelCase = _re_pt_models.match(__lowercase ).groups()[0] if lookup_dict is not None: while len(__lowercase ) > 0: if attr_name in model_prefix_to_model_type: _UpperCAmelCase = True break # Try again after removing the last word in the name _UpperCAmelCase = "".join(camel_case_split(__lowercase )[:-1] ) _UpperCAmelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _UpperCAmelCase = list(__lowercase ) all_models.sort() _UpperCAmelCase = {"model_type": all_models} _UpperCAmelCase = [pt_models[t] for t in all_models] _UpperCAmelCase = [tf_models[t] for t in all_models] _UpperCAmelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _UpperCAmelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _UpperCAmelCase = "AutoProcessor" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _UpperCAmelCase = "AutoTokenizer" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _UpperCAmelCase = "AutoFeatureExtractor" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _UpperCAmelCase = "AutoTokenizer" _UpperCAmelCase = [processors[t] for t in all_models] return pd.DataFrame(__lowercase ) def UpperCAmelCase_ ( __lowercase : List[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _UpperCAmelCase = [model_mapping, f'TF_{model_mapping}', f'FLAX_{model_mapping}'] _UpperCAmelCase = [auto_class, f'TF_{auto_class}', f'Flax_{auto_class}'] # Loop through all three frameworks for module, cls, mapping in zip(__lowercase , __lowercase , __lowercase ): # The type of pipeline may not exist in this framework if not hasattr(__lowercase , __lowercase ): continue # First extract all model_names _UpperCAmelCase = [] for name in getattr(__lowercase , __lowercase ).values(): if isinstance(__lowercase , __lowercase ): model_names.append(__lowercase ) else: model_names.extend(list(__lowercase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = get_frameworks_table() _UpperCAmelCase = Dataset.from_pandas(__lowercase ) _UpperCAmelCase = hf_hub_download( "huggingface/transformers-metadata" , "pipeline_tags.json" , repo_type="dataset" , token=__lowercase ) _UpperCAmelCase = Dataset.from_json(__lowercase ) _UpperCAmelCase = { tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"]) for i in range(len(__lowercase ) ) } _UpperCAmelCase = update_pipeline_and_auto_class_table(__lowercase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _UpperCAmelCase = sorted(table.keys() ) _UpperCAmelCase = pd.DataFrame( { "model_class": model_classes, "pipeline_tag": [table[m][0] for m in model_classes], "auto_class": [table[m][1] for m in model_classes], } ) _UpperCAmelCase = Dataset.from_pandas(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(__lowercase , "frameworks.json" ) ) tags_dataset.to_json(os.path.join(__lowercase , "pipeline_tags.json" ) ) if commit_sha is not None: _UpperCAmelCase = ( f'Update with commit {commit_sha}\n\nSee: ' f'https://github.com/huggingface/transformers/commit/{commit_sha}' ) else: _UpperCAmelCase = "Update" upload_folder( repo_id="huggingface/transformers-metadata" , folder_path=__lowercase , repo_type="dataset" , token=__lowercase , commit_message=__lowercase , ) def UpperCAmelCase_ ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _UpperCAmelCase = transformers_module.pipelines.SUPPORTED_TASKS _UpperCAmelCase = [] for key in pipeline_tasks: if key not in in_table: _UpperCAmelCase = pipeline_tasks[key]["pt"] if isinstance(__lowercase , (list, tuple) ): _UpperCAmelCase = model[0] _UpperCAmelCase = model.__name__ if model not in in_table.values(): missing.append(__lowercase ) if len(__lowercase ) > 0: _UpperCAmelCase = ", ".join(__lowercase ) raise ValueError( "The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " f'`utils/update_metadata.py`: {msg}. Please add them!' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Any = argparse.ArgumentParser() parser.add_argument('''--token''', type=str, help='''The token to use to push to the transformers-metadata dataset.''') parser.add_argument('''--commit_sha''', type=str, help='''The sha of the commit going with this update.''') parser.add_argument('''--check-only''', action='''store_true''', help='''Activate to just check all pipelines are present.''') __SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
236
1
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor A_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
709
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , _lowerCAmelCase = None ): if components is None: lowerCamelCase__ = [] lowerCamelCase__ = list(_lowerCAmelCase ) def __len__( self ): return len(self.__components ) def __str__( self ): return "(" + ",".join(map(_lowerCAmelCase , self.__components ) ) + ")" def __add__( self , _lowerCAmelCase ): lowerCamelCase__ = len(self ) if size == len(_lowerCAmelCase ): lowerCamelCase__ = [self.__components[i] + other.component(_lowerCAmelCase ) for i in range(_lowerCAmelCase )] return Vector(_lowerCAmelCase ) else: raise Exception("must have the same size" ) def __sub__( self , _lowerCAmelCase ): lowerCamelCase__ = len(self ) if size == len(_lowerCAmelCase ): lowerCamelCase__ = [self.__components[i] - other.component(_lowerCAmelCase ) for i in range(_lowerCAmelCase )] return Vector(_lowerCAmelCase ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self , _lowerCAmelCase ): ... @overload def __mul__( self , _lowerCAmelCase ): ... def __mul__( self , _lowerCAmelCase ): if isinstance(_lowerCAmelCase , (float, int) ): lowerCamelCase__ = [c * other for c in self.__components] return Vector(_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(self ) == len(_lowerCAmelCase ): lowerCamelCase__ = len(self ) lowerCamelCase__ = [self.__components[i] * other.component(_lowerCAmelCase ) for i in range(_lowerCAmelCase )] return sum(_lowerCAmelCase ) else: # error case raise Exception("invalid operand!" ) def __magic_name__ ( self ): return Vector(self.__components ) def __magic_name__ ( self , _lowerCAmelCase ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase ): assert -len(self.__components ) <= pos < len(self.__components ) lowerCamelCase__ = value def __magic_name__ ( self ): if len(self.__components ) == 0: raise Exception("Vector is empty" ) lowerCamelCase__ = [c**2 for c in self.__components] return math.sqrt(sum(_lowerCAmelCase ) ) def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase = False ): lowerCamelCase__ = self * other lowerCamelCase__ = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __UpperCamelCase ( a) ->Vector: assert isinstance(a, a) return Vector([0] * dimension) def __UpperCamelCase ( a, a) ->Vector: assert isinstance(a, a) and (isinstance(a, a)) lowerCamelCase__ = [0] * dimension lowerCamelCase__ = 1 return Vector(a) def __UpperCamelCase ( a, a, a) ->Vector: assert ( isinstance(a, a) and isinstance(a, a) and (isinstance(a, (int, float))) ) return x * scalar + y def __UpperCamelCase ( a, a, a) ->Vector: random.seed(a) lowerCamelCase__ = [random.randint(a, a) for _ in range(a)] return Vector(a) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = matrix lowerCamelCase__ = w lowerCamelCase__ = h def __str__( self ): lowerCamelCase__ = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , _lowerCAmelCase ): if self.__width == other.width() and self.__height == other.height(): lowerCamelCase__ = [] for i in range(self.__height ): lowerCamelCase__ = [ self.__matrix[i][j] + other.component(_lowerCAmelCase , _lowerCAmelCase ) for j in range(self.__width ) ] matrix.append(_lowerCAmelCase ) return Matrix(_lowerCAmelCase , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self , _lowerCAmelCase ): if self.__width == other.width() and self.__height == other.height(): lowerCamelCase__ = [] for i in range(self.__height ): lowerCamelCase__ = [ self.__matrix[i][j] - other.component(_lowerCAmelCase , _lowerCAmelCase ) for j in range(self.__width ) ] matrix.append(_lowerCAmelCase ) return Matrix(_lowerCAmelCase , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self , _lowerCAmelCase ): ... @overload def __mul__( self , _lowerCAmelCase ): ... def __mul__( self , _lowerCAmelCase ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # matrix-vector if len(_lowerCAmelCase ) == self.__width: lowerCamelCase__ = zero_vector(self.__height ) for i in range(self.__height ): lowerCamelCase__ = [ self.__matrix[i][j] * other.component(_lowerCAmelCase ) for j in range(self.__width ) ] ans.change_component(_lowerCAmelCase , sum(_lowerCAmelCase ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(_lowerCAmelCase , (int, float) ): # matrix-scalar lowerCamelCase__ = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(_lowerCAmelCase , self.__width , self.__height ) return None def __magic_name__ ( self ): return self.__height def __magic_name__ ( self ): return self.__width def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if 0 <= x < self.__height and 0 <= y < self.__width: lowerCamelCase__ = value else: raise Exception("change_component: indices out of bounds" ) def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase ): if self.__height != self.__width: raise Exception("Matrix is not square" ) lowerCamelCase__ = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(_lowerCAmelCase ) ): lowerCamelCase__ = minor[i][:y] + minor[i][y + 1 :] return Matrix(_lowerCAmelCase , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(_lowerCAmelCase , _lowerCAmelCase ) else: raise Exception("Indices out of bounds" ) def __magic_name__ ( self ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: lowerCamelCase__ = [ self.__matrix[0][y] * self.cofactor(0 , _lowerCAmelCase ) for y in range(self.__width ) ] return sum(_lowerCAmelCase ) def __UpperCamelCase ( a) ->Matrix: lowerCamelCase__ = [[0] * n for _ in range(a)] return Matrix(a, a, a) def __UpperCamelCase ( a, a, a, a) ->Matrix: random.seed(a) lowerCamelCase__ = [ [random.randint(a, a) for _ in range(a)] for _ in range(a) ] return Matrix(a, a, a)
360
0
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): _enforce_args(UpperCAmelCase__ , UpperCAmelCase__ ) if n == 0: return 0 __lowercase : List[Any] = float('''-inf''' ) for i in range(1 , n + 1 ): __lowercase : int = max( UpperCAmelCase__ , prices[i - 1] + naive_cut_rod_recursive(n - i , UpperCAmelCase__ ) ) return max_revue def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): _enforce_args(UpperCAmelCase__ , UpperCAmelCase__ ) __lowercase : List[str] = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __lowercase : Tuple = float('''-inf''' ) for i in range(1 , n + 1 ): __lowercase : Optional[int] = max( UpperCAmelCase__ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , UpperCAmelCase__ , UpperCAmelCase__ ) , ) __lowercase : str = max_revenue return max_rev[n] def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): _enforce_args(UpperCAmelCase__ , UpperCAmelCase__ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __lowercase : List[Any] = [float('''-inf''' ) for _ in range(n + 1 )] __lowercase : Optional[int] = 0 for i in range(1 , n + 1 ): __lowercase : int = max_rev[i] for j in range(1 , i + 1 ): __lowercase : Optional[Any] = max(UpperCAmelCase__ , prices[j - 1] + max_rev[i - j] ) __lowercase : str = max_revenue_i return max_rev[n] def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if n < 0: __lowercase : List[str] = f"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(UpperCAmelCase__ ) if n > len(UpperCAmelCase__ ): __lowercase : Optional[Any] = ( '''Each integral piece of rod must have a corresponding price. ''' f"""Got n = {n} but length of prices = {len(UpperCAmelCase__ )}""" ) raise ValueError(UpperCAmelCase__ ) def __UpperCAmelCase ( ): __lowercase : Optional[Any] = [6, 10, 12, 15, 20, 23] __lowercase : int = len(UpperCAmelCase__ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __lowercase : str = 36 __lowercase : Dict = top_down_cut_rod(UpperCAmelCase__ , UpperCAmelCase__ ) __lowercase : Any = bottom_up_cut_rod(UpperCAmelCase__ , UpperCAmelCase__ ) __lowercase : str = naive_cut_rod_recursive(UpperCAmelCase__ , UpperCAmelCase__ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
76
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( a ): """simple docstring""" a_ : Union[str, Any] ="audio-spectrogram-transformer" def __init__( self : Optional[int] , _snake_case : Tuple=768 , _snake_case : Optional[int]=12 , _snake_case : Dict=12 , _snake_case : List[Any]=3072 , _snake_case : Dict="gelu" , _snake_case : List[Any]=0.0 , _snake_case : List[Any]=0.0 , _snake_case : int=0.02 , _snake_case : Dict=1E-12 , _snake_case : int=16 , _snake_case : str=True , _snake_case : Any=10 , _snake_case : Any=10 , _snake_case : Tuple=1024 , _snake_case : Dict=128 , **_snake_case : List[str] , ) -> Any: '''simple docstring''' super().__init__(**_snake_case ) a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = initializer_range a__ = layer_norm_eps a__ = patch_size a__ = qkv_bias a__ = frequency_stride a__ = time_stride a__ = max_length a__ = num_mel_bins
232
0
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a : Optional[Any] = logging.get_logger() def a_ ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = True ) -> Any: """simple docstring""" print(F"Converting {name}..." ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": snake_case : int = timm.create_model('''levit_128s''' , pretrained=__magic_name__ ) else: snake_case : List[Any] = timm.create_model('''levit_128''' , pretrained=__magic_name__ ) if hidden_sizes == 192: snake_case : Union[str, Any] = timm.create_model('''levit_192''' , pretrained=__magic_name__ ) if hidden_sizes == 256: snake_case : Optional[int] = timm.create_model('''levit_256''' , pretrained=__magic_name__ ) if hidden_sizes == 384: snake_case : int = timm.create_model('''levit_384''' , pretrained=__magic_name__ ) from_model.eval() snake_case : List[Any] = LevitForImageClassificationWithTeacher(__magic_name__ ).eval() snake_case : Optional[Any] = OrderedDict() snake_case : Any = from_model.state_dict() snake_case : int = list(from_model.state_dict().keys() ) snake_case : Union[str, Any] = list(our_model.state_dict().keys() ) print(len(__magic_name__ ) , len(__magic_name__ ) ) for i in range(len(__magic_name__ ) ): snake_case : Tuple = weights[og_keys[i]] our_model.load_state_dict(__magic_name__ ) snake_case : Union[str, Any] = torch.randn((2, 3, 224, 224) ) snake_case : Tuple = from_model(__magic_name__ ) snake_case : Any = our_model(__magic_name__ ).logits assert torch.allclose(__magic_name__ , __magic_name__ ), "The model logits don't match the original one." snake_case : Optional[Any] = name print(__magic_name__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) snake_case : str = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F"Pushed {checkpoint_name}" ) def a_ ( __magic_name__ , __magic_name__ = None , __magic_name__ = True ) -> Union[str, Any]: """simple docstring""" snake_case : Union[str, Any] = '''imagenet-1k-id2label.json''' snake_case : List[Any] = 1_000 snake_case : Dict = (1, num_labels) snake_case : Dict = '''huggingface/label-files''' snake_case : Optional[Any] = num_labels snake_case : int = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type='''dataset''' ) , '''r''' ) ) snake_case : Union[str, Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} snake_case : Dict = idalabel snake_case : Any = {v: k for k, v in idalabel.items()} snake_case : Optional[int] = partial(__magic_name__ , num_labels=__magic_name__ , idalabel=__magic_name__ , labelaid=__magic_name__ ) snake_case : Union[str, Any] = { '''levit-128S''': 128, '''levit-128''': 128, '''levit-192''': 192, '''levit-256''': 256, '''levit-384''': 384, } snake_case : List[str] = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __magic_name__ , names_to_config[model_name] , __magic_name__ , __magic_name__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) return config, expected_shape if __name__ == "__main__": _a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _a : Dict = parser.parse_args() _a : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
706
from sklearn.metrics import fa_score import datasets _a : List[str] = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' _a : Dict = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' _a : List[Any] = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def lowerCAmelCase( self : Any ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def lowerCAmelCase( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[Any]=1 , UpperCAmelCase__ : List[str]="binary" , UpperCAmelCase__ : str=None ): """simple docstring""" snake_case : List[Any] = fa_score( UpperCAmelCase__ , UpperCAmelCase__ , labels=UpperCAmelCase__ , pos_label=UpperCAmelCase__ , average=UpperCAmelCase__ , sample_weight=UpperCAmelCase__ ) return {"f1": float(UpperCAmelCase__ ) if score.size == 1 else score}
84
0
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase_ ( __a ): def __init__( self : int , _A : CLIPSegForImageSegmentation , _A : CLIPSegProcessor , _A : AutoencoderKL , _A : CLIPTextModel , _A : CLIPTokenizer , _A : UNetaDConditionModel , _A : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _A : StableDiffusionSafetyChecker , _A : CLIPImageProcessor , ): '''simple docstring''' super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: UpperCAmelCase__ : Union[str, Any] = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , _A , standard_warn=_A ) UpperCAmelCase__ : Optional[int] = dict(scheduler.config ) UpperCAmelCase__ : List[str] = 1 UpperCAmelCase__ : Optional[Any] = FrozenDict(_A ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: UpperCAmelCase__ : List[str] = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _A , standard_warn=_A ) UpperCAmelCase__ : str = dict(scheduler.config ) UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : Union[str, Any] = FrozenDict(_A ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=_A , segmentation_processor=_A , vae=_A , text_encoder=_A , tokenizer=_A , unet=_A , scheduler=_A , safety_checker=_A , feature_extractor=_A , ) def lowercase_ ( self : List[str] , _A : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase__ : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_A ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' self.enable_attention_slicing(_A ) def lowercase_ ( self : List[Any] ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCAmelCase__ : List[Any] = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[Any] , _A : Union[str, List[str]] , _A : Union[torch.FloatTensor, PIL.Image.Image] , _A : str , _A : int = 512 , _A : int = 512 , _A : int = 50 , _A : float = 7.5 , _A : Optional[Union[str, List[str]]] = None , _A : Optional[int] = 1 , _A : float = 0.0 , _A : Optional[torch.Generator] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , _A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _A : int = 1 , **_A : List[Any] , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) UpperCAmelCase__ : str = self.segmentation_model(**_A ) UpperCAmelCase__ : Any = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() UpperCAmelCase__ : Any = self.numpy_to_pil(_A )[0].resize(image.size ) # Run inpainting pipeline with the generated mask UpperCAmelCase__ : List[Any] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_A , image=_A , mask_image=_A , height=_A , width=_A , num_inference_steps=_A , guidance_scale=_A , negative_prompt=_A , num_images_per_prompt=_A , eta=_A , generator=_A , latents=_A , output_type=_A , return_dict=_A , callback=_A , callback_steps=_A , )
75
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
230
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> Dict: _lowerCAmelCase = "ZinengTang/tvlt-base" _lowerCAmelCase = tempfile.mkdtemp() def _snake_case ( self , **_lowerCAmelCase ) -> Any: return TvltImageProcessor.from_pretrained(self.checkpoint , **_lowerCAmelCase ) def _snake_case ( self , **_lowerCAmelCase ) -> str: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_feature_extractor() _lowerCAmelCase = TvltProcessor(image_processor=_lowerCAmelCase , feature_extractor=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_feature_extractor() _lowerCAmelCase = TvltProcessor(image_processor=_lowerCAmelCase , feature_extractor=_lowerCAmelCase ) _lowerCAmelCase = np.ones([12000] ) _lowerCAmelCase = feature_extractor(_lowerCAmelCase , return_tensors="np" ) _lowerCAmelCase = processor(audio=_lowerCAmelCase , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _snake_case ( self ) -> str: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_feature_extractor() _lowerCAmelCase = TvltProcessor(image_processor=_lowerCAmelCase , feature_extractor=_lowerCAmelCase ) _lowerCAmelCase = np.ones([3, 224, 224] ) _lowerCAmelCase = image_processor(_lowerCAmelCase , return_tensors="np" ) _lowerCAmelCase = processor(images=_lowerCAmelCase , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _snake_case ( self ) -> str: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_feature_extractor() _lowerCAmelCase = TvltProcessor(image_processor=_lowerCAmelCase , feature_extractor=_lowerCAmelCase ) _lowerCAmelCase = np.ones([12000] ) _lowerCAmelCase = np.ones([3, 224, 224] ) _lowerCAmelCase = processor(audio=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def _snake_case ( self ) -> str: _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_feature_extractor() _lowerCAmelCase = TvltProcessor(image_processor=_lowerCAmelCase , feature_extractor=_lowerCAmelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
704
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } _SCREAMING_SNAKE_CASE = { "AI-Sweden/gpt-sw3-126m": 20_48, "AI-Sweden/gpt-sw3-350m": 20_48, "AI-Sweden/gpt-sw3-1.6b": 20_48, "AI-Sweden/gpt-sw3-6.7b": 20_48, "AI-Sweden/gpt-sw3-20b": 20_48, } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = VOCAB_FILES_NAMES __lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[str] = ["input_ids", "attention_mask"] def __init__( self , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) _lowerCAmelCase = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _lowerCAmelCase = "<|endoftext|>" if eos_token is None else eos_token _lowerCAmelCase = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _lowerCAmelCase = unk_token if pad_token is None else pad_token _lowerCAmelCase = eos_token if bos_token is None else bos_token else: _lowerCAmelCase = "<pad>" if pad_token is None else pad_token _lowerCAmelCase = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) # Used for whitespace normalization in input texts # fmt : off _lowerCAmelCase = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _lowerCAmelCase = re.compile( f'''[{''.join(map(_lowerCAmelCase , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]''' ) def __getstate__( self ) -> Any: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self , _lowerCAmelCase ) -> Union[str, Any]: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _snake_case ( self ) -> int: return len(self.sp_model ) def _snake_case ( self , _lowerCAmelCase ) -> str: _lowerCAmelCase = self.non_printing_characters_re.sub("" , _lowerCAmelCase ) # Normalize whitespaces _lowerCAmelCase = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization _lowerCAmelCase = unicodedata.normalize("NFC" , _lowerCAmelCase ) return text def _snake_case ( self , _lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: _lowerCAmelCase = self.preprocess_text(_lowerCAmelCase ) return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> int: return self.sp_model.PieceToId(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> str: return self.sp_model.IdToPiece(_lowerCAmelCase ) @staticmethod def _snake_case ( _lowerCAmelCase ) -> str: return out_string def _snake_case ( self , _lowerCAmelCase ) -> str: _lowerCAmelCase = [] _lowerCAmelCase = "" _lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token _lowerCAmelCase = True _lowerCAmelCase = [] else: current_sub_tokens.append(_lowerCAmelCase ) _lowerCAmelCase = False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string def _snake_case ( self ) -> Dict[str, int]: _lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.preprocess_text(_lowerCAmelCase ) _lowerCAmelCase = self.sp_model.encode(_lowerCAmelCase ) else: _lowerCAmelCase = [self.preprocess_text(_lowerCAmelCase ) for t in text] _lowerCAmelCase = self.sp_model.encode(_lowerCAmelCase ) if return_tensors is True or return_tensors == "pt": _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) return token_ids def _snake_case ( self , _lowerCAmelCase ) -> str: return self.sp_model.decode(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> List[int]: _lowerCAmelCase = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] _lowerCAmelCase = ( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(_lowerCAmelCase ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=_lowerCAmelCase )
489
0
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A__ ( _a : List[str] , _a : str , _a : Any ): '''simple docstring''' snake_case__ : int =OmegaConf.load(_UpperCamelCase ) snake_case__ : Tuple =torch.load(_UpperCamelCase , map_location="""cpu""" )["""model"""] snake_case__ : Optional[int] =list(state_dict.keys() ) # extract state_dict for VQVAE snake_case__ : int ={} snake_case__ : Any ="""first_stage_model.""" for key in keys: if key.startswith(_UpperCamelCase ): snake_case__ : str =state_dict[key] # extract state_dict for UNetLDM snake_case__ : Tuple ={} snake_case__ : Any ="""model.diffusion_model.""" for key in keys: if key.startswith(_UpperCamelCase ): snake_case__ : int =state_dict[key] snake_case__ : Dict =config.model.params.first_stage_config.params snake_case__ : str =config.model.params.unet_config.params snake_case__ : Any =VQModel(**_UpperCamelCase ).eval() vqvae.load_state_dict(_UpperCamelCase ) snake_case__ : Optional[int] =UNetLDMModel(**_UpperCamelCase ).eval() unet.load_state_dict(_UpperCamelCase ) snake_case__ : Union[str, Any] =DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=_UpperCamelCase , ) snake_case__ : Optional[Any] =LDMPipeline(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) pipeline.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) __lowerCamelCase : Tuple = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
385
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = """t5""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self , __UpperCAmelCase=32128 , __UpperCAmelCase=512 , __UpperCAmelCase=64 , __UpperCAmelCase=2048 , __UpperCAmelCase=6 , __UpperCAmelCase=None , __UpperCAmelCase=8 , __UpperCAmelCase=32 , __UpperCAmelCase=128 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1E-6 , __UpperCAmelCase=1.0 , __UpperCAmelCase="relu" , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=1 , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = d_model __lowerCamelCase = d_kv __lowerCamelCase = d_ff __lowerCamelCase = num_layers __lowerCamelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowerCamelCase = num_heads __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = relative_attention_max_distance __lowerCamelCase = dropout_rate __lowerCamelCase = layer_norm_epsilon __lowerCamelCase = initializer_factor __lowerCamelCase = feed_forward_proj __lowerCamelCase = use_cache __lowerCamelCase = self.feed_forward_proj.split('''-''' ) __lowerCamelCase = act_info[-1] __lowerCamelCase = act_info[0] == '''gated''' if len(__UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(__UpperCAmelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __lowerCamelCase = '''gelu_new''' super().__init__( pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase , ) class __lowerCAmelCase ( lowerCAmelCase__ ): @property def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: __lowerCamelCase = '''past_encoder_sequence + sequence''' __lowerCamelCase = {0: '''batch'''} __lowerCamelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowerCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} __lowerCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) return common_inputs @property def lowerCamelCase ( self ): '''simple docstring''' return 13
175
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCAmelCase_ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase_ = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCAmelCase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING UpperCAmelCase_ = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def lowerCAmelCase_ ( __UpperCAmelCase: Tuple , __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: Dict , __UpperCAmelCase: Optional[Any] ) -> int: UpperCamelCase__ : Optional[Any] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"config.{attribute}" in modeling_source or f"getattr(config, \"{attribute}\"" in modeling_source or f"getattr(self.config, \"{attribute}\"" in modeling_source ): UpperCamelCase__ : str = True # Deal with multi-line cases elif ( re.search( rf"getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"" , __UpperCAmelCase , ) is not None ): UpperCamelCase__ : List[str] = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCamelCase__ : Any = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCamelCase__ : Dict = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] UpperCamelCase__ : Dict = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed UpperCamelCase__ : str = True if not attribute_used: UpperCamelCase__ : Union[str, Any] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCamelCase__ : Optional[Any] = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCamelCase__ : str = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCamelCase__ : Union[str, Any] = True elif attribute.endswith('''_token_id''' ): UpperCamelCase__ : List[str] = True # configuration class specific cases if not case_allowed: UpperCamelCase__ : List[Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCamelCase__ : Optional[int] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowerCAmelCase_ ( __UpperCAmelCase: Dict ) -> List[str]: UpperCamelCase__ : int = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCamelCase__ : List[Any] = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] UpperCamelCase__ : int = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCamelCase__ : Any = {} if len(config_class.attribute_map ) > 0: UpperCamelCase__ : List[Any] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCamelCase__ : Optional[int] = inspect.getsourcefile(__UpperCAmelCase ) UpperCamelCase__ : Union[str, Any] = os.path.dirname(__UpperCAmelCase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCamelCase__ : Dict = [os.path.join(__UpperCAmelCase , __UpperCAmelCase ) for fn in os.listdir(__UpperCAmelCase ) if fn.startswith('''modeling_''' )] # Get the source code strings UpperCamelCase__ : List[str] = [] for path in modeling_paths: if os.path.isfile(__UpperCAmelCase ): with open(__UpperCAmelCase ) as fp: modeling_sources.append(fp.read() ) UpperCamelCase__ : Union[str, Any] = [] for config_param, default_value in zip(__UpperCAmelCase , __UpperCAmelCase ): # `attributes` here is all the variant names for `config_param` UpperCamelCase__ : int = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): unused_attributes.append(attributes[0] ) return sorted(__UpperCAmelCase ) def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase__ : Tuple = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCamelCase__ : Optional[int] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __UpperCAmelCase : inspect.isclass(__UpperCAmelCase ) and issubclass(__UpperCAmelCase , __UpperCAmelCase ) and inspect.getmodule(__UpperCAmelCase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCamelCase__ : List[str] = check_config_attributes_being_used(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: UpperCamelCase__ : Tuple = unused_attributes if len(__UpperCAmelCase ) > 0: UpperCamelCase__ : Dict = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f"{name}: {attributes}\n" raise ValueError(__UpperCAmelCase ) if __name__ == "__main__": check_config_attributes()
369
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__, __magic_name__ = 13, __magic_name__ = 64, __magic_name__ = 2, __magic_name__ = 3, __magic_name__ = 3, __magic_name__ = True, __magic_name__ = True, __magic_name__ = 128, __magic_name__=[16, 32, 64, 128], __magic_name__ = 7, __magic_name__ = 4, __magic_name__ = 37, __magic_name__ = "gelu", __magic_name__ = 0.1, __magic_name__ = 0.1, __magic_name__ = 10, __magic_name__ = 0.02, __magic_name__ = 2, __magic_name__ = 1, __magic_name__ = 128, __magic_name__ = [2, 2, 2, 2], __magic_name__ = 2, __magic_name__ = 2, ) -> List[str]: """simple docstring""" UpperCamelCase__ : List[str] = parent UpperCamelCase__ : Optional[int] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[int] = patch_size UpperCamelCase__ : Any = num_channels UpperCamelCase__ : int = is_training UpperCamelCase__ : str = use_labels UpperCamelCase__ : Optional[Any] = hidden_size UpperCamelCase__ : Tuple = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : Any = intermediate_size UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Dict = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : Tuple = type_sequence_label_size UpperCamelCase__ : Optional[Any] = initializer_range UpperCamelCase__ : Optional[int] = encoder_stride UpperCamelCase__ : Any = num_attention_outputs UpperCamelCase__ : Dict = embed_dim UpperCamelCase__ : str = embed_dim + 1 UpperCamelCase__ : int = resolution UpperCamelCase__ : List[str] = depths UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : Tuple = dim UpperCamelCase__ : Optional[int] = mlp_expansion_ratio def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ : Dict = None if self.use_labels: UpperCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase__ : int = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__magic_name__, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, resolution=self.resolution, depths=self.depths, hidden_sizes=self.hidden_sizes, dim=self.dim, mlp_expansion_ratio=self.mlp_expansion_ratio, ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Any: """simple docstring""" UpperCamelCase__ : Dict = TFEfficientFormerModel(config=__magic_name__ ) UpperCamelCase__ : str = model(__magic_name__, training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Optional[int] = self.type_sequence_label_size UpperCamelCase__ : Dict = TFEfficientFormerForImageClassification(__magic_name__ ) UpperCamelCase__ : Any = model(__magic_name__, labels=__magic_name__, training=__magic_name__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__ : Optional[Any] = 1 UpperCamelCase__ : List[str] = TFEfficientFormerForImageClassification(__magic_name__ ) UpperCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ : Union[str, Any] = model(__magic_name__, labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Dict = config_and_inputs UpperCamelCase__ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowercase__ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' a : int = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) a : Union[str, Any] = ( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) a : Any = False a : Tuple = False a : Any = False a : int = False a : Tuple = False def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : Optional[Any] = TFEfficientFormerModelTester(self ) UpperCamelCase__ : int = ConfigTester( self, config_class=__magic_name__, has_text_modality=__magic_name__, hidden_size=37 ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''' ) def UpperCamelCase__ ( self ) -> Any: """simple docstring""" pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''' ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(__magic_name__ ) UpperCamelCase__ : List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : List[str] = [*signature.parameters.keys()] UpperCamelCase__ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __magic_name__ ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" def check_hidden_states_output(__magic_name__, __magic_name__, __magic_name__ ): UpperCamelCase__ : Union[str, Any] = model_class(__magic_name__ ) UpperCamelCase__ : str = model(**self._prepare_for_class(__magic_name__, __magic_name__ ), training=__magic_name__ ) UpperCamelCase__ : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase__ : Optional[int] = getattr( self.model_tester, '''expected_num_hidden_layers''', self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__magic_name__ ), __magic_name__ ) if hasattr(self.model_tester, '''encoder_seq_length''' ): UpperCamelCase__ : Dict = self.model_tester.encoder_seq_length if hasattr(self.model_tester, '''chunk_length''' ) and self.model_tester.chunk_length > 1: UpperCamelCase__ : Tuple = seq_length * self.model_tester.chunk_length else: UpperCamelCase__ : Optional[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) if config.is_encoder_decoder: UpperCamelCase__ : List[str] = outputs.decoder_hidden_states self.asseretIsInstance(__magic_name__, (list, tuple) ) self.assertEqual(len(__magic_name__ ), __magic_name__ ) UpperCamelCase__ : str = getattr(self.model_tester, '''seq_length''', __magic_name__ ) UpperCamelCase__ : Optional[Any] = getattr(self.model_tester, '''decoder_seq_length''', __magic_name__ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ), [decoder_seq_length, self.model_tester.hidden_size], ) UpperCamelCase__ ,UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = True check_hidden_states_output(__magic_name__, __magic_name__, __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ : List[Any] = True check_hidden_states_output(__magic_name__, __magic_name__, __magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__=False ) -> Any: """simple docstring""" UpperCamelCase__ : List[str] = super()._prepare_for_class(__magic_name__, __magic_name__, return_labels=__magic_name__ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''' ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__magic_name__ ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @slow def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Dict = TFEfficientFormerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Dict = True UpperCamelCase__ : Optional[Any] = getattr(self.model_tester, '''seq_length''', __magic_name__ ) UpperCamelCase__ : Any = getattr(self.model_tester, '''encoder_seq_length''', __magic_name__ ) UpperCamelCase__ : Tuple = getattr(self.model_tester, '''key_length''', __magic_name__ ) UpperCamelCase__ : Union[str, Any] = getattr(self.model_tester, '''chunk_length''', __magic_name__ ) if chunk_length is not None and hasattr(self.model_tester, '''num_hashes''' ): UpperCamelCase__ : Dict = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: UpperCamelCase__ : Dict = True UpperCamelCase__ : Optional[int] = False UpperCamelCase__ : Any = True UpperCamelCase__ : str = model_class(__magic_name__ ) UpperCamelCase__ : Optional[int] = model(**self._prepare_for_class(__magic_name__, __magic_name__ ), training=__magic_name__ ) UpperCamelCase__ : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__magic_name__ ), self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase__ : Optional[int] = True UpperCamelCase__ : int = model_class(__magic_name__ ) UpperCamelCase__ : str = model(**self._prepare_for_class(__magic_name__, __magic_name__ ), training=__magic_name__ ) UpperCamelCase__ : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__magic_name__ ), self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction UpperCamelCase__ ,UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model UpperCamelCase__ : str = model_class(__magic_name__ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes UpperCamelCase__ : Tuple = { key: tf.keras.Input(shape=val.shape[1:], dtype=val.dtype, name=__magic_name__ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } UpperCamelCase__ : str = model(__magic_name__ ) self.assertTrue(outputs_dict is not None ) def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase__ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''' ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''' ) UpperCamelCase__ : Dict = self.default_image_processor UpperCamelCase__ : List[str] = prepare_img() UpperCamelCase__ : str = image_processor(images=__magic_name__, return_tensors='''tf''' ) # forward pass UpperCamelCase__ : Dict = model(**__magic_name__, training=__magic_name__ ) # verify the logits UpperCamelCase__ : Tuple = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape, __magic_name__ ) UpperCamelCase__ : List[str] = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3], __magic_name__, atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : str = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''' ) UpperCamelCase__ : List[str] = self.default_image_processor UpperCamelCase__ : Union[str, Any] = prepare_img() UpperCamelCase__ : int = image_processor(images=__magic_name__, return_tensors='''tf''' ) # forward pass UpperCamelCase__ : Tuple = model(**__magic_name__, training=__magic_name__ ) # verify the logits UpperCamelCase__ : Tuple = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape, __magic_name__ ) UpperCamelCase__ : Optional[int] = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3], __magic_name__, atol=1E-4 ) )
369
1
import requests lowerCamelCase ="YOUR API KEY" def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ = giphy_api_key ): UpperCamelCase__ : Dict = '''+'''.join(query.split() ) UpperCamelCase__ : int = f'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' UpperCamelCase__ : Optional[int] = requests.get(UpperCamelCase__ ).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
285
def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if index == number_of_items: return 0 UpperCamelCase__ : str = 0 UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : int = knapsack(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , index + 1 ) if weights[index] <= max_weight: UpperCamelCase__ : List[Any] = values[index] + knapsack( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , max_weight - weights[index] , index + 1 ) return max(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
285
1
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : List[Any] = "conditional_detr" __snake_case : Optional[int] = ["past_key_values"] __snake_case : Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Optional[int] ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : Optional[int]=None ,lowerCamelCase__ : List[str]=3 ,lowerCamelCase__ : Dict=300 ,lowerCamelCase__ : Tuple=6 ,lowerCamelCase__ : int=2048 ,lowerCamelCase__ : List[str]=8 ,lowerCamelCase__ : Tuple=6 ,lowerCamelCase__ : Optional[Any]=2048 ,lowerCamelCase__ : List[Any]=8 ,lowerCamelCase__ : List[Any]=0.0 ,lowerCamelCase__ : Union[str, Any]=0.0 ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : Optional[Any]="relu" ,lowerCamelCase__ : List[str]=256 ,lowerCamelCase__ : Optional[int]=0.1 ,lowerCamelCase__ : Dict=0.0 ,lowerCamelCase__ : Union[str, Any]=0.0 ,lowerCamelCase__ : Tuple=0.02 ,lowerCamelCase__ : Optional[Any]=1.0 ,lowerCamelCase__ : Any=False ,lowerCamelCase__ : Dict="sine" ,lowerCamelCase__ : Any="resnet50" ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : Dict=False ,lowerCamelCase__ : List[str]=2 ,lowerCamelCase__ : Optional[int]=5 ,lowerCamelCase__ : Union[str, Any]=2 ,lowerCamelCase__ : Optional[Any]=1 ,lowerCamelCase__ : Any=1 ,lowerCamelCase__ : int=2 ,lowerCamelCase__ : Optional[Any]=5 ,lowerCamelCase__ : List[str]=2 ,lowerCamelCase__ : Dict=0.25 ,**lowerCamelCase__ : str ,) -> Tuple: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCamelCase__ ,lowerCamelCase__ ): SCREAMING_SNAKE_CASE = backbone_config.get("""model_type""" ) SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE = config_class.from_dict(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = use_timm_backbone SCREAMING_SNAKE_CASE = backbone_config SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = num_queries SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = encoder_ffn_dim SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = encoder_attention_heads SCREAMING_SNAKE_CASE = decoder_ffn_dim SCREAMING_SNAKE_CASE = decoder_layers SCREAMING_SNAKE_CASE = decoder_attention_heads SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = init_std SCREAMING_SNAKE_CASE = init_xavier_std SCREAMING_SNAKE_CASE = encoder_layerdrop SCREAMING_SNAKE_CASE = decoder_layerdrop SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = auxiliary_loss SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = backbone SCREAMING_SNAKE_CASE = use_pretrained_backbone SCREAMING_SNAKE_CASE = dilation # Hungarian matcher SCREAMING_SNAKE_CASE = class_cost SCREAMING_SNAKE_CASE = bbox_cost SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE = mask_loss_coefficient SCREAMING_SNAKE_CASE = dice_loss_coefficient SCREAMING_SNAKE_CASE = cls_loss_coefficient SCREAMING_SNAKE_CASE = bbox_loss_coefficient SCREAMING_SNAKE_CASE = giou_loss_coefficient SCREAMING_SNAKE_CASE = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase__ ,**lowerCamelCase__ ) @property def SCREAMING_SNAKE_CASE__ ( self : int ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int: '''simple docstring''' return self.d_model def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Dict = version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> float: '''simple docstring''' return 1e-5 @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: '''simple docstring''' return 12
116
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo SCREAMING_SNAKE_CASE_ = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ SCREAMING_SNAKE_CASE_ = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ SCREAMING_SNAKE_CASE_ = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ,id="""token""" ) ,id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" ,id="""token""" ) ,id="""sequence""" ) ,id="""references""" ), } ) ,) def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : List[List[List[str]]] ,lowerCamelCase__ : List[List[str]] ,lowerCamelCase__ : int = 1 ,lowerCamelCase__ : int = 4 ,) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCamelCase__ ,hypotheses=lowerCamelCase__ ,min_len=lowerCamelCase__ ,max_len=lowerCamelCase__ ) }
116
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : List[str] = { '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class __UpperCamelCase ( UpperCAmelCase_ ): lowerCamelCase : Union[str, Any] ='''falcon''' lowerCamelCase : str =['''past_key_values'''] def __init__( self , lowerCAmelCase__=6_5024 , lowerCAmelCase__=4544 , lowerCAmelCase__=32 , lowerCAmelCase__=71 , lowerCAmelCase__=1E-5 , lowerCAmelCase__=0.02 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=None , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=11 , lowerCAmelCase__=11 , **lowerCAmelCase__ , ) -> str: a : Any = vocab_size # Backward compatibility with n_embed kwarg a : List[str] = kwargs.pop("n_embed" , lowerCamelCase__ ) a : Union[str, Any] = hidden_size if n_embed is None else n_embed a : Optional[Any] = num_hidden_layers a : Optional[int] = num_attention_heads a : Optional[int] = layer_norm_epsilon a : List[Any] = initializer_range a : str = use_cache a : int = hidden_dropout a : str = attention_dropout a : Optional[Any] = bos_token_id a : Union[str, Any] = eos_token_id a : str = num_attention_heads if num_kv_heads is None else num_kv_heads a : Union[str, Any] = alibi a : Optional[int] = new_decoder_architecture a : Dict = multi_query # Ignored when new_decoder_architecture is True a : Tuple = parallel_attn a : Tuple = bias super().__init__(bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) @property def __a ( self ) -> Dict: return self.hidden_size // self.num_attention_heads @property def __a ( self ) -> Optional[Any]: return not self.alibi
633
from __future__ import annotations class _A : def __init__( self : List[str] , lowerCamelCase__ : Any=None ): """simple docstring""" __UpperCamelCase : Union[str, Any] = data __UpperCamelCase : Union[str, Any] = None def __repr__( self : int ): """simple docstring""" __UpperCamelCase : Union[str, Any] = [] __UpperCamelCase : Optional[int] = self while temp: string_rep.append(f'{temp.data}' ) __UpperCamelCase : Dict = temp.next return "->".join(lowerCamelCase__ ) def __lowerCamelCase ( __lowerCAmelCase : list ) -> Tuple: if not elements_list: raise Exception("""The Elements List is empty""" ) __UpperCamelCase : Dict = Node(elements_list[0] ) for i in range(1 , len(__lowerCAmelCase ) ): __UpperCamelCase : List[str] = Node(elements_list[i] ) __UpperCamelCase : Optional[int] = current.next return head def __lowerCamelCase ( __lowerCAmelCase : Node ) -> None: if head_node is not None and isinstance(__lowerCAmelCase , __lowerCAmelCase ): print_reverse(head_node.next ) print(head_node.data ) def __lowerCamelCase ( ) -> Union[str, Any]: from doctest import testmod testmod() __UpperCamelCase : Any = make_linked_list([14, 52, 14, 12, 43] ) print("""Linked List:""" ) print(__lowerCAmelCase ) print("""Elements in Reverse:""" ) print_reverse(__lowerCAmelCase ) if __name__ == "__main__": main()
269
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase_ : List[str] = { """configuration_mobilenet_v2""": [ """MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileNetV2Config""", """MobileNetV2OnnxConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Tuple = ["""MobileNetV2FeatureExtractor"""] lowerCamelCase_ : Union[str, Any] = ["""MobileNetV2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : int = [ """MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileNetV2ForImageClassification""", """MobileNetV2ForSemanticSegmentation""", """MobileNetV2Model""", """MobileNetV2PreTrainedModel""", """load_tf_weights_in_mobilenet_v2""", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys lowerCamelCase_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : int ): torch.manual_seed(0 ) UpperCamelCase_: Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def lowerCAmelCase__ ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase_: Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def lowerCAmelCase__ ( self : Any ): torch.manual_seed(0 ) UpperCamelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Union[str, Any] = self.dummy_uncond_unet UpperCamelCase_: Optional[Any] = DDIMScheduler() UpperCamelCase_: List[str] = self.dummy_vq_model UpperCamelCase_: List[Any] = LDMPipeline(unet=snake_case_ , vqvae=snake_case_ , scheduler=snake_case_ ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: str = torch.manual_seed(0 ) UpperCamelCase_: int = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" ).images UpperCamelCase_: Dict = torch.manual_seed(0 ) UpperCamelCase_: str = ldm(generator=snake_case_ , num_inference_steps=2 , output_type="""numpy""" , return_dict=snake_case_ )[0] UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCamelCase_: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_: str = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) UpperCamelCase_: Optional[Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(snake_case_ ) ldm.set_progress_bar_config(disable=snake_case_ ) UpperCamelCase_: List[str] = torch.manual_seed(0 ) UpperCamelCase_: Optional[int] = ldm(generator=snake_case_ , num_inference_steps=5 , output_type="""numpy""" ).images UpperCamelCase_: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase_: List[str] = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) UpperCamelCase_: Dict = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
670
1
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCamelCase__ = threading.Lock() UpperCamelCase__ = None UpperCamelCase__ = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } UpperCamelCase__ = logging.WARNING UpperCamelCase__ = True def a__ ( ) -> List[Any]: UpperCAmelCase__ : Optional[Any] = os.getenv('''TRANSFORMERS_VERBOSITY''' , lowerCAmelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def a__ ( ) -> str: return __name__.split('''.''' )[0] def a__ ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def a__ ( ) -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return UpperCAmelCase__ : str = logging.StreamHandler() # Set sys.stderr as stream. UpperCAmelCase__ : Union[str, Any] = sys.stderr.flush # Apply our default configuration to the library root logger. UpperCAmelCase__ : List[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) UpperCAmelCase__ : List[Any] = False def a__ ( ) -> None: global _default_handler with _lock: if not _default_handler: return UpperCAmelCase__ : Union[str, Any] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) UpperCAmelCase__ : Dict = None def a__ ( ) -> Dict: return log_levels def a__ ( lowerCAmelCase__ = None ) -> logging.Logger: if name is None: UpperCAmelCase__ : List[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(lowerCAmelCase__ ) def a__ ( ) -> int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def a__ ( lowerCAmelCase__ ) -> None: _configure_library_root_logger() _get_library_root_logger().setLevel(lowerCAmelCase__ ) def a__ ( ) -> Tuple: return set_verbosity(lowerCAmelCase__ ) def a__ ( ) -> Union[str, Any]: return set_verbosity(lowerCAmelCase__ ) def a__ ( ) -> List[str]: return set_verbosity(lowerCAmelCase__ ) def a__ ( ) -> int: return set_verbosity(lowerCAmelCase__ ) def a__ ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def a__ ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def a__ ( lowerCAmelCase__ ) -> None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(lowerCAmelCase__ ) def a__ ( ) -> None: _configure_library_root_logger() UpperCAmelCase__ : List[Any] = False def a__ ( ) -> None: _configure_library_root_logger() UpperCAmelCase__ : str = True def a__ ( ) -> None: UpperCAmelCase__ : List[str] = _get_library_root_logger().handlers for handler in handlers: UpperCAmelCase__ : str = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' ) handler.setFormatter(lowerCAmelCase__ ) def a__ ( ) -> None: UpperCAmelCase__ : Optional[Any] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(lowerCAmelCase__ ) def a__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : Optional[Any] = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , lowerCAmelCase__ ) if no_advisory_warnings: return self.warning(*lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCamelCase__ = warning_advice @functools.lru_cache(lowerCAmelCase__ ) def a__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: self.warning(*lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCamelCase__ = warning_once class lowerCamelCase_ : def __init__( self : Union[str, Any] , *_A : Optional[int] , **_A : str ): # pylint: disable=unused-argument '''simple docstring''' UpperCAmelCase__ : Dict = args[0] if args else None def __iter__( self : List[Any] ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : Dict , _A : Union[str, Any] ): '''simple docstring''' def empty_fn(*_A : int , **_A : str ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Dict ): '''simple docstring''' return self def __exit__( self : Any , _A : Union[str, Any] , _A : int , _A : str ): '''simple docstring''' return class lowerCamelCase_ : def __call__( self : List[Any] , *_A : int , **_A : List[str] ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*_A , **_A ) else: return EmptyTqdm(*_A , **_A ) def lowercase_ ( self : Tuple , *_A : Dict , **_A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_A , **_A ) def lowercase_ ( self : Any ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCamelCase__ = _tqdm_cls() def a__ ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def a__ ( ) -> List[str]: global _tqdm_active UpperCAmelCase__ : int = True hf_hub_utils.enable_progress_bars() def a__ ( ) -> List[str]: global _tqdm_active UpperCAmelCase__ : Optional[Any] = False hf_hub_utils.disable_progress_bars()
75
def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: A__ = 0 A__ = len(__UpperCamelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCamelCase ): return None A__ = sorted_collection[point] if current_item == item: return point else: if point < left: A__ = left A__ = point elif point > right: A__ = right A__ = point else: if item < current_item: A__ = point - 1 else: A__ = point + 1 return None def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCamelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif point > right: return interpolation_search_by_recursion(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , point - 1 ) else: return interpolation_search_by_recursion( __UpperCamelCase , __UpperCamelCase , point + 1 , __UpperCamelCase ) def A ( __UpperCamelCase ) -> List[str]: if collection != sorted(__UpperCamelCase ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys SCREAMING_SNAKE_CASE__ = 0 if debug == 1: SCREAMING_SNAKE_CASE__ = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') SCREAMING_SNAKE_CASE__ = 6_7 SCREAMING_SNAKE_CASE__ = interpolation_search(collection, target) if result is not None: print(f'{target} found at positions: {result}') else: print('''Not found''')
9
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case : Union[str, Any] = 1_6 snake_case : str = 3_2 def snake_case__ ( __lowercase , __lowercase = 1_6 ) -> List[str]: """simple docstring""" A__ : Any = AutoTokenizer.from_pretrained("bert-base-cased" ) A__ : Dict = load_dataset("glue" , "mrpc" ) def tokenize_function(__lowercase ): # max_length=None => use the model max length (it's actually the default) A__ : List[str] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__lowercase , max_length=__lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : Optional[int] = datasets.map( __lowercase , batched=__lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Optional[int] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : Optional[Any] = 1_6 elif accelerator.mixed_precision != "no": A__ : str = 8 else: A__ : Any = None return tokenizer.pad( __lowercase , padding="longest" , max_length=__lowercase , pad_to_multiple_of=__lowercase , return_tensors="pt" , ) # Instantiate dataloaders. A__ : str = DataLoader( tokenized_datasets["train"] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase ) A__ : List[str] = DataLoader( tokenized_datasets["validation"] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case : int = mocked_dataloaders # noqa: F811 def snake_case__ ( __lowercase , __lowercase ) -> List[str]: """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , __lowercase ) == "1": A__ : Optional[Any] = 2 # New Code # A__ : Optional[int] = int(args.gradient_accumulation_steps ) # Initialize accelerator A__ : int = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowercase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Tuple = config["lr"] A__ : Dict = int(config["num_epochs"] ) A__ : Optional[Any] = int(config["seed"] ) A__ : Dict = int(config["batch_size"] ) A__ : str = evaluate.load("glue" , "mrpc" ) set_seed(__lowercase ) A__ , A__ : Union[str, Any] = get_dataloaders(__lowercase , __lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Tuple = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=__lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : int = model.to(accelerator.device ) # Instantiate optimizer A__ : Dict = AdamW(params=model.parameters() , lr=__lowercase ) # Instantiate scheduler A__ : str = get_linear_schedule_with_warmup( optimizer=__lowercase , num_warmup_steps=1_0_0 , num_training_steps=(len(__lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Optional[int] = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # Now we train the model for epoch in range(__lowercase ): model.train() for step, batch in enumerate(__lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowercase ): A__ : List[str] = model(**__lowercase ) A__ : Any = output.loss accelerator.backward(__lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : str = model(**__lowercase ) A__ : Dict = outputs.logits.argmax(dim=-1 ) A__ , A__ : Optional[Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__lowercase , references=__lowercase , ) A__ : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , __lowercase ) def snake_case__ ( ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=__lowercase , default=__lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=__lowercase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) A__ : str = parser.parse_args() A__ : Tuple = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(__lowercase , __lowercase ) if __name__ == "__main__": main()
182
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowerCAmelCase__ ( unittest.TestCase , UpperCamelCase ): def _lowercase ( self : List[Any]): A__ : Optional[Any] = load_tool("text-classification") self.tool.setup() A__ : Any = load_tool("text-classification" , remote=_A) def _lowercase ( self : List[Any]): A__ : Optional[Any] = self.tool("That's quite cool" , ["positive", "negative"]) self.assertEqual(_A , "positive") def _lowercase ( self : List[str]): A__ : Any = self.remote_tool("That's quite cool" , ["positive", "negative"]) self.assertEqual(_A , "positive") def _lowercase ( self : Optional[Any]): A__ : List[str] = self.tool(text="That's quite cool" , labels=["positive", "negative"]) self.assertEqual(_A , "positive") def _lowercase ( self : Tuple): A__ : Union[str, Any] = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"]) self.assertEqual(_A , "positive")
182
1
import warnings from .generation import TFGenerationMixin class snake_case ( __snake_case ): """simple docstring""" warnings.warn( """Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will """ """be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.""" ,__snake_case ,)
321
import warnings from .generation import TFGenerationMixin class snake_case ( __snake_case ): """simple docstring""" warnings.warn( """Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will """ """be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.""" ,__snake_case ,)
321
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : List[str] = { """configuration_trajectory_transformer""": [ """TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrajectoryTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ """TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrajectoryTransformerModel""", """TrajectoryTransformerPreTrainedModel""", """load_tf_weights_in_trajectory_transformer""", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys a_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a_ : List[Any] = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = ["""OwlViTFeatureExtractor"""] a_ : Any = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys a_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
445
0
"""simple docstring""" def lowerCamelCase_ (UpperCamelCase__ : int ): _UpperCAmelCase : List[str] = [1] _UpperCAmelCase : Optional[Any] = 0, 0, 0 _UpperCAmelCase : int = ugly_nums[ia] * 2 _UpperCAmelCase : Union[str, Any] = ugly_nums[ia] * 3 _UpperCAmelCase : List[str] = ugly_nums[ia] * 5 for _ in range(1 , SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase : Optional[int] = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ugly_nums.append(SCREAMING_SNAKE_CASE__ ) if next_num == next_a: ia += 1 _UpperCAmelCase : Dict = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 _UpperCAmelCase : List[Any] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 _UpperCAmelCase : Tuple = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"{ugly_numbers(200) = }")
506
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : Tuple = b.T snake_case_ : str = np.sum(np.square(SCREAMING_SNAKE_CASE__ ) , axis=1 ) snake_case_ : Dict = np.sum(np.square(SCREAMING_SNAKE_CASE__ ) , axis=0 ) snake_case_ : Any = np.matmul(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ : Optional[Any] = aa[:, None] - 2 * ab + ba[None, :] return d def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" snake_case_ : List[Any] = x.reshape(-1 , 3 ) snake_case_ : List[Any] = squared_euclidean_distance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return np.argmin(SCREAMING_SNAKE_CASE__ , axis=1 ) class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Dict = ["""pixel_values"""] def __init__(self , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = True , **lowercase__ , ): super().__init__(**lowercase__ ) snake_case_ : Union[str, Any] = size if size is not None else {"""height""": 2_56, """width""": 2_56} snake_case_ : Any = get_size_dict(lowercase__ ) snake_case_ : Any = np.array(lowercase__ ) if clusters is not None else None snake_case_ : Optional[int] = do_resize snake_case_ : Dict = size snake_case_ : Any = resample snake_case_ : Any = do_normalize snake_case_ : Optional[Any] = do_color_quantize def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ): snake_case_ : str = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( lowercase__ , size=(size["""height"""], size["""width"""]) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def __UpperCamelCase (self , lowercase__ , lowercase__ = None , ): snake_case_ : Any = rescale(image=lowercase__ , scale=1 / 127.5 , data_format=lowercase__ ) snake_case_ : Optional[int] = image - 1 return image def __UpperCamelCase (self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ): snake_case_ : Tuple = do_resize if do_resize is not None else self.do_resize snake_case_ : str = size if size is not None else self.size snake_case_ : int = get_size_dict(lowercase__ ) snake_case_ : int = resample if resample is not None else self.resample snake_case_ : int = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Optional[int] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case_ : Optional[int] = clusters if clusters is not None else self.clusters snake_case_ : Tuple = np.array(lowercase__ ) snake_case_ : Optional[Any] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""" ) # All transformations expect numpy arrays. snake_case_ : str = [to_numpy_array(lowercase__ ) for image in images] if do_resize: snake_case_ : List[str] = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_normalize: snake_case_ : Dict = [self.normalize(image=lowercase__ ) for image in images] if do_color_quantize: snake_case_ : int = [to_channel_dimension_format(lowercase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case_ : Dict = np.array(lowercase__ ) snake_case_ : Union[str, Any] = color_quantize(lowercase__ , lowercase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case_ : List[Any] = images.shape[0] snake_case_ : str = images.reshape(lowercase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case_ : Any = list(lowercase__ ) else: snake_case_ : Tuple = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] snake_case_ : Union[str, Any] = {"""input_ids""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
480
0
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor class _A ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : Any = 1 @register_to_config def __init__( self : Tuple , A_ : int = 2_000 , A_ : float = 0.15 , A_ : float = 0.01 , A_ : float = 13_48.0 , A_ : float = 1E-5 , A_ : int = 1 , ) -> str: # standard deviation of the initial noise distribution __snake_case = sigma_max # setable values __snake_case = None self.set_sigmas(A_ , A_ , A_ , A_ ) def lowercase ( self : Tuple , A_ : torch.FloatTensor , A_ : Optional[int] = None ) -> torch.FloatTensor: return sample def lowercase ( self : Union[str, Any] , A_ : int , A_ : float = None , A_ : Union[str, torch.device] = None ) -> Optional[int]: __snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps __snake_case = torch.linspace(1 , A_ , A_ , device=A_ ) def lowercase ( self : int , A_ : int , A_ : float = None , A_ : float = None , A_ : float = None ) -> int: __snake_case = sigma_min if sigma_min is not None else self.config.sigma_min __snake_case = sigma_max if sigma_max is not None else self.config.sigma_max __snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(A_ , A_ ) __snake_case = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __snake_case = torch.exp(torch.linspace(math.log(A_ ) , math.log(A_ ) , A_ ) ) __snake_case = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase ( self : List[str] , A_ : str , A_ : Optional[Any] ) -> Any: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def lowercase ( self : Any , A_ : torch.FloatTensor , A_ : int , A_ : torch.FloatTensor , A_ : Optional[torch.Generator] = None , A_ : bool = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) __snake_case = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __snake_case = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __snake_case = timesteps.to(self.discrete_sigmas.device ) __snake_case = self.discrete_sigmas[timesteps].to(sample.device ) __snake_case = self.get_adjacent_sigma(A_ , A_ ).to(sample.device ) __snake_case = torch.zeros_like(A_ ) __snake_case = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __snake_case = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __snake_case = diffusion.unsqueeze(-1 ) __snake_case = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __snake_case = randn_tensor( sample.shape , layout=sample.layout , generator=A_ , device=sample.device , dtype=sample.dtype ) __snake_case = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __snake_case = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=A_ , prev_sample_mean=A_ ) def lowercase ( self : Any , A_ : torch.FloatTensor , A_ : torch.FloatTensor , A_ : Optional[torch.Generator] = None , A_ : bool = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __snake_case = randn_tensor(sample.shape , layout=sample.layout , generator=A_ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __snake_case = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __snake_case = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __snake_case = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __snake_case = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __snake_case = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __snake_case = step_size.unsqueeze(-1 ) __snake_case = sample + step_size * model_output __snake_case = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A_ ) def lowercase ( self : Optional[Any] , A_ : torch.FloatTensor , A_ : torch.FloatTensor , A_ : torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __snake_case = timesteps.to(original_samples.device ) __snake_case = self.discrete_sigmas.to(original_samples.device )[timesteps] __snake_case = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(A_ ) * sigmas[:, None, None, None] ) __snake_case = noise + original_samples return noisy_samples def __len__( self : Tuple ) -> int: return self.config.num_train_timesteps
93
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class _A : """simple docstring""" def __init__( self : Tuple , A_ : Any ) -> Union[str, Any]: __snake_case = data __snake_case = None class _A : """simple docstring""" def __init__( self : Union[str, Any] ) -> List[Any]: __snake_case = None __snake_case = None def __iter__( self : Optional[Any] ) -> Iterator[Any]: __snake_case = self.head while self.head: yield node.data __snake_case = node.next if node == self.head: break def __len__( self : List[Any] ) -> int: return sum(1 for _ in self ) def __repr__( self : Optional[int] ) -> Union[str, Any]: return "->".join(str(A_ ) for item in iter(self ) ) def lowercase ( self : int , A_ : Any ) -> None: self.insert_nth(len(self ) , A_ ) def lowercase ( self : List[str] , A_ : Any ) -> None: self.insert_nth(0 , A_ ) def lowercase ( self : List[Any] , A_ : int , A_ : Any ) -> None: if index < 0 or index > len(self ): raise IndexError('''list index out of range.''' ) __snake_case = Node(A_ ) if self.head is None: __snake_case = new_node # first node points itself __snake_case = __snake_case = new_node elif index == 0: # insert at head __snake_case = self.head __snake_case = __snake_case = new_node else: __snake_case = self.head for _ in range(index - 1 ): __snake_case = temp.next __snake_case = temp.next __snake_case = new_node if index == len(self ) - 1: # insert at tail __snake_case = new_node def lowercase ( self : int ) -> str: return self.delete_nth(0 ) def lowercase ( self : List[Any] ) -> Any: return self.delete_nth(len(self ) - 1 ) def lowercase ( self : List[str] , A_ : int = 0 ) -> Any: if not 0 <= index < len(self ): raise IndexError('''list index out of range.''' ) __snake_case = self.head if self.head == self.tail: # just one node __snake_case = __snake_case = None elif index == 0: # delete head node __snake_case = self.tail.next.next __snake_case = self.head.next else: __snake_case = self.head for _ in range(index - 1 ): __snake_case = temp.next __snake_case = temp.next __snake_case = temp.next.next if index == len(self ) - 1: # delete at tail __snake_case = temp return delete_node.data def lowercase ( self : Dict ) -> bool: return len(self ) == 0 def SCREAMING_SNAKE_CASE ( ): __snake_case = CircularLinkedList() assert len(snake_case) == 0 assert circular_linked_list.is_empty() is True assert str(snake_case) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5): assert len(snake_case) == i circular_linked_list.insert_nth(snake_case, i + 1) assert str(snake_case) == "->".join(str(snake_case) for i in range(1, 6)) circular_linked_list.insert_tail(6) assert str(snake_case) == "->".join(str(snake_case) for i in range(1, 7)) circular_linked_list.insert_head(0) assert str(snake_case) == "->".join(str(snake_case) for i in range(0, 7)) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(snake_case) == "->".join(str(snake_case) for i in range(1, 6)) assert circular_linked_list.delete_nth(2) == 3 circular_linked_list.insert_nth(2, 3) assert str(snake_case) == "->".join(str(snake_case) for i in range(1, 6)) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
93
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_trajectory_transformer""": [ """TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrajectoryTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrajectoryTransformerModel""", """TrajectoryTransformerPreTrainedModel""", """load_tf_weights_in_trajectory_transformer""", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
82
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "imagenet-1k-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase_ = {v: k for k, v in idalabel.items()} UpperCAmelCase_ = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" UpperCAmelCase_ = BitConfig( conv_layer=lowerCAmelCase__ , num_labels=1000 , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ , ) return config def a__ ( lowerCAmelCase__ ): if "stem.conv" in name: UpperCAmelCase_ = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: UpperCAmelCase_ = name.replace("blocks" , "layers" ) if "head.fc" in name: UpperCAmelCase_ = name.replace("head.fc" , "classifier.1" ) if name.startswith("norm" ): UpperCAmelCase_ = "bit." + name if "bit" not in name and "classifier" not in name: UpperCAmelCase_ = "bit.encoder." + name return name def a__ ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): UpperCAmelCase_ = get_config(lowerCAmelCase__ ) # load original model from timm UpperCAmelCase_ = create_model(lowerCAmelCase__ , pretrained=lowerCAmelCase__ ) timm_model.eval() # load state_dict of original model UpperCAmelCase_ = timm_model.state_dict() for key in state_dict.copy().keys(): UpperCAmelCase_ = state_dict.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val.squeeze() if "head" in key else val # load HuggingFace model UpperCAmelCase_ = BitForImageClassification(lowerCAmelCase__ ) model.eval() model.load_state_dict(lowerCAmelCase__ ) # create image processor UpperCAmelCase_ = create_transform(**resolve_data_config({} , model=lowerCAmelCase__ ) ) UpperCAmelCase_ = transform.transforms UpperCAmelCase_ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } UpperCAmelCase_ = BitImageProcessor( do_resize=lowerCAmelCase__ , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCAmelCase__ , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=lowerCAmelCase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = transform(lowerCAmelCase__ ).unsqueeze(0 ) UpperCAmelCase_ = processor(lowerCAmelCase__ , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) # verify logits with torch.no_grad(): UpperCAmelCase_ = model(lowerCAmelCase__ ) UpperCAmelCase_ = outputs.logits print("Logits:" , logits[0, :3] ) print("Predicted class:" , model.config.idalabel[logits.argmax(-1 ).item()] ) UpperCAmelCase_ = timm_model(lowerCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase__ , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f"""Saving model {model_name} and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f"""Pushing model {model_name} and processor to the hub""" ) model.push_to_hub(f"""ybelkada/{model_name}""" ) processor.push_to_hub(f"""ybelkada/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) lowerCamelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
82
1
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) ->list[float]: lowercase_ , lowercase_ = coefficient_matrix.shape lowercase_ , lowercase_ = constant_matrix.shape if rowsa != colsa: lowercase_ = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(SCREAMING_SNAKE_CASE_ ) if colsa != 1: lowercase_ = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(SCREAMING_SNAKE_CASE_ ) if rowsa != rowsa: lowercase_ = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) != rowsa: lowercase_ = ( """Number of initial values must be equal to number of rows in coefficient """ f"""matrix but received {len(SCREAMING_SNAKE_CASE_ )} and {rowsa}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) lowercase_ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowercase_ , lowercase_ = table.shape strictly_diagonally_dominant(SCREAMING_SNAKE_CASE_ ) # Iterates the whole matrix for given number of times for _ in range(SCREAMING_SNAKE_CASE_ ): lowercase_ = [] for row in range(SCREAMING_SNAKE_CASE_ ): lowercase_ = 0 for col in range(SCREAMING_SNAKE_CASE_ ): if col == row: lowercase_ = table[row][col] elif col == cols - 1: lowercase_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowercase_ = (temp + val) / denom new_val.append(SCREAMING_SNAKE_CASE_ ) lowercase_ = new_val return [float(SCREAMING_SNAKE_CASE_ ) for i in new_val] def A_ ( SCREAMING_SNAKE_CASE_ ) ->bool: lowercase_ , lowercase_ = table.shape lowercase_ = True for i in range(0 , SCREAMING_SNAKE_CASE_ ): lowercase_ = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' def A_ ( SCREAMING_SNAKE_CASE_ = "The quick brown fox jumps over the lazy dog" , ) ->bool: lowercase_ = set() # Replace all the whitespace in our sentence lowercase_ = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == 26 def A_ ( SCREAMING_SNAKE_CASE_ = "The quick brown fox jumps over the lazy dog" , ) ->bool: lowercase_ = [False] * 26 for char in input_str: if char.islower(): lowercase_ = True elif char.isupper(): lowercase_ = True return all(SCREAMING_SNAKE_CASE_ ) def A_ ( SCREAMING_SNAKE_CASE_ = "The quick brown fox jumps over the lazy dog" , ) ->bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def A_ ( ) ->None: from timeit import timeit lowercase_ = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit("""is_pangram_faster()""" , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit("""is_pangram_fastest()""" , setup=SCREAMING_SNAKE_CASE_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
603
0
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _snake_case ( snake_case__ : Union[str, Any] ): A = [ 'decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def _snake_case ( snake_case__ : Union[str, Any] ): A , A = emb.weight.shape A = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) A = emb.weight.data return lin_layer def _snake_case ( snake_case__ : Tuple ): A = torch.load(snake_case__ , map_location='cpu' ) A = Namespace(**checkpoint['cfg']['model'] ) A = checkpoint['model'] remove_ignore_keys_(snake_case__ ) A = state_dict['decoder.embed_tokens.weight'].shape[0] A = {key.replace('decoder' , 'model' ): val for key, val in state_dict.items()} A = XGLMConfig( vocab_size=snake_case__ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='gelu' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) A = XGLMForCausalLM(snake_case__ ) A = model.load_state_dict(snake_case__ , strict=snake_case__ ) print(snake_case__ ) A = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _lowercase = parser.parse_args() _lowercase = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
91
"""simple docstring""" import copy import re class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: str = '''hp''' _lowerCamelCase: List[Any] = {} _lowerCamelCase: List[Any] = None @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] ,A_ : List[str] ,A_ : Optional[Any] ) -> Tuple: A = prefix A = defaults cls.build_naming_info() @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : Any ,A_ : List[Any] ) -> int: if len(A_ ) == 0: return "" A = None if any(char.isdigit() for char in word ): raise Exception(F'Parameters should not contain numbers: \'{word}\' contains a number' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 ,len(A_ ) + 1 ): A = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: A = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(A_ : Optional[Any] ): A = '' while integer != 0: A = chr(ord('A' ) + integer % 10 ) + s integer //= 10 return s A = 0 while True: A = word + '#' + int_to_alphabetic(A_ ) if sword in info["reverse_short_word"]: continue else: A = sword break A = short_word A = word return short_word @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : List[Any] ,A_ : Union[str, Any] ) -> Union[str, Any]: A = param_name.split('_' ) A = [TrialShortNamer.shortname_for_word(A_ ,A_ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name A = ['', '_'] for separator in separators: A = separator.join(A_ ) if shortname not in info["reverse_short_param"]: A = shortname A = param_name return shortname return param_name @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : List[Any] ,A_ : Any ) -> Tuple: A = TrialShortNamer.shortname_for_key(A_ ,A_ ) A = short_name A = param_name @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict ) -> List[Any]: if cls.NAMING_INFO is not None: return A = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } A = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(A_ ,A_ ) A = info @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] ,A_ : Union[str, Any] ) -> Union[str, Any]: cls.build_naming_info() assert cls.PREFIX is not None A = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F'You should provide a default value for the param name {k} with value {v}' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue A = cls.NAMING_INFO['short_param'][k] if isinstance(A_ ,A_ ): A = 1 if v else 0 A = '' if isinstance(A_ ,(int, float) ) else '-' A = F'{key}{sep}{v}' name.append(A_ ) return "_".join(A_ ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] ,A_ : Any ) -> int: A = repr[len(cls.PREFIX ) + 1 :] if repr == "": A = [] else: A = repr.split('_' ) A = {} for value in values: if "-" in value: A , A = value.split('-' ) else: A = re.sub('[0-9.]' ,'' ,A_ ) A = float(re.sub('[^0-9.]' ,'' ,A_ ) ) A = cls.NAMING_INFO['reverse_short_param'][p_k] A = p_v for k in cls.DEFAULTS: if k not in parameters: A = cls.DEFAULTS[k] return parameters
91
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class A: '''simple docstring''' def __init__( self : List[str] , A_ : int , A_ : int=13 , A_ : List[Any]=7 , A_ : List[Any]=True , A_ : Union[str, Any]=True , A_ : Optional[Any]=True , A_ : str=True , A_ : Optional[int]=99 , A_ : List[Any]=64 , A_ : int=32 , A_ : List[str]=5 , A_ : Union[str, Any]=4 , A_ : List[Any]=37 , A_ : List[str]="gelu" , A_ : Dict=0.1 , A_ : List[Any]=0.1 , A_ : int=512 , A_ : Dict=16 , A_ : List[Any]=2 , A_ : Optional[Any]=0.02 , A_ : Dict=3 , A_ : Optional[int]=4 , A_ : str=None , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = embedding_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope def a__ ( self : Any ) -> List[Any]: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Any ) -> Tuple: """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) def a__ ( self : List[Any] , A_ : int , A_ : str , A_ : Union[str, Any] , A_ : int , A_ : Union[str, Any] , A_ : Union[str, Any] , A_ : str ) -> int: """simple docstring""" lowerCamelCase_ = MegatronBertModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , token_type_ids=A_ ) lowerCamelCase_ = model(A_ , token_type_ids=A_ ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : Any , A_ : Optional[Any] , A_ : Optional[Any] , A_ : List[str] , A_ : List[Any] , A_ : Optional[Any] , A_ : List[str] , A_ : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = MegatronBertForMaskedLM(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : Tuple , A_ : Dict , A_ : str , A_ : Optional[int] , A_ : Optional[int] , A_ : Optional[int] , A_ : Optional[Any] , A_ : str ) -> Any: """simple docstring""" lowerCamelCase_ = MegatronBertForCausalLM(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : Tuple , A_ : str , A_ : Any , A_ : Optional[int] , A_ : List[Any] , A_ : Optional[int] , A_ : Optional[Any] , A_ : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = MegatronBertForNextSentencePrediction(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def a__ ( self : Tuple , A_ : Tuple , A_ : int , A_ : Optional[int] , A_ : List[Any] , A_ : List[str] , A_ : str , A_ : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = MegatronBertForPreTraining(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , next_sentence_label=A_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def a__ ( self : List[Any] , A_ : str , A_ : Tuple , A_ : Union[str, Any] , A_ : int , A_ : Any , A_ : Dict , A_ : Union[str, Any] ) -> str: """simple docstring""" lowerCamelCase_ = MegatronBertForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model( A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : List[str] , A_ : List[str] , A_ : Dict , A_ : str , A_ : Optional[int] , A_ : Dict , A_ : Dict , A_ : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = MegatronBertForSequenceClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Dict , A_ : Union[str, Any] , A_ : List[Any] , A_ : Dict , A_ : Dict , A_ : Any , A_ : Optional[int] , A_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = MegatronBertForTokenClassification(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : List[Any] , A_ : Optional[int] , A_ : str , A_ : Any , A_ : Tuple , A_ : Optional[int] , A_ : List[str] , A_ : int ) -> int: """simple docstring""" lowerCamelCase_ = self.num_choices lowerCamelCase_ = MegatronBertForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase = True # test_resize_embeddings = False UpperCamelCase = False def a__ ( self : Any , A_ : List[Any] , A_ : Any , A_ : Union[str, Any]=False ) -> List[Any]: """simple docstring""" lowerCamelCase_ = super()._prepare_for_class(A_ , A_ , return_labels=A_ ) if return_labels: if model_class in get_values(A_ ): lowerCamelCase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A_ ) lowerCamelCase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) return inputs_dict def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = MegatronBertModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , hidden_size=37 ) def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*A_ ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*A_ ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*A_ ) def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*A_ ) def a__ ( self : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*A_ ) def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*A_ ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*A_ ) def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' return torch.tensor( lowercase , dtype=torch.long , device=lowercase , ) lowerCamelCase : Union[str, Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class A( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip('Model is not available.' ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: lowerCamelCase_ = os.path.join(os.environ['MYDIR'] , A_ ) lowerCamelCase_ = MegatronBertModel.from_pretrained(A_ ) model.to(A_ ) model.half() lowerCamelCase_ = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): lowerCamelCase_ = model(A_ )[0] lowerCamelCase_ = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , A_ ) lowerCamelCase_ = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): lowerCamelCase_ = output[0, ii, jj] lowerCamelCase_ = expected[3 * ii + jj] lowerCamelCase_ = 'ii={} jj={} a={} b={}'.format(A_ , A_ , A_ , A_ ) self.assertTrue(math.isclose(A_ , A_ , rel_tol=A_ , abs_tol=A_ ) , msg=A_ )
651
import cva import numpy as np class A: '''simple docstring''' def __init__( self : int , A_ : float , A_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): lowerCamelCase_ = k lowerCamelCase_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : str ) -> str: """simple docstring""" return str(self.k ) def a__ ( self : Any , A_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowerCamelCase_ = cva.imread(A_ , 0 ) lowerCamelCase_ , lowerCamelCase_ = img.shape lowerCamelCase_ = [] lowerCamelCase_ = img.copy() lowerCamelCase_ = cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) lowerCamelCase_ , lowerCamelCase_ = np.gradient(A_ ) lowerCamelCase_ = dx**2 lowerCamelCase_ = dy**2 lowerCamelCase_ = dx * dy lowerCamelCase_ = 0.04 lowerCamelCase_ = self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): lowerCamelCase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = (wxx * wyy) - (wxy**2) lowerCamelCase_ = wxx + wyy lowerCamelCase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase , lowerCamelCase : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
651
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A_ : Optional[int] = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
196
"""simple docstring""" from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig A_ : Union[str, Any] = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class lowerCamelCase (A__ ): lowerCamelCase__ : int = 'ernie_m' lowerCamelCase__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : List[str] , __UpperCAmelCase : int = 2_5_0_0_0_2 , __UpperCAmelCase : int = 7_6_8 , __UpperCAmelCase : int = 1_2 , __UpperCAmelCase : int = 1_2 , __UpperCAmelCase : int = 3_0_7_2 , __UpperCAmelCase : str = "gelu" , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : int = 5_1_4 , __UpperCAmelCase : float = 0.02 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : float = 1e-05 , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Union[str, Any]=0.0 , **__UpperCAmelCase : Any , ) -> Optional[Any]: super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = classifier_dropout SCREAMING_SNAKE_CASE__ = is_decoder SCREAMING_SNAKE_CASE__ = act_dropout
196
1
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self :int , __magic_name__ :UNetaDModel , __magic_name__ :UNetaDModel , __magic_name__ :DDPMScheduler , __magic_name__ :Dict , ) -> List[Any]: '''simple docstring''' super().__init__() a__ = value_function a__ = unet a__ = scheduler a__ = env a__ = env.get_dataset() a__ = {} for key in self.data.keys(): try: a__ = self.data[key].mean() except: # noqa: E722 pass a__ = {} for key in self.data.keys(): try: a__ = self.data[key].std() except: # noqa: E722 pass a__ = env.observation_space.shape[0] a__ = env.action_space.shape[0] def _UpperCamelCase ( self :Union[str, Any] , __magic_name__ :Tuple , __magic_name__ :Any ) -> Optional[int]: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def _UpperCamelCase ( self :Tuple , __magic_name__ :Tuple , __magic_name__ :Optional[int] ) -> Any: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def _UpperCamelCase ( self :Any , __magic_name__ :str ) -> List[Any]: '''simple docstring''' if type(__magic_name__ ) is dict: return {k: self.to_torch(__magic_name__ ) for k, v in x_in.items()} elif torch.is_tensor(__magic_name__ ): return x_in.to(self.unet.device ) return torch.tensor(__magic_name__ , device=self.unet.device ) def _UpperCamelCase ( self :int , __magic_name__ :List[Any] , __magic_name__ :Tuple , __magic_name__ :Any ) -> Tuple: '''simple docstring''' for key, val in cond.items(): a__ = val.clone() return x_in def _UpperCamelCase ( self :int , __magic_name__ :int , __magic_name__ :List[Any] , __magic_name__ :Tuple , __magic_name__ :str ) -> Union[str, Any]: '''simple docstring''' a__ = x.shape[0] a__ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model a__ = torch.full((batch_size,) , __magic_name__ , device=self.unet.device , dtype=torch.long ) for _ in range(__magic_name__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models a__ = self.value_function(x.permute(0 , 2 , 1 ) , __magic_name__ ).sample a__ = torch.autograd.grad([y.sum()] , [x] )[0] a__ = self.scheduler._get_variance(__magic_name__ ) a__ = torch.exp(0.5 * posterior_variance ) a__ = model_std * grad a__ = 0 a__ = x.detach() a__ = x + scale * grad a__ = self.reset_xa(__magic_name__ , __magic_name__ , self.action_dim ) a__ = self.unet(x.permute(0 , 2 , 1 ) , __magic_name__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg a__ = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , predict_epsilon=__magic_name__ )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) a__ = self.reset_xa(__magic_name__ , __magic_name__ , self.action_dim ) a__ = self.to_torch(__magic_name__ ) return x, y def __call__( self :Dict , __magic_name__ :Any , __magic_name__ :List[Any]=64 , __magic_name__ :List[str]=32 , __magic_name__ :str=2 , __magic_name__ :Dict=0.1 ) -> List[str]: '''simple docstring''' a__ = self.normalize(__magic_name__ , '''observations''' ) a__ = obs[None].repeat(__magic_name__ , axis=0 ) a__ = {0: self.to_torch(__magic_name__ )} a__ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) a__ = randn_tensor(__magic_name__ , device=self.unet.device ) a__ = self.reset_xa(__magic_name__ , __magic_name__ , self.action_dim ) a__ = self.to_torch(__magic_name__ ) # run the diffusion process a__ , a__ = self.run_diffusion(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # sort output trajectories by value a__ = y.argsort(0 , descending=__magic_name__ ).squeeze() a__ = x[sorted_idx] a__ = sorted_values[:, :, : self.action_dim] a__ = actions.detach().cpu().numpy() a__ = self.de_normalize(__magic_name__ , key='''actions''' ) # select the action with the highest value if y is not None: a__ = 0 else: # if we didn't run value guiding, select a random action a__ = np.random.randint(0 , __magic_name__ ) a__ = denorm_actions[selected_index, 0] return denorm_actions
158
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __snake_case ( UpperCamelCase , UpperCamelCase=0.9_99 , UpperCamelCase="cosine" , ) -> Dict: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) a__ = [] for i in range(UpperCamelCase ): a__ = i / num_diffusion_timesteps a__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase ) / alpha_bar_fn(UpperCamelCase ) , UpperCamelCase ) ) return torch.tensor(UpperCamelCase , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' snake_case__ : int = [e.name for e in KarrasDiffusionSchedulers] snake_case__ : List[str] = 2 @register_to_config def __init__( self :Any , __magic_name__ :int = 1000 , __magic_name__ :float = 0.00_085 , __magic_name__ :float = 0.012 , __magic_name__ :str = "linear" , __magic_name__ :Optional[Union[np.ndarray, List[float]]] = None , __magic_name__ :str = "epsilon" , __magic_name__ :str = "linspace" , __magic_name__ :int = 0 , ) -> Optional[Any]: '''simple docstring''' if trained_betas is not None: a__ = torch.tensor(__magic_name__ , dtype=torch.floataa ) elif beta_schedule == "linear": a__ = torch.linspace(__magic_name__ , __magic_name__ , __magic_name__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __magic_name__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a__ = betas_for_alpha_bar(__magic_name__ ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) a__ = 1.0 - self.betas a__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__magic_name__ , __magic_name__ , __magic_name__ ) def _UpperCamelCase ( self :int , __magic_name__ :int , __magic_name__ :Tuple=None ) -> Dict: '''simple docstring''' if schedule_timesteps is None: a__ = self.timesteps a__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: a__ = 1 if len(__magic_name__ ) > 1 else 0 else: a__ = timestep.cpu().item() if torch.is_tensor(__magic_name__ ) else timestep a__ = self._index_counter[timestep_int] return indices[pos].item() @property def _UpperCamelCase ( self :str ) -> Tuple: '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _UpperCamelCase ( self :str , __magic_name__ :torch.FloatTensor , __magic_name__ :Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: '''simple docstring''' a__ = self.index_for_timestep(__magic_name__ ) if self.state_in_first_order: a__ = self.sigmas[step_index] else: a__ = self.sigmas_interpol[step_index] a__ = sample / ((sigma**2 + 1) ** 0.5) return sample def _UpperCamelCase ( self :Optional[Any] , __magic_name__ :int , __magic_name__ :Union[str, torch.device] = None , __magic_name__ :Optional[int] = None , ) -> int: '''simple docstring''' a__ = num_inference_steps a__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": a__ = np.linspace(0 , num_train_timesteps - 1 , __magic_name__ , dtype=__magic_name__ )[::-1].copy() elif self.config.timestep_spacing == "leading": a__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a__ = (np.arange(0 , __magic_name__ ) * step_ratio).round()[::-1].copy().astype(__magic_name__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": a__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a__ = (np.arange(__magic_name__ , 0 , -step_ratio )).round().copy().astype(__magic_name__ ) timesteps -= 1 else: raise ValueError( F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) a__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) a__ = torch.from_numpy(np.log(__magic_name__ ) ).to(__magic_name__ ) a__ = np.interp(__magic_name__ , np.arange(0 , len(__magic_name__ ) ) , __magic_name__ ) a__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) a__ = torch.from_numpy(__magic_name__ ).to(device=__magic_name__ ) # interpolate sigmas a__ = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() a__ = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) a__ = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__magic_name__ ).startswith('''mps''' ): # mps does not support float64 a__ = torch.from_numpy(__magic_name__ ).to(__magic_name__ , dtype=torch.floataa ) else: a__ = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) # interpolate timesteps a__ = self.sigma_to_t(__magic_name__ ).to(__magic_name__ , dtype=timesteps.dtype ) a__ = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() a__ = torch.cat([timesteps[:1], interleaved_timesteps] ) a__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter a__ = defaultdict(__magic_name__ ) def _UpperCamelCase ( self :Dict , __magic_name__ :str ) -> Union[str, Any]: '''simple docstring''' a__ = sigma.log() # get distribution a__ = log_sigma - self.log_sigmas[:, None] # get sigmas range a__ = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) a__ = low_idx + 1 a__ = self.log_sigmas[low_idx] a__ = self.log_sigmas[high_idx] # interpolate sigmas a__ = (low - log_sigma) / (low - high) a__ = w.clamp(0 , 1 ) # transform interpolation to time range a__ = (1 - w) * low_idx + w * high_idx a__ = t.view(sigma.shape ) return t @property def _UpperCamelCase ( self :List[Any] ) -> int: '''simple docstring''' return self.sample is None def _UpperCamelCase ( self :Dict , __magic_name__ :Union[torch.FloatTensor, np.ndarray] , __magic_name__ :Union[float, torch.FloatTensor] , __magic_name__ :Union[torch.FloatTensor, np.ndarray] , __magic_name__ :bool = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' a__ = self.index_for_timestep(__magic_name__ ) # advance index counter by 1 a__ = timestep.cpu().item() if torch.is_tensor(__magic_name__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: a__ = self.sigmas[step_index] a__ = self.sigmas_interpol[step_index + 1] a__ = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method a__ = self.sigmas[step_index - 1] a__ = self.sigmas_interpol[step_index] a__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API a__ = 0 a__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": a__ = sigma_hat if self.state_in_first_order else sigma_interpol a__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": a__ = sigma_hat if self.state_in_first_order else sigma_interpol a__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order a__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep a__ = sigma_interpol - sigma_hat # store for 2nd order step a__ = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order a__ = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep a__ = sigma_next - sigma_hat a__ = self.sample a__ = None a__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__magic_name__ ) def _UpperCamelCase ( self :Dict , __magic_name__ :torch.FloatTensor , __magic_name__ :torch.FloatTensor , __magic_name__ :torch.FloatTensor , ) -> torch.FloatTensor: '''simple docstring''' a__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__magic_name__ ): # mps does not support float64 a__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) a__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: a__ = self.timesteps.to(original_samples.device ) a__ = timesteps.to(original_samples.device ) a__ = [self.index_for_timestep(__magic_name__ , __magic_name__ ) for t in timesteps] a__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): a__ = sigma.unsqueeze(-1 ) a__ = original_samples + noise * sigma return noisy_samples def __len__( self :Any ) -> str: '''simple docstring''' return self.config.num_train_timesteps
158
1
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCamelCase( __UpperCamelCase : str = "isbn/0140328726" ): lowerCAmelCase_ : Tuple = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: lowerCAmelCase_ : Union[str, Any] = f"""{olid} is not a valid Open Library olid""" raise ValueError(__UpperCamelCase ) return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json() def UpperCamelCase( __UpperCamelCase : dict ): lowerCAmelCase_ : Any = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } lowerCAmelCase_ : Optional[Any] = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} lowerCAmelCase_ : Optional[int] = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] lowerCAmelCase_ : Union[str, Any] = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(__UpperCamelCase ,__UpperCamelCase ): lowerCAmelCase_ : int = ''', '''.join(__UpperCamelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: A__ : Dict = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(F'''\nSearching Open Library for ISBN: {isbn}...\n''') try: A__ : int = summarize_book(get_openlibrary_data(F'''isbn/{isbn}''')) print('''\n'''.join(F'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'''Sorry, there are no results for ISBN: {isbn}.''')
171
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A__ : List[str] = 16 A__ : Dict = 32 def UpperCamelCase( __UpperCamelCase : Accelerator ,__UpperCamelCase : int = 16 ): lowerCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCAmelCase_ : int = load_dataset('''glue''' ,'''mrpc''' ) def tokenize_function(__UpperCamelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ : Tuple = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase_ : str = datasets.map( __UpperCamelCase ,batched=__UpperCamelCase ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' ,'''labels''' ) def collate_fn(__UpperCamelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase_ : str = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase_ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase_ : Optional[int] = 8 else: lowerCAmelCase_ : Optional[int] = None return tokenizer.pad( __UpperCamelCase ,padding='''longest''' ,max_length=__UpperCamelCase ,pad_to_multiple_of=__UpperCamelCase ,return_tensors='''pt''' ,) # Instantiate dataloaders. lowerCAmelCase_ : Tuple = DataLoader( tokenized_datasets['''train'''] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) lowerCAmelCase_ : List[Any] = DataLoader( tokenized_datasets['''validation'''] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A__ : Any = mocked_dataloaders # noqa: F811 def UpperCamelCase( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : str ): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' ,__UpperCamelCase ) == "1": lowerCAmelCase_ : Dict = 2 # New Code # lowerCAmelCase_ : List[str] = int(args.gradient_accumulation_steps ) lowerCAmelCase_ : Union[str, Any] = int(args.local_sgd_steps ) # Initialize accelerator lowerCAmelCase_ : Optional[Any] = Accelerator( cpu=args.cpu ,mixed_precision=args.mixed_precision ,gradient_accumulation_steps=__UpperCamelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ : List[Any] = config['''lr'''] lowerCAmelCase_ : List[Any] = int(config['''num_epochs'''] ) lowerCAmelCase_ : int = int(config['''seed'''] ) lowerCAmelCase_ : Optional[Any] = int(config['''batch_size'''] ) lowerCAmelCase_ : Optional[Any] = evaluate.load('''glue''' ,'''mrpc''' ) set_seed(__UpperCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = get_dataloaders(__UpperCamelCase ,__UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' ,return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase_ : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase_ : Tuple = AdamW(params=model.parameters() ,lr=__UpperCamelCase ) # Instantiate scheduler lowerCAmelCase_ : Any = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase ,num_warmup_steps=100 ,num_training_steps=(len(__UpperCamelCase ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = accelerator.prepare( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() with LocalSGD( accelerator=__UpperCamelCase ,model=__UpperCamelCase ,local_sgd_steps=__UpperCamelCase ,enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__UpperCamelCase ): lowerCAmelCase_ : str = model(**__UpperCamelCase ) lowerCAmelCase_ : Tuple = output.loss accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ : List[str] = model(**__UpperCamelCase ) lowerCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__UpperCamelCase ,references=__UpperCamelCase ,) lowerCAmelCase_ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" ,__UpperCamelCase ) def UpperCamelCase( ): lowerCAmelCase_ : Any = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' ,type=__UpperCamelCase ,default=__UpperCamelCase ,choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] ,help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' ,) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' ,type=__UpperCamelCase ,default=1 ,help='''The number of minibatches to be ran before gradients are accumulated.''' ,) parser.add_argument( '''--local_sgd_steps''' ,type=__UpperCamelCase ,default=8 ,help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''' ,action='''store_true''' ,help='''If passed, will train on the CPU.''' ) lowerCAmelCase_ : List[Any] = parser.parse_args() lowerCAmelCase_ : List[Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": main()
171
1
from __future__ import annotations from typing import Any class a_ ( lowerCamelCase_ ): """simple docstring""" pass class a_ : """simple docstring""" def __init__( self : Any ,snake_case : Any ): SCREAMING_SNAKE_CASE =data SCREAMING_SNAKE_CASE =None def __iter__( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self SCREAMING_SNAKE_CASE =[] while node: if node in visited: raise ContainsLoopError visited.append(snake_case ) yield node.data SCREAMING_SNAKE_CASE =node.next_node @property def _lowerCAmelCase ( self : Optional[int] ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": _lowerCamelCase =Node(1) _lowerCamelCase =Node(2) _lowerCamelCase =Node(3) _lowerCamelCase =Node(4) print(root_node.has_loop) # False _lowerCamelCase =root_node.next_node print(root_node.has_loop) # True _lowerCamelCase =Node(5) _lowerCamelCase =Node(6) _lowerCamelCase =Node(5) _lowerCamelCase =Node(6) print(root_node.has_loop) # False _lowerCamelCase =Node(1) print(root_node.has_loop) # False
252
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowerCamelCase =False try: _lowerCamelCase =_is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class a_ : """simple docstring""" def __init__( self : Optional[int] ,snake_case : str = None ,snake_case : list = [] ): SCREAMING_SNAKE_CASE =0 SCREAMING_SNAKE_CASE =choices SCREAMING_SNAKE_CASE =prompt if sys.platform == "win32": SCREAMING_SNAKE_CASE ='*' else: SCREAMING_SNAKE_CASE ='➔ ' def _lowerCAmelCase ( self : Tuple ,snake_case : Any ,snake_case : str = "" ): if sys.platform != "win32": writeColor(self.choices[index] ,32 ,snake_case ) else: forceWrite(self.choices[index] ,snake_case ) def _lowerCAmelCase ( self : str ,snake_case : int ): if index == self.position: forceWrite(f' {self.arrow_char} ' ) self.write_choice(snake_case ) else: forceWrite(f' {self.choices[index]}' ) reset_cursor() def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Direction ,snake_case : int = 1 ): SCREAMING_SNAKE_CASE =self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(snake_case ) move_cursor(snake_case ,direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def _lowerCAmelCase ( self : Optional[int] ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def _lowerCAmelCase ( self : List[str] ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def _lowerCAmelCase ( self : Optional[int] ): move_cursor(len(self.choices ) - self.position ,'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def _lowerCAmelCase ( self : Tuple ): move_cursor(len(self.choices ) - self.position ,'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(snake_case )] for number in range(10 )] ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =int(chr(self.current_selection ) ) SCREAMING_SNAKE_CASE =index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP ,-movement ) elif self.position < index: self.move_direction(Direction.DOWN ,snake_case ) else: return else: return def _lowerCAmelCase ( self : Any ,snake_case : int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt ,'\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' ,'\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' ,'\n' ) SCREAMING_SNAKE_CASE =default_choice for i in range(len(self.choices ) ): self.print_choice(snake_case ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position ,'UP' ) with cursor.hide(): while True: if in_colab: try: SCREAMING_SNAKE_CASE =int(builtins.input() ) except ValueError: SCREAMING_SNAKE_CASE =default_choice else: SCREAMING_SNAKE_CASE =self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 ,'UP' ) clear_line() self.write_choice(snake_case ,'\n' ) return choice
252
1
"""simple docstring""" import math def lowercase ( UpperCamelCase : int = 100 ): """simple docstring""" A__ : str =sum(i * i for i in range(1 , n + 1 ) ) A__ : Any =int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
656
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Optional[Any] = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' __magic_name__ : Union[str, Any] = """gpt_neo""" __magic_name__ : Union[str, Any] = ["""past_key_values"""] __magic_name__ : Dict = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : Dict , UpperCamelCase__ : List[Any]=50257 , UpperCamelCase__ : Optional[Any]=2048 , UpperCamelCase__ : Tuple=2048 , UpperCamelCase__ : int=24 , UpperCamelCase__ : Dict=[[["global", "local"], 12]] , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : str=256 , UpperCamelCase__ : List[str]="gelu_new" , UpperCamelCase__ : List[str]=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : List[str]=1E-5 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Optional[Any]=50256 , UpperCamelCase__ : List[str]=50256 , **UpperCamelCase__ : str , ): A__ : Optional[Any] =vocab_size A__ : Dict =max_position_embeddings A__ : List[str] =hidden_size A__ : List[Any] =num_layers A__ : Tuple =num_heads A__ : List[str] =intermediate_size A__ : Tuple =window_size A__ : Dict =activation_function A__ : str =resid_dropout A__ : Union[str, Any] =embed_dropout A__ : List[str] =attention_dropout A__ : Tuple =classifier_dropout A__ : int =layer_norm_epsilon A__ : int =initializer_range A__ : str =use_cache A__ : Tuple =bos_token_id A__ : int =eos_token_id A__ : int =attention_types A__ : Any =self.expand_attention_types_params(UpperCamelCase__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) @staticmethod def _UpperCAmelCase ( UpperCamelCase__ : List[str] ): A__ : Optional[Any] =[] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowercase ( UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ): """simple docstring""" import torch A__ : List[str] =input.size() A__ : Dict =len(UpperCamelCase ) A__ : Optional[int] =shape[dimension] A__ : str =torch.arange(0 , UpperCamelCase , UpperCamelCase ) A__ : Optional[int] =torch.div(sizedim - size , UpperCamelCase , rounding_mode="floor" ) + 1 A__ : str =torch.arange(UpperCamelCase ) + low_indices[:min_length][:, None] A__ : Tuple =[slice(UpperCamelCase )] * rank A__ : int =indices A__ : Optional[int] =input[s] A__ : Union[str, Any] =list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(UpperCamelCase ) def lowercase ( UpperCamelCase : str , UpperCamelCase : Any ): """simple docstring""" import torch A__ : List[str] =torch.arange(1 , UpperCamelCase ) A__ : List[Any] =torch.remainder(UpperCamelCase , UpperCamelCase ) A__ : Optional[int] =remainders == 0 A__ : str =candidates[divisor_indices] A__ : int =torch.max(UpperCamelCase ) return largest_divisor, torch.div(UpperCamelCase , UpperCamelCase , rounding_mode="floor" ) class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' @property def _UpperCAmelCase ( self : List[Any] ): A__ : Optional[int] =OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction="inputs" ) A__ : Optional[int] ={0: "batch", 1: "past_sequence + sequence"} else: A__ : Tuple ={0: "batch", 1: "sequence"} return common_inputs @property def _UpperCAmelCase ( self : List[str] ): return self._config.num_heads def _UpperCAmelCase ( self : int , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A__ : Union[str, Any] =super(UpperCamelCase__ , self ).generate_dummy_inputs( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) # We need to order the input in the way they appears in the forward() A__ : List[Any] =OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch A__ , A__ : Union[str, Any] =common_inputs["input_ids"].shape # Not using the same length for past_key_values A__ : Union[str, Any] =seqlen + 2 A__ : List[Any] =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A__ : Optional[Any] =[ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(self.num_layers ) ] A__ : Optional[Any] =common_inputs["attention_mask"] if self.use_past: A__ : Any =ordered_inputs["attention_mask"].dtype A__ : Tuple =torch.cat( [ordered_inputs["attention_mask"], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) return ordered_inputs @property def _UpperCAmelCase ( self : List[str] ): return 13
656
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=SCREAMING_SNAKE_CASE_ ): snake_case__ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Any , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Dict ) -> Tuple: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : str , *__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class SCREAMING_SNAKE_CASE ( metaclass=SCREAMING_SNAKE_CASE_ ): snake_case__ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Union[str, Any] , *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Tuple ) -> Dict: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class SCREAMING_SNAKE_CASE ( metaclass=SCREAMING_SNAKE_CASE_ ): snake_case__ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Tuple , *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Any ) -> int: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict , *__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class SCREAMING_SNAKE_CASE ( metaclass=SCREAMING_SNAKE_CASE_ ): snake_case__ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Optional[Any] , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : int ) -> List[str]: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : str , *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict , *__SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class SCREAMING_SNAKE_CASE ( metaclass=SCREAMING_SNAKE_CASE_ ): snake_case__ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : List[str] , *__SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : str ) -> Optional[int]: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] , *__SCREAMING_SNAKE_CASE : Optional[Any] , **__SCREAMING_SNAKE_CASE : int ) -> str: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class SCREAMING_SNAKE_CASE ( metaclass=SCREAMING_SNAKE_CASE_ ): snake_case__ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : str , *__SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *__SCREAMING_SNAKE_CASE : Any , **__SCREAMING_SNAKE_CASE : str ) -> Any: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict , *__SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : str ) -> Tuple: requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
720
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Union[str, Any] = tempfile.mkdtemp() a_ : Union[str, Any] = 8 # DPR tok a_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a_ : str = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok a_ : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] a_ : int = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) a_ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a_ : Optional[int] = {'''unk_token''': '''<unk>'''} a_ : List[str] = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) a_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) a_ : int = os.path.join(__SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : List[str] = self.get_dummy_dataset() a_ : Tuple = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : Tuple = dataset a_ : Any = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : bool ) -> Dict: a_ : Dict = self.get_dummy_dataset() a_ : Dict = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: a_ : Optional[int] = os.path.join(self.tmpdirname , '''dataset''' ) a_ : str = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: a_ : Optional[Any] = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __SCREAMING_SNAKE_CASE ) , ) return retriever def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: a_ : str = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) a_ : Optional[int] = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) a_ : Union[str, Any] = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) a_ : Dict = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__SCREAMING_SNAKE_CASE , open(__SCREAMING_SNAKE_CASE , '''wb''' ) ) a_ : Optional[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) a_ : int = RagRetriever( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : Optional[Any] = 1 a_ : Dict = self.get_dummy_canonical_hf_index_retriever() a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : str = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : str = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: a_ : List[str] = self.get_dummy_dataset() retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[str] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Union[str, Any] = 1 a_ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : List[str] = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: a_ : Union[str, Any] = 1 a_ : str = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Tuple = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Dict = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: a_ : str = 1 a_ : Tuple = self.get_dummy_legacy_index_retriever() a_ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ , a_ , a_ : Any = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: a_ : List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__SCREAMING_SNAKE_CASE ) a_ : Any = RagRetriever.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : Optional[Any] = retriever.retrieve(__SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: import torch a_ : Any = 1 a_ : List[Any] = self.get_dummy_canonical_hf_index_retriever() a_ : Union[str, Any] = [[5, 7], [10, 11]] a_ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : str = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) a_ , a_ , a_ : List[str] = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) a_ : Any = retriever( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) a_ , a_ , a_ , a_ : str = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : str = self.get_dpr_ctx_encoder_tokenizer() a_ : Tuple = 1 a_ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=__SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(__SCREAMING_SNAKE_CASE ) a_ : Dict = [[5, 7], [10, 11]] a_ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a_ : List[Any] = retriever(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=__SCREAMING_SNAKE_CASE ) self.assertEqual( len(__SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
666
0
from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "SpeechT5FeatureExtractor" A_ = "SpeechT5Tokenizer" def __init__( self: Dict , __A: Optional[int] , __A: Union[str, Any] ) -> List[Any]: super().__init__(__A , __A ) def __call__( self: str , *__A: Any , **__A: Union[str, Any] ) -> Dict: _A = kwargs.pop('''audio''' , __A ) _A = kwargs.pop('''text''' , __A ) _A = kwargs.pop('''text_target''' , __A ) _A = kwargs.pop('''audio_target''' , __A ) _A = kwargs.pop('''sampling_rate''' , __A ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: _A = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) elif text is not None: _A = self.tokenizer(__A , **__A ) else: _A = None if audio_target is not None: _A = self.feature_extractor(audio_target=__A , *__A , sampling_rate=__A , **__A ) _A = targets['''input_values'''] elif text_target is not None: _A = self.tokenizer(__A , **__A ) _A = targets['''input_ids'''] else: _A = None if inputs is None: return targets if targets is not None: _A = labels _A = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: _A = decoder_attention_mask return inputs def __A ( self: Tuple , *__A: Optional[Any] , **__A: Optional[int] ) -> List[Any]: _A = kwargs.pop('''input_values''' , __A ) _A = kwargs.pop('''input_ids''' , __A ) _A = kwargs.pop('''labels''' , __A ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: _A = self.feature_extractor.pad(__A , *__A , **__A ) elif input_ids is not None: _A = self.tokenizer.pad(__A , **__A ) else: _A = None if labels is not None: if "input_ids" in labels or (isinstance(__A , __A ) and "input_ids" in labels[0]): _A = self.tokenizer.pad(__A , **__A ) _A = targets['''input_ids'''] else: _A = self.feature_extractor.feature_size _A = self.feature_extractor.num_mel_bins _A = self.feature_extractor.pad(__A , *__A , **__A ) _A = feature_size_hack _A = targets['''input_values'''] else: _A = None if inputs is None: return targets if targets is not None: _A = labels _A = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: _A = decoder_attention_mask return inputs def __A ( self: Tuple , *__A: Tuple , **__A: List[Any] ) -> Dict: return self.tokenizer.batch_decode(*__A , **__A ) def __A ( self: Optional[Any] , *__A: Optional[int] , **__A: int ) -> str: return self.tokenizer.decode(*__A , **__A )
484
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(snake_case ) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __init__( self: int , *__A: Tuple , **__A: Optional[Any] ) -> Tuple: super().__init__(*__A , **__A ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __A ( self: Tuple , __A: Union[str, Any]=None , __A: int=None , __A: Optional[Any]=None ) -> Optional[Any]: _A = {} _A = {} if prompt is not None: _A = prompt if generate_kwargs is not None: _A = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _A = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) _A = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self: Any , __A: Union[str, List[str], "Image.Image", List["Image.Image"]] , **__A: str ) -> Dict: return super().__call__(__A , **__A ) def __A ( self: Any , __A: Dict , __A: int=None ) -> int: _A = load_image(__A ) if prompt is not None: if not isinstance(__A , __A ): raise ValueError( f"""Received an invalid text input, got - {type(__A )} - but expected a single string. """ '''Note also that one single text can be provided for conditional image to text generation.''' ) _A = self.model.config.model_type if model_type == "git": _A = self.image_processor(images=__A , return_tensors=self.framework ) _A = self.tokenizer(text=__A , add_special_tokens=__A ).input_ids _A = [self.tokenizer.cls_token_id] + input_ids _A = torch.tensor(__A ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": _A = self.image_processor(images=__A , header_text=__A , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _A = self.image_processor(images=__A , return_tensors=self.framework ) _A = self.tokenizer(__A , return_tensors=self.framework ) model_inputs.update(__A ) else: raise ValueError(f"""Model type {model_type} does not support conditional text generation""" ) else: _A = self.image_processor(images=__A , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _A = None return model_inputs def __A ( self: Optional[int] , __A: Optional[Any] , __A: Optional[int]=None ) -> Any: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , __A ) and all(x is None for x in model_inputs['''input_ids'''] ) ): _A = None if generate_kwargs is None: _A = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _A = model_inputs.pop(self.model.main_input_name ) _A = self.model.generate(__A , **__A , **__A ) return model_outputs def __A ( self: str , __A: Optional[int] ) -> Optional[int]: _A = [] for output_ids in model_outputs: _A = { '''generated_text''': self.tokenizer.decode( __A , skip_special_tokens=__A , ) } records.append(__A ) return records
484
1
'''simple docstring''' import math import qiskit def _SCREAMING_SNAKE_CASE( snake_case_ : int = 1 , snake_case_ : int = 1 , snake_case_ : int = 1 ) ->qiskit.result.counts.Counts: '''simple docstring''' if ( isinstance(snake_case_ , snake_case_ ) or isinstance(snake_case_ , snake_case_ ) or isinstance(snake_case_ , snake_case_ ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(snake_case_ ) != input_a) or (math.floor(snake_case_ ) != input_a) or (math.floor(snake_case_ ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers _lowercase : Optional[int] = qiskit.QuantumRegister(4 , '''qr''' ) _lowercase : Optional[int] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries _lowercase : str = [input_a, input_a, carry_in] _lowercase : Optional[Any] = qiskit.QuantumCircuit(snake_case_ , snake_case_ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(snake_case_ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(snake_case_ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(snake_case_ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , snake_case_ ) # measure the last two qbits _lowercase : Union[str, Any] = qiskit.Aer.get_backend('''aer_simulator''' ) _lowercase : Any = qiskit.execute(snake_case_ , snake_case_ , shots=10_00 ) return job.result().get_counts(snake_case_ ) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
708
'''simple docstring''' import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class _lowerCAmelCase ( __A ): '''simple docstring''' snake_case_ = 'align_text_model' def __init__( self : Dict , UpperCamelCase_ : Dict=30_522 , UpperCamelCase_ : Dict=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Any=12 , UpperCamelCase_ : Optional[Any]=3_072 , UpperCamelCase_ : Tuple="gelu" , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Optional[int]=512 , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : Dict=0.02 , UpperCamelCase_ : Dict=1e-12 , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : Optional[Any]="absolute" , UpperCamelCase_ : Dict=True , **UpperCamelCase_ : List[Any] , ) -> int: '''simple docstring''' super().__init__(**UpperCamelCase_ ) _lowercase : Tuple = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : List[str] = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Dict = hidden_act _lowercase : List[str] = intermediate_size _lowercase : List[str] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Optional[int] = max_position_embeddings _lowercase : Any = type_vocab_size _lowercase : Tuple = initializer_range _lowercase : Tuple = layer_norm_eps _lowercase : Any = position_embedding_type _lowercase : Optional[Any] = use_cache _lowercase : List[str] = pad_token_id @classmethod def __lowercase ( cls : int , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : int ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": _lowercase : Dict = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class _lowerCAmelCase ( __A ): '''simple docstring''' snake_case_ = 'align_vision_model' def __init__( self : List[str] , UpperCamelCase_ : int = 3 , UpperCamelCase_ : int = 600 , UpperCamelCase_ : float = 2.0 , UpperCamelCase_ : float = 3.1 , UpperCamelCase_ : int = 8 , UpperCamelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase_ : List[int] = [32, 16, 24, 40, 80, 112, 192] , UpperCamelCase_ : List[int] = [16, 24, 40, 80, 112, 192, 320] , UpperCamelCase_ : List[int] = [] , UpperCamelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase_ : float = 0.25 , UpperCamelCase_ : str = "swish" , UpperCamelCase_ : int = 2_560 , UpperCamelCase_ : str = "mean" , UpperCamelCase_ : float = 0.02 , UpperCamelCase_ : float = 0.001 , UpperCamelCase_ : float = 0.99 , UpperCamelCase_ : float = 0.2 , **UpperCamelCase_ : Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__(**UpperCamelCase_ ) _lowercase : Optional[int] = num_channels _lowercase : Any = image_size _lowercase : Dict = width_coefficient _lowercase : Union[str, Any] = depth_coefficient _lowercase : Union[str, Any] = depth_divisor _lowercase : Dict = kernel_sizes _lowercase : Optional[Any] = in_channels _lowercase : str = out_channels _lowercase : str = depthwise_padding _lowercase : List[str] = strides _lowercase : Any = num_block_repeats _lowercase : List[str] = expand_ratios _lowercase : List[str] = squeeze_expansion_ratio _lowercase : int = hidden_act _lowercase : Any = hidden_dim _lowercase : Tuple = pooling_type _lowercase : Optional[Any] = initializer_range _lowercase : str = batch_norm_eps _lowercase : Dict = batch_norm_momentum _lowercase : List[str] = drop_connect_rate _lowercase : List[Any] = sum(UpperCamelCase_ ) * 4 @classmethod def __lowercase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : Union[str, Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": _lowercase : Optional[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class _lowerCAmelCase ( __A ): '''simple docstring''' snake_case_ = 'align' snake_case_ = True def __init__( self : str , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Any=640 , UpperCamelCase_ : List[str]=1.0 , UpperCamelCase_ : List[Any]=0.02 , **UpperCamelCase_ : Dict , ) -> Dict: '''simple docstring''' super().__init__(**UpperCamelCase_ ) if text_config is None: _lowercase : Dict = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: _lowercase : Any = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) _lowercase : Optional[int] = AlignTextConfig(**UpperCamelCase_ ) _lowercase : Any = AlignVisionConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = projection_dim _lowercase : Any = temperature_init_value _lowercase : Any = initializer_range @classmethod def __lowercase ( cls : List[str] , UpperCamelCase_ : AlignTextConfig , UpperCamelCase_ : AlignVisionConfig , **UpperCamelCase_ : str ) -> Any: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase_ ) def __lowercase ( self : List[Any] ) -> Dict: '''simple docstring''' _lowercase : str = copy.deepcopy(self.__dict__ ) _lowercase : Optional[Any] = self.text_config.to_dict() _lowercase : Dict = self.vision_config.to_dict() _lowercase : Union[str, Any] = self.__class__.model_type return output
411
0
import argparse import collections import json import os import re import string import sys import numpy as np __UpperCamelCase : Optional[Any] = re.compile(R'\b(a|an|the)\b', re.UNICODE) __UpperCamelCase : Any = None def A ( ): SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=_lowercase , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=_lowercase , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def A ( _lowercase ): SCREAMING_SNAKE_CASE : List[str] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: SCREAMING_SNAKE_CASE : List[Any] = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def A ( _lowercase ): def remove_articles(_lowercase ): return ARTICLES_REGEX.sub(''' ''' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): SCREAMING_SNAKE_CASE : List[str] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def A ( _lowercase ): if not s: return [] return normalize_answer(_lowercase ).split() def A ( _lowercase , _lowercase ): return int(normalize_answer(_lowercase ) == normalize_answer(_lowercase ) ) def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : int = get_tokens(_lowercase ) SCREAMING_SNAKE_CASE : Dict = get_tokens(_lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = collections.Counter(_lowercase ) & collections.Counter(_lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = sum(common.values() ) if len(_lowercase ) == 0 or len(_lowercase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE : Optional[int] = 1.0 * num_same / len(_lowercase ) SCREAMING_SNAKE_CASE : Tuple = 1.0 * num_same / len(_lowercase ) SCREAMING_SNAKE_CASE : List[str] = (2 * precision * recall) / (precision + recall) return fa def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = {} SCREAMING_SNAKE_CASE : Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: SCREAMING_SNAKE_CASE : Union[str, Any] = qa['''id'''] SCREAMING_SNAKE_CASE : Optional[Any] = [t for t in qa['''answers''']['''text'''] if normalize_answer(_lowercase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string SCREAMING_SNAKE_CASE : Tuple = [''''''] if qid not in preds: print(f"""Missing prediction for {qid}""" ) continue SCREAMING_SNAKE_CASE : List[str] = preds[qid] # Take max over all gold answers SCREAMING_SNAKE_CASE : Tuple = max(compute_exact(_lowercase , _lowercase ) for a in gold_answers ) SCREAMING_SNAKE_CASE : Dict = max(compute_fa(_lowercase , _lowercase ) for a in gold_answers ) return exact_scores, fa_scores def A ( _lowercase , _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : int = {} for qid, s in scores.items(): SCREAMING_SNAKE_CASE : List[str] = na_probs[qid] > na_prob_thresh if pred_na: SCREAMING_SNAKE_CASE : Optional[Any] = float(not qid_to_has_ans[qid] ) else: SCREAMING_SNAKE_CASE : Optional[int] = s return new_scores def A ( _lowercase , _lowercase , _lowercase=None ): if not qid_list: SCREAMING_SNAKE_CASE : Dict = len(_lowercase ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores.values() ) / total), ('''f1''', 100.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: SCREAMING_SNAKE_CASE : List[str] = len(_lowercase ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def A ( _lowercase , _lowercase , _lowercase ): for k in new_eval: SCREAMING_SNAKE_CASE : Any = new_eval[k] def A ( _lowercase , _lowercase , _lowercase , _lowercase ): plt.step(_lowercase , _lowercase , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(_lowercase , _lowercase , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_lowercase ) plt.savefig(_lowercase ) plt.clf() def A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None ): SCREAMING_SNAKE_CASE : int = sorted(_lowercase , key=lambda _lowercase : na_probs[k] ) SCREAMING_SNAKE_CASE : Optional[Any] = 0.0 SCREAMING_SNAKE_CASE : List[Any] = 1.0 SCREAMING_SNAKE_CASE : List[str] = 0.0 SCREAMING_SNAKE_CASE : Optional[Any] = [1.0] SCREAMING_SNAKE_CASE : Union[str, Any] = [0.0] SCREAMING_SNAKE_CASE : int = 0.0 for i, qid in enumerate(_lowercase ): if qid_to_has_ans[qid]: true_pos += scores[qid] SCREAMING_SNAKE_CASE : Any = true_pos / float(i + 1 ) SCREAMING_SNAKE_CASE : int = true_pos / float(_lowercase ) if i == len(_lowercase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_lowercase ) recalls.append(_lowercase ) if out_image: plot_pr_curve(_lowercase , _lowercase , _lowercase , _lowercase ) return {"ap": 100.0 * avg_prec} def A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): if out_image_dir and not os.path.exists(_lowercase ): os.makedirs(_lowercase ) SCREAMING_SNAKE_CASE : Dict = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return SCREAMING_SNAKE_CASE : Union[str, Any] = make_precision_recall_eval( _lowercase , _lowercase , _lowercase , _lowercase , out_image=os.path.join(_lowercase , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) SCREAMING_SNAKE_CASE : Union[str, Any] = make_precision_recall_eval( _lowercase , _lowercase , _lowercase , _lowercase , out_image=os.path.join(_lowercase , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) SCREAMING_SNAKE_CASE : Any = {k: float(_lowercase ) for k, v in qid_to_has_ans.items()} SCREAMING_SNAKE_CASE : int = make_precision_recall_eval( _lowercase , _lowercase , _lowercase , _lowercase , out_image=os.path.join(_lowercase , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(_lowercase , _lowercase , '''pr_exact''' ) merge_eval(_lowercase , _lowercase , '''pr_f1''' ) merge_eval(_lowercase , _lowercase , '''pr_oracle''' ) def A ( _lowercase , _lowercase , _lowercase , _lowercase ): if not qid_list: return SCREAMING_SNAKE_CASE : Union[str, Any] = [na_probs[k] for k in qid_list] SCREAMING_SNAKE_CASE : List[Any] = np.ones_like(_lowercase ) / float(len(_lowercase ) ) plt.hist(_lowercase , weights=_lowercase , bins=20 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(f"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(_lowercase , f"""na_prob_hist_{name}.png""" ) ) plt.clf() def A ( _lowercase , _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Optional[int] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) SCREAMING_SNAKE_CASE : List[str] = num_no_ans SCREAMING_SNAKE_CASE : int = cur_score SCREAMING_SNAKE_CASE : List[Any] = 0.0 SCREAMING_SNAKE_CASE : Dict = sorted(_lowercase , key=lambda _lowercase : na_probs[k] ) for i, qid in enumerate(_lowercase ): if qid not in scores: continue if qid_to_has_ans[qid]: SCREAMING_SNAKE_CASE : Optional[int] = scores[qid] else: if preds[qid]: SCREAMING_SNAKE_CASE : Any = -1 else: SCREAMING_SNAKE_CASE : Tuple = 0 cur_score += diff if cur_score > best_score: SCREAMING_SNAKE_CASE : List[str] = cur_score SCREAMING_SNAKE_CASE : str = na_probs[qid] return 100.0 * best_score / len(_lowercase ), best_thresh def A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = find_best_thresh(_lowercase , _lowercase , _lowercase , _lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = find_best_thresh(_lowercase , _lowercase , _lowercase , _lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = best_exact SCREAMING_SNAKE_CASE : Any = exact_thresh SCREAMING_SNAKE_CASE : List[str] = best_fa SCREAMING_SNAKE_CASE : Optional[int] = fa_thresh def A ( ): with open(OPTS.data_file ) as f: SCREAMING_SNAKE_CASE : Optional[int] = json.load(_lowercase ) SCREAMING_SNAKE_CASE : int = dataset_json['''data'''] with open(OPTS.pred_file ) as f: SCREAMING_SNAKE_CASE : Any = json.load(_lowercase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowercase ) else: SCREAMING_SNAKE_CASE : List[str] = {k: 0.0 for k in preds} SCREAMING_SNAKE_CASE : Union[str, Any] = make_qid_to_has_ans(_lowercase ) # maps qid to True/False SCREAMING_SNAKE_CASE : Tuple = [k for k, v in qid_to_has_ans.items() if v] SCREAMING_SNAKE_CASE : Optional[int] = [k for k, v in qid_to_has_ans.items() if not v] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = get_raw_scores(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE : Any = apply_no_ans_threshold(_lowercase , _lowercase , _lowercase , OPTS.na_prob_thresh ) SCREAMING_SNAKE_CASE : Optional[int] = apply_no_ans_threshold(_lowercase , _lowercase , _lowercase , OPTS.na_prob_thresh ) SCREAMING_SNAKE_CASE : List[Any] = make_eval_dict(_lowercase , _lowercase ) if has_ans_qids: SCREAMING_SNAKE_CASE : Union[str, Any] = make_eval_dict(_lowercase , _lowercase , qid_list=_lowercase ) merge_eval(_lowercase , _lowercase , '''HasAns''' ) if no_ans_qids: SCREAMING_SNAKE_CASE : Union[str, Any] = make_eval_dict(_lowercase , _lowercase , qid_list=_lowercase ) merge_eval(_lowercase , _lowercase , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , OPTS.out_image_dir ) histogram_na_prob(_lowercase , _lowercase , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(_lowercase , _lowercase , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(_lowercase , _lowercase ) else: print(json.dumps(_lowercase , indent=2 ) ) if __name__ == "__main__": __UpperCamelCase : int = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
248
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { 'configuration_clap': [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapAudioConfig', 'ClapConfig', 'ClapTextConfig', ], 'processing_clap': ['ClapProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapModel', 'ClapPreTrainedModel', 'ClapTextModel', 'ClapTextModelWithProjection', 'ClapAudioModel', 'ClapAudioModelWithProjection', ] __UpperCamelCase : Optional[int] = ['ClapFeatureExtractor'] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
248
1
from __future__ import annotations def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
457
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCamelCase : Any = { "configuration_mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig", "MegaOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = [ "MEGA_PRETRAINED_MODEL_ARCHIVE_LIST", "MegaForCausalLM", "MegaForMaskedLM", "MegaForMultipleChoice", "MegaForQuestionAnswering", "MegaForSequenceClassification", "MegaForTokenClassification", "MegaModel", "MegaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
457
1
"""simple docstring""" from torch import nn class __snake_case ( nn.Module ): """simple docstring""" def __init__( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' super().__init__() __A : str = class_size __A : Dict = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __A : List[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Tuple = self.mlp(__lowerCamelCase ) return logits
177
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a_ = logging.get_logger(__name__) if is_vision_available(): import PIL class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ["""pixel_values"""] def __init__( self , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = PILImageResampling.BICUBIC , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = True , __lowerCamelCase = 1 / 255 , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = True , **__lowerCamelCase , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) __A : Optional[int] = size if size is not None else {'''shortest_edge''': 224} __A : Optional[int] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) __A : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __A : str = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase , param_name='''crop_size''' ) __A : Dict = do_resize __A : Optional[Any] = size __A : Optional[Any] = resample __A : Dict = do_center_crop __A : Any = crop_size __A : Optional[Any] = do_rescale __A : List[Any] = rescale_factor __A : Union[str, Any] = do_normalize __A : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __A : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD __A : Dict = do_convert_rgb def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = PILImageResampling.BICUBIC , __lowerCamelCase = None , **__lowerCamelCase , ): '''simple docstring''' __A : Optional[Any] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __A : Optional[int] = get_resize_output_image_size(__lowerCamelCase , size=size['''shortest_edge'''] , default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase , ): '''simple docstring''' __A : Optional[Any] = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__lowerCamelCase , size=(size['''height'''], size['''width''']) , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase , ): '''simple docstring''' return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , **__lowerCamelCase , ): '''simple docstring''' return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = ChannelDimension.FIRST , **__lowerCamelCase , ): '''simple docstring''' __A : Tuple = do_resize if do_resize is not None else self.do_resize __A : Any = size if size is not None else self.size __A : List[str] = get_size_dict(__lowerCamelCase , param_name='''size''' , default_to_square=__lowerCamelCase ) __A : List[Any] = resample if resample is not None else self.resample __A : Any = do_center_crop if do_center_crop is not None else self.do_center_crop __A : Dict = crop_size if crop_size is not None else self.crop_size __A : List[Any] = get_size_dict(__lowerCamelCase , param_name='''crop_size''' , default_to_square=__lowerCamelCase ) __A : List[str] = do_rescale if do_rescale is not None else self.do_rescale __A : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Tuple = do_normalize if do_normalize is not None else self.do_normalize __A : str = image_mean if image_mean is not None else self.image_mean __A : int = image_std if image_std is not None else self.image_std __A : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __A : int = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __A : List[str] = [convert_to_rgb(__lowerCamelCase ) for image in images] # All transformations expect numpy arrays. __A : Optional[int] = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: __A : List[str] = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_center_crop: __A : Dict = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images] if do_rescale: __A : str = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: __A : Optional[Any] = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] __A : str = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] __A : Union[str, Any] = {'''pixel_values''': images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
177
1
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _snake_case ( unittest.TestCase ): def __init__( self ,UpperCamelCase ,UpperCamelCase=13 ,UpperCamelCase=7 ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=99 ,UpperCamelCase=32 ,UpperCamelCase=5 ,UpperCamelCase=4 ,UpperCamelCase=37 ,UpperCamelCase="gelu" ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=512 ,UpperCamelCase=16 ,UpperCamelCase=2 ,UpperCamelCase=0.02 ,UpperCamelCase=4 ,) -> Dict: snake_case__ :Union[str, Any] = parent snake_case__ :Optional[int] = batch_size snake_case__ :str = seq_length snake_case__ :Tuple = is_training snake_case__ :Optional[Any] = use_attention_mask snake_case__ :str = use_token_type_ids snake_case__ :Optional[Any] = use_labels snake_case__ :Dict = vocab_size snake_case__ :Union[str, Any] = hidden_size snake_case__ :str = num_hidden_layers snake_case__ :str = num_attention_heads snake_case__ :int = intermediate_size snake_case__ :Union[str, Any] = hidden_act snake_case__ :Optional[int] = hidden_dropout_prob snake_case__ :Optional[Any] = attention_probs_dropout_prob snake_case__ :Optional[int] = max_position_embeddings snake_case__ :List[str] = type_vocab_size snake_case__ :Union[str, Any] = type_sequence_label_size snake_case__ :Tuple = initializer_range snake_case__ :Any = num_choices def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ :Optional[Any] = None if self.use_attention_mask: snake_case__ :int = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ :int = None if self.use_token_type_ids: snake_case__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) snake_case__ :List[str] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[str] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ :Tuple = config_and_inputs snake_case__ :Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase_ ( self ) -> int: snake_case__ :Tuple = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ :Optional[Any] = config_and_inputs snake_case__ :Tuple = True snake_case__ :Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case__ :Any = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _snake_case ( _lowerCAmelCase , unittest.TestCase ): _A = True _A = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :List[str] = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowerCAmelCase_ ( self ) -> str: for model_class_name in self.all_model_classes: snake_case__ :Optional[Any] = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" ,from_pt=_lowerCAmelCase ) snake_case__ :Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase ) @require_flax class _snake_case ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self ) -> str: snake_case__ :Dict = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" ,from_pt=_lowerCAmelCase ) snake_case__ :Tuple = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ,dtype=jnp.intaa ) snake_case__ :Union[str, Any] = model(_lowerCAmelCase )[0] snake_case__ :List[Any] = [1, 11, 50_265] self.assertEqual(list(output.shape ) ,_lowerCAmelCase ) # compare the actual values for a slice. snake_case__ :Union[str, Any] = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] ,dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] ,_lowerCAmelCase ,atol=1E-4 ) ) @slow def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Dict = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" ,from_pt=_lowerCAmelCase ) snake_case__ :str = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ,dtype=jnp.intaa ) snake_case__ :List[Any] = model(_lowerCAmelCase )[0] # compare the actual values for a slice. snake_case__ :List[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] ,dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] ,_lowerCAmelCase ,atol=1E-4 ) )
709
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
57
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : int , a_ : Any , a_ : Tuple=7 , a_ : Dict=3 , a_ : Any=18 , a_ : Tuple=30 , a_ : Optional[Any]=400 , a_ : Union[str, Any]=True , a_ : List[Any]=32 , a_ : int=True , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size_divisor __snake_case = do_rescale def A ( self : Tuple ): """simple docstring""" return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = GLPNImageProcessor if is_vision_available() else None def A ( self : Any ): """simple docstring""" __snake_case = GLPNImageProcessingTester(self ) @property def A ( self : List[str] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , "do_resize" ) ) self.assertTrue(hasattr(a_ , "size_divisor" ) ) self.assertTrue(hasattr(a_ , "resample" ) ) self.assertTrue(hasattr(a_ , "do_rescale" ) ) def A ( self : List[str] ): """simple docstring""" pass def A ( self : Dict ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
69
class __A : '''simple docstring''' def __init__( self ): _lowerCAmelCase : Dict = "" _lowerCAmelCase : Optional[Any] = "" _lowerCAmelCase : List[Any] = [] def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _lowerCAmelCase : Optional[Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: _lowerCAmelCase : Optional[int] = self.__min_dist_top_down_dp(_snake_case , n - 1 ) _lowerCAmelCase : List[str] = self.__min_dist_top_down_dp(m - 1 , _snake_case ) _lowerCAmelCase : str = self.__min_dist_top_down_dp(m - 1 , n - 1 ) _lowerCAmelCase : Optional[int] = 1 + min(_snake_case , _snake_case , _snake_case ) return self.dp[m][n] def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): _lowerCAmelCase : Union[str, Any] = worda _lowerCAmelCase : int = worda _lowerCAmelCase : Tuple = [[-1 for _ in range(len(_snake_case ) )] for _ in range(len(_snake_case ) )] return self.__min_dist_top_down_dp(len(_snake_case ) - 1 , len(_snake_case ) - 1 ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): _lowerCAmelCase : str = worda _lowerCAmelCase : Union[str, Any] = worda _lowerCAmelCase : str = len(_snake_case ) _lowerCAmelCase : List[Any] = len(_snake_case ) _lowerCAmelCase : str = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _lowerCAmelCase : int = j elif j == 0: # second string is empty _lowerCAmelCase : Optional[Any] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal _lowerCAmelCase : Union[str, Any] = self.dp[i - 1][j - 1] else: _lowerCAmelCase : Tuple = self.dp[i][j - 1] _lowerCAmelCase : Dict = self.dp[i - 1][j] _lowerCAmelCase : List[Any] = self.dp[i - 1][j - 1] _lowerCAmelCase : Tuple = 1 + min(_snake_case , _snake_case , _snake_case ) return self.dp[m][n] if __name__ == "__main__": snake_case = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() snake_case = input("Enter the first string: ").strip() snake_case = input("Enter the second string: ").strip() print() print(F'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(F'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
424
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A =logging.get_logger(__name__) __A ={ 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class _snake_case ( a__ ): lowerCAmelCase :Any = '''xlm''' lowerCAmelCase :Any = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self , _lowerCamelCase=3_0145 , _lowerCamelCase=2048 , _lowerCamelCase=12 , _lowerCamelCase=16 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=True , _lowerCamelCase=512 , _lowerCamelCase=2048**-0.5 , _lowerCamelCase=1e-1_2 , _lowerCamelCase=0.02 , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=5 , _lowerCamelCase=True , _lowerCamelCase="first" , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=0.1 , _lowerCamelCase=5 , _lowerCamelCase=5 , _lowerCamelCase=0 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=0 , **_lowerCamelCase , ): UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : Tuple = emb_dim UpperCAmelCase__ : Optional[Any] = n_layers UpperCAmelCase__ : List[str] = n_heads UpperCAmelCase__ : List[str] = dropout UpperCAmelCase__ : Optional[int] = attention_dropout UpperCAmelCase__ : Tuple = gelu_activation UpperCAmelCase__ : Optional[Any] = sinusoidal_embeddings UpperCAmelCase__ : int = causal UpperCAmelCase__ : Union[str, Any] = asm UpperCAmelCase__ : Optional[Any] = n_langs UpperCAmelCase__ : List[Any] = use_lang_emb UpperCAmelCase__ : Union[str, Any] = layer_norm_eps UpperCAmelCase__ : List[str] = bos_index UpperCAmelCase__ : List[Any] = eos_index UpperCAmelCase__ : int = pad_index UpperCAmelCase__ : str = unk_index UpperCAmelCase__ : Dict = mask_index UpperCAmelCase__ : str = is_encoder UpperCAmelCase__ : Dict = max_position_embeddings UpperCAmelCase__ : Any = embed_init_std UpperCAmelCase__ : List[Any] = init_std UpperCAmelCase__ : List[str] = summary_type UpperCAmelCase__ : Union[str, Any] = summary_use_proj UpperCAmelCase__ : Any = summary_activation UpperCAmelCase__ : List[str] = summary_proj_to_labels UpperCAmelCase__ : Union[str, Any] = summary_first_dropout UpperCAmelCase__ : str = start_n_top UpperCAmelCase__ : str = end_n_top UpperCAmelCase__ : Tuple = mask_token_id UpperCAmelCase__ : Union[str, Any] = lang_id if "n_words" in kwargs: UpperCAmelCase__ : List[str] = kwargs["""n_words"""] super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , **_lowerCamelCase) class _snake_case ( a__ ): @property def snake_case__ ( self): if self.task == "multiple-choice": UpperCAmelCase__ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase__ : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ])
113
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __A =logging.get_logger(__name__) def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : List[str] = R"""\w+[.]\d+""" UpperCAmelCase__ : List[Any] = re.findall(UpperCamelCase__ , UpperCamelCase__ ) for pat in pats: UpperCAmelCase__ : str = key.replace(UpperCamelCase__ , """_""".join(pat.split(""".""" ) ) ) return key def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : str = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase__ : Union[str, Any] = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase__ : str = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase__ : Union[str, Any] = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase__ : Any = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase__ : Any = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase__ : Optional[int] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": UpperCAmelCase__ : Any = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase__ : Optional[Any] = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase__ : Dict = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=4_2 ): # Step 1: Convert pytorch tensor to numpy UpperCAmelCase__ : str = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase__ : str = flax_model.init_weights(PRNGKey(UpperCamelCase__ ) ) UpperCAmelCase__ : Union[str, Any] = flatten_dict(UpperCamelCase__ ) UpperCAmelCase__ : int = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase__ : str = rename_key(UpperCamelCase__ ) UpperCAmelCase__ : Optional[Any] = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters UpperCAmelCase__ , UpperCAmelCase__ : Tuple = rename_key_and_reshape_tensor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown UpperCAmelCase__ : str = jnp.asarray(UpperCamelCase__ ) return unflatten_dict(UpperCamelCase__ )
113
1
'''simple docstring''' _lowerCAmelCase :Union[str, Any] = { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 10: """a""", 11: """b""", 12: """c""", 13: """d""", 14: """e""", 15: """f""", } def __lowerCAmelCase ( a_ ) -> str: '''simple docstring''' assert type(SCREAMING_SNAKE_CASE__ ) in (int, float) and decimal == int(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE : Optional[Any] = """""" SCREAMING_SNAKE_CASE : Union[str, Any] = False if decimal < 0: SCREAMING_SNAKE_CASE : List[Any] = True decimal *= -1 while decimal > 0: SCREAMING_SNAKE_CASE : Optional[Any] = divmod(SCREAMING_SNAKE_CASE__ , 16 ) SCREAMING_SNAKE_CASE : Any = values[remainder] + hexadecimal SCREAMING_SNAKE_CASE : Any = """0x""" + hexadecimal if negative: SCREAMING_SNAKE_CASE : Tuple = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
251
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase : Optional[Any] = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: from transformers.testing_utils import pytest_terminal_summary_main lowercase : Dict = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(SCREAMING_SNAKE_CASE__ , id=SCREAMING_SNAKE_CASE__ )
336
0
"""simple docstring""" import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def _lowercase ( __snake_case ) -> Union[str, Any]: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def _lowercase ( __snake_case ) -> int: __lowerCAmelCase : List[str] = create_tensor(__snake_case ) __lowerCAmelCase : Union[str, Any] = gather(__snake_case ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def _lowercase ( __snake_case ) -> Any: __lowerCAmelCase : Optional[int] = [state.process_index] __lowerCAmelCase : Dict = gather_object(__snake_case ) assert len(__snake_case ) == state.num_processes, F"""{gathered_obj}, {len(__snake_case )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), F"""{gathered_obj} != {list(range(state.num_processes ) )}""" def _lowercase ( __snake_case ) -> Any: __lowerCAmelCase : List[str] = create_tensor(__snake_case ) __lowerCAmelCase : List[str] = broadcast(__snake_case ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def _lowercase ( __snake_case ) -> str: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: __lowerCAmelCase : List[str] = torch.arange(state.num_processes + 1 ).to(state.device ) else: __lowerCAmelCase : Dict = torch.arange(state.num_processes ).to(state.device ) __lowerCAmelCase : Optional[Any] = pad_across_processes(__snake_case ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def _lowercase ( __snake_case ) -> str: # For now runs on only two processes if state.num_processes != 2: return __lowerCAmelCase : Dict = create_tensor(__snake_case ) __lowerCAmelCase : Optional[int] = reduce(__snake_case ,"sum" ) __lowerCAmelCase : Optional[int] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__snake_case ,__snake_case ), F"""{reduced_tensor} != {truth_tensor}""" def _lowercase ( __snake_case ) -> Tuple: # For now runs on only two processes if state.num_processes != 2: return __lowerCAmelCase : List[str] = create_tensor(__snake_case ) __lowerCAmelCase : Any = reduce(__snake_case ,"mean" ) __lowerCAmelCase : Tuple = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__snake_case ,__snake_case ), F"""{reduced_tensor} != {truth_tensor}""" def _lowercase ( __snake_case ) -> Any: # For xla_spawn (TPUs) main() def _lowercase ( ) -> Any: __lowerCAmelCase : List[str] = PartialState() state.print(F"""State: {state}""" ) state.print("testing gather" ) test_gather(__snake_case ) state.print("testing gather_object" ) test_gather_object(__snake_case ) state.print("testing broadcast" ) test_broadcast(__snake_case ) state.print("testing pad_across_processes" ) test_pad_across_processes(__snake_case ) state.print("testing reduce_sum" ) test_reduce_sum(__snake_case ) state.print("testing reduce_mean" ) test_reduce_mean(__snake_case ) if __name__ == "__main__": main()
715
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Tuple: # Initialise PyTorch model __lowerCAmelCase : Any = AlbertConfig.from_json_file(__snake_case ) print(F"""Building PyTorch model from configuration: {config}""" ) __lowerCAmelCase : str = AlbertForPreTraining(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_albert(__snake_case ,__snake_case ,__snake_case ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() ,__snake_case ) if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __snake_case : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
615
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: A_ = None A_ = logging.get_logger(__name__) A_ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} A_ = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } A_ = { "google/bigbird-roberta-base": 4096, "google/bigbird-roberta-large": 4096, "google/bigbird-base-trivia-itc": 4096, } A_ = "▁" class __lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' __lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES __lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Tuple = BigBirdTokenizer __lowerCamelCase : List[str] = ["""input_ids""", """attention_mask"""] __lowerCamelCase : List[int] = [] def __init__( self: Tuple , UpperCamelCase_: List[str]=None , UpperCamelCase_: List[str]=None , UpperCamelCase_: Union[str, Any]="<unk>" , UpperCamelCase_: Union[str, Any]="<s>" , UpperCamelCase_: Tuple="</s>" , UpperCamelCase_: Optional[int]="<pad>" , UpperCamelCase_: Union[str, Any]="[SEP]" , UpperCamelCase_: Optional[Any]="[MASK]" , UpperCamelCase_: Optional[Any]="[CLS]" , **UpperCamelCase_: List[str] , ): UpperCamelCase_ =AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else bos_token UpperCamelCase_ =AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else eos_token UpperCamelCase_ =AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else unk_token UpperCamelCase_ =AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else pad_token UpperCamelCase_ =AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else cls_token UpperCamelCase_ =AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase_ =AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token super().__init__( __lowercase , tokenizer_file=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , **__lowercase , ) UpperCamelCase_ =vocab_file UpperCamelCase_ =False if not self.vocab_file else True def UpperCamelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Any = None ): UpperCamelCase_ =[self.sep_token_id] UpperCamelCase_ =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase__ ( self: int , UpperCamelCase_: List[str] , UpperCamelCase_: Any = None , UpperCamelCase_: Optional[int] = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1] + ([0] * len(__lowercase )) + [1] def UpperCamelCase__ ( self: int , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str] = None ): UpperCamelCase_ =[self.sep_token_id] UpperCamelCase_ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self: List[Any] , UpperCamelCase_: Dict , UpperCamelCase_: List[Any] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase_ =os.path.join( __lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
391
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
167
0
"""simple docstring""" from collections.abc import Sequence def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : Sequence[float] , _lowerCAmelCase : float ): '''simple docstring''' lowercase__ : int = 0.0 for coeff in reversed(_lowerCAmelCase ): lowercase__ : List[Any] = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase : int = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase : Dict = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
645
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , a , a=7 , a=3 , a=1_8 , a=3_0 , a=4_0_0 , a=True , a=None , a=True , a=None , a=True , ) -> List[str]: lowercase__ : Tuple = size if size is not None else {'shortest_edge': 2_0} lowercase__ : Union[str, Any] = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} lowercase__ : Optional[int] = parent lowercase__ : Optional[int] = batch_size lowercase__ : str = num_channels lowercase__ : Any = image_size lowercase__ : Optional[Any] = min_resolution lowercase__ : int = max_resolution lowercase__ : List[Any] = do_resize lowercase__ : List[str] = size lowercase__ : str = do_center_crop lowercase__ : List[Any] = crop_size lowercase__ : Union[str, Any] = do_flip_channel_order def _UpperCAmelCase ( self ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Optional[Any] = MobileViTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Tuple = MobileViTImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_center_crop' ) ) self.assertTrue(hasattr(a , 'center_crop' ) ) self.assertTrue(hasattr(a , 'do_flip_channel_order' ) ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) lowercase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> str: # Initialize image_processing lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : List[Any] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Any = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _UpperCAmelCase ( self ) -> Dict: # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowercase__ : Tuple = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
645
1
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( UpperCamelCase_ ,unittest.TestCase ): __lowercase = DanceDiffusionPipeline __lowercase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __lowercase = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __lowercase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __lowercase = False __lowercase = False def lowerCAmelCase_ ( self )-> Tuple: '''simple docstring''' torch.manual_seed(0 ) A__ : Tuple =UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=__UpperCamelCase , use_timestep_embedding=__UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) A__ : Optional[int] =IPNDMScheduler() A__ : Optional[Any] ={ '''unet''': unet, '''scheduler''': scheduler, } return components def lowerCAmelCase_ ( self , __UpperCamelCase , __UpperCamelCase=0 )-> Dict: '''simple docstring''' if str(__UpperCamelCase ).startswith('''mps''' ): A__ : Optional[int] =torch.manual_seed(__UpperCamelCase ) else: A__ : Optional[Any] =torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) A__ : List[Any] ={ '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def lowerCAmelCase_ ( self )-> List[str]: '''simple docstring''' A__ : Any ='''cpu''' # ensure determinism for the device-dependent torch.Generator A__ : Optional[Any] =self.get_dummy_components() A__ : Optional[Any] =DanceDiffusionPipeline(**__UpperCamelCase ) A__ : Any =pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A__ : List[str] =self.get_dummy_inputs(__UpperCamelCase ) A__ : Tuple =pipe(**__UpperCamelCase ) A__ : List[Any] =output.audios A__ : Tuple =audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) A__ : Optional[int] =np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowerCAmelCase_ ( self )-> Dict: '''simple docstring''' return super().test_save_load_local() @skip_mps def lowerCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def lowerCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def lowerCAmelCase_ ( self )-> List[str]: '''simple docstring''' return super().test_attention_slicing_forward_pass() def lowerCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCAmelCase_ ( self )-> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self )-> List[Any]: '''simple docstring''' A__ : Optional[Any] =torch_device A__ : Any =DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) A__ : List[Any] =pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A__ : List[str] =torch.manual_seed(0 ) A__ : Optional[Any] =pipe(generator=__UpperCamelCase , num_inference_steps=1_00 , audio_length_in_s=4.096 ) A__ : Dict =output.audios A__ : Tuple =audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) A__ : Optional[Any] =np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self )-> int: '''simple docstring''' A__ : Union[str, Any] =torch_device A__ : int =DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) A__ : Union[str, Any] =pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) A__ : Union[str, Any] =torch.manual_seed(0 ) A__ : List[str] =pipe(generator=__UpperCamelCase , num_inference_steps=1_00 , audio_length_in_s=4.096 ) A__ : Dict =output.audios A__ : Optional[int] =audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) A__ : int =np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
416
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __lowerCamelCase : Dict = logging.get_logger(__name__) class a ( UpperCamelCase_ ): __lowercase = ["""input_values""", """padding_mask"""] def __init__( self , __UpperCamelCase = 1 , __UpperCamelCase = 2_40_00 , __UpperCamelCase = 0.0 , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> List[Any]: '''simple docstring''' super().__init__(feature_size=__UpperCamelCase , sampling_rate=__UpperCamelCase , padding_value=__UpperCamelCase , **__UpperCamelCase ) A__ : int =chunk_length_s A__ : Optional[Any] =overlap @property def lowerCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowerCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , )-> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs A__ : Any =True A__ : int =bool( isinstance(__UpperCamelCase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ : Tuple =[np.asarray(__UpperCamelCase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__UpperCamelCase , np.ndarray ): A__ : Any =np.asarray(__UpperCamelCase , dtype=np.floataa ) elif isinstance(__UpperCamelCase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): A__ : Optional[int] =raw_audio.astype(np.floataa ) # always return batch if not is_batched: A__ : str =[np.asarray(__UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__UpperCamelCase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) A__ : Optional[Any] =None A__ : Union[str, Any] =BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: A__ : Optional[int] =min(array.shape[0] for array in raw_audio ) A__ : Any =int(np.floor(max_length / self.chunk_stride ) ) A__ : Dict =(nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: A__ : int =max(array.shape[0] for array in raw_audio ) A__ : Union[str, Any] =int(np.ceil(max_length / self.chunk_stride ) ) A__ : Any =(nb_step - 1) * self.chunk_stride + self.chunk_length A__ : List[Any] ='''max_length''' else: A__ : Dict =input_values # normal padding on batch if padded_inputs is None: A__ : Any =self.pad( __UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase , padding=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) if padding: A__ : List[str] =padded_inputs.pop('''attention_mask''' ) A__ : List[str] =[] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: A__ : Any =example[..., None] input_values.append(example.T ) A__ : Any =input_values if return_tensors is not None: A__ : Any =padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
416
1
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin A_ = logging.get_logger(__name__) enable_full_determinism() class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = UNetaDModel SCREAMING_SNAKE_CASE_ = 'sample' @property def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = 4 lowerCamelCase_ = 3 lowerCamelCase_ = (32, 32) lowerCamelCase_ = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor([10] ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) @property def UpperCamelCase( self ) -> Dict: '''simple docstring''' return (3, 32, 32) def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = { 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } lowerCamelCase_ = self.dummy_input return init_dict, inputs_dict class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = UNetaDModel SCREAMING_SNAKE_CASE_ = 'sample' @property def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = 4 lowerCamelCase_ = 4 lowerCamelCase_ = (32, 32) lowerCamelCase_ = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor([10] ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase( self ) -> List[str]: '''simple docstring''' return (4, 32, 32) @property def UpperCamelCase( self ) -> str: '''simple docstring''' return (4, 32, 32) def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = { 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } lowerCamelCase_ = self.dummy_input return init_dict, inputs_dict def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=SCREAMING_SNAKE_CASE_ ) model_accelerate.to(SCREAMING_SNAKE_CASE_ ) model_accelerate.eval() lowerCamelCase_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCamelCase_ = noise.to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor([10] * noise.shape[0] ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model_accelerate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCamelCase_ ,lowerCamelCase_ = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=SCREAMING_SNAKE_CASE_ , low_cpu_mem_usage=SCREAMING_SNAKE_CASE_ ) model_normal_load.to(SCREAMING_SNAKE_CASE_ ) model_normal_load.eval() lowerCamelCase_ = model_normal_load(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )['sample'] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1E-3 ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCamelCase_ = noise.to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor([10] * noise.shape[0] ).to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample lowerCamelCase_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase_ = torch.tensor([-13.3_258, -20.1_100, -15.9_873, -17.6_617, -23.0_596, -17.9_419, -13.3_675, -16.1_889, -12.3_800] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1E-3 ) ) class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = UNetaDModel SCREAMING_SNAKE_CASE_ = 'sample' @property def UpperCamelCase( self , SCREAMING_SNAKE_CASE_=(32, 32) ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = 4 lowerCamelCase_ = 3 lowerCamelCase_ = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=SCREAMING_SNAKE_CASE_ ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' return (3, 32, 32) @property def UpperCamelCase( self ) -> Dict: '''simple docstring''' return (3, 32, 32) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = { 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } lowerCamelCase_ = self.dummy_input return init_dict, inputs_dict @slow def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.dummy_input lowerCamelCase_ = floats_tensor((4, 3) + (256, 256) ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = noise lowerCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ) assert image is not None, "Make sure output is not None" @slow def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 4 lowerCamelCase_ = 3 lowerCamelCase_ = (256, 256) lowerCamelCase_ = torch.ones((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor(batch_size * [1E-4] ).to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample lowerCamelCase_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase_ = torch.tensor([-4_842.8_691, -6_499.6_631, -3_800.1_953, -7_978.2_686, -10_980.7_129, -20_028.8_535, 8_148.2_822, 2_342.2_905, 567.7_608] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1E-2 ) ) def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 4 lowerCamelCase_ = 3 lowerCamelCase_ = (32, 32) lowerCamelCase_ = torch.ones((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor(batch_size * [1E-4] ).to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample lowerCamelCase_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase_ = torch.tensor([-0.0_325, -0.0_900, -0.0_869, -0.0_332, -0.0_725, -0.0_270, -0.0_101, 0.0_227, 0.0_256] ) # fmt: on self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1E-2 ) ) def UpperCamelCase( self ) -> int: '''simple docstring''' pass
384
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase = 1 ,__UpperCamelCase = 10_00 ) -> int: lowerCamelCase_ = 1 lowerCamelCase_ = 0 for divide_by_number in range(__UpperCamelCase ,digit + 1 ): lowerCamelCase_ = [] lowerCamelCase_ = numerator for _ in range(1 ,digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__UpperCamelCase ): lowerCamelCase_ = len(__UpperCamelCase ) lowerCamelCase_ = divide_by_number else: has_been_divided.append(__UpperCamelCase ) lowerCamelCase_ = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
384
1
import math import os import sys def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = '' try: with open(_UpperCAmelCase , 'rb') as binary_file: SCREAMING_SNAKE_CASE = binary_file.read() for dat in data: SCREAMING_SNAKE_CASE = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible') sys.exit() def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): lexicon.pop(_UpperCAmelCase) SCREAMING_SNAKE_CASE = last_match_id if math.loga(_UpperCAmelCase).is_integer(): for curr_key in lexicon: SCREAMING_SNAKE_CASE = '0' + lexicon[curr_key] SCREAMING_SNAKE_CASE = bin(_UpperCAmelCase)[2:] def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = {'0': '0', '1': '1'} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = '', '' SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) for i in range(len(_UpperCAmelCase)): curr_string += data_bits[i] if curr_string not in lexicon: continue SCREAMING_SNAKE_CASE = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) index += 1 SCREAMING_SNAKE_CASE = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": SCREAMING_SNAKE_CASE = lexicon[curr_string] result += last_match_id return result def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = os.path.getsize(_UpperCAmelCase) SCREAMING_SNAKE_CASE = bin(_UpperCAmelCase)[2:] SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) return "0" * (length_length - 1) + file_length_binary + compressed def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = 8 try: with open(_UpperCAmelCase , 'wb') as opened_file: SCREAMING_SNAKE_CASE = [ to_write[i : i + byte_length] for i in range(0 , len(_UpperCAmelCase) , _UpperCAmelCase) ] if len(result_byte_array[-1]) % byte_length == 0: result_byte_array.append('10000000') else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1]) - 1 ) for elem in result_byte_array: opened_file.write(int(_UpperCAmelCase , 2).to_bytes(1 , byteorder='big')) except OSError: print('File not accessible') sys.exit() def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = read_file_binary(_UpperCAmelCase) SCREAMING_SNAKE_CASE = compress_data(_UpperCAmelCase) SCREAMING_SNAKE_CASE = add_file_length(_UpperCAmelCase , _UpperCAmelCase) write_file_binary(_UpperCAmelCase , _UpperCAmelCase) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
73
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = "vit_msn" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple=768 , SCREAMING_SNAKE_CASE__ : Optional[Any]=12 , SCREAMING_SNAKE_CASE__ : List[str]=12 , SCREAMING_SNAKE_CASE__ : Dict=3_072 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=1e-0_6 , SCREAMING_SNAKE_CASE__ : Dict=224 , SCREAMING_SNAKE_CASE__ : Optional[int]=16 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Dict=True , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> int: super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = qkv_bias
61
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : Any = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 'luke' def __init__( self :List[Any] , a :Union[str, Any]=5_0_2_6_7 , a :Union[str, Any]=5_0_0_0_0_0 , a :List[Any]=7_6_8 , a :Union[str, Any]=2_5_6 , a :Union[str, Any]=1_2 , a :Union[str, Any]=1_2 , a :List[Any]=3_0_7_2 , a :Dict="gelu" , a :List[str]=0.1 , a :str=0.1 , a :List[Any]=5_1_2 , a :int=2 , a :str=0.02 , a :Optional[int]=1E-1_2 , a :List[str]=True , a :Union[str, Any]=None , a :Union[str, Any]=1 , a :List[Any]=0 , a :Tuple=2 , **a :Optional[int] , ) -> Optional[int]: super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) __UpperCamelCase : Optional[Any] = vocab_size __UpperCamelCase : Optional[int] = entity_vocab_size __UpperCamelCase : str = hidden_size __UpperCamelCase : Optional[int] = entity_emb_size __UpperCamelCase : List[Any] = num_hidden_layers __UpperCamelCase : Optional[Any] = num_attention_heads __UpperCamelCase : Union[str, Any] = hidden_act __UpperCamelCase : Optional[Any] = intermediate_size __UpperCamelCase : Tuple = hidden_dropout_prob __UpperCamelCase : Dict = attention_probs_dropout_prob __UpperCamelCase : Any = max_position_embeddings __UpperCamelCase : Union[str, Any] = type_vocab_size __UpperCamelCase : Any = initializer_range __UpperCamelCase : Union[str, Any] = layer_norm_eps __UpperCamelCase : Tuple = use_entity_aware_attention __UpperCamelCase : Tuple = classifier_dropout
94
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase : str = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
1
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[list]: snake_case : List[str] = current_set.copy() for row_index, row in enumerate(lowercase ): snake_case : List[Any] = row[0] for column_index, column in enumerate(lowercase ): if magnitude == 0: snake_case : Tuple = column continue snake_case : Dict = column / magnitude # Subtract to cancel term snake_case : Union[str, Any] = current_set[0] snake_case : int = [first_row] snake_case : Dict = current_set[1::] for row in current_set: snake_case : List[Any] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowercase ) continue for column_index in range(len(lowercase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowercase ) # Create next recursion iteration set if len(final_set[0] ) != 3: snake_case : Optional[Any] = final_set[0] snake_case : List[str] = [] snake_case : Dict = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) snake_case : Dict = simplify(lowercase ) for i in range(len(lowercase ) ): resultant[i].insert(0 ,current_first_column[i] ) resultant.insert(0 ,lowercase ) snake_case : List[str] = resultant return final_set def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: if len(lowercase ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) snake_case : List[Any] = len(lowercase ) + 1 if any(len(lowercase ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowercase ,(int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowercase ) == 1: return [equations[0][-1] / equations[0][0]] snake_case : List[Any] = equations.copy() if any(0 in row for row in data_set ): snake_case : Union[str, Any] = data_set.copy() snake_case : str = [] for row_index, row in enumerate(lowercase ): if 0 not in row: snake_case : Optional[Any] = data_set.pop(lowercase ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 ,lowercase ) snake_case : Dict = data_set.copy() snake_case : List[str] = simplify(lowercase ) snake_case : str = simplified[::-1] snake_case : list = [] for row in simplified: snake_case : List[Any] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue snake_case : List[str] = row.copy()[: len(lowercase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowercase ) == 0: solutions.append(0 ) continue snake_case : List[str] = temp_row[1::] snake_case : str = temp_row[::-1] for column_index, column in enumerate(lowercase ): current_solution -= column * solutions[column_index] solutions.append(lowercase ) snake_case : List[Any] = [] for item in solutions: final.append(float(round(lowercase ,5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Union[str, Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
587
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=False ) -> List[Any]: try: snake_case : Tuple = os.environ[key] except KeyError: # KEY isn't set, default to `default`. snake_case : Tuple = default else: # KEY is set, convert it to True or False. try: snake_case : Tuple = strtobool(lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value lowerCamelCase : Tuple = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: return unittest.skip("""Test was skipped""" )(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Union[str, Any]: return unittest.skipUnless(_run_slow_tests ,"""test is slow""" )(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: return unittest.skipUnless(not torch.cuda.is_available() ,"""test requires only a CPU""" )(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Union[str, Any]: return unittest.skipUnless(torch.cuda.is_available() ,"""test requires a GPU""" )(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: return unittest.skipUnless(is_xpu_available() ,"""test requires a XPU""" )(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: return unittest.skipUnless(is_mps_available() ,"""test requires a `mps` backend support in `torch`""" )(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Union[str, Any]: return unittest.skipUnless( is_transformers_available() and is_datasets_available() ,"""test requires the Hugging Face suite""" )(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: return unittest.skipUnless(is_bnb_available() ,"""test requires the bitsandbytes library""" )(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: return unittest.skipUnless(is_tpu_available() ,"""test requires TPU""" )(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: return unittest.skipUnless(torch.cuda.device_count() == 1 ,"""test requires a GPU""" )(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: return unittest.skipUnless(torch.xpu.device_count() == 1 ,"""test requires a XPU""" )(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: return unittest.skipUnless(torch.cuda.device_count() > 1 ,"""test requires multiple GPUs""" )(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: return unittest.skipUnless(torch.xpu.device_count() > 1 ,"""test requires multiple XPUs""" )(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: return unittest.skipUnless(is_safetensors_available() ,"""test requires safetensors""" )(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: return unittest.skipUnless(is_deepspeed_available() ,"""test requires DeepSpeed""" )(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Union[str, Any]: return unittest.skipUnless(is_torch_version(""">=""" ,"""1.12.0""" ) ,"""test requires torch version >= 1.12.0""" )(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase=None ,lowercase=None ) -> Optional[int]: if test_case is None: return partial(lowercase ,version=lowercase ) return unittest.skipUnless(is_torch_version(""">=""" ,lowercase ) ,f"""test requires torch version >= {version}""" )(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: return unittest.skipUnless(is_tensorboard_available() ,"""test requires Tensorboard""" )(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Union[str, Any]: return unittest.skipUnless(is_wandb_available() ,"""test requires wandb""" )(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Union[str, Any]: return unittest.skipUnless(is_comet_ml_available() ,"""test requires comet_ml""" )(lowercase ) lowerCamelCase : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: return unittest.skipUnless( _atleast_one_tracker_available ,"""test requires at least one tracker to be available and for `comet_ml` to not be installed""" ,)(lowercase ) class __lowercase (unittest.TestCase ): """simple docstring""" _snake_case = True @classmethod def UpperCAmelCase ( cls ) -> int: snake_case : int = tempfile.mkdtemp() @classmethod def UpperCAmelCase ( cls ) -> str: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def UpperCAmelCase ( self ) -> Tuple: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(A ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self , A ) -> Union[str, Any]: snake_case : List[str] = mocks if isinstance(A , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : Optional[int] = AcceleratorState() snake_case : int = tensor[None].clone().to(state.device ) snake_case : Dict = gather(lowercase ).cpu() snake_case : str = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] ,lowercase ): return False return True class __lowercase : """simple docstring""" def __init__( self , A , A , A ) -> Optional[int]: snake_case : Tuple = returncode snake_case : str = stdout snake_case : int = stderr async def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: while True: snake_case : Any = await stream.readline() if line: callback(lowercase ) else: break async def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=None ,lowercase=None ,lowercase=None ,lowercase=False ,lowercase=False ) -> _RunOutput: if echo: print("""\nRunning: """ ,""" """.join(lowercase ) ) snake_case : Optional[int] = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) snake_case : Dict = [] snake_case : Union[str, Any] = [] def tee(lowercase ,lowercase ,lowercase ,lowercase="" ): snake_case : str = line.decode("""utf-8""" ).rstrip() sink.append(lowercase ) if not quiet: print(lowercase ,lowercase ,file=lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout ,lambda lowercase : tee(lowercase ,lowercase ,sys.stdout ,label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr ,lambda lowercase : tee(lowercase ,lowercase ,sys.stderr ,label="""stderr:""" ) ) ), ] ,timeout=lowercase ,) return _RunOutput(await p.wait() ,lowercase ,lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=None ,lowercase=None ,lowercase=180 ,lowercase=False ,lowercase=True ) -> _RunOutput: snake_case : str = asyncio.get_event_loop() snake_case : Union[str, Any] = loop.run_until_complete( _stream_subprocess(lowercase ,env=lowercase ,stdin=lowercase ,timeout=lowercase ,quiet=lowercase ,echo=lowercase ) ) snake_case : List[str] = """ """.join(lowercase ) if result.returncode > 0: snake_case : List[Any] = """\n""".join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) return result class __lowercase (UpperCamelCase__ ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=False ) -> List[str]: try: snake_case : List[str] = subprocess.check_output(lowercase ,stderr=subprocess.STDOUT ) if return_stdout: if hasattr(lowercase ,"""decode""" ): snake_case : List[str] = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f"""Command `{" ".join(lowercase )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
587
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
487
"""simple docstring""" from manim import * class a__ ( __magic_name__ ): def a_ ( self : str): """simple docstring""" __UpperCAmelCase : List[str] = Rectangle(height=0.5 , width=0.5) __UpperCAmelCase : List[str] = Rectangle(height=0.25 , width=0.25) __UpperCAmelCase : Dict = Rectangle(height=0.46 , width=0.46).set_stroke(width=0) __UpperCAmelCase : List[str] = [mem.copy() for i in range(6)] __UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6)] __UpperCAmelCase : List[str] = VGroup(*UpperCamelCase_).arrange(UpperCamelCase_ , buff=0) __UpperCAmelCase : List[Any] = VGroup(*UpperCamelCase_).arrange(UpperCamelCase_ , buff=0) __UpperCAmelCase : Optional[int] = VGroup(UpperCamelCase_ , UpperCamelCase_).arrange(UpperCamelCase_ , buff=0) __UpperCAmelCase : Dict = Text("CPU" , font_size=24) __UpperCAmelCase : int = Group(UpperCamelCase_ , UpperCamelCase_).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_) cpu.move_to([-2.5, -0.5, 0]) self.add(UpperCamelCase_) __UpperCAmelCase : List[str] = [mem.copy() for i in range(4)] __UpperCAmelCase : List[Any] = VGroup(*UpperCamelCase_).arrange(UpperCamelCase_ , buff=0) __UpperCAmelCase : Tuple = Text("GPU" , font_size=24) __UpperCAmelCase : Tuple = Group(UpperCamelCase_ , UpperCamelCase_).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_) gpu.move_to([-1, -1, 0]) self.add(UpperCamelCase_) __UpperCAmelCase : Any = [mem.copy() for i in range(6)] __UpperCAmelCase : int = VGroup(*UpperCamelCase_).arrange(UpperCamelCase_ , buff=0) __UpperCAmelCase : Union[str, Any] = Text("Model" , font_size=24) __UpperCAmelCase : Optional[Any] = Group(UpperCamelCase_ , UpperCamelCase_).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_) model.move_to([3, -1.0, 0]) self.add(UpperCamelCase_) __UpperCAmelCase : str = [] __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Any = [] for i, rect in enumerate(UpperCamelCase_): rect.set_stroke(UpperCamelCase_) __UpperCAmelCase : Optional[int] = Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(UpperCamelCase_ , opacity=0.7) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=UpperCamelCase_) cpu_target.set_x(cpu_target.get_x() + 0.1) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=UpperCamelCase_ , buff=0.0) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=UpperCamelCase_ , buff=0.0) self.add(UpperCamelCase_) model_cpu_arr.append(UpperCamelCase_) self.add(*UpperCamelCase_ , *UpperCamelCase_ , *UpperCamelCase_) __UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6)] __UpperCAmelCase : Dict = VGroup(*UpperCamelCase_).arrange(UpperCamelCase_ , buff=0) __UpperCAmelCase : Tuple = Text("Loaded Checkpoint" , font_size=24) __UpperCAmelCase : Any = Group(UpperCamelCase_ , UpperCamelCase_).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_) checkpoint.move_to([3, 0.5, 0]) self.add(UpperCamelCase_) __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : int = [] for i, rect in enumerate(UpperCamelCase_): __UpperCAmelCase : Optional[Any] = fill.copy().set_fill(UpperCamelCase_ , opacity=0.7) target.move_to(UpperCamelCase_) ckpt_arr.append(UpperCamelCase_) __UpperCAmelCase : Optional[Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1]) else: cpu_target.move_to(cpu_right_col_base[i - 5]) ckpt_cpu_arr.append(UpperCamelCase_) self.add(*UpperCamelCase_ , *UpperCamelCase_) __UpperCAmelCase : str = Square(side_length=2.2) key.move_to([-5, 2, 0]) __UpperCAmelCase : int = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(UpperCamelCase_ , UpperCamelCase_) __UpperCAmelCase : Optional[Any] = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(UpperCamelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left()) self.add(UpperCamelCase_) __UpperCAmelCase : Dict = MarkupText( F"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=24 , ) step_a.move_to([2, 2, 0]) __UpperCAmelCase : List[Any] = [meta_mem.copy() for i in range(6)] __UpperCAmelCase : Optional[int] = [meta_mem.copy() for i in range(6)] __UpperCAmelCase : int = VGroup(*UpperCamelCase_).arrange(UpperCamelCase_ , buff=0) __UpperCAmelCase : Union[str, Any] = VGroup(*UpperCamelCase_).arrange(UpperCamelCase_ , buff=0) __UpperCAmelCase : Tuple = VGroup(UpperCamelCase_ , UpperCamelCase_).arrange(UpperCamelCase_ , buff=0) __UpperCAmelCase : Optional[int] = Text("Disk" , font_size=24) __UpperCAmelCase : str = Group(UpperCamelCase_ , UpperCamelCase_).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_) disk.move_to([-4.0, -1.25, 0]) self.play(Write(UpperCamelCase_ , run_time=3) , Write(UpperCamelCase_ , run_time=1) , Create(UpperCamelCase_ , run_time=1)) __UpperCAmelCase : str = [] for i, rect in enumerate(UpperCamelCase_): __UpperCAmelCase : Union[str, Any] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i]).scale(0.5) animations.append(MoveToTarget(UpperCamelCase_ , run_time=1.5)) self.play(*UpperCamelCase_) self.play(FadeOut(UpperCamelCase_)) __UpperCAmelCase : Union[str, Any] = MarkupText(F"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=24) step_a.move_to([2, 2, 0]) self.play(Write(UpperCamelCase_ , run_time=3)) self.play( FadeOut(UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , *UpperCamelCase_) , ) self.wait()
487
1
from __future__ import annotations class A_ : '''simple docstring''' def __init__( self , snake_case ): lowercase = order # a_{0} ... a_{k} lowercase = [1.0] + [0.0] * order # b_{0} ... b_{k} lowercase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] lowercase = [0.0] * self.order # y[n-1] ... y[n-k] lowercase = [0.0] * self.order def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): if len(snake_case ) < self.order: lowercase = [1.0, *a_coeffs] if len(snake_case ) != self.order + 1: lowercase = ( F'''Expected a_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(snake_case )}''' ) raise ValueError(snake_case ) if len(snake_case ) != self.order + 1: lowercase = ( F'''Expected b_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(snake_case )}''' ) raise ValueError(snake_case ) lowercase = a_coeffs lowercase = b_coeffs def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) lowercase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] lowercase = self.input_history[:-1] lowercase = self.output_history[:-1] lowercase = sample lowercase = result return result
84
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline snake_case__ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase ) class UpperCAmelCase ( __lowerCamelCase ): def __init__( self : List[Any] , **lowerCAmelCase : List[Any] ): super().__init__(**lowerCAmelCase ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self : List[Any] , lowerCAmelCase : Union[np.ndarray, bytes, str] , **lowerCAmelCase : Tuple ): return super().__call__(lowerCAmelCase , **lowerCAmelCase ) def _lowerCAmelCase ( self : str , **lowerCAmelCase : Optional[int] ): lowercase : List[Any] = {} if "candidate_labels" in kwargs: lowercase : Union[str, Any] = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowercase : Any = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _lowerCAmelCase ( self : int , lowerCAmelCase : Dict , lowerCAmelCase : int=None , lowerCAmelCase : List[Any]="This is a sound of {}." ): if isinstance(lowerCAmelCase , lowerCAmelCase ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowercase : str = requests.get(lowerCAmelCase ).content else: with open(lowerCAmelCase , '''rb''' ) as f: lowercase : List[Any] = f.read() if isinstance(lowerCAmelCase , lowerCAmelCase ): lowercase : Any = ffmpeg_read(lowerCAmelCase , self.feature_extractor.sampling_rate ) if not isinstance(lowerCAmelCase , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) lowercase : str = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) lowercase : Any = candidate_labels lowercase : Optional[int] = [hypothesis_template.format(lowerCAmelCase ) for x in candidate_labels] lowercase : Tuple = self.tokenizer(lowerCAmelCase , return_tensors=self.framework , padding=lowerCAmelCase ) lowercase : Optional[Any] = [text_inputs] return inputs def _lowerCAmelCase ( self : str , lowerCAmelCase : Union[str, Any] ): lowercase : Union[str, Any] = model_inputs.pop('''candidate_labels''' ) lowercase : Union[str, Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , lowerCAmelCase ): lowercase : int = text_inputs[0] else: # Batching case. lowercase : Dict = text_inputs[0][0] lowercase : str = self.model(**lowerCAmelCase , **lowerCAmelCase ) lowercase : Tuple = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def _lowerCAmelCase ( self : List[str] , lowerCAmelCase : str ): lowercase : Optional[int] = model_outputs.pop('''candidate_labels''' ) lowercase : Any = model_outputs['''logits'''][0] if self.framework == "pt": lowercase : str = logits.softmax(dim=0 ) lowercase : List[Any] = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) lowercase : str = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCAmelCase , lowerCAmelCase ) , key=lambda lowerCAmelCase : -x[0] ) ] return result
583
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowercase_ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple=False ): """simple docstring""" snake_case__ : str =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ : List[str] =[(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def lowercase_ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: snake_case__ : List[str] ='''''' else: snake_case__ : Any ='''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Any =state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) snake_case__ : Any =state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Union[str, Any] =in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[int] =in_proj_bias[: config.hidden_size] snake_case__ : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : Tuple =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : List[str] =in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Union[str, Any] =in_proj_bias[-config.hidden_size :] def lowercase_ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" snake_case__ : Any =dct.pop(SCREAMING_SNAKE_CASE ) snake_case__ : List[str] =val def lowercase_ ( ): """simple docstring""" snake_case__ : List[Any] ='''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ : Tuple =Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase_ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str ): """simple docstring""" snake_case__ : Optional[Any] =DeiTConfig() # all deit models have fine-tuned heads snake_case__ : List[Any] =False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : Union[str, Any] =10_00 snake_case__ : Union[str, Any] ='''huggingface/label-files''' snake_case__ : Optional[int] ='''imagenet-1k-id2label.json''' snake_case__ : Union[str, Any] =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ : Optional[int] ={int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} snake_case__ : Tuple =idalabel snake_case__ : str ={v: k for k, v in idalabel.items()} snake_case__ : Tuple =int(deit_name[-6:-4] ) snake_case__ : Tuple =int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): snake_case__ : Tuple =1_92 snake_case__ : str =7_68 snake_case__ : List[str] =12 snake_case__ : List[Any] =3 elif deit_name[9:].startswith('''small''' ): snake_case__ : str =3_84 snake_case__ : List[Any] =15_36 snake_case__ : str =12 snake_case__ : Optional[int] =6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): snake_case__ : str =10_24 snake_case__ : Dict =40_96 snake_case__ : Dict =24 snake_case__ : Tuple =16 # load original model from timm snake_case__ : Tuple =timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Tuple =timm_model.state_dict() snake_case__ : int =create_rename_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load HuggingFace model snake_case__ : int =DeiTForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ : int =int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ : Optional[Any] =DeiTImageProcessor(size=SCREAMING_SNAKE_CASE , crop_size=config.image_size ) snake_case__ : str =image_processor(images=prepare_img() , return_tensors='''pt''' ) snake_case__ : int =encoding['''pixel_values'''] snake_case__ : Tuple =model(SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] =timm_model(SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE , outputs.logits , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCamelCase__ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
408
from torch import nn class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" super().__init__() snake_case__ : Tuple =class_size snake_case__ : List[Any] =embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) snake_case__ : Optional[Any] =nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" snake_case__ : str =self.mlp(__SCREAMING_SNAKE_CASE ) return logits
408
1
def snake_case_ (__A : list ) -> list: __lowerCAmelCase : Dict = False while is_sorted is False: # Until all the indices are traversed keep looping __lowerCAmelCase : int = True for i in range(0 , len(__A ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __lowerCAmelCase ,__lowerCAmelCase : Any = input_list[i + 1], input_list[i] # swapping if elements not in order __lowerCAmelCase : str = False for i in range(1 , len(__A ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __lowerCAmelCase ,__lowerCAmelCase : Dict = input_list[i + 1], input_list[i] # swapping if elements not in order __lowerCAmelCase : Any = False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") __UpperCAmelCase = [int(x) for x in input().split()] # inputing elements of the list in one line __UpperCAmelCase = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
651
from __future__ import annotations def snake_case_ (__A : list[int] , __A : list[int] , __A : list[int] , __A : list[list[str]] , __A : int , ) -> None: __lowerCAmelCase : Any = len(__A ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__A ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __A , __A , ) def snake_case_ (__A : int ) -> None: __lowerCAmelCase : list[list[str]] = [] depth_first_search([] , [] , [] , __A , __A ) # Print all the boards for board in boards: for column in board: print(__A ) print("""""" ) print(len(__A ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
651
1
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __lowerCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple ) -> Any: return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __lowerCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : int="attention" ) -> Dict: __lowerCAmelCase =__lowerCAmelCase =np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) __lowerCAmelCase =k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __lowerCAmelCase =np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) __lowerCAmelCase =o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __lowerCAmelCase =np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) __lowerCAmelCase =q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __lowerCAmelCase =np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) __lowerCAmelCase =v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __lowerCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple=False ) -> List[Any]: if split_mlp_wi: __lowerCAmelCase =params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] __lowerCAmelCase =params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] __lowerCAmelCase =(wi_a, wi_a) else: __lowerCAmelCase =params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] __lowerCAmelCase =params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __lowerCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ) -> List[Any]: return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __lowerCAmelCase ( __lowerCamelCase : dict , *, __lowerCamelCase : int , __lowerCamelCase : bool , __lowerCamelCase : bool = False ) -> Optional[Any]: __lowerCAmelCase =traverse_util.flatten_dict(variables["""target"""] ) __lowerCAmelCase ={"""/""".join(__lowerCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __lowerCAmelCase ="""encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , __lowerCamelCase ) __lowerCAmelCase =collections.OrderedDict() # Shared embeddings. __lowerCAmelCase =old["""token_embedder/embedding"""] # Encoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). __lowerCAmelCase =tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , """encoder""" , """pre_attention_layer_norm""" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase =tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , """encoder""" , """attention""" ) __lowerCAmelCase =layer_norm __lowerCAmelCase =k.T __lowerCAmelCase =o.T __lowerCAmelCase =q.T __lowerCAmelCase =v.T # Block i, layer 1 (MLP). __lowerCAmelCase =tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , """encoder""" , """pre_mlp_layer_norm""" ) __lowerCAmelCase , __lowerCAmelCase =tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , """encoder""" , __lowerCamelCase ) __lowerCAmelCase =layer_norm if split_mlp_wi: __lowerCAmelCase =wi[0].T __lowerCAmelCase =wi[1].T else: __lowerCAmelCase =wi.T __lowerCAmelCase =wo.T if scalable_attention: # convert the rel_embedding of each layer __lowerCAmelCase =tax_relpos_bias_lookup( __lowerCamelCase , __lowerCamelCase , """encoder""" ).T __lowerCAmelCase =old["""encoder/encoder_norm/scale"""] if not scalable_attention: __lowerCAmelCase =tax_relpos_bias_lookup( __lowerCamelCase , 0 , """encoder""" ).T __lowerCAmelCase =tax_relpos_bias_lookup( __lowerCamelCase , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). __lowerCAmelCase =tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , """decoder""" , """pre_self_attention_layer_norm""" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase =tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , """decoder""" , """self_attention""" ) __lowerCAmelCase =layer_norm __lowerCAmelCase =k.T __lowerCAmelCase =o.T __lowerCAmelCase =q.T __lowerCAmelCase =v.T # Block i, layer 1 (Cross Attention). __lowerCAmelCase =tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , """decoder""" , """pre_cross_attention_layer_norm""" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase =tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , """decoder""" , """encoder_decoder_attention""" ) __lowerCAmelCase =layer_norm __lowerCAmelCase =k.T __lowerCAmelCase =o.T __lowerCAmelCase =q.T __lowerCAmelCase =v.T # Block i, layer 2 (MLP). __lowerCAmelCase =tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , """decoder""" , """pre_mlp_layer_norm""" ) __lowerCAmelCase , __lowerCAmelCase =tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , """decoder""" , __lowerCamelCase ) __lowerCAmelCase =layer_norm if split_mlp_wi: __lowerCAmelCase =wi[0].T __lowerCAmelCase =wi[1].T else: __lowerCAmelCase =wi.T __lowerCAmelCase =wo.T if scalable_attention: # convert the rel_embedding of each layer __lowerCAmelCase =tax_relpos_bias_lookup(__lowerCamelCase , __lowerCamelCase , """decoder""" ).T __lowerCAmelCase =old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __lowerCAmelCase =old["""decoder/logits_dense/kernel"""].T return new def __lowerCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : bool ) -> str: __lowerCAmelCase =collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __lowerCAmelCase =state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __lowerCAmelCase =state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) __lowerCAmelCase =state_dict["""shared.weight"""] return state_dict def __lowerCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ) -> Any: __lowerCAmelCase =checkpoints.load_tax_checkpoint(__lowerCamelCase ) __lowerCAmelCase =convert_tax_to_pytorch( __lowerCamelCase , num_layers=config.num_layers , is_encoder_only=__lowerCamelCase , scalable_attention=__lowerCamelCase ) __lowerCAmelCase =make_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) def __lowerCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , ) -> List[str]: __lowerCAmelCase =MTaConfig.from_json_file(__lowerCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __lowerCAmelCase =UMTaEncoderModel(__lowerCamelCase ) else: __lowerCAmelCase =UMTaForConditionalGeneration(__lowerCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__lowerCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowerCamelCase ) print("""Done""" ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) lowercase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
713
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class __a ( unittest.TestCase ): def UpperCamelCase ( self : Dict)-> Any: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case_ , ) assert hasattr(self , """env""") def UpperCamelCase ( self : Dict , snake_case_ : str)-> Dict: __lowerCAmelCase =F"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings __lowerCAmelCase ={"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=snake_case_ , instance_count=snake_case_ , instance_type=self.instance_type , debugger_hook_config=snake_case_ , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=snake_case_ , py_version="""py36""" , ) def UpperCamelCase ( self : int , snake_case_ : List[Any])-> int: TrainingJobAnalytics(snake_case_).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""") @parameterized.expand([(2,)]) def UpperCamelCase ( self : Any , snake_case_ : Dict)-> Optional[Any]: # create estimator __lowerCAmelCase =self.create_estimator(snake_case_) # run training estimator.fit() # result dataframe __lowerCAmelCase =TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis __lowerCAmelCase =list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""]) __lowerCAmelCase =list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""]) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowerCAmelCase =( Session().describe_training_job(estimator.latest_training_job.name).get("""TrainingTimeInSeconds""" , 99_99_99) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy) assert all(t <= self.results["""eval_loss"""] for t in eval_loss) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""") as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case_)
456
0
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __A : str = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __A : int = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" __A : Any = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __lowerCAmelCase ( datasets.Metric): '''simple docstring''' def _UpperCAmelCase ( self : Tuple ): if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def _UpperCAmelCase ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , ): A__ : Union[str, Any] =len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) A__ : List[Any] =[[refs[i] for refs in references] for i in range(UpperCamelCase__ )] A__ : Optional[int] =TER( normalized=UpperCamelCase__ , no_punct=UpperCamelCase__ , asian_support=UpperCamelCase__ , case_sensitive=UpperCamelCase__ , ) A__ : Optional[int] =sb_ter.corpus_score(UpperCamelCase__ , UpperCamelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
656
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Optional[Any] = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' __magic_name__ : Union[str, Any] = """gpt_neo""" __magic_name__ : Union[str, Any] = ["""past_key_values"""] __magic_name__ : Dict = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : Dict , UpperCamelCase__ : List[Any]=50257 , UpperCamelCase__ : Optional[Any]=2048 , UpperCamelCase__ : Tuple=2048 , UpperCamelCase__ : int=24 , UpperCamelCase__ : Dict=[[["global", "local"], 12]] , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : str=256 , UpperCamelCase__ : List[str]="gelu_new" , UpperCamelCase__ : List[str]=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : List[str]=1E-5 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Optional[Any]=50256 , UpperCamelCase__ : List[str]=50256 , **UpperCamelCase__ : str , ): A__ : Optional[Any] =vocab_size A__ : Dict =max_position_embeddings A__ : List[str] =hidden_size A__ : List[Any] =num_layers A__ : Tuple =num_heads A__ : List[str] =intermediate_size A__ : Tuple =window_size A__ : Dict =activation_function A__ : str =resid_dropout A__ : Union[str, Any] =embed_dropout A__ : List[str] =attention_dropout A__ : Tuple =classifier_dropout A__ : int =layer_norm_epsilon A__ : int =initializer_range A__ : str =use_cache A__ : Tuple =bos_token_id A__ : int =eos_token_id A__ : int =attention_types A__ : Any =self.expand_attention_types_params(UpperCamelCase__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) @staticmethod def _UpperCAmelCase ( UpperCamelCase__ : List[str] ): A__ : Optional[Any] =[] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowercase ( UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ): """simple docstring""" import torch A__ : List[str] =input.size() A__ : Dict =len(UpperCamelCase ) A__ : Optional[int] =shape[dimension] A__ : str =torch.arange(0 , UpperCamelCase , UpperCamelCase ) A__ : Optional[int] =torch.div(sizedim - size , UpperCamelCase , rounding_mode="floor" ) + 1 A__ : str =torch.arange(UpperCamelCase ) + low_indices[:min_length][:, None] A__ : Tuple =[slice(UpperCamelCase )] * rank A__ : int =indices A__ : Optional[int] =input[s] A__ : Union[str, Any] =list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(UpperCamelCase ) def lowercase ( UpperCamelCase : str , UpperCamelCase : Any ): """simple docstring""" import torch A__ : List[str] =torch.arange(1 , UpperCamelCase ) A__ : List[Any] =torch.remainder(UpperCamelCase , UpperCamelCase ) A__ : Optional[int] =remainders == 0 A__ : str =candidates[divisor_indices] A__ : int =torch.max(UpperCamelCase ) return largest_divisor, torch.div(UpperCamelCase , UpperCamelCase , rounding_mode="floor" ) class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' @property def _UpperCAmelCase ( self : List[Any] ): A__ : Optional[int] =OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction="inputs" ) A__ : Optional[int] ={0: "batch", 1: "past_sequence + sequence"} else: A__ : Tuple ={0: "batch", 1: "sequence"} return common_inputs @property def _UpperCAmelCase ( self : List[str] ): return self._config.num_heads def _UpperCAmelCase ( self : int , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A__ : Union[str, Any] =super(UpperCamelCase__ , self ).generate_dummy_inputs( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) # We need to order the input in the way they appears in the forward() A__ : List[Any] =OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch A__ , A__ : Union[str, Any] =common_inputs["input_ids"].shape # Not using the same length for past_key_values A__ : Union[str, Any] =seqlen + 2 A__ : List[Any] =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A__ : Optional[Any] =[ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(self.num_layers ) ] A__ : Optional[Any] =common_inputs["attention_mask"] if self.use_past: A__ : Any =ordered_inputs["attention_mask"].dtype A__ : Tuple =torch.cat( [ordered_inputs["attention_mask"], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) return ordered_inputs @property def _UpperCAmelCase ( self : List[str] ): return 13
656
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py snake_case__ = 'src/diffusers' snake_case__ = '.' # This is to make sure the diffusers module imported is the one in the repo. snake_case__ = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) snake_case__ = spec.loader.load_module() def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' return line.startswith(__UpperCAmelCase ) or len(__UpperCAmelCase ) <= 1 or re.search(r'''^\s*\)(\s*->.*:|:)\s*$''' , __UpperCAmelCase ) is not None def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = object_name.split('''.''' ) _lowerCamelCase = 0 # First let's find the module where our object lives. _lowerCamelCase = parts[i] while i < len(__UpperCAmelCase ) and not os.path.isfile(os.path.join(__UpperCAmelCase , F'{module}.py' ) ): i += 1 if i < len(__UpperCAmelCase ): _lowerCamelCase = os.path.join(__UpperCAmelCase , parts[i] ) if i >= len(__UpperCAmelCase ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(__UpperCAmelCase , F'{module}.py' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowerCamelCase = f.readlines() # Now let's find the class / func in the code! _lowerCamelCase = '''''' _lowerCamelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(__UpperCAmelCase ) and re.search(rF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__UpperCAmelCase ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _lowerCamelCase = line_index while line_index < len(__UpperCAmelCase ) and _should_continue(lines[line_index] , __UpperCAmelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCamelCase = lines[start_index:line_index] return "".join(__UpperCAmelCase ) snake_case__ = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') snake_case__ = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') snake_case__ = re.compile(R'<FILL\s+[^>]*>') def __magic_name__( __UpperCAmelCase ) -> Dict: '''simple docstring''' _lowerCamelCase = code.split('''\n''' ) _lowerCamelCase = 0 while idx < len(__UpperCAmelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__UpperCAmelCase ): return re.search(r'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def __magic_name__( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase = len(get_indent(__UpperCAmelCase ) ) > 0 if has_indent: _lowerCamelCase = F'class Bla:\n{code}' _lowerCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=__UpperCAmelCase ) _lowerCamelCase = black.format_str(__UpperCAmelCase , mode=__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = style_docstrings_in_code(__UpperCAmelCase ) return result[len('''class Bla:\n''' ) :] if has_indent else result def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=False ) -> List[str]: '''simple docstring''' with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowerCamelCase = f.readlines() _lowerCamelCase = [] _lowerCamelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__UpperCAmelCase ): _lowerCamelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = search.groups() _lowerCamelCase = find_code_in_diffusers(__UpperCAmelCase ) _lowerCamelCase = get_indent(__UpperCAmelCase ) _lowerCamelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 _lowerCamelCase = theoretical_indent _lowerCamelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _lowerCamelCase = True while line_index < len(__UpperCAmelCase ) and should_continue: line_index += 1 if line_index >= len(__UpperCAmelCase ): break _lowerCamelCase = lines[line_index] _lowerCamelCase = _should_continue(__UpperCAmelCase , __UpperCAmelCase ) and re.search(F'^{indent}# End copy' , __UpperCAmelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCamelCase = lines[start_index:line_index] _lowerCamelCase = ''''''.join(__UpperCAmelCase ) # Remove any nested `Copied from` comments to avoid circular copies _lowerCamelCase = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(__UpperCAmelCase ) is None] _lowerCamelCase = '''\n'''.join(__UpperCAmelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__UpperCAmelCase ) > 0: _lowerCamelCase = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) _lowerCamelCase = [_re_replace_pattern.search(__UpperCAmelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = pattern.groups() _lowerCamelCase = re.sub(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if option.strip() == "all-casing": _lowerCamelCase = re.sub(obja.lower() , obja.lower() , __UpperCAmelCase ) _lowerCamelCase = re.sub(obja.upper() , obja.upper() , __UpperCAmelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _lowerCamelCase = blackify(lines[start_index - 1] + theoretical_code ) _lowerCamelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _lowerCamelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] _lowerCamelCase = start_index + 1 if overwrite and len(__UpperCAmelCase ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__UpperCAmelCase ) return diffs def __magic_name__( __UpperCAmelCase = False ) -> Tuple: '''simple docstring''' _lowerCamelCase = glob.glob(os.path.join(__UpperCAmelCase , '''**/*.py''' ) , recursive=__UpperCAmelCase ) _lowerCamelCase = [] for filename in all_files: _lowerCamelCase = is_copy_consistent(__UpperCAmelCase , __UpperCAmelCase ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(__UpperCAmelCase ) > 0: _lowerCamelCase = '''\n'''.join(__UpperCAmelCase ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') snake_case__ = parser.parse_args() check_copies(args.fix_and_overwrite)
638
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __magic_name__( __UpperCAmelCase ) -> str: '''simple docstring''' _lowerCamelCase = model.config _lowerCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowerCamelCase = MBartConfig( is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , add_cross_attention=__UpperCAmelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCAmelCase , add_final_layer_norm=__UpperCAmelCase , ) return encoder_config, decoder_config def __magic_name__( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if "encoder.model" in name: _lowerCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: _lowerCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: _lowerCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: _lowerCamelCase = '''encoder.''' + name if "attn.proj" in name: _lowerCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: _lowerCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": _lowerCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": _lowerCamelCase = '''encoder.layernorm.bias''' return name def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: _lowerCamelCase = key.split('''.''' ) _lowerCamelCase = int(key_split[3] ) _lowerCamelCase = int(key_split[5] ) _lowerCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase = val[:dim, :] _lowerCamelCase = val[dim : dim * 2, :] _lowerCamelCase = val[-dim:, :] else: _lowerCamelCase = val[:dim] _lowerCamelCase = val[dim : dim * 2] _lowerCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowerCamelCase = val return orig_state_dict def __magic_name__( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> int: '''simple docstring''' _lowerCamelCase = DonutModel.from_pretrained(__UpperCAmelCase ).eval() # load HuggingFace model _lowerCamelCase , _lowerCamelCase = get_configs(__UpperCAmelCase ) _lowerCamelCase = DonutSwinModel(__UpperCAmelCase ) _lowerCamelCase = MBartForCausalLM(__UpperCAmelCase ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() _lowerCamelCase = original_model.state_dict() _lowerCamelCase = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # verify results on scanned document _lowerCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) _lowerCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) _lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained(__UpperCAmelCase , from_slow=__UpperCAmelCase ) _lowerCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowerCamelCase = DonutProcessor(__UpperCAmelCase , __UpperCAmelCase ) _lowerCamelCase = processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowerCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCamelCase = '''When is the coffee break?''' _lowerCamelCase = task_prompt.replace('''{user_input}''' , __UpperCAmelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowerCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowerCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowerCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowerCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowerCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) _lowerCamelCase = original_model.decoder.tokenizer(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors='''pt''' )[ '''input_ids''' ] _lowerCamelCase = original_model.encoder.model.patch_embed(__UpperCAmelCase ) _lowerCamelCase , _lowerCamelCase = model.encoder.embeddings(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) # verify encoder hidden states _lowerCamelCase = original_model.encoder(__UpperCAmelCase ) _lowerCamelCase = model.encoder(__UpperCAmelCase ).last_hidden_state assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) # verify decoder hidden states _lowerCamelCase = original_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).logits _lowerCamelCase = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) snake_case__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
638
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __UpperCAmelCase (unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self ): '''simple docstring''' A__ : Union[str, Any] = tempfile.mkdtemp() A__ : Any = BlipImageProcessor() A__ : Tuple = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) A__ : Optional[Any] = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) A__ : int = InstructBlipProcessor(snake_case_ , snake_case_ , snake_case_ ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self , **snake_case_ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).tokenizer def lowerCamelCase ( self , **snake_case_ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).image_processor def lowerCamelCase ( self , **snake_case_ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case_ ).qformer_tokenizer def lowerCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase ( self ): '''simple docstring''' A__ : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A__ : Optional[Any] = [Image.fromarray(np.moveaxis(snake_case_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase ( self ): '''simple docstring''' A__ : int = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) A__ : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A__ : Dict = self.get_image_processor(do_normalize=snake_case_ , padding_value=1.0 ) A__ : Union[str, Any] = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) self.assertIsInstance(processor.qformer_tokenizer , snake_case_ ) def lowerCamelCase ( self ): '''simple docstring''' A__ : str = self.get_image_processor() A__ : Dict = self.get_tokenizer() A__ : int = self.get_qformer_tokenizer() A__ : Tuple = InstructBlipProcessor( tokenizer=snake_case_ , image_processor=snake_case_ , qformer_tokenizer=snake_case_ ) A__ : Any = self.prepare_image_inputs() A__ : Any = image_processor(snake_case_ , return_tensors="""np""" ) A__ : int = processor(images=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase ( self ): '''simple docstring''' A__ : Tuple = self.get_image_processor() A__ : int = self.get_tokenizer() A__ : Dict = self.get_qformer_tokenizer() A__ : Union[str, Any] = InstructBlipProcessor( tokenizer=snake_case_ , image_processor=snake_case_ , qformer_tokenizer=snake_case_ ) A__ : Optional[Any] = """lower newer""" A__ : Dict = processor(text=snake_case_ ) A__ : Any = tokenizer(snake_case_ , return_token_type_ids=snake_case_ ) A__ : Optional[int] = qformer_tokenizer(snake_case_ , return_token_type_ids=snake_case_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def lowerCamelCase ( self ): '''simple docstring''' A__ : Dict = self.get_image_processor() A__ : Union[str, Any] = self.get_tokenizer() A__ : Any = self.get_qformer_tokenizer() A__ : List[str] = InstructBlipProcessor( tokenizer=snake_case_ , image_processor=snake_case_ , qformer_tokenizer=snake_case_ ) A__ : List[str] = """lower newer""" A__ : Any = self.prepare_image_inputs() A__ : Optional[int] = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def lowerCamelCase ( self ): '''simple docstring''' A__ : Union[str, Any] = self.get_image_processor() A__ : int = self.get_tokenizer() A__ : Any = self.get_qformer_tokenizer() A__ : Union[str, Any] = InstructBlipProcessor( tokenizer=snake_case_ , image_processor=snake_case_ , qformer_tokenizer=snake_case_ ) A__ : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ : List[Any] = processor.batch_decode(snake_case_ ) A__ : List[Any] = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCamelCase ( self ): '''simple docstring''' A__ : Tuple = self.get_image_processor() A__ : str = self.get_tokenizer() A__ : List[Any] = self.get_qformer_tokenizer() A__ : List[Any] = InstructBlipProcessor( tokenizer=snake_case_ , image_processor=snake_case_ , qformer_tokenizer=snake_case_ ) A__ : Dict = """lower newer""" A__ : Dict = self.prepare_image_inputs() A__ : Optional[Any] = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
363
"""simple docstring""" from collections.abc import Sequence def _A( lowerCAmelCase , lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(lowerCAmelCase ) ) def _A( lowerCAmelCase , lowerCAmelCase ): A__ : str = 0.0 for coeff in reversed(lowerCAmelCase ): A__ : Optional[int] = result * x + coeff return result if __name__ == "__main__": _UpperCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) _UpperCamelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
363
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = { """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/resolve/main/config.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/config.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/config.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json""", } class A_ ( lowercase_ ): """simple docstring""" lowercase : List[Any] = '''bloom''' lowercase : str = ['''past_key_values'''] lowercase : List[str] = { '''num_hidden_layers''': '''n_layer''', '''num_attention_heads''': '''n_head''', } def __init__( self , __UpperCAmelCase=25_08_80 , __UpperCAmelCase=64 , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> List[Any]: a : Optional[int] = vocab_size # Backward compatibility with n_embed kwarg a : Union[str, Any] = kwargs.pop('n_embed' , __UpperCAmelCase ) a : int = hidden_size if n_embed is None else n_embed a : Optional[int] = n_layer a : Union[str, Any] = n_head a : int = layer_norm_epsilon a : List[Any] = initializer_range a : str = use_cache a : Union[str, Any] = pretraining_tp a : str = apply_residual_connection_post_layernorm a : Optional[int] = hidden_dropout a : Optional[Any] = attention_dropout a : Dict = bos_token_id a : List[Any] = eos_token_id a : Any = slow_but_exact super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) class A_ ( lowercase_ ): """simple docstring""" lowercase : List[str] = version.parse("1.12" ) def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Union[str, Any]: super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase ) if not getattr(self._config , 'pad_token_id' , __UpperCAmelCase ): # TODO: how to do that better? a : Dict = 0 @property def lowercase_ ( self ) -> Dict: a : Union[str, Any] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__UpperCAmelCase , direction='inputs' , inverted_values_shape=__UpperCAmelCase ) a : List[str] = {0: 'batch', 1: 'past_sequence + sequence'} else: a : Optional[int] = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowercase_ ( self ) -> List[str]: return self._config.n_layer @property def lowercase_ ( self ) -> Dict: return self._config.n_head @property def lowercase_ ( self ) -> Optional[int]: return 1E-3 def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Optional[Any]: a : List[str] = super(__UpperCAmelCase , self ).generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) # We need to order the input in the way they appears in the forward() a : Optional[int] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch a , a : Optional[Any] = common_inputs['input_ids'].shape # Not using the same length for past_key_values a : Union[str, Any] = seqlen + 2 a : List[Any] = self._config.hidden_size // self.num_attention_heads a : Any = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) a : List[Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) a : str = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers ) ] a : List[Any] = common_inputs['attention_mask'] if self.use_past: a : Optional[int] = ordered_inputs['attention_mask'].dtype a : Optional[Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def lowercase_ ( self ) -> Optional[Any]: return 13
720
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def A_ ( ) -> List[str]: a : List[Any] = 9 a : List[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] a : int = kruskal(UpperCAmelCase__ , UpperCAmelCase__ ) a : List[Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(UpperCAmelCase__ ) == sorted(UpperCAmelCase__ )
509
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str] ): print("\nThe shortest path matrix using Floyd Warshall algorithm\n" ) for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): if dist[i][j] != float("inf" ): print(int(dist[i][j] ), end="\t" ) else: print("INF", end="\t" ) print() def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Any ): _a = [[float("inf" ) for _ in range(lowerCamelCase__ )] for _ in range(lowerCamelCase__ )] for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): _a = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(lowerCamelCase__ ): # looping through rows of graph array for i in range(lowerCamelCase__ ): # looping through columns of graph array for j in range(lowerCamelCase__ ): if ( dist[i][k] != float("inf" ) and dist[k][j] != float("inf" ) and dist[i][k] + dist[k][j] < dist[i][j] ): _a = dist[i][k] + dist[k][j] _print_dist(lowerCamelCase__, lowerCamelCase__ ) return dist, v if __name__ == "__main__": __snake_case : Dict = int(input("Enter number of vertices: ")) __snake_case : Optional[int] = int(input("Enter number of edges: ")) __snake_case : Dict = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __snake_case : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __snake_case : Optional[Any] = int(input("Enter source:")) __snake_case : Tuple = int(input("Enter destination:")) __snake_case : Dict = float(input("Enter weight:")) __snake_case : Optional[Any] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
131
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = ProphetNetTokenizer __UpperCAmelCase : Dict = False def __lowerCAmelCase ( self ) -> int: super().setUp() _a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , snake_case_ ) -> Dict: _a = "UNwant\u00E9d,running" _a = "unwanted, running" return input_text, output_text def __lowerCAmelCase ( self ) -> Optional[int]: _a = self.tokenizer_class(self.vocab_file ) _a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __lowerCAmelCase ( self ) -> str: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __lowerCAmelCase ( self ) -> Dict: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> List[str]: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __lowerCAmelCase ( self ) -> List[Any]: _a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _a = {} for i, token in enumerate(snake_case_ ): _a = i _a = WordpieceTokenizer(vocab=snake_case_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] _a = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) _a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self ) -> Tuple: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __lowerCAmelCase ( self ) -> str: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __lowerCAmelCase ( self ) -> int: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def __lowerCAmelCase ( self ) -> str: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
131
1
def snake_case_ ( lowerCAmelCase_ : int ): if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) __lowercase : List[str] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 __lowercase : Tuple = 1 if upper_limit > 0: __lowercase : Dict = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowerCAmelCase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('''\n********* Catalan Numbers Using Dynamic Programming ************\n''') print('''\n*** Enter -1 at any time to quit ***''') print('''\nEnter the upper limit (≥ 0) for the Catalan number sequence: ''', end='''''') try: while True: lowerCamelCase : Dict = int(input().strip()) if N < 0: print('''\n********* Goodbye!! ************''') break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print('''Try another upper limit for the sequence: ''', end='''''') except (NameError, ValueError): print('''\n********* Invalid input, goodbye! ************\n''') import doctest doctest.testmod()
707
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _lowerCamelCase ( lowerCamelCase_: Union[str, Any] , lowerCamelCase_: Optional[int]=None ): '''simple docstring''' A : Tuple = None if token is not None: A : str = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"""Bearer {token}"""} A : str = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" A : Optional[Any] = requests.get(lowerCamelCase_ , headers=lowerCamelCase_ ).json() A : List[str] = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) A : Dict = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(lowerCamelCase_ ): A : Tuple = requests.get(url + f"""&page={i + 2}""" , headers=lowerCamelCase_ ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _lowerCamelCase ( lowerCamelCase_: Optional[int] , lowerCamelCase_: Any=None ): '''simple docstring''' A : List[Any] = None if token is not None: A : Union[str, Any] = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"""Bearer {token}"""} A : Optional[Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" A : Any = requests.get(lowerCamelCase_ , headers=lowerCamelCase_ ).json() A : Any = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) A : Dict = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(lowerCamelCase_ ): A : str = requests.get(url + f"""&page={i + 2}""" , headers=lowerCamelCase_ ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _lowerCamelCase ( lowerCamelCase_: List[str] , lowerCamelCase_: int , lowerCamelCase_: str , lowerCamelCase_: List[Any] ): '''simple docstring''' A : Tuple = None if token is not None: A : str = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"""Bearer {token}"""} A : List[Any] = requests.get(lowerCamelCase_ , headers=lowerCamelCase_ , allow_redirects=lowerCamelCase_ ) A : Dict = result.headers['''Location'''] A : Tuple = requests.get(lowerCamelCase_ , allow_redirects=lowerCamelCase_ ) A : Dict = os.path.join(lowerCamelCase_ , f"""{artifact_name}.zip""" ) with open(lowerCamelCase_ , '''wb''' ) as fp: fp.write(response.content ) def _lowerCamelCase ( lowerCamelCase_: int , lowerCamelCase_: Tuple=None ): '''simple docstring''' A : Optional[int] = [] A : List[Any] = [] A : Any = None with zipfile.ZipFile(lowerCamelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(lowerCamelCase_ ) as f: for line in f: A : Optional[Any] = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs A : str = line[: line.index(''': ''' )] A : Union[str, Any] = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed A : List[str] = line[len('''FAILED ''' ) :] failed_tests.append(lowerCamelCase_ ) elif filename == "job_name.txt": A : Optional[Any] = line if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): raise ValueError( f"""`errors` and `failed_tests` should have the same number of elements. Got {len(lowerCamelCase_ )} for `errors` """ f"""and {len(lowerCamelCase_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" ''' problem.''' ) A : Optional[int] = None if job_name and job_links: A : Tuple = job_links.get(lowerCamelCase_ , lowerCamelCase_ ) # A list with elements of the form (line of error, error, failed test) A : List[Any] = [x + [y] + [job_link] for x, y in zip(lowerCamelCase_ , lowerCamelCase_ )] return result def _lowerCamelCase ( lowerCamelCase_: Optional[int] , lowerCamelCase_: Optional[Any]=None ): '''simple docstring''' A : Dict = [] A : Dict = [os.path.join(lowerCamelCase_ , lowerCamelCase_ ) for p in os.listdir(lowerCamelCase_ ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(lowerCamelCase_ , job_links=lowerCamelCase_ ) ) return errors def _lowerCamelCase ( lowerCamelCase_: str , lowerCamelCase_: Union[str, Any]=None ): '''simple docstring''' A : int = Counter() counter.update([x[1] for x in logs] ) A : int = counter.most_common() A : List[Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: A : Dict = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]} A : List[Any] = dict(sorted(r.items() , key=lambda lowerCamelCase_ : item[1]["count"] , reverse=lowerCamelCase_ ) ) return r def _lowerCamelCase ( lowerCamelCase_: Dict ): '''simple docstring''' A : Optional[int] = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): A : Union[str, Any] = test.split('''/''' )[2] else: A : Dict = None return test def _lowerCamelCase ( lowerCamelCase_: List[str] , lowerCamelCase_: int=None ): '''simple docstring''' A : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] A : Tuple = [x for x in logs if x[2] is not None] A : List[str] = {x[2] for x in logs} A : int = {} for test in tests: A : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) A : str = counter.most_common() A : Optional[Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} A : List[str] = sum(error_counts.values() ) if n_errors > 0: A : Optional[Any] = {'''count''': n_errors, '''errors''': error_counts} A : Any = dict(sorted(r.items() , key=lambda lowerCamelCase_ : item[1]["count"] , reverse=lowerCamelCase_ ) ) return r def _lowerCamelCase ( lowerCamelCase_: List[Any] ): '''simple docstring''' A : List[Any] = '''| no. | error | status |''' A : Any = '''|-:|:-|:-|''' A : Dict = [header, sep] for error in reduced_by_error: A : str = reduced_by_error[error]['''count'''] A : Union[str, Any] = f"""| {count} | {error[:100]} | |""" lines.append(lowerCamelCase_ ) return "\n".join(lowerCamelCase_ ) def _lowerCamelCase ( lowerCamelCase_: str ): '''simple docstring''' A : str = '''| model | no. of errors | major error | count |''' A : Union[str, Any] = '''|-:|-:|-:|-:|''' A : Union[str, Any] = [header, sep] for model in reduced_by_model: A : int = reduced_by_model[model]['''count'''] A , A : str = list(reduced_by_model[model]['''errors'''].items() )[0] A : Tuple = f"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(lowerCamelCase_ ) return "\n".join(lowerCamelCase_ ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") UpperCamelCase_ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) UpperCamelCase_ = get_job_links(args.workflow_run_id, token=args.token) UpperCamelCase_ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: UpperCamelCase_ = k.find(" / ") UpperCamelCase_ = k[index + len(" / ") :] UpperCamelCase_ = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) UpperCamelCase_ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) UpperCamelCase_ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error UpperCamelCase_ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors UpperCamelCase_ = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) UpperCamelCase_ = reduce_by_error(errors) UpperCamelCase_ = reduce_by_model(errors) UpperCamelCase_ = make_github_table(reduced_by_error) UpperCamelCase_ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
256
'''simple docstring''' import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _lowercase = logging.get_logger(__name__) class a_ ( UpperCAmelCase__ ): def __init__( self : Tuple , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : List[str] ): warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
356
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__: str = logging.get_logger(__name__) lowerCAmelCase__: Optional[int] = 'https://openaipublic.azureedge.net/jukebox/models/' lowerCAmelCase__: List[Any] = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> int: if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : Tuple = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : Any = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : Optional[int] = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : Optional[int] = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: SCREAMING_SNAKE_CASE_ : Dict = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: SCREAMING_SNAKE_CASE_ : Dict = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: SCREAMING_SNAKE_CASE_ : int = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: SCREAMING_SNAKE_CASE_ : Any = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : str = {} import re SCREAMING_SNAKE_CASE_ : str = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Optional[int] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : List[Any] = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Any = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : int = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = regex_match.groups() SCREAMING_SNAKE_CASE_ : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Dict = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = regex_match.groups() SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(groups[2] ) * 2 + int(groups[3] ) SCREAMING_SNAKE_CASE_ : List[Any] = {'1': 1, '3': 2}[groups[-2]] SCREAMING_SNAKE_CASE_ : List[str] = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' SCREAMING_SNAKE_CASE_ : Optional[Any] = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : str = prefix + resnet_block SCREAMING_SNAKE_CASE_ : int = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Dict = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = regex_match.groups() SCREAMING_SNAKE_CASE_ : List[Any] = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' SCREAMING_SNAKE_CASE_ : str = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : List[Any] = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = regex_match.groups() SCREAMING_SNAKE_CASE_ : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 SCREAMING_SNAKE_CASE_ : str = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Tuple = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : str = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = regex_match.groups() SCREAMING_SNAKE_CASE_ : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 SCREAMING_SNAKE_CASE_ : Tuple = {'1': 1, '3': 2}[groups[-2]] SCREAMING_SNAKE_CASE_ : Optional[int] = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' SCREAMING_SNAKE_CASE_ : Dict = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Tuple = prefix + resnet_block SCREAMING_SNAKE_CASE_ : List[Any] = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = regex_match.groups() SCREAMING_SNAKE_CASE_ : List[Any] = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Tuple = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Tuple = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = regex_match.groups() SCREAMING_SNAKE_CASE_ : int = int(groups[1] ) * 2 + int(groups[2] ) - 2 SCREAMING_SNAKE_CASE_ : Dict = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Optional[int] = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Any = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = regex_match.groups() SCREAMING_SNAKE_CASE_ : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 SCREAMING_SNAKE_CASE_ : Optional[int] = {'1': 1, '3': 2}[groups[-2]] SCREAMING_SNAKE_CASE_ : List[Any] = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' SCREAMING_SNAKE_CASE_ : List[Any] = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Optional[int] = prefix + resnet_block SCREAMING_SNAKE_CASE_ : Dict = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Dict = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = regex_match.groups() SCREAMING_SNAKE_CASE_ : Tuple = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' SCREAMING_SNAKE_CASE_ : List[str] = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # keep original key else: SCREAMING_SNAKE_CASE_ : List[str] = original_key SCREAMING_SNAKE_CASE_ : Any = replace_key(_SCREAMING_SNAKE_CASE ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: SCREAMING_SNAKE_CASE_ : Optional[int] = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) SCREAMING_SNAKE_CASE_ : Dict = original_key SCREAMING_SNAKE_CASE_ : Optional[int] = original_key SCREAMING_SNAKE_CASE_ : List[Any] = value return new_dict @torch.no_grad() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> Optional[int]: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = requests.get(f'{PREFIX}{file}' , allow_redirects=_SCREAMING_SNAKE_CASE ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=_SCREAMING_SNAKE_CASE ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , 'wb' ).write(r.content ) SCREAMING_SNAKE_CASE_ : int = MODEL_MAPPING[model_name.split('/' )[-1]] SCREAMING_SNAKE_CASE_ : Optional[int] = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = JukeboxModel(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] SCREAMING_SNAKE_CASE_ : Any = {} for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Dict = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )['model'] SCREAMING_SNAKE_CASE_ : int = {} for k in old_dic.keys(): if k.endswith('.b' ): SCREAMING_SNAKE_CASE_ : List[Any] = old_dic[k] elif k.endswith('.w' ): SCREAMING_SNAKE_CASE_ : Optional[int] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: SCREAMING_SNAKE_CASE_ : int = old_dic[k] else: SCREAMING_SNAKE_CASE_ : Optional[int] = old_dic[k] SCREAMING_SNAKE_CASE_ : Optional[Any] = 'vqvae' if i == 0 else f'priors.{3 - i}' SCREAMING_SNAKE_CASE_ : Tuple = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) weight_dict.append(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = weight_dict.pop(0 ) model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) with open(f'{pytorch_dump_folder_path}/mapping.json' , 'w' ) as txtfile: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) return weight_dict if __name__ == "__main__": lowerCAmelCase__: Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) lowerCAmelCase__: str = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
702
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets lowerCAmelCase__: Optional[int] = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" lowerCAmelCase__: Dict = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" lowerCAmelCase__: List[str] = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): def __A ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=False ): if rouge_types is None: SCREAMING_SNAKE_CASE_ : Optional[int] = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] SCREAMING_SNAKE_CASE_ : str = rouge_scorer.RougeScorer(rouge_types=__lowerCAmelCase , use_stemmer=__lowerCAmelCase ) if use_aggregator: SCREAMING_SNAKE_CASE_ : Optional[int] = scoring.BootstrapAggregator() else: SCREAMING_SNAKE_CASE_ : Tuple = [] for ref, pred in zip(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[Any] = scorer.score(__lowerCAmelCase , __lowerCAmelCase ) if use_aggregator: aggregator.add_scores(__lowerCAmelCase ) else: scores.append(__lowerCAmelCase ) if use_aggregator: SCREAMING_SNAKE_CASE_ : List[str] = aggregator.aggregate() else: SCREAMING_SNAKE_CASE_ : int = {} for key in scores[0]: SCREAMING_SNAKE_CASE_ : List[Any] = [score[key] for score in scores] return result
311
0
"""simple docstring""" import logging from transformers import PretrainedConfig UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : List[str] = "bertabs" def __init__( self , SCREAMING_SNAKE_CASE__=30522 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=0.2 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=0.2 , **SCREAMING_SNAKE_CASE__ , ) -> Union[str, Any]: super().__init__(**SCREAMING_SNAKE_CASE__ ) A__ = vocab_size A__ = max_pos A__ = enc_layers A__ = enc_hidden_size A__ = enc_heads A__ = enc_ff_size A__ = enc_dropout A__ = dec_layers A__ = dec_hidden_size A__ = dec_heads A__ = dec_ff_size A__ = dec_dropout
104
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) UpperCamelCase = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" UpperCamelCase = model(__magic_name__ )["""last_hidden_state"""] UpperCamelCase = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. UpperCamelCase = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
386
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""} UpperCamelCase__ = { """vocab_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""", }, """emoji_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""", }, } UpperCamelCase__ = { """abeja/gpt-neox-japanese-2.7b""": 2048, } def _a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple ): with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" ) as f: __lowerCAmelCase = json.loads(f.read() ) __lowerCAmelCase = collections.OrderedDict() __lowerCAmelCase = collections.OrderedDict() __lowerCAmelCase = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = b __lowerCAmelCase = idx for wd in b: __lowerCAmelCase = idx return vocab, raw_vocab, ids_to_tokens, emoji class a__ ( snake_case__ ): _a : Optional[Any] = VOCAB_FILES_NAMES _a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : str = ["""input_ids""", """attention_mask"""] def __init__( self , _A , _A , _A="<|endoftext|>" , _A="<|endoftext|>" , _A="<|startoftext|>" , _A="<|endoftext|>" , _A=False , **_A , ): """simple docstring""" super().__init__( unk_token=_A , pad_token=_A , bos_token=_A , eos_token=_A , do_clean_text=_A , **_A , ) if not os.path.isfile(_A ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(_A ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) __lowerCAmelCase = do_clean_text __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = load_vocab_and_emoji(_A , _A ) __lowerCAmelCase = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return len(self.raw_vocab ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return self.subword_tokenizer.tokenize(_A , clean=self.do_clean_text ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return self.vocab.get(_A , self.vocab.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return self.subword_tokenizer.convert_id_to_token(_A ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = "".join(_A ).strip() return out_string def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_A , add_special_tokens=_A ) + [self.eos_token_id] ) if len(_A ) > self.model_max_length: __lowerCAmelCase = input_ids[-self.model_max_length :] return input_ids def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" __lowerCAmelCase = 0 if os.path.isdir(_A ): __lowerCAmelCase = os.path.join( _A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowerCAmelCase = os.path.join( _A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: __lowerCAmelCase = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) __lowerCAmelCase = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(_A , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) __lowerCAmelCase = token_index writer.write(",".join(_A ) + "\n" ) index += 1 with open(_A , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , _A ) return vocab_file, emoji_file class a__ ( snake_case__ ): def __init__( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = vocab # same as swe __lowerCAmelCase = ids_to_tokens # same as bpe __lowerCAmelCase = emoji __lowerCAmelCase = np.max([len(_A ) for w in self.vocab.keys()] ) __lowerCAmelCase = re.compile(R"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) __lowerCAmelCase = re.compile(R"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) __lowerCAmelCase = re.compile(R"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) __lowerCAmelCase = re.compile( R"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) __lowerCAmelCase = re.compile( R"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) __lowerCAmelCase = re.compile( R"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) __lowerCAmelCase = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" __lowerCAmelCase = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" __lowerCAmelCase = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self ): """simple docstring""" return len(self.ids_to_tokens ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = self.content_repattera.sub("<URL>" , _A ) __lowerCAmelCase = self.content_repattera.sub("<EMAIL>" , _A ) __lowerCAmelCase = self.content_repattera.sub("<TEL>" , _A ) __lowerCAmelCase = self.content_repattera.sub("<DATE>" , _A ) __lowerCAmelCase = self.content_repattera.sub("<DATE>" , _A ) __lowerCAmelCase = self.content_repattera.sub("<PRICE>" , _A ) __lowerCAmelCase = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: __lowerCAmelCase = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def __SCREAMING_SNAKE_CASE( self , _A , _A=False ): """simple docstring""" __lowerCAmelCase = text.replace(" " , "<SP>" ) __lowerCAmelCase = text.replace(" " , "<SP>" ) __lowerCAmelCase = text.replace("\r\n" , "<BR>" ) __lowerCAmelCase = text.replace("\n" , "<BR>" ) __lowerCAmelCase = text.replace("\r" , "<BR>" ) __lowerCAmelCase = text.replace("\t" , "<TAB>" ) __lowerCAmelCase = text.replace("—" , "ー" ) __lowerCAmelCase = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: __lowerCAmelCase = text.replace(_A , _A ) if clean: __lowerCAmelCase = self.clean_text(_A ) def check_simbol(_A ): __lowerCAmelCase = x.encode() if len(_A ) == 1 and len(_A ) == 2: __lowerCAmelCase = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc_2a1 and c <= 0xc_2bf) or (c >= 0xc_780 and c <= 0xc_783) or (c >= 0xc_ab9 and c <= 0xc_bbf) or (c >= 0xc_c80 and c <= 0xc_da2) ): return True return False def checkuae(_A ): __lowerCAmelCase = x.encode() if len(_A ) == 1 and len(_A ) == 3: __lowerCAmelCase = (int(e[0] ) << 1_6) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe28_080 and c <= 0xe2b_07f: return True return False __lowerCAmelCase = 0 __lowerCAmelCase = [] while pos < len(_A ): __lowerCAmelCase = min(len(_A ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 __lowerCAmelCase = [] # (token_id, token, pos) for e in range(_A , _A , -1 ): __lowerCAmelCase = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_A ) > 2: __lowerCAmelCase = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_A ) > 0: # the smallest token_id is adopted __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = sorted(_A , key=lambda _A : x[0] )[0] result.append(_A ) __lowerCAmelCase = e else: __lowerCAmelCase = pos + 1 __lowerCAmelCase = text[pos:end] if check_simbol(_A ): result.append("<KIGOU>" ) elif checkuae(_A ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) __lowerCAmelCase = end return result def __SCREAMING_SNAKE_CASE( self , _A , _A="\n" ): """simple docstring""" __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_A ) > 0: words.append(bytearray(_A ).decode("utf-8" , errors="replace" ) ) __lowerCAmelCase = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(_A ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(_A ) if len(_A ) > 0: words.append(bytearray(_A ).decode("utf-8" , errors="replace" ) ) __lowerCAmelCase = "".join(_A ) return text
713
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class a__ : _a : List[str] = MBartConfig _a : Union[str, Any] = {} _a : Tuple = """gelu""" def __init__( self , _A , _A=1_3 , _A=7 , _A=True , _A=False , _A=9_9 , _A=3_2 , _A=2 , _A=4 , _A=3_7 , _A=0.1 , _A=0.1 , _A=2_0 , _A=2 , _A=1 , _A=0 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = eos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = bos_token_id def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowerCAmelCase = prepare_mbart_inputs_dict(_A , _A , _A ) return config, inputs_dict def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = TFMBartModel(config=_A ).get_decoder() __lowerCAmelCase = inputs_dict["input_ids"] __lowerCAmelCase = input_ids[:1, :] __lowerCAmelCase = inputs_dict["attention_mask"][:1, :] __lowerCAmelCase = inputs_dict["head_mask"] __lowerCAmelCase = 1 # first forward pass __lowerCAmelCase = model(_A , attention_mask=_A , head_mask=_A , use_cache=_A ) __lowerCAmelCase , __lowerCAmelCase = outputs.to_tuple() __lowerCAmelCase = past_key_values[1] def _a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , ): if attention_mask is None: __lowerCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowerCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a__ ( snake_case__ , snake_case__ , unittest.TestCase ): _a : Optional[Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () _a : Any = (TFMBartForConditionalGeneration,) if is_tf_available() else () _a : Tuple = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) _a : Optional[int] = True _a : Optional[int] = False _a : List[Any] = False def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFMBartModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_A ) @require_sentencepiece @require_tokenizers @require_tf class a__ ( unittest.TestCase ): _a : Any = [ """ UN Chief Says There Is No Military Solution in Syria""", ] _a : Optional[Any] = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] _a : Any = """facebook/mbart-large-en-ro""" @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __SCREAMING_SNAKE_CASE( self , **_A ): """simple docstring""" __lowerCAmelCase = self.translate_src_text(**_A ) self.assertListEqual(self.expected_text , _A ) def __SCREAMING_SNAKE_CASE( self , **_A ): """simple docstring""" __lowerCAmelCase = self.tokenizer(self.src_text , **_A , return_tensors="tf" ) __lowerCAmelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __lowerCAmelCase = self.tokenizer.batch_decode(_A , skip_special_tokens=_A ) return generated_words @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self._assert_generated_batch_equal_expected()
552
0
from string import ascii_uppercase __UpperCamelCase : Dict = {char: i for i, char in enumerate(ascii_uppercase)} __UpperCamelCase : Any = dict(enumerate(ascii_uppercase)) def __A ( __lowerCamelCase , __lowerCamelCase ) -> str: a = len(__lowerCamelCase ) a = 0 while True: if x == i: a = 0 if len(__lowerCamelCase ) == len(__lowerCamelCase ): break key += key[i] i += 1 return key def __A ( __lowerCamelCase , __lowerCamelCase ) -> str: a = """""" a = 0 for letter in message: if letter == " ": cipher_text += " " else: a = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __A ( __lowerCamelCase , __lowerCamelCase ) -> str: a = """""" a = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: a = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __A ( ) -> None: a = """THE GERMAN ATTACK""" a = """SECRET""" a = generate_key(__lowerCamelCase , __lowerCamelCase ) a = cipher_text(__lowerCamelCase , __lowerCamelCase ) print(f'Encrypted Text = {s}' ) print(f'Original Text = {original_text(__lowerCamelCase , __lowerCamelCase )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
468
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Optional[int] = { "configuration_jukebox": [ "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "JukeboxConfig", "JukeboxPriorConfig", "JukeboxVQVAEConfig", ], "tokenization_jukebox": ["JukeboxTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST", "JukeboxModel", "JukeboxPreTrainedModel", "JukeboxVQVAE", "JukeboxPrior", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
468
1
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : Tuple = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] UpperCamelCase__ : int = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) return sd def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any]=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE_ = OrderedDict() SCREAMING_SNAKE_CASE_ = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE_ = key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE_ = new_key.replace(name_pair[0] , name_pair[1] ) SCREAMING_SNAKE_CASE_ = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE_ = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE_ = 'pretraining' if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE_ = {'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE_ = {'visual_embedding_dim': 2_048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE_ = {'visual_embedding_dim': 2_048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE_ = {'visual_embedding_dim': 1_024} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE_ = {'visual_embedding_dim': 512} SCREAMING_SNAKE_CASE_ = 'multichoice' elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE_ = {'visual_embedding_dim': 2_048} SCREAMING_SNAKE_CASE_ = 'vqa_advanced' elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE_ = {'visual_embedding_dim': 2_048, 'num_labels': 3_129} SCREAMING_SNAKE_CASE_ = 'vqa' elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE_ = { 'visual_embedding_dim': 1_024, 'num_labels': 2, } SCREAMING_SNAKE_CASE_ = 'nlvr' SCREAMING_SNAKE_CASE_ = VisualBertConfig(**_SCREAMING_SNAKE_CASE ) # Load State Dict SCREAMING_SNAKE_CASE_ = load_state_dict(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = get_new_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if model_type == "pretraining": SCREAMING_SNAKE_CASE_ = VisualBertForPreTraining(_SCREAMING_SNAKE_CASE ) elif model_type == "vqa": SCREAMING_SNAKE_CASE_ = VisualBertForQuestionAnswering(_SCREAMING_SNAKE_CASE ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE_ = VisualBertForVisualReasoning(_SCREAMING_SNAKE_CASE ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE_ = VisualBertForMultipleChoice(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Save Checkpoints Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") UpperCamelCase__ : Optional[int] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
705
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ : Any = { "configuration_mvp": ["MVP_PRETRAINED_CONFIG_ARCHIVE_MAP", "MvpConfig", "MvpOnnxConfig"], "tokenization_mvp": ["MvpTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[int] = ["MvpTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ "MVP_PRETRAINED_MODEL_ARCHIVE_LIST", "MvpForCausalLM", "MvpForConditionalGeneration", "MvpForQuestionAnswering", "MvpForSequenceClassification", "MvpModel", "MvpPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys UpperCamelCase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
620
0
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class a__ : """simple docstring""" def __init__( self , lowercase ) -> Tuple: '''simple docstring''' if isinstance(lowercase , lowercase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden A__ = deepcopy(lowercase ) elif os.path.exists(lowercase ): with io.open(lowercase , "r" , encoding="utf-8" ) as f: A__ = json.load(lowercase ) else: try: A__ = baseaa.urlsafe_baadecode(lowercase ).decode("utf-8" ) A__ = json.loads(lowercase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F'Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}' ) A__ = config self.set_stage_and_offload() def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = self.get_value("zero_optimization.stage" , -1 ) # offload A__ = False if self.is_zeroa() or self.is_zeroa(): A__ = set(["cpu", "nvme"] ) A__ = set( [ self.get_value("zero_optimization.offload_optimizer.device" ), self.get_value("zero_optimization.offload_param.device" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: A__ = True def UpperCamelCase ( self , lowercase ) -> Optional[int]: '''simple docstring''' A__ = self.config # find the config node of interest if it exists A__ = ds_key_long.split("." ) A__ = nodes.pop() for node in nodes: A__ = config.get(lowercase ) if config is None: return None, ds_key return config, ds_key def UpperCamelCase ( self , lowercase , lowercase=None ) -> List[Any]: '''simple docstring''' A__ , A__ = self.find_config_node(lowercase ) if config is None: return default return config.get(lowercase , lowercase ) def UpperCamelCase ( self , lowercase , lowercase=False ) -> str: '''simple docstring''' A__ = self.config # find the config node of interest if it exists A__ = ds_key_long.split("." ) for node in nodes: A__ = config A__ = config.get(lowercase ) if config is None: if must_exist: raise ValueError(F'Can\'t find {ds_key_long} entry in the config: {self.config}' ) else: return # if found remove it if parent_config is not None: parent_config.pop(lowercase ) def UpperCamelCase ( self , lowercase ) -> List[str]: '''simple docstring''' A__ = self.get_value(lowercase ) return False if value is None else bool(lowercase ) def UpperCamelCase ( self , lowercase ) -> str: '''simple docstring''' A__ = self.get_value(lowercase ) return False if value is None else not bool(lowercase ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' return self._stage == 2 def UpperCamelCase ( self ) -> int: '''simple docstring''' return self._stage == 3 def UpperCamelCase ( self ) -> Dict: '''simple docstring''' return self._offload class a__ : """simple docstring""" def __init__( self , lowercase ) -> Optional[Any]: '''simple docstring''' A__ = engine def UpperCamelCase ( self , lowercase , **lowercase ) -> List[str]: '''simple docstring''' self.engine.backward(lowercase , **lowercase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class a__ ( snake_case ): """simple docstring""" def __init__( self , lowercase ) -> str: '''simple docstring''' super().__init__(lowercase , device_placement=lowercase , scaler=lowercase ) A__ = hasattr(self.optimizer , "overflow" ) def UpperCamelCase ( self , lowercase=None ) -> Union[str, Any]: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def UpperCamelCase ( self ) -> Any: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def UpperCamelCase ( self ) -> Dict: '''simple docstring''' if self.__has_overflow__: return self.optimizer.overflow return False class a__ ( snake_case ): """simple docstring""" def __init__( self , lowercase , lowercase ) -> List[str]: '''simple docstring''' super().__init__(lowercase , lowercase ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class a__ : """simple docstring""" def __init__( self , lowercase , lowercase=0.001 , lowercase=0 , **lowercase ) -> Optional[int]: '''simple docstring''' A__ = params A__ = lr A__ = weight_decay A__ = kwargs class a__ : """simple docstring""" def __init__( self , lowercase , lowercase=None , lowercase=0 , **lowercase ) -> List[str]: '''simple docstring''' A__ = optimizer A__ = total_num_steps A__ = warmup_num_steps A__ = kwargs
514
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCAmelCase__ = """\ """ lowerCAmelCase__ = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ lowerCAmelCase__ = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "input_texts": datasets.Value("string" ), } ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , ) def UpperCamelCase ( self , lowercase , lowercase , lowercase = 16 , lowercase = True , lowercase=None ) -> Optional[int]: '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": A__ = "cuda" else: A__ = "cuda" if torch.cuda.is_available() else "cpu" A__ = AutoModelForCausalLM.from_pretrained(lowercase ) A__ = model.to(lowercase ) A__ = AutoTokenizer.from_pretrained(lowercase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: A__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(lowercase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" A__ = model.config.max_length - 1 else: A__ = model.config.max_length A__ = tokenizer( lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , return_tensors="pt" , return_attention_mask=lowercase , ).to(lowercase ) A__ = encodings["input_ids"] A__ = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." A__ = [] A__ = CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0 , len(lowercase ) , lowercase ) ): A__ = min(start_index + batch_size , len(lowercase ) ) A__ = encoded_texts[start_index:end_index] A__ = attn_masks[start_index:end_index] if add_start_token: A__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowercase ) A__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) A__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(lowercase ), attn_mask] , dim=1 ) A__ = encoded_batch with torch.no_grad(): A__ = model(lowercase , attention_mask=lowercase ).logits A__ = out_logits[..., :-1, :].contiguous() A__ = labels[..., 1:].contiguous() A__ = attn_mask[..., 1:].contiguous() A__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , lowercase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(lowercase )}
514
1
"""simple docstring""" import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase = OpenAIGPTTokenizer __UpperCAmelCase = OpenAIGPTTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = False def lowercase_ (self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCamelCase : Any = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] _UpperCamelCase : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) _UpperCamelCase : int = ["#version: 0.2", "l o", "lo w", "e r</w>", ""] _UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def lowercase_ (self , lowerCAmelCase__ ): '''simple docstring''' return "lower newer", "lower newer" def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Dict = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) _UpperCamelCase : Any = "lower" _UpperCamelCase : List[Any] = ["low", "er</w>"] _UpperCamelCase : Tuple = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase : List[str] = tokens + ["<unk>"] _UpperCamelCase : List[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def lowercase_ (self , lowerCAmelCase__=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _UpperCamelCase : List[str] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) # Simple input _UpperCamelCase : Any = "This is a simple input" _UpperCamelCase : Tuple = ["This is a simple input 1", "This is a simple input 2"] _UpperCamelCase : Dict = ("This is a simple input", "This is a pair") _UpperCamelCase : Optional[Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ , tokenizer_r.batch_encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="max_length" , ) # Pair input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ , tokenizer_r.batch_encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="max_length" , ) def lowercase_ (self ): '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' pass
239
"""simple docstring""" class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : List[str] = size _UpperCamelCase : Optional[int] = [0] * size _UpperCamelCase : List[str] = [0] * size @staticmethod def lowercase_ (lowerCAmelCase__ ): '''simple docstring''' return index | (index + 1) @staticmethod def lowercase_ (lowerCAmelCase__ ): '''simple docstring''' return (index & (index + 1)) - 1 def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Dict = value while index < self.size: _UpperCamelCase : Any = self.get_prev(lowerCAmelCase__ ) + 1 if current_left_border == index: _UpperCamelCase : List[str] = value else: _UpperCamelCase : List[str] = max(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase : List[str] = self.get_next(lowerCAmelCase__ ) def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' right -= 1 # Because of right is exclusive _UpperCamelCase : Tuple = 0 while left <= right: _UpperCamelCase : List[str] = self.get_prev(lowerCAmelCase__ ) if left <= current_left: _UpperCamelCase : Optional[Any] = max(lowerCAmelCase__ , self.tree[right] ) _UpperCamelCase : Tuple = current_left else: _UpperCamelCase : Optional[int] = max(lowerCAmelCase__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
239
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : Optional[Any] = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["""YolosFeatureExtractor"""] lowercase : Tuple = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
423
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar('T') UpperCAmelCase_ = TypeVar('U') class lowerCAmelCase_ ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : T | None , _UpperCAmelCase : U | None ): """simple docstring""" UpperCAmelCase__ = key UpperCAmelCase__ = val UpperCAmelCase__ = None UpperCAmelCase__ = None def __repr__( self : List[str] ): """simple docstring""" return ( f'''Node: key: {self.key}, val: {self.val}, ''' f'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class lowerCAmelCase_ ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = DoubleLinkedListNode(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = DoubleLinkedListNode(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = self.rear, self.head def __repr__( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = ["""DoubleLinkedList"""] UpperCAmelCase__ = self.head while node.next is not None: rep.append(str(_UpperCAmelCase ) ) UpperCAmelCase__ = node.next rep.append(str(self.rear ) ) return ",\n ".join(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : DoubleLinkedListNode[T, U] ): """simple docstring""" UpperCAmelCase__ = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None UpperCAmelCase__ = node UpperCAmelCase__ = previous UpperCAmelCase__ = node UpperCAmelCase__ = self.rear def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : DoubleLinkedListNode[T, U] ): """simple docstring""" if node.prev is None or node.next is None: return None UpperCAmelCase__ = node.next UpperCAmelCase__ = node.prev UpperCAmelCase__ = None UpperCAmelCase__ = None return node class lowerCAmelCase_ ( Generic[T, U] ): '''simple docstring''' lowerCAmelCase_ : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : Tuple , _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = DoubleLinkedList() UpperCAmelCase__ = capacity UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = {} def __repr__( self : int ): """simple docstring""" return ( f'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' f'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self : List[Any] , _UpperCAmelCase : T ): """simple docstring""" return key in self.cache def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : T ): """simple docstring""" if key in self.cache: self.hits += 1 UpperCAmelCase__ = self.cache[key] UpperCAmelCase__ = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_UpperCAmelCase ) return node.val self.miss += 1 return None def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : T , _UpperCAmelCase : U ): """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity UpperCAmelCase__ = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_UpperCAmelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 UpperCAmelCase__ = DoubleLinkedListNode(_UpperCAmelCase , _UpperCAmelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value UpperCAmelCase__ = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list UpperCAmelCase__ = value self.list.add(_UpperCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[int] , _UpperCAmelCase : int = 1_28 ): """simple docstring""" def cache_decorator_inner(_UpperCAmelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*_UpperCAmelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: UpperCAmelCase__ = LRUCache(_UpperCAmelCase ) UpperCAmelCase__ = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: UpperCAmelCase__ = func(*_UpperCAmelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , _UpperCAmelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_UpperCAmelCase , """cache_info""" , _UpperCAmelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
603
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ConditionalDetrFeatureExtractor"] UpperCamelCase = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCamelCase : List[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = False def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): _lowercase : int = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowercase : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowerCAmelCase_ ( __snake_case ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowercase : Optional[Any] = parent _lowercase : str = batch_size _lowercase : Optional[int] = seq_length _lowercase : Tuple = is_training _lowercase : List[Any] = use_input_mask _lowercase : Optional[Any] = use_token_type_ids _lowercase : Any = use_labels _lowercase : str = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Tuple = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : List[str] = type_vocab_size _lowercase : Optional[Any] = type_sequence_label_size _lowercase : List[Any] = initializer_range _lowercase : List[str] = num_labels _lowercase : Union[str, Any] = num_choices _lowercase : List[str] = scope _lowercase : Union[str, Any] = embedding_size def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Optional[int] = None if self.use_input_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : int = None if self.use_token_type_ids: _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Dict = None _lowercase : Any = None _lowercase : int = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFMobileBertModel(config=_lowerCAmelCase ) _lowercase : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) _lowercase : Tuple = [input_ids, input_mask] _lowercase : str = model(_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = TFMobileBertForMaskedLM(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Optional[int] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFMobileBertForPreTraining(config=_lowerCAmelCase ) _lowercase : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = self.num_labels _lowercase : Tuple = TFMobileBertForSequenceClassification(config=_lowerCAmelCase ) _lowercase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = self.num_choices _lowercase : List[str] = TFMobileBertForMultipleChoice(config=_lowerCAmelCase ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Optional[int] = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : Tuple = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _lowercase : str = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _lowercase : Union[str, Any] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = self.num_labels _lowercase : int = TFMobileBertForTokenClassification(config=_lowerCAmelCase ) _lowercase : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Tuple = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowercase : int = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : List[str] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def __a ( self ): _lowercase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) _lowercase : Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase ) def __a ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase ) @slow def __a ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _lowercase : List[str] = TFMobileBertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Dict = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) _lowercase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowercase : List[str] = model(_lowerCAmelCase )[0] _lowercase : str = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , _lowerCAmelCase ) _lowercase : List[Any] = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 )
677
1
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _lowerCamelCase ( snake_case_ ): '''simple docstring''' __lowercase : int = '''EncodecFeatureExtractor''' __lowercase : Optional[Any] = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , __lowercase , __lowercase ): """simple docstring""" super().__init__(__lowercase , __lowercase ) __A : Optional[int] = self.feature_extractor __A : List[Any] = False def snake_case__ ( self , __lowercase=None , __lowercase=None , __lowercase=True ): """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=__lowercase , language=__lowercase , no_timestamps=__lowercase ) def __call__( self , *__lowercase , **__lowercase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__lowercase , **__lowercase ) __A : List[Any] = kwargs.pop('audio' , __lowercase ) __A : str = kwargs.pop('sampling_rate' , __lowercase ) __A : Optional[int] = kwargs.pop('text' , __lowercase ) if len(__lowercase ) > 0: __A : Union[str, Any] = args[0] __A : Optional[int] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if text is not None: __A : Union[str, Any] = self.tokenizer(__lowercase , **__lowercase ) if audio is not None: __A : Tuple = self.feature_extractor(__lowercase , *__lowercase , sampling_rate=__lowercase , **__lowercase ) if audio is None: return inputs elif text is None: return audio_inputs else: __A : Any = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: __A : int = audio_inputs['''padding_mask'''] return inputs def snake_case__ ( self , *__lowercase , **__lowercase ): """simple docstring""" __A : List[Any] = kwargs.pop('audio' , __lowercase ) __A : Tuple = kwargs.pop('padding_mask' , __lowercase ) if len(__lowercase ) > 0: __A : Optional[int] = args[0] __A : Any = args[1:] if audio_values is not None: return self._decode_audio(__lowercase , padding_mask=__lowercase ) else: return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def snake_case__ ( self , *__lowercase , **__lowercase ): """simple docstring""" return self.tokenizer.decode(*__lowercase , **__lowercase ) def snake_case__ ( self , __lowercase , __lowercase = None ): """simple docstring""" __A : List[str] = to_numpy(__lowercase ) __A : Any = audio_values.shape if padding_mask is None: return list(__lowercase ) __A : Union[str, Any] = to_numpy(__lowercase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __A : Union[str, Any] = seq_len - padding_mask.shape[-1] __A : str = 1 - self.feature_extractor.padding_value __A : Optional[int] = np.pad(__lowercase , ((0, 0), (0, difference)) , 'constant' , constant_values=__lowercase ) __A : List[str] = audio_values.tolist() for i in range(__lowercase ): __A : List[str] = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __A : List[Any] = sliced_audio.reshape(__lowercase , -1 ) return audio_values
365
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class _UpperCAmelCase ( a ): '''simple docstring''' a__ =42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
506
0
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _SCREAMING_SNAKE_CASE ( snake_case_ : bytes , snake_case_ : int ): __magic_name__ = f'{sampling_rate}' __magic_name__ = '''1''' __magic_name__ = '''f32le''' __magic_name__ = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(snake_case_ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: __magic_name__ = ffmpeg_process.communicate(snake_case_ ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error __magic_name__ = output_stream[0] __magic_name__ = np.frombuffer(snake_case_ , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def _SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : float , snake_case_ : str = "f32le" , ): __magic_name__ = f'{sampling_rate}' __magic_name__ = '''1''' if format_for_conversion == "s16le": __magic_name__ = 2 elif format_for_conversion == "f32le": __magic_name__ = 4 else: raise ValueError(f'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) __magic_name__ = platform.system() if system == "Linux": __magic_name__ = '''alsa''' __magic_name__ = '''default''' elif system == "Darwin": __magic_name__ = '''avfoundation''' __magic_name__ = ''':0''' elif system == "Windows": __magic_name__ = '''dshow''' __magic_name__ = '''default''' __magic_name__ = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] __magic_name__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __magic_name__ = _ffmpeg_stream(snake_case_ , snake_case_ ) for item in iterator: yield item def _SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : float , snake_case_ : Optional[int] = None , snake_case_ : Optional[Union[Tuple[float, float], float]] = None , snake_case_ : str = "f32le" , ): if stream_chunk_s is not None: __magic_name__ = stream_chunk_s else: __magic_name__ = chunk_length_s __magic_name__ = ffmpeg_microphone(snake_case_ , snake_case_ , format_for_conversion=snake_case_ ) if format_for_conversion == "s16le": __magic_name__ = np.intaa __magic_name__ = 2 elif format_for_conversion == "f32le": __magic_name__ = np.floataa __magic_name__ = 4 else: raise ValueError(f'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) if stride_length_s is None: __magic_name__ = chunk_length_s / 6 __magic_name__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(snake_case_ , (int, float) ): __magic_name__ = [stride_length_s, stride_length_s] __magic_name__ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __magic_name__ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __magic_name__ = datetime.datetime.now() __magic_name__ = datetime.timedelta(seconds=snake_case_ ) for item in chunk_bytes_iter(snake_case_ , snake_case_ , stride=(stride_left, stride_right) , stream=snake_case_ ): # Put everything back in numpy scale __magic_name__ = np.frombuffer(item['''raw'''] , dtype=snake_case_ ) __magic_name__ = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) __magic_name__ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : Tuple[int, int] , snake_case_ : bool = False ): __magic_name__ = B'''''' __magic_name__ , __magic_name__ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}' ) __magic_name__ = 0 for raw in iterator: acc += raw if stream and len(snake_case_ ) < chunk_len: __magic_name__ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(snake_case_ ) >= chunk_len: # We are flushing the accumulator __magic_name__ = (_stride_left, stride_right) __magic_name__ = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: __magic_name__ = False yield item __magic_name__ = stride_left __magic_name__ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(snake_case_ ) > stride_left: __magic_name__ = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: __magic_name__ = False yield item def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : int ): __magic_name__ = 2**24 # 16Mo try: with subprocess.Popen(snake_case_ , stdout=subprocess.PIPE , bufsize=snake_case_ ) as ffmpeg_process: while True: __magic_name__ = ffmpeg_process.stdout.read(snake_case_ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
717
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() a_ : str = logging.get_logger(__name__) a_ : Union[str, Any] = 'https://openaipublic.azureedge.net/jukebox/models/' a_ : List[Any] = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: __magic_name__ = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: __magic_name__ = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: __magic_name__ = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __magic_name__ = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: __magic_name__ = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def _SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ): __magic_name__ = {} import re __magic_name__ = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __magic_name__ = re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) __magic_name__ = re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) __magic_name__ = re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) __magic_name__ = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(snake_case_ ): __magic_name__ = re_encoder_block_conv_in.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) __magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' __magic_name__ = re_encoder_block_conv_in.sub(snake_case_ , snake_case_ ) elif re_encoder_block_resnet.fullmatch(snake_case_ ): __magic_name__ = re_encoder_block_resnet.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) __magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]] __magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' __magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __magic_name__ = prefix + resnet_block __magic_name__ = re_encoder_block_resnet.sub(snake_case_ , snake_case_ ) elif re_encoder_block_proj_out.fullmatch(snake_case_ ): __magic_name__ = re_encoder_block_proj_out.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' __magic_name__ = re_encoder_block_proj_out.sub(snake_case_ , snake_case_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(snake_case_ ): __magic_name__ = re_decoder_block_conv_out.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 __magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' __magic_name__ = re_decoder_block_conv_out.sub(snake_case_ , snake_case_ ) elif re_decoder_block_resnet.fullmatch(snake_case_ ): __magic_name__ = re_decoder_block_resnet.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 __magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]] __magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' __magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __magic_name__ = prefix + resnet_block __magic_name__ = re_decoder_block_resnet.sub(snake_case_ , snake_case_ ) elif re_decoder_block_proj_in.fullmatch(snake_case_ ): __magic_name__ = re_decoder_block_proj_in.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' __magic_name__ = re_decoder_block_proj_in.sub(snake_case_ , snake_case_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(snake_case_ ): __magic_name__ = re_prior_cond_conv_out.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 __magic_name__ = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' __magic_name__ = re_prior_cond_conv_out.sub(snake_case_ , snake_case_ ) elif re_prior_cond_resnet.fullmatch(snake_case_ ): __magic_name__ = re_prior_cond_resnet.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 __magic_name__ = {'''1''': 1, '''3''': 2}[groups[-2]] __magic_name__ = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' __magic_name__ = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __magic_name__ = prefix + resnet_block __magic_name__ = re_prior_cond_resnet.sub(snake_case_ , snake_case_ ) elif re_prior_cond_proj_in.fullmatch(snake_case_ ): __magic_name__ = re_prior_cond_proj_in.match(snake_case_ ) __magic_name__ = regex_match.groups() __magic_name__ = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' __magic_name__ = re_prior_cond_proj_in.sub(snake_case_ , snake_case_ ) # keep original key else: __magic_name__ = original_key __magic_name__ = replace_key(snake_case_ ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: __magic_name__ = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) __magic_name__ = original_key __magic_name__ = original_key __magic_name__ = value return new_dict @torch.no_grad() def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict=None , snake_case_ : Any=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): __magic_name__ = requests.get(f'{PREFIX}{file}' , allow_redirects=snake_case_ ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=snake_case_ ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , '''wb''' ).write(r.content ) __magic_name__ = MODEL_MAPPING[model_name.split('''/''' )[-1]] __magic_name__ = JukeboxConfig.from_pretrained(snake_case_ ) __magic_name__ = JukeboxModel(snake_case_ ) __magic_name__ = [] __magic_name__ = {} for i, dict_name in enumerate(snake_case_ ): __magic_name__ = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )['''model'''] __magic_name__ = {} for k in old_dic.keys(): if k.endswith('''.b''' ): __magic_name__ = old_dic[k] elif k.endswith('''.w''' ): __magic_name__ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __magic_name__ = old_dic[k] else: __magic_name__ = old_dic[k] __magic_name__ = '''vqvae''' if i == 0 else f'priors.{3 - i}' __magic_name__ = fix_jukebox_keys(snake_case_ , model.state_dict() , snake_case_ , snake_case_ ) weight_dict.append(snake_case_ ) __magic_name__ = weight_dict.pop(0 ) model.vqvae.load_state_dict(snake_case_ ) for i in range(len(snake_case_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) with open(f'{pytorch_dump_folder_path}/mapping.json' , '''w''' ) as txtfile: json.dump(snake_case_ , snake_case_ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case_ ) return weight_dict if __name__ == "__main__": a_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) a_ : int = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
678
0
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def A ( __UpperCamelCase ) -> Any: A__ = SwinConfig(image_size=192 ) if "base" in model_name: A__ = 6 A__ = 128 A__ = (2, 2, 18, 2) A__ = (4, 8, 16, 32) elif "large" in model_name: A__ = 12 A__ = 192 A__ = (2, 2, 18, 2) A__ = (6, 12, 24, 48) else: raise ValueError('Model not supported, only supports base and large variants' ) A__ = window_size A__ = embed_dim A__ = depths A__ = num_heads return config def A ( __UpperCamelCase ) -> List[str]: if "encoder.mask_token" in name: A__ = name.replace('encoder.mask_token' , 'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: A__ = name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: A__ = name.replace('encoder.patch_embed.norm' , 'embeddings.norm' ) if "attn.proj" in name: A__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: A__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A__ = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": A__ = 'layernorm.weight' if name == "encoder.norm.bias": A__ = 'layernorm.bias' if "decoder" in name: pass else: A__ = 'swin.' + name return name def A ( __UpperCamelCase , __UpperCamelCase ) -> Dict: for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(UpperCAmelCase_ ) if "attn_mask" in key: pass elif "qkv" in key: A__ = key.split('.' ) A__ = int(key_split[2] ) A__ = int(key_split[4] ) A__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A__ = val[:dim, :] A__ = val[ dim : dim * 2, : ] A__ = val[-dim:, :] else: A__ = val[ :dim ] A__ = val[ dim : dim * 2 ] A__ = val[ -dim: ] else: A__ = val return orig_state_dict def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: A__ = torch.load(UpperCAmelCase_ , map_location='cpu' )['model'] A__ = get_swin_config(UpperCAmelCase_ ) A__ = SwinForMaskedImageModeling(UpperCAmelCase_ ) model.eval() A__ = convert_state_dict(UpperCAmelCase_ , UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' A__ = ViTImageProcessor(size={'height': 192, 'width': 192} ) A__ = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) A__ = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ) with torch.no_grad(): A__ = model(**UpperCAmelCase_ ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase_ ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
9
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_=7 )-> Optional[Any]: """simple docstring""" UpperCamelCase = None if token is not None: UpperCamelCase = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} # The id of a workflow (not of a workflow run) UpperCamelCase = "636036" UpperCamelCase = F"https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}" UpperCamelCase = requests.get(UpperCAmelCase_ , headers=UpperCAmelCase_ ).json() return result["workflow_runs"] def lowerCamelCase__ ( UpperCAmelCase_ )-> Any: """simple docstring""" UpperCamelCase = get_daily_ci_runs(UpperCAmelCase_ ) UpperCamelCase = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": UpperCamelCase = workflow_run["id"] break return workflow_run_id def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> int: """simple docstring""" UpperCamelCase = get_last_daily_ci_runs(UpperCAmelCase_ ) if workflow_run_id is not None: UpperCamelCase = get_artifacts_links(worflow_run_id=UpperCAmelCase_ , token=UpperCAmelCase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: UpperCamelCase = artifacts_links[artifact_name] download_artifact( artifact_name=UpperCAmelCase_ , artifact_url=UpperCAmelCase_ , output_dir=UpperCAmelCase_ , token=UpperCAmelCase_ ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Optional[int]: """simple docstring""" get_last_daily_ci_artifacts(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = {} for artifact_name in artifact_names: UpperCamelCase = os.path.join(UpperCAmelCase_ , F"{artifact_name}.zip" ) if os.path.isfile(UpperCAmelCase_ ): UpperCamelCase = {} with zipfile.ZipFile(UpperCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(UpperCAmelCase_ ): # read the file with z.open(UpperCAmelCase_ ) as f: UpperCamelCase = f.read().decode("UTF-8" ) return results
554
0
import os from typing import Dict, List, Tuple, TypeVar, Union _lowerCamelCase = TypeVar('''T''') _lowerCamelCase = Union[List[T], Tuple[T, ...]] _lowerCamelCase = Union[T, List[T], Dict[str, T]] _lowerCamelCase = Union[str, bytes, os.PathLike]
700
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _lowerCamelCase = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase__ ( datasets.BuilderConfig ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None _SCREAMING_SNAKE_CASE : str = "utf-8" _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : bool = True # deprecated _SCREAMING_SNAKE_CASE : Optional[int] = None # deprecated _SCREAMING_SNAKE_CASE : int = 10 << 20 # 10MB _SCREAMING_SNAKE_CASE : Optional[bool] = None class UpperCAmelCase__ ( datasets.ArrowBasedBuilder ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Union[str, Any] = JsonConfig def lowerCAmelCase__ ( self ): if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) a =self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self , _lowerCAmelCase ): if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) a =dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCAmelCase , (str, list, tuple) ): a =data_files if isinstance(_lowerCAmelCase , _lowerCAmelCase ): a =[files] a =[dl_manager.iter_files(_lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] a =[] for split_name, files in data_files.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): a =[files] a =[dl_manager.iter_files(_lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCAmelCase , gen_kwargs={"""files""": files} ) ) return splits def lowerCAmelCase__ ( self , _lowerCAmelCase ): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): a =self.config.features.arrow_schema.field(_lowerCAmelCase ).type a =pa_table.append_column(_lowerCAmelCase , pa.array([None] * len(_lowerCAmelCase ) , type=_lowerCAmelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example a =table_cast(_lowerCAmelCase , self.config.features.arrow_schema ) return pa_table def lowerCAmelCase__ ( self , _lowerCAmelCase ): for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCAmelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: a =json.load(_lowerCAmelCase ) # We keep only the field we are interested in a =dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCAmelCase , (list, tuple) ): a =set().union(*[row.keys() for row in dataset] ) a ={col: [row.get(_lowerCAmelCase ) for row in dataset] for col in keys} else: a =dataset a =pa.Table.from_pydict(_lowerCAmelCase ) yield file_idx, self._cast_table(_lowerCAmelCase ) # If the file has one json object per line else: with open(_lowerCAmelCase , """rb""" ) as f: a =0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small a =max(self.config.chunksize // 32 , 16 << 10 ) a =( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: a =f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCAmelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": a =batch.decode(self.config.encoding , errors=_lowerCAmelCase ).encode("""utf-8""" ) try: while True: try: a =paj.read_json( io.BytesIO(_lowerCAmelCase ) , read_options=paj.ReadOptions(block_size=_lowerCAmelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCAmelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCAmelCase ) or block_size > len(_lowerCAmelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'''Batch of {len(_lowerCAmelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: a =json.load(_lowerCAmelCase ) except json.JSONDecodeError: logger.error(F'''Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCAmelCase , _lowerCAmelCase ): # list is the only sequence type supported in JSON try: a =set().union(*[row.keys() for row in dataset] ) a ={col: [row.get(_lowerCAmelCase ) for row in dataset] for col in keys} a =pa.Table.from_pydict(_lowerCAmelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'''Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}''' ) raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(_lowerCAmelCase ) break else: logger.error(F'''Failed to read file \'{file}\' with error {type(_lowerCAmelCase )}: {e}''' ) raise ValueError( F'''Not able to read records in the JSON file at {file}. ''' F'''You should probably indicate the field of the JSON file containing your records. ''' F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCAmelCase ) batch_idx += 1
321
0
from __future__ import annotations __a :str = '#' class _a : """simple docstring""" def __init__( self : int ): A_ = {} def __A ( self : int , UpperCAmelCase : str ): A_ = self._trie for char in text: if char not in trie: A_ = {} A_ = trie[char] A_ = True def __A ( self : Tuple , UpperCAmelCase : str ): A_ = self._trie for char in prefix: if char in trie: A_ = trie[char] else: return [] return self._elements(UpperCAmelCase ) def __A ( self : Union[str, Any] , UpperCAmelCase : dict ): A_ = [] for c, v in d.items(): A_ = [" "] if c == END else [(c + s) for s in self._elements(UpperCAmelCase )] result.extend(UpperCAmelCase ) return tuple(UpperCAmelCase ) __a :Dict = Trie() __a :Union[str, Any] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" A_ = trie.find_word(__UpperCamelCase ) return tuple(string + word for word in suffixes ) def __snake_case ( ): """simple docstring""" print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
86
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer UpperCamelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase_ : Optional[Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase_ : Dict = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''', }, } UpperCamelCase_ : Tuple = { '''facebook/bart-base''': 1024, '''facebook/bart-large''': 1024, '''facebook/bart-large-mnli''': 1024, '''facebook/bart-large-cnn''': 1024, '''facebook/bart-large-xsum''': 1024, '''yjernite/bart_eli5''': 1024, } class _a ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : int = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Any = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : str = BartTokenizer def __init__( self ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE="replace" ,_SCREAMING_SNAKE_CASE="<s>" ,_SCREAMING_SNAKE_CASE="</s>" ,_SCREAMING_SNAKE_CASE="</s>" ,_SCREAMING_SNAKE_CASE="<s>" ,_SCREAMING_SNAKE_CASE="<unk>" ,_SCREAMING_SNAKE_CASE="<pad>" ,_SCREAMING_SNAKE_CASE="<mask>" ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=True ,**_SCREAMING_SNAKE_CASE ,) -> List[Any]: super().__init__( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,tokenizer_file=_SCREAMING_SNAKE_CASE ,errors=_SCREAMING_SNAKE_CASE ,bos_token=_SCREAMING_SNAKE_CASE ,eos_token=_SCREAMING_SNAKE_CASE ,sep_token=_SCREAMING_SNAKE_CASE ,cls_token=_SCREAMING_SNAKE_CASE ,unk_token=_SCREAMING_SNAKE_CASE ,pad_token=_SCREAMING_SNAKE_CASE ,mask_token=_SCREAMING_SNAKE_CASE ,add_prefix_space=_SCREAMING_SNAKE_CASE ,trim_offsets=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) _snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" ,_SCREAMING_SNAKE_CASE ) != add_prefix_space: _snake_case = getattr(_SCREAMING_SNAKE_CASE ,pre_tok_state.pop("type" ) ) _snake_case = add_prefix_space _snake_case = pre_tok_class(**_SCREAMING_SNAKE_CASE ) _snake_case = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _snake_case = "post_processor" _snake_case = getattr(self.backend_tokenizer ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: _snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _snake_case = tuple(state["sep"] ) if "cls" in state: _snake_case = tuple(state["cls"] ) _snake_case = False if state.get("add_prefix_space" ,_SCREAMING_SNAKE_CASE ) != add_prefix_space: _snake_case = add_prefix_space _snake_case = True if state.get("trim_offsets" ,_SCREAMING_SNAKE_CASE ) != trim_offsets: _snake_case = trim_offsets _snake_case = True if changes_to_apply: _snake_case = getattr(_SCREAMING_SNAKE_CASE ,state.pop("type" ) ) _snake_case = component_class(**_SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> str: _snake_case = AddedToken(_SCREAMING_SNAKE_CASE ,lstrip=_SCREAMING_SNAKE_CASE ,rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else value _snake_case = value def _lowercase ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> BatchEncoding: _snake_case = kwargs.get("is_split_into_words" ,_SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> BatchEncoding: _snake_case = kwargs.get("is_split_into_words" ,_SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: _snake_case = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE ,name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ) -> Tuple: _snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
185
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } __magic_name__ = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } __magic_name__ = { """ctrl""": 256, } __magic_name__ = { """Pregnancy""": 168629, """Christianity""": 7675, """Explain""": 106423, """Fitness""": 63440, """Saving""": 63163, """Ask""": 27171, """Ass""": 95985, """Joke""": 163509, """Questions""": 45622, """Thoughts""": 49605, """Retail""": 52342, """Feminism""": 164338, """Writing""": 11992, """Atheism""": 192263, """Netflix""": 48616, """Computing""": 39639, """Opinion""": 43213, """Alone""": 44967, """Funny""": 58917, """Gaming""": 40358, """Human""": 4088, """India""": 1331, """Joker""": 77138, """Diet""": 36206, """Legal""": 11859, """Norman""": 4939, """Tip""": 72689, """Weight""": 52343, """Movies""": 46273, """Running""": 23425, """Science""": 2090, """Horror""": 37793, """Confession""": 60572, """Finance""": 12250, """Politics""": 16360, """Scary""": 191985, """Support""": 12654, """Technologies""": 32516, """Teenage""": 66160, """Event""": 32769, """Learned""": 67460, """Notion""": 182770, """Wikipedia""": 37583, """Books""": 6665, """Extract""": 76050, """Confessions""": 102701, """Conspiracy""": 75932, """Links""": 63674, """Narcissus""": 150425, """Relationship""": 54766, """Relationships""": 134796, """Reviews""": 41671, """News""": 4256, """Translation""": 26820, """multilingual""": 128406, } def _lowerCAmelCase ( A__: Union[str, Any] ): '''simple docstring''' UpperCAmelCase = set() UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase = char UpperCAmelCase = set(UpperCamelCase__ ) return pairs class lowercase ( lowercase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = CONTROL_CODES def __init__( self , _snake_case , _snake_case , _snake_case="<unk>" , **_snake_case ) -> List[Any]: """simple docstring""" super().__init__(unk_token=_snake_case , **_snake_case ) with open(_snake_case , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase = json.load(_snake_case ) UpperCAmelCase = {v: k for k, v in self.encoder.items()} with open(_snake_case , encoding='''utf-8''' ) as merges_handle: UpperCAmelCase = merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase = [tuple(merge.split() ) for merge in merges] UpperCAmelCase = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) UpperCAmelCase = {} @property def snake_case_ ( self ) -> Dict: """simple docstring""" return len(self.encoder ) def snake_case_ ( self ) -> Any: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self , _snake_case ) -> int: """simple docstring""" if token in self.cache: return self.cache[token] UpperCAmelCase = tuple(_snake_case ) UpperCAmelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) UpperCAmelCase = get_pairs(_snake_case ) if not pairs: return token while True: UpperCAmelCase = min(_snake_case , key=lambda _snake_case : self.bpe_ranks.get(_snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase = bigram UpperCAmelCase = [] UpperCAmelCase = 0 while i < len(_snake_case ): try: UpperCAmelCase = word.index(_snake_case , _snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase = j if word[i] == first and i < len(_snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase = tuple(_snake_case ) UpperCAmelCase = new_word if len(_snake_case ) == 1: break else: UpperCAmelCase = get_pairs(_snake_case ) UpperCAmelCase = '''@@ '''.join(_snake_case ) UpperCAmelCase = word[:-4] UpperCAmelCase = word return word def snake_case_ ( self , _snake_case ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = re.findall(R'''\S+\n?''' , _snake_case ) for token in words: split_tokens.extend(list(self.bpe(_snake_case ).split(''' ''' ) ) ) return split_tokens def snake_case_ ( self , _snake_case ) -> int: """simple docstring""" return self.encoder.get(_snake_case , self.encoder.get(self.unk_token ) ) def snake_case_ ( self , _snake_case ) -> Tuple: """simple docstring""" return self.decoder.get(_snake_case , self.unk_token ) def snake_case_ ( self , _snake_case ) -> List[Any]: """simple docstring""" UpperCAmelCase = ''' '''.join(_snake_case ).replace('''@@ ''' , '''''' ).strip() return out_string def snake_case_ ( self , _snake_case , _snake_case = None ) -> Optional[Any]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_snake_case , ensure_ascii=_snake_case ) + '''\n''' ) UpperCAmelCase = 0 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _snake_case : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase = token_index writer.write(''' '''.join(_snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
720
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __magic_name__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) __magic_name__ = [] __magic_name__ = [] __magic_name__ = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} __magic_name__ = [ { "type": "header", "text": { "type": "plain_text", "text": f'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''', "emoji": True, }, } ] __magic_name__ = 0 for log in Path().glob("*.log"): __magic_name__ = 0 with open(log, "r") as f: for line in f: __magic_name__ = json.loads(line) if line.get("nodeid", "") != "": __magic_name__ = line["nodeid"] if line.get("duration", None) is not None: __magic_name__ = f'''{line["duration"]:.4f}''' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __magic_name__ = [] log.unlink() __magic_name__ = "" __magic_name__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" __magic_name__ = [] __magic_name__ = {} for test in failed_tests: __magic_name__ = test[0].split("::") __magic_name__ = data[0].split("/")[-1] if data[0] not in filesafailed: __magic_name__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __magic_name__ = [test[0] for test in failed_table] __magic_name__ = list(set(files)) # Count number of instances in failed_tests __magic_name__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) __magic_name__ = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: __magic_name__ = "Too many failed tests, please see the full report in the Action results." __magic_name__ = len(err) + 10 __magic_name__ = message[: 3000 - offset] + f'''\n...\n```\n{err}''' print(f'''### {message}''') else: __magic_name__ = "No failed tests! 🤗" print(f'''## {message}''') payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient __magic_name__ = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": __magic_name__ = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) __magic_name__ = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } payload.append(action_button) __magic_name__ = { "type": "context", "elements": [ { "type": "plain_text", "text": f'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''', } ], } payload.append(date_report) __magic_name__ = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) __magic_name__ = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __magic_name__ = "" for i, row in enumerate(test_failures): if row[0] != test_class: __magic_name__ = row[0] else: __magic_name__ = "" __magic_name__ = { "type": "section", "text": { "type": "mrkdwn", "text": f'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''', }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
391
0
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase__ ( __lowercase , unittest.TestCase): '''simple docstring''' _A = CTRLTokenizer _A = False _A = False def _lowerCamelCase ( self :List[Any] ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase : Any = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] __UpperCamelCase : int = dict(zip(a , range(len(a ) ) ) ) __UpperCamelCase : str = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] __UpperCamelCase : List[str] = {"unk_token": "<unk>"} __UpperCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(a ) ) def _lowerCamelCase ( self :Optional[Any] , **a :Any ) -> List[str]: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **a ) def _lowerCamelCase ( self :Tuple , a :Optional[Any] ) -> Optional[int]: __UpperCamelCase : List[Any] = "adapt react readapt apt" __UpperCamelCase : str = "adapt react readapt apt" return input_text, output_text def _lowerCamelCase ( self :Tuple ) -> Optional[Any]: __UpperCamelCase : int = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase : int = "adapt react readapt apt" __UpperCamelCase : str = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() __UpperCamelCase : Tuple = tokenizer.tokenize(a ) self.assertListEqual(a , a ) __UpperCamelCase : Union[str, Any] = tokens + [tokenizer.unk_token] __UpperCamelCase : Optional[int] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a )
557
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowerCamelCase__ ( __lowercase): '''simple docstring''' def _lowerCamelCase ( self :Tuple , a :float ) -> float: return 0.0 def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : np.ndarray , _lowerCamelCase : int) -> tuple[int | float, int | float]: '''simple docstring''' __UpperCamelCase : List[str] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1])]) __UpperCamelCase : Any = max([20, np.max(fft_results[1 : samplerate // 2 - 1])]) return lowest, highest def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : FilterType , _lowerCamelCase : int) -> None: '''simple docstring''' __UpperCamelCase : List[str] = 512 __UpperCamelCase : List[Any] = [1] + [0] * (size - 1) __UpperCamelCase : List[Any] = [filter_type.process(_lowerCamelCase) for item in inputs] __UpperCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler __UpperCamelCase : Optional[int] = np.abs(np.fft.fft(_lowerCamelCase)) __UpperCamelCase : Optional[int] = 20 * np.logaa(_lowerCamelCase) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1) plt.xlabel("Frequency (Hz)") plt.xscale("log") # Display within reasonable bounds __UpperCamelCase : Optional[Any] = get_bounds(_lowerCamelCase , _lowerCamelCase) plt.ylim(max([-80, bounds[0]]) , min([80, bounds[1]])) plt.ylabel("Gain (dB)") plt.plot(_lowerCamelCase) plt.show() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : FilterType , _lowerCamelCase : int) -> None: '''simple docstring''' __UpperCamelCase : Any = 512 __UpperCamelCase : Dict = [1] + [0] * (size - 1) __UpperCamelCase : Tuple = [filter_type.process(_lowerCamelCase) for item in inputs] __UpperCamelCase : Dict = [0] * (samplerate - size) # zero-padding outputs += filler __UpperCamelCase : Optional[int] = np.angle(np.fft.fft(_lowerCamelCase)) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1) plt.xlabel("Frequency (Hz)") plt.xscale("log") plt.ylim(-2 * pi , 2 * pi) plt.ylabel("Phase shift (Radians)") plt.plot(np.unwrap(_lowerCamelCase , -2 * pi)) plt.show()
557
1
'''simple docstring''' from __future__ import annotations class UpperCamelCase : """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase_ : int): """simple docstring""" a : Optional[int] = data a : Node | None = None a : Node | None = None def SCREAMING_SNAKE_CASE__ ( snake_case : Node | None ) -> None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def SCREAMING_SNAKE_CASE__ ( snake_case : Node | None ) -> int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def SCREAMING_SNAKE_CASE__ ( snake_case : Node ) -> bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def SCREAMING_SNAKE_CASE__ ( ) -> None: # Main function for testing. """simple docstring""" a : List[Any] = Node(1 ) a : List[Any] = Node(2 ) a : Union[str, Any] = Node(3 ) a : int = Node(4 ) a : Any = Node(5 ) a : Union[str, Any] = Node(6 ) a : List[Any] = Node(7 ) a : Union[str, Any] = Node(8 ) a : int = Node(9 ) print(is_full_binary_tree(snake_case ) ) print(depth_of_tree(snake_case ) ) print('Tree is: ' ) display(snake_case ) if __name__ == "__main__": main()
610
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : int = 10**9 ) -> int: """simple docstring""" a : List[str] = 1 a : Any = 2 a : List[Any] = 0 a : Optional[Any] = 0 a : Union[str, Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value a : Union[str, Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
610
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __lowercase : def __init__(self , A , A=1_3 , A=7 , A=True , A=True , A=True , A=True , A=9_9 , A=3_2 , A=2 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ): lowerCamelCase_ : Tuple = parent lowerCamelCase_ : List[str] = 1_3 lowerCamelCase_ : Optional[Any] = 7 lowerCamelCase_ : Tuple = True lowerCamelCase_ : Union[str, Any] = True lowerCamelCase_ : Any = True lowerCamelCase_ : Optional[Any] = True lowerCamelCase_ : Optional[Any] = 9_9 lowerCamelCase_ : List[Any] = 3_2 lowerCamelCase_ : Dict = 2 lowerCamelCase_ : int = 4 lowerCamelCase_ : Optional[int] = 3_7 lowerCamelCase_ : Dict = '''gelu''' lowerCamelCase_ : Dict = 0.1 lowerCamelCase_ : str = 0.1 lowerCamelCase_ : List[str] = 5_1_2 lowerCamelCase_ : str = 1_6 lowerCamelCase_ : Any = 2 lowerCamelCase_ : Dict = 0.02 lowerCamelCase_ : Dict = 3 lowerCamelCase_ : Union[str, Any] = 4 lowerCamelCase_ : List[Any] = None def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : str = None if self.use_input_mask: lowerCamelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ : Optional[int] = None if self.use_token_type_ids: lowerCamelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ : Any = None lowerCamelCase_ : Union[str, Any] = None lowerCamelCase_ : List[Any] = None if self.use_labels: lowerCamelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ : int = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ (self , A , A , A , A , A , A , A ): lowerCamelCase_ : str = TFRoFormerModel(config=_a ) lowerCamelCase_ : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase_ : int = [input_ids, input_mask] lowerCamelCase_ : Optional[Any] = model(_a ) lowerCamelCase_ : str = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A ): lowerCamelCase_ : Optional[int] = True lowerCamelCase_ : Tuple = TFRoFormerForCausalLM(config=_a ) lowerCamelCase_ : Union[str, Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase_ : Optional[int] = model(_a )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A ): lowerCamelCase_ : Tuple = TFRoFormerForMaskedLM(config=_a ) lowerCamelCase_ : Union[str, Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase_ : List[str] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A ): lowerCamelCase_ : Optional[Any] = self.num_labels lowerCamelCase_ : Tuple = TFRoFormerForSequenceClassification(config=_a ) lowerCamelCase_ : Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase_ : str = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A ): lowerCamelCase_ : Any = self.num_choices lowerCamelCase_ : str = TFRoFormerForMultipleChoice(config=_a ) lowerCamelCase_ : Union[str, Any] = tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ : Optional[Any] = tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ : Dict = tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase_ : Tuple = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowerCamelCase_ : str = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A ): lowerCamelCase_ : List[str] = self.num_labels lowerCamelCase_ : Optional[Any] = TFRoFormerForTokenClassification(config=_a ) lowerCamelCase_ : Optional[int] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase_ : str = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A ): lowerCamelCase_ : Union[str, Any] = TFRoFormerForQuestionAnswering(config=_a ) lowerCamelCase_ : List[Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase_ : List[Any] = model(_a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) : Any = config_and_inputs lowerCamelCase_ : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __lowercase ( A__ , A__ , unittest.TestCase ): lowerCamelCase : List[Any] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase : int = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase : List[str] = False lowerCamelCase : List[Any] = False def UpperCAmelCase__ (self , A , A , A , A , A ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = TFRoFormerModelTester(self ) lowerCamelCase_ : List[Any] = ConfigTester(self , config_class=_a , hidden_size=3_7 ) def UpperCAmelCase__ (self ): self.config_tester.run_common_tests() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*_a ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_a ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) @slow def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(_a ) @require_tf class __lowercase ( unittest.TestCase ): @slow def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowerCamelCase_ : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ : List[Any] = model(_a )[0] # TODO Replace vocab size lowerCamelCase_ : List[str] = 5_0_0_0_0 lowerCamelCase_ : Union[str, Any] = [1, 6, vocab_size] self.assertEqual(output.shape , _a ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCamelCase_ : Any = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1E-4 ) @require_tf class __lowercase ( unittest.TestCase ): lowerCamelCase : Union[str, Any] = 1e-4 def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = tf.constant([[4, 1_0]] ) lowerCamelCase_ : Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCamelCase_ : Optional[Any] = emba(input_ids.shape ) lowerCamelCase_ : Optional[int] = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(_a , _a , atol=self.tolerance ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCamelCase_ : Optional[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 ) emba([2, 1_6, 5_1_2] ) lowerCamelCase_ : Any = emba.weight[:3, :5] tf.debugging.assert_near(_a , _a , atol=self.tolerance ) @require_tf class __lowercase ( unittest.TestCase ): lowerCamelCase : Optional[Any] = 1e-4 def UpperCAmelCase__ (self ): lowerCamelCase_ : str = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 lowerCamelCase_ : Dict = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 lowerCamelCase_ : List[str] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 ) lowerCamelCase_ : Optional[Any] = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :] lowerCamelCase_, lowerCamelCase_ : int = TFRoFormerSelfAttention.apply_rotary_position_embeddings( _a , _a , _a ) lowerCamelCase_ : Tuple = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCamelCase_ : List[Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , _a , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , _a , atol=self.tolerance )
422
'''simple docstring''' from itertools import count def _lowerCAmelCase ( _UpperCamelCase : int = 50 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =[1] * min_block_length for n in count(_UpperCamelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCamelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(f'''{solution() = }''')
405
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase ={ "configuration_xlm_roberta_xl": [ "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig", "XLMRobertaXLOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure)
706
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'lxmert' __UpperCAmelCase = {} def __init__( self : int ,snake_case : List[Any]=30522 ,snake_case : str=768 ,snake_case : Union[str, Any]=12 ,snake_case : int=9500 ,snake_case : Any=1600 ,snake_case : Union[str, Any]=400 ,snake_case : int=3072 ,snake_case : Any="gelu" ,snake_case : Any=0.1 ,snake_case : int=0.1 ,snake_case : Optional[int]=512 ,snake_case : int=2 ,snake_case : Dict=0.02 ,snake_case : List[Any]=1e-12 ,snake_case : List[str]=9 ,snake_case : Tuple=5 ,snake_case : Tuple=5 ,snake_case : List[Any]=2048 ,snake_case : Union[str, Any]=4 ,snake_case : Any=6.67 ,snake_case : Dict=True ,snake_case : Union[str, Any]=True ,snake_case : Union[str, Any]=True ,snake_case : Dict=True ,snake_case : str=True ,snake_case : int=True ,snake_case : Any=True ,**snake_case : Dict ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =type_vocab_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =num_qa_labels SCREAMING_SNAKE_CASE =num_object_labels SCREAMING_SNAKE_CASE =num_attr_labels SCREAMING_SNAKE_CASE =l_layers SCREAMING_SNAKE_CASE =x_layers SCREAMING_SNAKE_CASE =r_layers SCREAMING_SNAKE_CASE =visual_feat_dim SCREAMING_SNAKE_CASE =visual_pos_dim SCREAMING_SNAKE_CASE =visual_loss_normalizer SCREAMING_SNAKE_CASE =task_matched SCREAMING_SNAKE_CASE =task_mask_lm SCREAMING_SNAKE_CASE =task_obj_predict SCREAMING_SNAKE_CASE =task_qa SCREAMING_SNAKE_CASE =visual_obj_loss SCREAMING_SNAKE_CASE =visual_attr_loss SCREAMING_SNAKE_CASE =visual_feat_loss SCREAMING_SNAKE_CASE ={'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**snake_case )
252
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __A : Dict = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ['OwlViTFeatureExtractor'] __A : str = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' def _UpperCAmelCase ( self : Dict ): A__ : Optional[Any] =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__ , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(UpperCamelCase__ , "num_attention_heads" ) ) self.parent.assertTrue(hasattr(UpperCamelCase__ , "num_encoder_blocks" ) ) class __lowerCAmelCase : '''simple docstring''' def __init__( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any]=13 , UpperCamelCase__ : Tuple=64 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : Dict=[2, 2, 2, 2] , UpperCamelCase__ : Union[str, Any]=[8, 4, 2, 1] , UpperCamelCase__ : Tuple=[16, 32, 64, 128] , UpperCamelCase__ : Optional[int]=[1, 4, 8, 16] , UpperCamelCase__ : Any=[1, 2, 4, 8] , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Dict="gelu" , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : List[str]=0.02 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=None , ): A__ : Tuple =parent A__ : List[Any] =batch_size A__ : List[Any] =image_size A__ : Union[str, Any] =num_channels A__ : Optional[int] =num_encoder_blocks A__ : Any =sr_ratios A__ : Any =depths A__ : List[Any] =hidden_sizes A__ : List[Any] =downsampling_rates A__ : List[str] =num_attention_heads A__ : int =is_training A__ : List[Any] =use_labels A__ : Any =hidden_act A__ : Dict =hidden_dropout_prob A__ : int =attention_probs_dropout_prob A__ : List[Any] =initializer_range A__ : Tuple =num_labels A__ : List[Any] =scope def _UpperCAmelCase ( self : Optional[int] ): A__ : List[str] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ : Any =None if self.use_labels: A__ : Tuple =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A__ : List[Any] =self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self : Tuple ): return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): A__ : Any =SegformerModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Dict =model(UpperCamelCase__ ) A__ : Optional[int] =self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def _UpperCAmelCase ( self : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ): A__ : str =self.num_labels A__ : Optional[Any] =SegformerForSemanticSegmentation(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] =model(UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) A__ : List[Any] =model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def _UpperCAmelCase ( self : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str ): A__ : Tuple =1 A__ : Tuple =SegformerForSemanticSegmentation(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : List[str] =torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(UpperCamelCase__ ) A__ : Dict =model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertGreater(result.loss , 0.0 ) def _UpperCAmelCase ( self : str ): A__ : Union[str, Any] =self.prepare_config_and_inputs() A__ , A__ , A__ : Tuple =config_and_inputs A__ : Tuple ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase): '''simple docstring''' __magic_name__ : Dict = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __magic_name__ : Optional[int] = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __magic_name__ : Dict = True __magic_name__ : List[str] = False __magic_name__ : Optional[Any] = False __magic_name__ : str = False def _UpperCAmelCase ( self : Union[str, Any] ): A__ : Union[str, Any] =SegformerModelTester(self ) A__ : Tuple =SegformerConfigTester(self , config_class=UpperCamelCase__ ) def _UpperCAmelCase ( self : str ): self.config_tester.run_common_tests() def _UpperCAmelCase ( self : Dict ): A__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _UpperCAmelCase ( self : Tuple ): A__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*UpperCamelCase__ ) def _UpperCAmelCase ( self : Union[str, Any] ): A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*UpperCamelCase__ ) @unittest.skip("SegFormer does not use inputs_embeds" ) def _UpperCAmelCase ( self : Dict ): pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods" ) def _UpperCAmelCase ( self : Tuple ): pass def _UpperCAmelCase ( self : List[str] ): A__ , A__ : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int =model_class(UpperCamelCase__ ) A__ : Optional[int] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] =[*signature.parameters.keys()] A__ : List[str] =["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def _UpperCAmelCase ( self : str ): A__ , A__ : Tuple =self.model_tester.prepare_config_and_inputs_for_common() A__ : Union[str, Any] =True for model_class in self.all_model_classes: A__ : Optional[Any] =True A__ : Union[str, Any] =False A__ : str =True A__ : Optional[int] =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : str =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Any =outputs.attentions A__ : List[str] =sum(self.model_tester.depths ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Dict =True A__ : str =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Any =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Union[str, Any] =outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # verify the first attentions (first block, first layer) A__ : List[Any] =(self.model_tester.image_size // 4) ** 2 A__ : Tuple =(self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) A__ : Tuple =(self.model_tester.image_size // 32) ** 2 A__ : Optional[Any] =(self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) A__ : int =len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : Optional[Any] =True A__ : Any =True A__ : Union[str, Any] =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Optional[Any] =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase__ ) ) A__ : Optional[Any] =outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # verify the first attentions (first block, first layer) A__ : Union[str, Any] =(self.model_tester.image_size // 4) ** 2 A__ : Tuple =(self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _UpperCAmelCase ( self : List[Any] ): def check_hidden_states_output(UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ): A__ : Optional[Any] =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[Any] =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] =outputs.hidden_states A__ : int =self.model_tester.num_encoder_blocks self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) A__ , A__ : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Optional[Any] =True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : str =True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _UpperCAmelCase ( self : Optional[int] ): if not self.model_tester.is_training: return A__ , A__ : int =self.model_tester.prepare_config_and_inputs_for_common() A__ : List[Any] =True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase__ ): continue A__ : List[Any] =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() A__ : int =self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) A__ : Union[str, Any] =model(**UpperCamelCase__ ).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _UpperCAmelCase ( self : Tuple ): pass @slow def _UpperCAmelCase ( self : Tuple ): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Tuple =SegformerModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowercase ( ): """simple docstring""" A__ : List[Any] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class __lowerCAmelCase ( unittest.TestCase): '''simple docstring''' @slow def _UpperCAmelCase ( self : Tuple ): # only resize + normalize A__ : List[Any] =SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCamelCase__ , align=UpperCamelCase__ , do_random_crop=UpperCamelCase__ ) A__ : Union[str, Any] =SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( UpperCamelCase__ ) A__ : Union[str, Any] =prepare_img() A__ : Union[str, Any] =image_processor(images=UpperCamelCase__ , return_tensors="pt" ) A__ : int =encoded_inputs.pixel_values.to(UpperCamelCase__ ) with torch.no_grad(): A__ : int =model(UpperCamelCase__ ) A__ : Dict =torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] =torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1E-4 ) ) @slow def _UpperCAmelCase ( self : Union[str, Any] ): # only resize + normalize A__ : Dict =SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCamelCase__ , align=UpperCamelCase__ , do_random_crop=UpperCamelCase__ ) A__ : int =SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(UpperCamelCase__ ) A__ : Tuple =prepare_img() A__ : str =image_processor(images=UpperCamelCase__ , return_tensors="pt" ) A__ : Optional[int] =encoded_inputs.pixel_values.to(UpperCamelCase__ ) with torch.no_grad(): A__ : int =model(UpperCamelCase__ ) A__ : List[str] =torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : List[Any] =torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1E-1 ) ) @slow def _UpperCAmelCase ( self : int ): # only resize + normalize A__ : Optional[Any] =SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCamelCase__ , align=UpperCamelCase__ , do_random_crop=UpperCamelCase__ ) A__ : List[Any] =SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( UpperCamelCase__ ) A__ : str =prepare_img() A__ : Dict =image_processor(images=UpperCamelCase__ , return_tensors="pt" ) A__ : Any =encoded_inputs.pixel_values.to(UpperCamelCase__ ) with torch.no_grad(): A__ : Dict =model(UpperCamelCase__ ) A__ : Any =outputs.logits.detach().cpu() A__ : Union[str, Any] =image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ , target_sizes=[(500, 300)] ) A__ : List[str] =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ ) A__ : int =image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ ) A__ : Tuple =torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ )
656
0
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = jnp.floataa lowerCamelCase = True def snake_case__ ( self : int )-> Tuple: '''simple docstring''' super().setup() A__ = nn.Dense(5,dtype=self.dtype ) def __call__( self : str,*lowercase_ : str,**lowercase_ : Optional[int] )-> List[str]: '''simple docstring''' A__ = super().__call__(*lowercase_,**lowercase_ ) A__ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = FlaxBigBirdForNaturalQuestionsModule def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: '''simple docstring''' def cross_entropy(SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str=None ): A__ = logits.shape[-1] A__ = (labels[..., None] == jnp.arange(SCREAMING_SNAKE_CASE__ )[None]).astype('f4' ) A__ = jax.nn.log_softmax(SCREAMING_SNAKE_CASE__ , axis=-1 ) A__ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: A__ = reduction(SCREAMING_SNAKE_CASE__ ) return loss A__ = partial(SCREAMING_SNAKE_CASE__ , reduction=jnp.mean ) A__ = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = cross_entropy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class A : """simple docstring""" lowerCamelCase = "google/bigbird-roberta-base" lowerCamelCase = 30_00 lowerCamelCase = 1_05_00 lowerCamelCase = 1_28 lowerCamelCase = 3 lowerCamelCase = 1 lowerCamelCase = 5 # tx_args lowerCamelCase = 3E-5 lowerCamelCase = 0.0 lowerCamelCase = 2_00_00 lowerCamelCase = 0.0_095 lowerCamelCase = "bigbird-roberta-natural-questions" lowerCamelCase = "training-expt" lowerCamelCase = "data/nq-training.jsonl" lowerCamelCase = "data/nq-validation.jsonl" def snake_case__ ( self : List[Any] )-> Union[str, Any]: '''simple docstring''' os.makedirs(self.base_dir,exist_ok=lowercase_ ) A__ = os.path.join(self.base_dir,self.save_dir ) A__ = self.batch_size_per_device * jax.device_count() @dataclass class A : """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 40_96 # no dynamic padding on TPUs def __call__( self : int,lowercase_ : List[str] )-> Dict: '''simple docstring''' A__ = self.collate_fn(lowercase_ ) A__ = jax.tree_util.tree_map(lowercase_,lowercase_ ) return batch def snake_case__ ( self : Union[str, Any],lowercase_ : List[Any] )-> int: '''simple docstring''' A__ , A__ = self.fetch_inputs(features['input_ids'] ) A__ = { 'input_ids': jnp.array(lowercase_,dtype=jnp.intaa ), 'attention_mask': jnp.array(lowercase_,dtype=jnp.intaa ), 'start_labels': jnp.array(features['start_token'],dtype=jnp.intaa ), 'end_labels': jnp.array(features['end_token'],dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['category'],dtype=jnp.intaa ), } return batch def snake_case__ ( self : Any,lowercase_ : list )-> Optional[int]: '''simple docstring''' A__ = [self._fetch_inputs(lowercase_ ) for ids in input_ids] return zip(*lowercase_ ) def snake_case__ ( self : int,lowercase_ : list )-> int: '''simple docstring''' A__ = [1 for _ in range(len(lowercase_ ) )] while len(lowercase_ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any]=None ) -> Any: '''simple docstring''' if seed is not None: A__ = dataset.shuffle(seed=SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) // batch_size ): A__ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(SCREAMING_SNAKE_CASE__ ) @partial(jax.pmap , axis_name='batch' ) def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Union[str, Any]: '''simple docstring''' def loss_fn(SCREAMING_SNAKE_CASE__ : str ): A__ = model_inputs.pop('start_labels' ) A__ = model_inputs.pop('end_labels' ) A__ = model_inputs.pop('pooled_labels' ) A__ = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=SCREAMING_SNAKE_CASE__ , dropout_rng=SCREAMING_SNAKE_CASE__ , train=SCREAMING_SNAKE_CASE__ ) A__ , A__ , A__ = outputs return state.loss_fn( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) A__ , A__ = jax.random.split(SCREAMING_SNAKE_CASE__ ) A__ = jax.value_and_grad(SCREAMING_SNAKE_CASE__ ) A__ , A__ = grad_fn(state.params ) A__ = jax.lax.pmean({'loss': loss} , axis_name='batch' ) A__ = jax.lax.pmean(SCREAMING_SNAKE_CASE__ , 'batch' ) A__ = state.apply_gradients(grads=SCREAMING_SNAKE_CASE__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ = model_inputs.pop('start_labels' ) A__ = model_inputs.pop('end_labels' ) A__ = model_inputs.pop('pooled_labels' ) A__ = state.apply_fn(**SCREAMING_SNAKE_CASE__ , params=state.params , train=SCREAMING_SNAKE_CASE__ ) A__ , A__ , A__ = outputs A__ = state.loss_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class A ( train_state.TrainState ): """simple docstring""" lowerCamelCase = struct.field(pytree_node=_UpperCAmelCase ) @dataclass class A : """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 lowerCamelCase = 42 lowerCamelCase = 42 lowerCamelCase = 42 lowerCamelCase = 42 lowerCamelCase = None def snake_case__ ( self : str,lowercase_ : Dict,lowercase_ : List[str],lowercase_ : Optional[Any],lowercase_ : Dict=None )-> Optional[Any]: '''simple docstring''' A__ = model.params A__ = TrainState.create( apply_fn=model.__call__,params=lowercase_,tx=lowercase_,loss_fn=lowercase_,) if ckpt_dir is not None: A__ , A__ , A__ , A__ , A__ = restore_checkpoint(lowercase_,lowercase_ ) A__ = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } A__ , A__ = build_tx(**lowercase_ ) A__ = train_state.TrainState( step=lowercase_,apply_fn=model.__call__,params=lowercase_,tx=lowercase_,opt_state=lowercase_,) A__ = args A__ = data_collator A__ = lr A__ = params A__ = jax_utils.replicate(lowercase_ ) return state def snake_case__ ( self : Tuple,lowercase_ : Tuple,lowercase_ : Optional[int],lowercase_ : Optional[int] )-> int: '''simple docstring''' A__ = self.args A__ = len(lowercase_ ) // args.batch_size A__ = jax.random.PRNGKey(0 ) A__ = jax.random.split(lowercase_,jax.device_count() ) for epoch in range(args.max_epochs ): A__ = jnp.array(0,dtype=jnp.floataa ) A__ = get_batched_dataset(lowercase_,args.batch_size,seed=lowercase_ ) A__ = 0 for batch in tqdm(lowercase_,total=lowercase_,desc=F'Running EPOCH-{epoch}' ): A__ = self.data_collator(lowercase_ ) A__ , A__ , A__ = self.train_step_fn(lowercase_,lowercase_,**lowercase_ ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 if i % args.logging_steps == 0: A__ = jax_utils.unreplicate(state.step ) A__ = running_loss.item() / i A__ = self.scheduler_fn(state_step - 1 ) A__ = self.evaluate(lowercase_,lowercase_ ) A__ = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(lowercase_ ) ) self.logger.log(lowercase_,commit=lowercase_ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}',state=lowercase_ ) def snake_case__ ( self : str,lowercase_ : Any,lowercase_ : Dict )-> Dict: '''simple docstring''' A__ = get_batched_dataset(lowercase_,self.args.batch_size ) A__ = len(lowercase_ ) // self.args.batch_size A__ = jnp.array(0,dtype=jnp.floataa ) A__ = 0 for batch in tqdm(lowercase_,total=lowercase_,desc='Evaluating ... ' ): A__ = self.data_collator(lowercase_ ) A__ = self.val_step_fn(lowercase_,**lowercase_ ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 return running_loss / i def snake_case__ ( self : int,lowercase_ : List[str],lowercase_ : Optional[Any] )-> str: '''simple docstring''' A__ = jax_utils.unreplicate(lowercase_ ) print(F'SAVING CHECKPOINT IN {save_dir}',end=' ... ' ) self.model_save_fn(lowercase_,params=state.params ) with open(os.path.join(lowercase_,'opt_state.msgpack' ),'wb' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args,os.path.join(lowercase_,'args.joblib' ) ) joblib.dump(self.data_collator,os.path.join(lowercase_,'data_collator.joblib' ) ) with open(os.path.join(lowercase_,'training_state.json' ),'w' ) as f: json.dump({'step': state.step.item()},lowercase_ ) print('DONE' ) def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: '''simple docstring''' print(f'RESTORING CHECKPOINT FROM {save_dir}' , end=' ... ' ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'flax_model.msgpack' ) , 'rb' ) as f: A__ = from_bytes(state.params , f.read() ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'opt_state.msgpack' ) , 'rb' ) as f: A__ = from_bytes(state.opt_state , f.read() ) A__ = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , 'args.joblib' ) ) A__ = joblib.load(os.path.join(SCREAMING_SNAKE_CASE__ , 'data_collator.joblib' ) ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'training_state.json' ) , 'r' ) as f: A__ = json.load(SCREAMING_SNAKE_CASE__ ) A__ = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ = num_train_steps - warmup_steps A__ = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=SCREAMING_SNAKE_CASE__ , transition_steps=SCREAMING_SNAKE_CASE__ ) A__ = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE__ , end_value=1E-7 , transition_steps=SCREAMING_SNAKE_CASE__ ) A__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: '''simple docstring''' def weight_decay_mask(SCREAMING_SNAKE_CASE__ : Optional[int] ): A__ = traverse_util.flatten_dict(SCREAMING_SNAKE_CASE__ ) A__ = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(SCREAMING_SNAKE_CASE__ ) A__ = scheduler_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = optax.adamw(learning_rate=SCREAMING_SNAKE_CASE__ , weight_decay=SCREAMING_SNAKE_CASE__ , mask=SCREAMING_SNAKE_CASE__ ) return tx, lr
586
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger() @dataclass class A : """simple docstring""" lowerCamelCase = 42 lowerCamelCase = field(default_factory=_UpperCAmelCase ) lowerCamelCase = field(default_factory=_UpperCAmelCase ) def snake_case__ ( self : Union[str, Any],lowercase_ : Dict,lowercase_ : Tensor,lowercase_ : Tensor )-> Tuple: '''simple docstring''' A__ = len(list(m.modules() ) ) == 1 or isinstance(lowercase_,nn.Convad ) or isinstance(lowercase_,nn.BatchNormad ) if has_not_submodules: self.traced.append(lowercase_ ) def __call__( self : Tuple,lowercase_ : Tensor )-> Any: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowercase_ ) [x.remove() for x in self.handles] return self @property def snake_case__ ( self : Optional[int] )-> Optional[int]: '''simple docstring''' return list(filter(lambda lowercase_ : len(list(x.state_dict().keys() ) ) > 0,self.traced ) ) @dataclass class A : """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 lowerCamelCase = 1 lowerCamelCase = field(default_factory=_UpperCAmelCase ) lowerCamelCase = field(default_factory=_UpperCAmelCase ) lowerCamelCase = True def __call__( self : str,lowercase_ : Tensor )-> Dict: '''simple docstring''' A__ = Tracker(self.dest )(lowercase_ ).parametrized A__ = Tracker(self.src )(lowercase_ ).parametrized A__ = list(filter(lambda lowercase_ : type(lowercase_ ) not in self.src_skip,lowercase_ ) ) A__ = list(filter(lambda lowercase_ : type(lowercase_ ) not in self.dest_skip,lowercase_ ) ) if len(lowercase_ ) != len(lowercase_ ) and self.raise_if_mismatch: raise Exception( F'Numbers of operations are different. Source module has {len(lowercase_ )} operations while' F' destination module has {len(lowercase_ )}.' ) for dest_m, src_m in zip(lowercase_,lowercase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) class A ( nn.Module ): """simple docstring""" def __init__( self : Any,lowercase_ : nn.Module )-> int: '''simple docstring''' super().__init__() A__ = [] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), F'Unexpected layer name {k}' A__ = len(lowercase_ ) + 1 feature_blocks.append((F'res{block_index}', v) ) A__ = nn.ModuleDict(lowercase_ ) def snake_case__ ( self : List[Any],lowercase_ : Tensor )-> Any: '''simple docstring''' return get_trunk_forward_outputs( lowercase_,out_feat_keys=lowercase_,feature_blocks=self._feature_blocks,) class A ( _UpperCAmelCase ): """simple docstring""" def snake_case__ ( self : List[Any],lowercase_ : str )-> str: '''simple docstring''' A__ = x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[Any],lowercase_ : str )-> Callable[[], Tuple[nn.Module, Dict]]: '''simple docstring''' if x not in self: A__ = self.convert_name_to_timm(lowercase_ ) A__ = partial(lambda: (timm.create_model(lowercase_,pretrained=lowercase_ ).eval(), None) ) else: A__ = super().__getitem__(lowercase_ ) return val class A ( _UpperCAmelCase ): """simple docstring""" def __getitem__( self : Tuple,lowercase_ : str )-> Callable[[], nn.Module]: '''simple docstring''' if "seer" in x and "in1k" not in x: A__ = RegNetModel else: A__ = RegNetForImageClassification return val def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Tuple[str, str]] ) -> Dict: '''simple docstring''' for from_key, to_key in keys: A__ = from_state_dict[from_key].clone() print(f'Copied key={from_key} to={to_key}' ) return to_state_dict def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Callable[[], nn.Module] , SCREAMING_SNAKE_CASE__ : Callable[[], nn.Module] , SCREAMING_SNAKE_CASE__ : RegNetConfig , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : bool = True , ) -> Any: '''simple docstring''' print(f'Converting {name}...' ) with torch.no_grad(): A__ , A__ = from_model_func() A__ = our_model_func(SCREAMING_SNAKE_CASE__ ).eval() A__ = ModuleTransfer(src=SCREAMING_SNAKE_CASE__ , dest=SCREAMING_SNAKE_CASE__ , raise_if_mismatch=SCREAMING_SNAKE_CASE__ ) A__ = torch.randn((1, 3, 224, 224) ) module_transfer(SCREAMING_SNAKE_CASE__ ) if from_state_dict is not None: A__ = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: A__ = [('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] A__ = manually_copy_vissl_head(SCREAMING_SNAKE_CASE__ , our_model.state_dict() , SCREAMING_SNAKE_CASE__ ) our_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) A__ = our_model(SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ ) A__ = ( our_outputs.logits if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else our_outputs.last_hidden_state ) A__ = from_model(SCREAMING_SNAKE_CASE__ ) A__ = from_output[-1] if type(SCREAMING_SNAKE_CASE__ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: A__ = our_outputs.hidden_states[-1] assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add model' , use_temp_dir=SCREAMING_SNAKE_CASE__ , ) A__ = 224 if 'seer' not in name else 384 # we can use the convnext one A__ = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' , size=SCREAMING_SNAKE_CASE__ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add image processor' , use_temp_dir=SCREAMING_SNAKE_CASE__ , ) print(f'Pushed {name}' ) def _snake_case( SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : bool = True ) -> List[Any]: '''simple docstring''' A__ = 'imagenet-1k-id2label.json' A__ = 1000 A__ = (1, num_labels) A__ = 'huggingface/label-files' A__ = num_labels A__ = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) ) , 'r' ) ) A__ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} A__ = partial(SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) A__ = { 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), } A__ = NameToOurModelFuncMap() A__ = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: A__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , model_dir=str(SCREAMING_SNAKE_CASE__ ) , map_location='cpu' ) A__ = model_func() # check if we have a head, if yes add it A__ = files['classy_state_dict']['base_model']['model'] A__ = model_state_dict['trunk'] model.load_state_dict(SCREAMING_SNAKE_CASE__ ) return model.eval(), model_state_dict["heads"] # pretrained A__ = partial( SCREAMING_SNAKE_CASE__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) A__ = partial( SCREAMING_SNAKE_CASE__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) A__ = partial( SCREAMING_SNAKE_CASE__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) A__ = partial( SCREAMING_SNAKE_CASE__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned A__ = partial( SCREAMING_SNAKE_CASE__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) A__ = partial( SCREAMING_SNAKE_CASE__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) A__ = partial( SCREAMING_SNAKE_CASE__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) A__ = partial( SCREAMING_SNAKE_CASE__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( SCREAMING_SNAKE_CASE__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( SCREAMING_SNAKE_CASE__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) return config, expected_shape if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) lowercase_ = parser.parse_args() lowercase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
586
1
"""simple docstring""" _a = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _a = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _a = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
19
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class a__ : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : str , ) -> Optional[int]: __A= parent __A= 13 __A= 7 __A= True __A= True __A= False __A= True __A= 99 __A= 32 __A= 2 __A= 4 __A= 37 __A= 'gelu' __A= 0.1 __A= 0.1 __A= 512 __A= 16 __A= 2 __A= 0.02 __A= 3 __A= 4 __A= None def lowerCAmelCase ( self : Optional[Any] ) -> str: __A= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A= None if self.use_input_mask: __A= random_attention_mask([self.batch_size, self.seq_length] ) __A= None __A= None __A= None if self.use_labels: __A= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A= ids_tensor([self.batch_size] , self.num_choices ) __A= DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] ) -> Any: __A= TFDistilBertModel(config=lowerCAmelCase_ ) __A= {'input_ids': input_ids, 'attention_mask': input_mask} __A= model(lowerCAmelCase_ ) __A= [input_ids, input_mask] __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ) -> Optional[int]: __A= TFDistilBertForMaskedLM(config=lowerCAmelCase_ ) __A= {'input_ids': input_ids, 'attention_mask': input_mask} __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] ) -> int: __A= TFDistilBertForQuestionAnswering(config=lowerCAmelCase_ ) __A= { 'input_ids': input_ids, 'attention_mask': input_mask, } __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] ) -> Union[str, Any]: __A= self.num_labels __A= TFDistilBertForSequenceClassification(lowerCAmelCase_ ) __A= {'input_ids': input_ids, 'attention_mask': input_mask} __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Optional[Any]: __A= self.num_choices __A= TFDistilBertForMultipleChoice(lowerCAmelCase_ ) __A= tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) __A= tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) __A= { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] ) -> Dict: __A= self.num_labels __A= TFDistilBertForTokenClassification(lowerCAmelCase_ ) __A= {'input_ids': input_ids, 'attention_mask': input_mask} __A= model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: __A= self.prepare_config_and_inputs() ((__A), (__A), (__A), (__A), (__A), (__A))= config_and_inputs __A= {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a__ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' A : Optional[Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) A : Optional[int] = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) A : str = False A : List[Any] = False def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: __A= TFDistilBertModelTester(self ) __A= ConfigTester(self , config_class=lowerCAmelCase_ , dim=37 ) def lowerCAmelCase ( self : Dict ) -> Tuple: self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase_ ) def lowerCAmelCase ( self : str ) -> Any: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase_ ) def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase_ ) def lowerCAmelCase ( self : Any ) -> Optional[int]: __A= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : int ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __A= TFDistilBertModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_tf class a__ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> List[Any]: __A= TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) __A= tf.constant([[0, 1, 2, 3, 4, 5]] ) __A= model(lowerCAmelCase_ )[0] __A= [1, 6, 768] self.assertEqual(output.shape , lowerCAmelCase_ ) __A= tf.constant( [ [ [0.19_26_18_85, -0.13_73_29_55, 0.4_11_97_99], [0.22_15_01_56, -0.07_42_26_61, 0.39_03_72_04], [0.22_75_60_18, -0.0_89_64_14, 0.3_70_14_67], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase_ , atol=1E-4 )
186
0
from collections.abc import Sequence def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ = False ): if not arr: return 0 UpperCamelCase__ : int = 0 if allow_empty_subarrays else float('''-inf''' ) UpperCamelCase__ : List[str] = 0.0 for num in arr: UpperCamelCase__ : List[str] = max(0 if allow_empty_subarrays else num , curr_sum + num ) UpperCamelCase__ : int = max(UpperCamelCase__ , UpperCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() lowerCamelCase =[-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'''{max_subarray_sum(nums) = }''')
462
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase =logging.get_logger(__name__) logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): if "xprophetnet" in prophetnet_checkpoint_path: UpperCamelCase__ : int = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = XLMProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) else: UpperCamelCase__ : Tuple = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = ProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) UpperCamelCase__ : Optional[Any] = ['''key_proj''', '''value_proj''', '''query_proj'''] UpperCamelCase__ : Tuple = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: UpperCamelCase__ : Tuple = key.split('''.''' ) if attributes[0] == "lm_head": UpperCamelCase__ : Union[str, Any] = prophet UpperCamelCase__ : int = prophet_old else: UpperCamelCase__ : int = prophet.prophetnet UpperCamelCase__ : str = prophet_old.model UpperCamelCase__ : Tuple = False for attribute in attributes: if attribute in mapping: UpperCamelCase__ : List[str] = mapping[attribute] if not hasattr(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) > 0: UpperCamelCase__ : Tuple = attribute elif hasattr(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : Tuple = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" UpperCamelCase__ : Dict = old_model.weight logger.info(f'''{attribute} is initialized.''' ) UpperCamelCase__ : Optional[Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" UpperCamelCase__ : Any = old_model.bias logger.info(f'''{attribute} is initialized''' ) UpperCamelCase__ : Any = True break elif attribute in special_keys and hasattr(UpperCamelCase__ , '''in_proj_weight''' ): UpperCamelCase__ : Optional[int] = old_model.in_proj_weight.shape[0] // 3 UpperCamelCase__ : Optional[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": UpperCamelCase__ : Optional[Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) UpperCamelCase__ : str = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": UpperCamelCase__ : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) UpperCamelCase__ : Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": UpperCamelCase__ : List[str] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) UpperCamelCase__ : Tuple = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) UpperCamelCase__ : Tuple = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_1_2, "We want 512 position_embeddings." UpperCamelCase__ : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:5_1_2, :] ) UpperCamelCase__ : List[Any] = True break if attribute.isdigit(): UpperCamelCase__ : int = model[int(UpperCamelCase__ )] UpperCamelCase__ : int = old_model[int(UpperCamelCase__ )] else: UpperCamelCase__ : str = getattr(UpperCamelCase__ , UpperCamelCase__ ) if old_attribute == "": UpperCamelCase__ : List[str] = old_model else: if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) UpperCamelCase__ : List[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--prophetnet_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase =parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
462
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : int = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class lowerCAmelCase_ ( lowerCAmelCase_ ): __a : int = '''funnel''' __a : Tuple = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self ,snake_case__=30522 ,snake_case__=[4, 4, 4] ,snake_case__=None ,snake_case__=2 ,snake_case__=768 ,snake_case__=12 ,snake_case__=64 ,snake_case__=3072 ,snake_case__="gelu_new" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=0.0 ,snake_case__=0.1 ,snake_case__=None ,snake_case__=1E-9 ,snake_case__="mean" ,snake_case__="relative_shift" ,snake_case__=True ,snake_case__=True ,snake_case__=True ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = block_sizes SCREAMING_SNAKE_CASE_ : str = [1] * len(_snake_case ) if block_repeats is None else block_repeats assert len(_snake_case ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE_ : Dict = num_decoder_layers SCREAMING_SNAKE_CASE_ : Dict = d_model SCREAMING_SNAKE_CASE_ : Dict = n_head SCREAMING_SNAKE_CASE_ : Optional[Any] = d_head SCREAMING_SNAKE_CASE_ : Any = d_inner SCREAMING_SNAKE_CASE_ : Tuple = hidden_act SCREAMING_SNAKE_CASE_ : int = hidden_dropout SCREAMING_SNAKE_CASE_ : Optional[Any] = attention_dropout SCREAMING_SNAKE_CASE_ : int = activation_dropout SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : int = initializer_std SCREAMING_SNAKE_CASE_ : Optional[int] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.' SCREAMING_SNAKE_CASE_ : Optional[Any] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.' SCREAMING_SNAKE_CASE_ : Union[str, Any] = attention_type SCREAMING_SNAKE_CASE_ : Optional[Any] = separate_cls SCREAMING_SNAKE_CASE_ : List[Any] = truncate_seq SCREAMING_SNAKE_CASE_ : Dict = pool_q_only super().__init__(**_snake_case ) @property def snake_case ( self ): return sum(self.block_sizes ) @num_hidden_layers.setter def snake_case ( self ,snake_case__ ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def snake_case ( self ): return len(self.block_sizes ) @num_blocks.setter def snake_case ( self ,snake_case__ ): raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
105
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Any = '''open-llama''' def __init__( self : Optional[int] , _snake_case : Tuple=10_0000 , _snake_case : Optional[int]=4096 , _snake_case : Any=1_1008 , _snake_case : Any=32 , _snake_case : Optional[Any]=32 , _snake_case : List[str]="silu" , _snake_case : Tuple=2048 , _snake_case : Any=0.02 , _snake_case : Optional[Any]=1E-6 , _snake_case : Any=True , _snake_case : Any=0 , _snake_case : Tuple=1 , _snake_case : str=2 , _snake_case : List[str]=False , _snake_case : List[str]=True , _snake_case : Tuple=0.1 , _snake_case : Tuple=0.1 , _snake_case : Tuple=True , _snake_case : List[Any]=True , _snake_case : List[str]=None , **_snake_case : str , ): __lowercase : Tuple = vocab_size __lowercase : List[str] = max_position_embeddings __lowercase : int = hidden_size __lowercase : List[str] = intermediate_size __lowercase : Optional[Any] = num_hidden_layers __lowercase : Tuple = num_attention_heads __lowercase : List[str] = hidden_act __lowercase : Any = initializer_range __lowercase : str = rms_norm_eps __lowercase : int = use_cache __lowercase : str = kwargs.pop( '''use_memorry_efficient_attention''' , _snake_case ) __lowercase : Any = hidden_dropout_prob __lowercase : Tuple = attention_dropout_prob __lowercase : str = use_stable_embedding __lowercase : Any = shared_input_output_embedding __lowercase : List[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , tie_word_embeddings=_snake_case , **_snake_case , ) def snake_case_ ( self : Any ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _snake_case ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F'got {self.rope_scaling}' ) __lowercase : List[str] = self.rope_scaling.get('''type''' , _snake_case ) __lowercase : Tuple = self.rope_scaling.get('''factor''' , _snake_case ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(_snake_case , _snake_case ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
509
0
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class _a ( lowerCAmelCase__ ): '''simple docstring''' def __UpperCAmelCase( self , __UpperCAmelCase ): return 0.0 def lowerCamelCase_ ( _lowercase , _lowercase ) -> tuple[int | float, int | float]: __A : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) __A : List[Any] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def lowerCamelCase_ ( _lowercase , _lowercase ) -> None: __A : Tuple = 512 __A : Tuple = [1] + [0] * (size - 1) __A : List[Any] = [filter_type.process(_lowercase ) for item in inputs] __A : int = [0] * (samplerate - size) # zero-padding outputs += filler __A : Tuple = np.abs(np.fft.fft(_lowercase ) ) __A : Optional[int] = 20 * np.logaa(_lowercase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds __A : Tuple = get_bounds(_lowercase , _lowercase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(_lowercase ) plt.show() def lowerCamelCase_ ( _lowercase , _lowercase ) -> None: __A : List[str] = 512 __A : Tuple = [1] + [0] * (size - 1) __A : List[Any] = [filter_type.process(_lowercase ) for item in inputs] __A : List[str] = [0] * (samplerate - size) # zero-padding outputs += filler __A : Dict = np.angle(np.fft.fft(_lowercase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(_lowercase , -2 * pi ) ) plt.show()
387
from __future__ import annotations def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase ) -> float: if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , ) -> float: if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , ) -> float: if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( _lowercase , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
387
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class a : """simple docstring""" def __init__( self : int , lowerCamelCase : Optional[int] , lowerCamelCase : int=13 , lowerCamelCase : Tuple=7 , lowerCamelCase : Optional[int]=True , lowerCamelCase : int=True , lowerCamelCase : Any=True , lowerCamelCase : int=True , lowerCamelCase : Optional[int]=99 , lowerCamelCase : Any=64 , lowerCamelCase : Dict=32 , lowerCamelCase : int=5 , lowerCamelCase : List[str]=4 , lowerCamelCase : Optional[int]=37 , lowerCamelCase : List[str]="gelu" , lowerCamelCase : int=0.1 , lowerCamelCase : Tuple=0.1 , lowerCamelCase : Dict=512 , lowerCamelCase : Tuple=16 , lowerCamelCase : int=2 , lowerCamelCase : Any=0.02 , lowerCamelCase : List[Any]=3 , lowerCamelCase : int=4 , lowerCamelCase : Optional[int]=None , ) -> Union[str, Any]: __snake_case : Tuple = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : int = is_training __snake_case : Dict = use_input_mask __snake_case : Optional[Any] = use_token_type_ids __snake_case : int = use_labels __snake_case : int = vocab_size __snake_case : List[str] = hidden_size __snake_case : str = embedding_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Optional[Any] = num_attention_heads __snake_case : int = intermediate_size __snake_case : List[str] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Dict = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Tuple = type_sequence_label_size __snake_case : Optional[int] = initializer_range __snake_case : Optional[Any] = num_labels __snake_case : List[Any] = num_choices __snake_case : Optional[int] = scope def __snake_case ( self : List[str] ) -> int: __snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : List[str] = None if self.use_input_mask: __snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : str = None if self.use_token_type_ids: __snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Tuple = None __snake_case : int = None __snake_case : List[str] = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[str] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self : Any ) -> int: return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , ) def __snake_case ( self : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Any ) -> List[str]: __snake_case : str = MegatronBertModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[Any] = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase ) __snake_case : Tuple = model(lowerCamelCase , token_type_ids=lowerCamelCase ) __snake_case : Optional[int] = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __snake_case ( self : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ) -> List[Any]: __snake_case : Union[str, Any] = MegatronBertForMaskedLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Optional[int] = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self : Dict , lowerCamelCase : List[str] , lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : str , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] ) -> Union[str, Any]: __snake_case : List[str] = MegatronBertForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Tuple = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Dict ) -> Optional[Any]: __snake_case : str = MegatronBertForNextSentencePrediction(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[Any] = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __snake_case ( self : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] ) -> str: __snake_case : str = MegatronBertForPreTraining(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[Any] = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , next_sentence_label=lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __snake_case ( self : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : Dict , lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] ) -> Tuple: __snake_case : str = MegatronBertForQuestionAnswering(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Dict = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , start_positions=lowerCamelCase , end_positions=lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] ) -> Tuple: __snake_case : Optional[int] = self.num_labels __snake_case : Union[str, Any] = MegatronBertForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : Union[str, Any] = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : Any , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict ) -> Union[str, Any]: __snake_case : Tuple = self.num_labels __snake_case : Tuple = MegatronBertForTokenClassification(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[str] = model(lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Any , lowerCamelCase : Optional[Any] ) -> Dict: __snake_case : List[str] = self.num_choices __snake_case : Dict = MegatronBertForMultipleChoice(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __snake_case : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Dict = model( lowerCamelCase , attention_mask=lowerCamelCase , token_type_ids=lowerCamelCase , labels=lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self : Dict ) -> Tuple: __snake_case : Union[str, Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : int = config_and_inputs __snake_case : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) __UpperCAmelCase : Optional[Any] = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : List[str] = True # test_resize_embeddings = False __UpperCAmelCase : Union[str, Any] = False def __snake_case ( self : Any , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : List[str]=False ) -> Any: __snake_case : Tuple = super()._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) if return_labels: if model_class in get_values(lowerCamelCase ): __snake_case : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase ) __snake_case : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase ) return inputs_dict def __snake_case ( self : List[str] ) -> int: __snake_case : Any = MegatronBertModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def __snake_case ( self : str ) -> str: self.config_tester.run_common_tests() def __snake_case ( self : List[str] ) -> Optional[Any]: __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowerCamelCase ) def __snake_case ( self : Optional[int] ) -> Optional[Any]: __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCamelCase ) def __snake_case ( self : str ) -> List[Any]: __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Optional[int]: __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCamelCase ) def __snake_case ( self : List[str] ) -> str: __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Any: __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCamelCase ) def __snake_case ( self : int ) -> List[Any]: __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Union[str, Any]: __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase ): return torch.tensor( __lowerCamelCase , dtype=torch.long , device=__lowerCamelCase , ) _snake_case : Optional[Any] = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class a (unittest.TestCase ): """simple docstring""" @slow @unittest.skip("Model is not available." ) def __snake_case ( self : List[Any] ) -> Dict: __snake_case : List[str] = "nvidia/megatron-bert-uncased-345m" if "MYDIR" in os.environ: __snake_case : str = os.path.join(os.environ["MYDIR"] , lowerCamelCase ) __snake_case : Dict = MegatronBertModel.from_pretrained(lowerCamelCase ) model.to(lowerCamelCase ) model.half() __snake_case : int = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): __snake_case : Optional[Any] = model(lowerCamelCase )[0] __snake_case : str = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , lowerCamelCase ) __snake_case : Any = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28] for ii in range(3 ): for jj in range(3 ): __snake_case : List[Any] = output[0, ii, jj] __snake_case : Tuple = expected[3 * ii + jj] __snake_case : List[str] = "ii={} jj={} a={} b={}".format(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.assertTrue(math.isclose(lowerCamelCase , lowerCamelCase , rel_tol=lowerCamelCase , abs_tol=lowerCamelCase ) , msg=lowerCamelCase )
81
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
143
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __SCREAMING_SNAKE_CASE = { 'configuration_chinese_clip': [ 'CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ChineseCLIPConfig', 'ChineseCLIPOnnxConfig', 'ChineseCLIPTextConfig', 'ChineseCLIPVisionConfig', ], 'processing_chinese_clip': ['ChineseCLIPProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = ['ChineseCLIPFeatureExtractor'] __SCREAMING_SNAKE_CASE = ['ChineseCLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ChineseCLIPModel', 'ChineseCLIPPreTrainedModel', 'ChineseCLIPTextModel', 'ChineseCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
395
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class a__ ( A__ ): def lowerCamelCase_ ( self :Any ): '''simple docstring''' UpperCamelCase_ : List[str] =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCamelCase , 'tf_padding' ) ) self.parent.assertTrue(hasattr(_lowerCamelCase , 'depth_multiplier' ) ) class a__ : def __init__( self :Tuple , _lowerCamelCase :int , _lowerCamelCase :Optional[Any]=13 , _lowerCamelCase :List[Any]=3 , _lowerCamelCase :Optional[Any]=32 , _lowerCamelCase :str=0.25 , _lowerCamelCase :str=8 , _lowerCamelCase :str=8 , _lowerCamelCase :Tuple=6 , _lowerCamelCase :Optional[Any]=32 , _lowerCamelCase :Union[str, Any]=True , _lowerCamelCase :int=True , _lowerCamelCase :Optional[int]=True , _lowerCamelCase :Tuple="relu6" , _lowerCamelCase :List[Any]=1_280 , _lowerCamelCase :Optional[int]=0.1 , _lowerCamelCase :Optional[Any]=0.02 , _lowerCamelCase :Dict=True , _lowerCamelCase :List[str]=True , _lowerCamelCase :List[str]=10 , _lowerCamelCase :List[Any]=None , ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =parent UpperCamelCase_ : Optional[Any] =batch_size UpperCamelCase_ : List[str] =num_channels UpperCamelCase_ : Union[str, Any] =image_size UpperCamelCase_ : Union[str, Any] =depth_multiplier UpperCamelCase_ : Optional[Any] =depth_divisible_by UpperCamelCase_ : Optional[Any] =min_depth UpperCamelCase_ : List[Any] =expand_ratio UpperCamelCase_ : Any =tf_padding UpperCamelCase_ : List[str] =output_stride UpperCamelCase_ : Tuple =first_layer_is_expansion UpperCamelCase_ : Any =finegrained_output UpperCamelCase_ : Dict =hidden_act UpperCamelCase_ : int =last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCamelCase_ : Optional[int] =classifier_dropout_prob UpperCamelCase_ : str =use_labels UpperCamelCase_ : List[Any] =is_training UpperCamelCase_ : Tuple =num_labels UpperCamelCase_ : Optional[int] =initializer_range UpperCamelCase_ : Union[str, Any] =scope def lowerCamelCase_ ( self :str ): '''simple docstring''' UpperCamelCase_ : str =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ : Dict =None UpperCamelCase_ : Dict =None if self.use_labels: UpperCamelCase_ : List[str] =ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase_ : List[Any] =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase_ : Any =self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase_ ( self :Any ): '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self :List[str] , _lowerCamelCase :Optional[int] , _lowerCamelCase :str , _lowerCamelCase :Tuple , _lowerCamelCase :List[str] ): '''simple docstring''' UpperCamelCase_ : List[Any] =MobileNetVaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_ : List[Any] =model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCamelCase_ ( self :Dict , _lowerCamelCase :int , _lowerCamelCase :Optional[Any] , _lowerCamelCase :str , _lowerCamelCase :Optional[Any] ): '''simple docstring''' UpperCamelCase_ : Tuple =self.num_labels UpperCamelCase_ : List[str] =MobileNetVaForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_ : List[str] =model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self :Any , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :str , _lowerCamelCase :Dict ): '''simple docstring''' UpperCamelCase_ : Tuple =self.num_labels UpperCamelCase_ : int =MobileNetVaForSemanticSegmentation(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_ : Dict =model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCamelCase_ : int =model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self :Any ): '''simple docstring''' UpperCamelCase_ : str =self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : int =config_and_inputs UpperCamelCase_ : Dict ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class a__ ( A__ , A__ , unittest.TestCase ): UpperCAmelCase__ = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def lowerCamelCase_ ( self :Union[str, Any] ): '''simple docstring''' UpperCamelCase_ : Dict =MobileNetVaModelTester(self ) UpperCamelCase_ : Any =MobileNetVaConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def lowerCamelCase_ ( self :int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def lowerCamelCase_ ( self :int ): '''simple docstring''' pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def lowerCamelCase_ ( self :str ): '''simple docstring''' pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def lowerCamelCase_ ( self :int ): '''simple docstring''' pass def lowerCamelCase_ ( self :List[Any] ): '''simple docstring''' UpperCamelCase_ , UpperCamelCase_ : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Tuple =model_class(_lowerCamelCase ) UpperCamelCase_ : Dict =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ : Optional[int] =[*signature.parameters.keys()] UpperCamelCase_ : List[str] =['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def lowerCamelCase_ ( self :List[str] ): '''simple docstring''' UpperCamelCase_ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowerCamelCase_ ( self :Dict ): '''simple docstring''' def check_hidden_states_output(_lowerCamelCase :List[Any] , _lowerCamelCase :List[Any] , _lowerCamelCase :List[Any] ): UpperCamelCase_ : List[str] =model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_ : str =model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) UpperCamelCase_ : Optional[Any] =outputs.hidden_states UpperCamelCase_ : List[str] =16 self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) UpperCamelCase_ , UpperCamelCase_ : str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Dict =True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ : Dict =True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( self :Any ): '''simple docstring''' UpperCamelCase_ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def lowerCamelCase_ ( self :Optional[Any] ): '''simple docstring''' UpperCamelCase_ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @slow def lowerCamelCase_ ( self :str ): '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ : List[str] =MobileNetVaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def A_ ( ): UpperCamelCase_ : Dict =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self :Tuple ): '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self :Tuple ): '''simple docstring''' UpperCamelCase_ : Optional[int] =MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(_lowerCamelCase ) UpperCamelCase_ : List[Any] =self.default_image_processor UpperCamelCase_ : List[Any] =prepare_img() UpperCamelCase_ : List[str] =image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_ : List[Any] =model(**_lowerCamelCase ) # verify the logits UpperCamelCase_ : Optional[int] =torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) UpperCamelCase_ : Optional[Any] =torch.tensor([0.2445, -1.1993, 0.1905] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self :Tuple ): '''simple docstring''' UpperCamelCase_ : Dict =MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) UpperCamelCase_ : Optional[int] =model.to(_lowerCamelCase ) UpperCamelCase_ : Dict =MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) UpperCamelCase_ : Any =prepare_img() UpperCamelCase_ : List[Any] =image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_ : Any =model(**_lowerCamelCase ) UpperCamelCase_ : Any =outputs.logits # verify the logits UpperCamelCase_ : Optional[int] =torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , _lowerCamelCase ) UpperCamelCase_ : List[Any] =torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=_lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1E-4 ) )
395
1
'''simple docstring''' from __future__ import annotations _UpperCAmelCase : Optional[int] = [] def _SCREAMING_SNAKE_CASE ( __snake_case : list[list[int]] , __snake_case : int , __snake_case : int ): for i in range(len(__snake_case ) ): if board[row][i] == 1: return False for i in range(len(__snake_case ) ): if board[i][column] == 1: return False for i, j in zip(range(__snake_case , -1 , -1 ) , range(__snake_case , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__snake_case , -1 , -1 ) , range(__snake_case , len(__snake_case ) ) ): if board[i][j] == 1: return False return True def _SCREAMING_SNAKE_CASE ( __snake_case : list[list[int]] , __snake_case : int ): if row >= len(__snake_case ): solution.append(__snake_case ) printboard(__snake_case ) print() return True for i in range(len(__snake_case ) ): if is_safe(__snake_case , __snake_case , __snake_case ): _A = 1 solve(__snake_case , row + 1 ) _A = 0 return False def _SCREAMING_SNAKE_CASE ( __snake_case : list[list[int]] ): for i in range(len(__snake_case ) ): for j in range(len(__snake_case ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) _UpperCAmelCase : Any = 8 _UpperCAmelCase : Dict = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
107
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _UpperCAmelCase : Any = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' _UpperCAmelCase : str = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' _UpperCAmelCase : Union[str, Any] = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : List[Any] ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), id='references' ), } ), ) def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : List[List[List[str]]], UpperCamelCase__ : List[List[str]], UpperCamelCase__ : int = 1, UpperCamelCase__ : int = 4, ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase__, hypotheses=UpperCamelCase__, min_len=UpperCamelCase__, max_len=UpperCamelCase__ ) }
107
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : int = { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowercase__ ( __A ): __UpperCamelCase = """speech_to_text""" __UpperCamelCase = ["""past_key_values"""] __UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , _lowercase=10_000 , _lowercase=12 , _lowercase=2_048 , _lowercase=4 , _lowercase=6 , _lowercase=2_048 , _lowercase=4 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=True , _lowercase=True , _lowercase="relu" , _lowercase=256 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=2 , _lowercase=True , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=6_000 , _lowercase=1_024 , _lowercase=2 , _lowercase=(5, 5) , _lowercase=1_024 , _lowercase=80 , _lowercase=1 , **_lowercase , ): lowerCAmelCase_ : Any = vocab_size lowerCAmelCase_ : str = d_model lowerCAmelCase_ : Dict = encoder_ffn_dim lowerCAmelCase_ : Optional[int] = encoder_layers lowerCAmelCase_ : Optional[Any] = encoder_attention_heads lowerCAmelCase_ : Optional[Any] = decoder_ffn_dim lowerCAmelCase_ : Tuple = decoder_layers lowerCAmelCase_ : Dict = decoder_attention_heads lowerCAmelCase_ : Optional[Any] = dropout lowerCAmelCase_ : Union[str, Any] = attention_dropout lowerCAmelCase_ : Dict = activation_dropout lowerCAmelCase_ : Tuple = activation_function lowerCAmelCase_ : List[Any] = init_std lowerCAmelCase_ : Any = encoder_layerdrop lowerCAmelCase_ : List[Any] = decoder_layerdrop lowerCAmelCase_ : Union[str, Any] = use_cache lowerCAmelCase_ : str = encoder_layers lowerCAmelCase_ : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase_ : Dict = max_source_positions lowerCAmelCase_ : List[Any] = max_target_positions lowerCAmelCase_ : Union[str, Any] = num_conv_layers lowerCAmelCase_ : Optional[Any] = list(_lowercase ) lowerCAmelCase_ : int = conv_channels lowerCAmelCase_ : Dict = input_feat_per_channel lowerCAmelCase_ : List[str] = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` """ F'but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ' F'`config.num_conv_layers = {self.num_conv_layers}`.' ) super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , **_lowercase , )
440
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCAmelCase_ : str = logging.get_logger(__name__) @dataclass class lowercase__ : __UpperCamelCase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) __UpperCamelCase = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) __UpperCamelCase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase = field( default=__A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : List[str] = self.task_name.lower() class lowercase__ ( __A ): __UpperCamelCase = """train""" __UpperCamelCase = """dev""" __UpperCamelCase = """test""" class lowercase__ ( __A ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = None , ): warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowercase , ) lowerCAmelCase_ : Any = args lowerCAmelCase_ : List[str] = glue_processors[args.task_name]() lowerCAmelCase_ : Tuple = glue_output_modes[args.task_name] if isinstance(_lowercase , _lowercase ): try: lowerCAmelCase_ : Dict = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file lowerCAmelCase_ : Optional[int] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) lowerCAmelCase_ : List[str] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase_ , lowerCAmelCase_ : List[str] = label_list[2], label_list[1] lowerCAmelCase_ : int = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase_ : Optional[int] = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: lowerCAmelCase_ : Dict = time.time() lowerCAmelCase_ : str = torch.load(_lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: lowerCAmelCase_ : List[Any] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCAmelCase_ : Dict = self.processor.get_test_examples(args.data_dir ) else: lowerCAmelCase_ : List[str] = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCAmelCase_ : Optional[int] = examples[:limit_length] lowerCAmelCase_ : Any = glue_convert_examples_to_features( _lowercase , _lowercase , max_length=args.max_seq_length , label_list=_lowercase , output_mode=self.output_mode , ) lowerCAmelCase_ : str = time.time() torch.save(self.features , _lowercase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): return len(self.features ) def __getitem__( self , _lowercase ): return self.features[i] def UpperCAmelCase__ ( self ): return self.label_list
440
1
def __lowerCAmelCase ( A ): if not isinstance(A , A ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
162
def __lowerCAmelCase ( A = 100 ): UpperCAmelCase_ = n * (n + 1) * (2 * n + 1) / 6 UpperCAmelCase_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
162
1
"""simple docstring""" def __magic_name__ ( lowercase = 100 ): SCREAMING_SNAKE_CASE_: str =set() SCREAMING_SNAKE_CASE_: int =0 SCREAMING_SNAKE_CASE_: Optional[Any] =n + 1 # maximum limit for a in range(2 , lowercase ): for b in range(2 , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =a**b # calculates the current power collect_powers.add(lowercase ) # adds the result to the set return len(lowercase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
36
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): return int((input_a, input_a).count(0 ) == 0 ) def __magic_name__ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
36
1
"""simple docstring""" def snake_case ( A__ ,A__ ): UpperCAmelCase_ : List[str] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): UpperCAmelCase_ : Optional[int] = n - k # Calculate C(n,k) for i in range(A__ ): result *= n - i result //= i + 1 return result def snake_case ( A__ ): return binomial_coefficient(2 * node_count ,A__ ) // (node_count + 1) def snake_case ( A__ ): if n < 0: raise ValueError("factorial() not defined for negative values" ) UpperCAmelCase_ : Union[str, Any] = 1 for i in range(1 ,n + 1 ): result *= i return result def snake_case ( A__ ): return catalan_number(A__ ) * factorial(A__ ) if __name__ == "__main__": lowerCamelCase_ = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( f'Given {node_count} nodes, there are {binary_tree_count(node_count)} ' f'binary trees and {catalan_number(node_count)} binary search trees.' )
95
'''simple docstring''' import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[Any] = WavaVecaForSequenceClassification.from_pretrained(_UpperCamelCase , config=_UpperCamelCase ) lowercase_ : Optional[int] = downstream_dict["projector.weight"] lowercase_ : str = downstream_dict["projector.bias"] lowercase_ : int = downstream_dict["model.post_net.linear.weight"] lowercase_ : Optional[Any] = downstream_dict["model.post_net.linear.bias"] return model def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Tuple = WavaVecaForAudioFrameClassification.from_pretrained(_UpperCamelCase , config=_UpperCamelCase ) lowercase_ : Any = downstream_dict["model.linear.weight"] lowercase_ : List[str] = downstream_dict["model.linear.bias"] return model def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Any = WavaVecaForXVector.from_pretrained(_UpperCamelCase , config=_UpperCamelCase ) lowercase_ : str = downstream_dict["connector.weight"] lowercase_ : List[str] = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowercase_ : Union[str, Any] = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] lowercase_ : Dict = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] lowercase_ : Dict = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] lowercase_ : List[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] lowercase_ : Dict = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] lowercase_ : Dict = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] lowercase_ : Optional[Any] = downstream_dict["objective.W"] return model @torch.no_grad() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Tuple = torch.load(_UpperCamelCase , map_location="cpu" ) lowercase_ : Dict = checkpoint["Downstream"] lowercase_ : Optional[Any] = WavaVecaConfig.from_pretrained(_UpperCamelCase ) lowercase_ : Dict = WavaVecaFeatureExtractor.from_pretrained( _UpperCamelCase , return_attention_mask=_UpperCamelCase , do_normalize=_UpperCamelCase ) lowercase_ : Dict = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): lowercase_ : Any = convert_classification(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) elif arch.endswith("ForAudioFrameClassification" ): lowercase_ : Optional[int] = convert_diarization(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) elif arch.endswith("ForXVector" ): lowercase_ : List[Any] = convert_xvector(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: lowercase_ : List[str] = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(_UpperCamelCase ) hf_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') UpperCamelCase__ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
620
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCamelCase__ ( _A , _A , _A , _A , _A , _A = None , ): a : Any = {} if train_file is not None: a : Union[str, Any] = [train_file] if eval_file is not None: a : Any = [eval_file] if test_file is not None: a : Union[str, Any] = [test_file] a : str = datasets.load_dataset('csv' , data_files=_SCREAMING_SNAKE_CASE ) a : Union[str, Any] = list(ds[list(files.keys() )[0]].features.keys() ) a : List[str] = features_name.pop(_SCREAMING_SNAKE_CASE ) a : int = list(set(ds[list(files.keys() )[0]][label_name] ) ) a : List[Any] = {label: i for i, label in enumerate(_SCREAMING_SNAKE_CASE )} a : List[Any] = tokenizer.model_input_names a : Optional[Any] = {} if len(_SCREAMING_SNAKE_CASE ) == 1: for k in files.keys(): a : List[Any] = ds[k].map( lambda _A : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='max_length' ) , batched=_SCREAMING_SNAKE_CASE , ) elif len(_SCREAMING_SNAKE_CASE ) == 2: for k in files.keys(): a : Any = ds[k].map( lambda _A : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='max_length' , ) , batched=_SCREAMING_SNAKE_CASE , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: a : Tuple = {k: v for k, v in ex.items() if k in input_names} a : int = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: a : Any = {k: v for k, v in ex.items() if k in input_names} a : List[str] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: a : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} a : int = labelaid[ex[label_name]] yield (d, label) a : Any = ( tf.data.Dataset.from_generator( _SCREAMING_SNAKE_CASE , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: a : List[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) a : int = ( tf.data.Dataset.from_generator( _SCREAMING_SNAKE_CASE , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: a : Any = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) a : List[Any] = ( tf.data.Dataset.from_generator( _SCREAMING_SNAKE_CASE , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: a : List[str] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCAmelCase: Any = logging.getLogger(__name__) @dataclass class a__: lowercase__ = field(metadata={"""help""": """Which column contains the label"""} ) lowercase__ = field(default=lowerCamelCase__ , metadata={"""help""": """The path of the training file"""} ) lowercase__ = field(default=lowerCamelCase__ , metadata={"""help""": """The path of the development file"""} ) lowercase__ = field(default=lowerCamelCase__ , metadata={"""help""": """The path of the test file"""} ) lowercase__ = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) @dataclass class a__: lowercase__ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase__ = field(default=lowerCamelCase__ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) def lowerCamelCase__ ( ): a : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) a , a , a : Tuple = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( f"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ f"""16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a , a , a , a : Dict = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_SCREAMING_SNAKE_CASE , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) a : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_SCREAMING_SNAKE_CASE ) , labelaid=_SCREAMING_SNAKE_CASE , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): a : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) def compute_metrics(_A ) -> Dict: a : Tuple = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer a : Union[str, Any] = TFTrainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a : List[str] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) a : Dict = trainer.evaluate() a : List[Any] = os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) results.update(_SCREAMING_SNAKE_CASE ) return results if __name__ == "__main__": main()
707
'''simple docstring''' class a__: def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Tuple ): a : List[str] = name a : Dict = value a : List[str] = weight def __repr__( self : int ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowercase_ ( self : Optional[int] ): return self.value def lowercase_ ( self : List[str] ): return self.name def lowercase_ ( self : int ): return self.weight def lowercase_ ( self : List[str] ): return self.value / self.weight def lowerCamelCase__ ( _A , _A , _A ): a : Optional[int] = [] for i in range(len(_A ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def lowerCamelCase__ ( _A , _A , _A ): a : Optional[Any] = sorted(_A , key=_A , reverse=_A ) a : Optional[int] = [] a , a : str = 0.0, 0.0 for i in range(len(_A ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowerCamelCase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
195
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCamelCase_ = logging.get_logger(__name__) class UpperCamelCase_ (__A ): __magic_name__ = ['''input_values''', '''padding_mask'''] def __init__( self : Dict , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : int = 24_000 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : float = None , lowerCAmelCase_ : float = None , **lowerCAmelCase_ : List[Any] , ) -> Optional[int]: super().__init__(feature_size=lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , padding_value=lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = chunk_length_s UpperCAmelCase_ : Union[str, Any] = overlap @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : int , lowerCAmelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase_ : Optional[Union[bool, str, PaddingStrategy]] = None , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Optional[int] = None , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if padding and truncation: raise ValueError("Both padding and truncation were set. Make sure you only set one." ) elif padding is None: # by default let's pad the inputs UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : Union[str, Any] = bool( isinstance(lowerCAmelCase_ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase_ , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(lowerCAmelCase_ , np.ndarray ): UpperCAmelCase_ : str = np.asarray(lowerCAmelCase_ , dtype=np.floataa ) elif isinstance(lowerCAmelCase_ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : str = raw_audio.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase_ ).T] # verify inputs are valid for idx, example in enumerate(lowerCAmelCase_ ): if example.ndim > 2: raise ValueError(f"""Expected input shape (channels, length) but got shape {example.shape}""" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f"""Expected mono audio but example has {example.shape[-1]} channels""" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f"""Expected stereo audio but example has {example.shape[-1]} channels""" ) UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[str] = BatchFeature({"input_values": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: UpperCAmelCase_ : Optional[int] = min(array.shape[0] for array in raw_audio ) UpperCAmelCase_ : Optional[Any] = int(np.floor(max_length / self.chunk_stride ) ) UpperCAmelCase_ : Optional[int] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: UpperCAmelCase_ : int = max(array.shape[0] for array in raw_audio ) UpperCAmelCase_ : Dict = int(np.ceil(max_length / self.chunk_stride ) ) UpperCAmelCase_ : Optional[Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length UpperCAmelCase_ : Tuple = "max_length" else: UpperCAmelCase_ : Optional[int] = input_values # normal padding on batch if padded_inputs is None: UpperCAmelCase_ : List[Any] = self.pad( lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ , padding=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) if padding: UpperCAmelCase_ : Any = padded_inputs.pop("attention_mask" ) UpperCAmelCase_ : List[Any] = [] for example in padded_inputs.pop("input_values" ): if self.feature_size == 1: UpperCAmelCase_ : List[str] = example[..., None] input_values.append(example.T ) UpperCAmelCase_ : Dict = input_values if return_tensors is not None: UpperCAmelCase_ : Optional[int] = padded_inputs.convert_to_tensors(lowerCAmelCase_ ) return padded_inputs
95
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : Dict = {"""configuration_van""": ["""VAN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VanConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """VAN_PRETRAINED_MODEL_ARCHIVE_LIST""", """VanForImageClassification""", """VanModel""", """VanPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys lowerCAmelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
372
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase__ : Tuple = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCamelCase( self ): _snake_case = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="pt" ) # Using `do_sample=False` to force deterministic output _snake_case = text_generator("This is a test" , do_sample=lowerCamelCase ) self.assertEqual( lowerCamelCase , [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ] , ) _snake_case = text_generator(["This is a test", "This is a second test"] ) self.assertEqual( lowerCamelCase , [ [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], [ { "generated_text": ( "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy" " oscope. oscope. FiliFili@@" ) } ], ] , ) _snake_case = text_generator("This is a test" , do_sample=lowerCamelCase , num_return_sequences=2 , return_tensors=lowerCamelCase ) self.assertEqual( lowerCamelCase , [ {"generated_token_ids": ANY(lowerCamelCase )}, {"generated_token_ids": ANY(lowerCamelCase )}, ] , ) _snake_case = text_generator.model.config.eos_token_id _snake_case = "<pad>" _snake_case = text_generator( ["This is a test", "This is a second test"] , do_sample=lowerCamelCase , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCamelCase , ) self.assertEqual( lowerCamelCase , [ [ {"generated_token_ids": ANY(lowerCamelCase )}, {"generated_token_ids": ANY(lowerCamelCase )}, ], [ {"generated_token_ids": ANY(lowerCamelCase )}, {"generated_token_ids": ANY(lowerCamelCase )}, ], ] , ) @require_tf def UpperCamelCase( self ): _snake_case = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="tf" ) # Using `do_sample=False` to force deterministic output _snake_case = text_generator("This is a test" , do_sample=lowerCamelCase ) self.assertEqual( lowerCamelCase , [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ] , ) _snake_case = text_generator(["This is a test", "This is a second test"] , do_sample=lowerCamelCase ) self.assertEqual( lowerCamelCase , [ [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], [ { "generated_text": ( "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes" " Cannes 閲閲Cannes Cannes Cannes 攵 please," ) } ], ] , ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): _snake_case = TextGenerationPipeline(model=lowerCamelCase , tokenizer=lowerCamelCase ) return text_generator, ["This is a test", "Another test"] def UpperCamelCase( self ): _snake_case = "Hello I believe in" _snake_case = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) _snake_case = text_generator(lowerCamelCase ) self.assertEqual( lowerCamelCase , [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}] , ) _snake_case = text_generator(lowerCamelCase , stop_sequence=" fe" ) self.assertEqual(lowerCamelCase , [{"generated_text": "Hello I believe in fe"}] ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase ): _snake_case = text_generator.model _snake_case = text_generator.tokenizer _snake_case = text_generator("This is a test" ) self.assertEqual(lowerCamelCase , [{"generated_text": ANY(lowerCamelCase )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) _snake_case = text_generator("This is a test" , return_full_text=lowerCamelCase ) self.assertEqual(lowerCamelCase , [{"generated_text": ANY(lowerCamelCase )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) _snake_case = pipeline(task="text-generation" , model=lowerCamelCase , tokenizer=lowerCamelCase , return_full_text=lowerCamelCase ) _snake_case = text_generator("This is a test" ) self.assertEqual(lowerCamelCase , [{"generated_text": ANY(lowerCamelCase )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) _snake_case = text_generator("This is a test" , return_full_text=lowerCamelCase ) self.assertEqual(lowerCamelCase , [{"generated_text": ANY(lowerCamelCase )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) _snake_case = text_generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCamelCase ) self.assertEqual( lowerCamelCase , [ [{"generated_text": ANY(lowerCamelCase )}, {"generated_text": ANY(lowerCamelCase )}], [{"generated_text": ANY(lowerCamelCase )}, {"generated_text": ANY(lowerCamelCase )}], ] , ) if text_generator.tokenizer.pad_token is not None: _snake_case = text_generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCamelCase ) self.assertEqual( lowerCamelCase , [ [{"generated_text": ANY(lowerCamelCase )}, {"generated_text": ANY(lowerCamelCase )}], [{"generated_text": ANY(lowerCamelCase )}, {"generated_text": ANY(lowerCamelCase )}], ] , ) with self.assertRaises(lowerCamelCase ): _snake_case = text_generator("test" , return_full_text=lowerCamelCase , return_text=lowerCamelCase ) with self.assertRaises(lowerCamelCase ): _snake_case = text_generator("test" , return_full_text=lowerCamelCase , return_tensors=lowerCamelCase ) with self.assertRaises(lowerCamelCase ): _snake_case = text_generator("test" , return_text=lowerCamelCase , return_tensors=lowerCamelCase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _snake_case = text_generator("" ) self.assertEqual(lowerCamelCase , [{"generated_text": ANY(lowerCamelCase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _snake_case = text_generator("" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _snake_case = ["RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM"] if ( tokenizer.model_max_length < 10_000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("This is a test" * 500 , max_new_tokens=20 ) _snake_case = text_generator("This is a test" * 500 , handle_long_generation="hole" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(lowerCamelCase ): text_generator( "This is a test" * 500 , handle_long_generation="hole" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase( self ): import torch # Classic `model_kwargs` _snake_case = pipeline( model="hf-internal-testing/tiny-random-bloom" , model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _snake_case = pipe("This is a test" ) self.assertEqual( lowerCamelCase , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _snake_case = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _snake_case = pipe("This is a test" ) self.assertEqual( lowerCamelCase , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _snake_case = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _snake_case = pipe("This is a test" ) self.assertEqual( lowerCamelCase , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) @require_torch @require_torch_gpu def UpperCamelCase( self ): import torch _snake_case = pipeline(model="hf-internal-testing/tiny-random-bloom" , device=0 , torch_dtype=torch.floataa ) pipe("This is a test" ) @require_torch @require_accelerate @require_torch_gpu def UpperCamelCase( self ): import torch _snake_case = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.floataa ) pipe("This is a test" , do_sample=lowerCamelCase , top_p=0.5 ) def UpperCamelCase( self ): _snake_case = "Hello world" _snake_case = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) if text_generator.model.framework == "tf": _snake_case = logging.get_logger("transformers.generation.tf_utils" ) else: _snake_case = logging.get_logger("transformers.generation.utils" ) _snake_case = "Both `max_new_tokens`" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(lowerCamelCase ) as cl: _snake_case = text_generator(lowerCamelCase , max_length=10 , max_new_tokens=1 ) self.assertIn(lowerCamelCase , cl.out ) # The user only sets one -> no warning with CaptureLogger(lowerCamelCase ) as cl: _snake_case = text_generator(lowerCamelCase , max_new_tokens=1 ) self.assertNotIn(lowerCamelCase , cl.out ) with CaptureLogger(lowerCamelCase ) as cl: _snake_case = text_generator(lowerCamelCase , max_length=10 ) self.assertNotIn(lowerCamelCase , cl.out )
368
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __magic_name__ : Any = logging.get_logger(__name__) __magic_name__ : Dict = { """google/bit-50""": """https://huggingface.co/google/bit-50/resolve/main/config.json""", } class __SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : List[str] = '''bit''' UpperCAmelCase__ : Union[str, Any] = ['''preactivation''', '''bottleneck'''] UpperCAmelCase__ : int = ['''SAME''', '''VALID'''] def __init__( self , lowerCamelCase=3 , lowerCamelCase=64 , lowerCamelCase=[256, 512, 1_024, 2_048] , lowerCamelCase=[3, 4, 6, 3] , lowerCamelCase="preactivation" , lowerCamelCase="relu" , lowerCamelCase=None , lowerCamelCase=32 , lowerCamelCase=0.0 , lowerCamelCase=False , lowerCamelCase=32 , lowerCamelCase=1 , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase , ): super().__init__(**lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _snake_case = global_padding.upper() else: raise ValueError(F'''Padding strategy {global_padding} not supported''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = global_padding _snake_case = num_groups _snake_case = drop_path_rate _snake_case = embedding_dynamic_padding _snake_case = output_stride _snake_case = width_factor _snake_case = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(lowerCamelCase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
368
1
def A__ ( snake_case_ : int ): return str(snake_case_ ) == str(snake_case_ )[::-1] def A__ ( snake_case_ : int ): return int(snake_case_ ) + int(str(snake_case_ )[::-1] ) def A__ ( snake_case_ : int = 10_000 ): SCREAMING_SNAKE_CASE__: Dict= [] for num in range(1 , snake_case_ ): SCREAMING_SNAKE_CASE__: List[Any]= 0 SCREAMING_SNAKE_CASE__: Optional[Any]= num while iterations < 50: SCREAMING_SNAKE_CASE__: Optional[int]= sum_reverse(snake_case_ ) iterations += 1 if is_palindrome(snake_case_ ): break else: lychrel_nums.append(snake_case_ ) return len(snake_case_ ) if __name__ == "__main__": print(f'''{solution() = }''')
64
from __future__ import annotations _a = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = graph # mapping node to its parent in resulting breadth first tree lowerCamelCase__ = {} lowerCamelCase__ = source_vertex def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = {self.source_vertex} lowerCamelCase__ = None lowerCamelCase__ = [self.source_vertex] # first in first out queue while queue: lowerCamelCase__ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__lowerCAmelCase ) lowerCamelCase__ = vertex queue.append(__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex lowerCamelCase__ = self.parent.get(__lowerCAmelCase ) if target_vertex_parent is None: lowerCamelCase__ = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(__lowerCAmelCase ) return self.shortest_path(__lowerCAmelCase ) + F'->{target_vertex}' if __name__ == "__main__": _a = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
481
0
"""simple docstring""" def __UpperCAmelCase ( _snake_case : float, _snake_case : float, _snake_case : float, _snake_case : float, _snake_case : float, ): _lowercase = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: _lowercase = 1 - (matter_density + radiation_density + dark_energy) _lowercase = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) _lowercase = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation __UpperCamelCase : List[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
227
"""simple docstring""" import math from collections.abc import Callable def __UpperCAmelCase ( _snake_case : Callable[[float], float], _snake_case : float, _snake_case : float ): _lowercase = xa _lowercase = xa while True: if x_n == x_na or function(_snake_case ) == function(_snake_case ): raise ZeroDivisionError("float division by zero, could not find root" ) _lowercase = x_na - ( function(_snake_case ) / ((function(_snake_case ) - function(_snake_case )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 1_0**-5: return x_na _lowercase = x_na _lowercase = x_na def __UpperCAmelCase ( _snake_case : float ): return math.pow(_snake_case, 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
227
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: A : str = None A : Dict = logging.get_logger(__name__) A : Any = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} A : Union[str, Any] = { '''vocab_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/spiece.model''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json''', }, } A : Union[str, Any] = { '''google/fnet-base''': 512, '''google/fnet-large''': 512, } A : Union[str, Any] = '''▁''' class a_ ( _a ): a : List[str] = VOCAB_FILES_NAMES a : Tuple = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Optional[int] = ['''input_ids''', '''token_type_ids'''] a : Union[str, Any] = FNetTokenizer def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase="<unk>" , __UpperCamelCase="[SEP]" , __UpperCamelCase="<pad>" , __UpperCamelCase="[CLS]" , __UpperCamelCase="[MASK]" , **__UpperCamelCase , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowercase = ( AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase , normalized=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token ) super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , remove_space=__UpperCamelCase , keep_accents=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , **__UpperCamelCase , ) _lowercase = do_lower_case _lowercase = remove_space _lowercase = keep_accents _lowercase = vocab_file _lowercase = False if not self.vocab_file else True def UpperCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): _lowercase = [self.sep_token_id] _lowercase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): _lowercase = [self.sep_token_id] _lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): if not os.path.isdir(__UpperCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowercase = os.path.join( __UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file , __UpperCamelCase ) return (out_vocab_file,)
287
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Dict = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys A : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
287
1
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : int , snake_case_ : float = 1 / sqrt(2 ) ) ->IIRFilter: '''simple docstring''' _lowercase : Dict = tau * frequency / samplerate _lowercase : Dict = sin(snake_case_ ) _lowercase : Dict = cos(snake_case_ ) _lowercase : Tuple = _sin / (2 * q_factor) _lowercase : Optional[Any] = (1 - _cos) / 2 _lowercase : Union[str, Any] = 1 - _cos _lowercase : Optional[Any] = 1 + alpha _lowercase : Union[str, Any] = -2 * _cos _lowercase : Optional[Any] = 1 - alpha _lowercase : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : int , snake_case_ : float = 1 / sqrt(2 ) ) ->IIRFilter: '''simple docstring''' _lowercase : List[str] = tau * frequency / samplerate _lowercase : Optional[Any] = sin(snake_case_ ) _lowercase : int = cos(snake_case_ ) _lowercase : str = _sin / (2 * q_factor) _lowercase : Optional[Any] = (1 + _cos) / 2 _lowercase : Tuple = -1 - _cos _lowercase : str = 1 + alpha _lowercase : List[str] = -2 * _cos _lowercase : Any = 1 - alpha _lowercase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : int , snake_case_ : float = 1 / sqrt(2 ) ) ->IIRFilter: '''simple docstring''' _lowercase : List[str] = tau * frequency / samplerate _lowercase : List[Any] = sin(snake_case_ ) _lowercase : Dict = cos(snake_case_ ) _lowercase : Optional[int] = _sin / (2 * q_factor) _lowercase : Dict = _sin / 2 _lowercase : int = 0 _lowercase : Optional[Any] = -ba _lowercase : Optional[Any] = 1 + alpha _lowercase : List[Any] = -2 * _cos _lowercase : str = 1 - alpha _lowercase : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : int , snake_case_ : float = 1 / sqrt(2 ) ) ->IIRFilter: '''simple docstring''' _lowercase : int = tau * frequency / samplerate _lowercase : Tuple = sin(snake_case_ ) _lowercase : List[Any] = cos(snake_case_ ) _lowercase : str = _sin / (2 * q_factor) _lowercase : Any = 1 - alpha _lowercase : Optional[Any] = -2 * _cos _lowercase : List[Any] = 1 + alpha _lowercase : Any = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : int , snake_case_ : float , snake_case_ : float = 1 / sqrt(2 ) , ) ->IIRFilter: '''simple docstring''' _lowercase : List[Any] = tau * frequency / samplerate _lowercase : Optional[Any] = sin(snake_case_ ) _lowercase : Tuple = cos(snake_case_ ) _lowercase : List[Any] = _sin / (2 * q_factor) _lowercase : int = 10 ** (gain_db / 40) _lowercase : Tuple = 1 + alpha * big_a _lowercase : Tuple = -2 * _cos _lowercase : Union[str, Any] = 1 - alpha * big_a _lowercase : Dict = 1 + alpha / big_a _lowercase : Dict = -2 * _cos _lowercase : Union[str, Any] = 1 - alpha / big_a _lowercase : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : int , snake_case_ : float , snake_case_ : float = 1 / sqrt(2 ) , ) ->IIRFilter: '''simple docstring''' _lowercase : Optional[Any] = tau * frequency / samplerate _lowercase : List[str] = sin(snake_case_ ) _lowercase : Any = cos(snake_case_ ) _lowercase : Dict = _sin / (2 * q_factor) _lowercase : int = 10 ** (gain_db / 40) _lowercase : str = (big_a + 1) - (big_a - 1) * _cos _lowercase : Optional[int] = (big_a + 1) + (big_a - 1) * _cos _lowercase : str = (big_a - 1) - (big_a + 1) * _cos _lowercase : List[str] = (big_a - 1) + (big_a + 1) * _cos _lowercase : Any = 2 * sqrt(snake_case_ ) * alpha _lowercase : Optional[Any] = big_a * (pmc + aaa) _lowercase : Dict = 2 * big_a * mpc _lowercase : Any = big_a * (pmc - aaa) _lowercase : Dict = ppmc + aaa _lowercase : Dict = -2 * pmpc _lowercase : str = ppmc - aaa _lowercase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : int , snake_case_ : float , snake_case_ : float = 1 / sqrt(2 ) , ) ->IIRFilter: '''simple docstring''' _lowercase : List[Any] = tau * frequency / samplerate _lowercase : List[Any] = sin(snake_case_ ) _lowercase : int = cos(snake_case_ ) _lowercase : Union[str, Any] = _sin / (2 * q_factor) _lowercase : int = 10 ** (gain_db / 40) _lowercase : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos _lowercase : Tuple = (big_a + 1) + (big_a - 1) * _cos _lowercase : List[Any] = (big_a - 1) - (big_a + 1) * _cos _lowercase : Optional[Any] = (big_a - 1) + (big_a + 1) * _cos _lowercase : Tuple = 2 * sqrt(snake_case_ ) * alpha _lowercase : Optional[int] = big_a * (ppmc + aaa) _lowercase : str = -2 * big_a * pmpc _lowercase : Union[str, Any] = big_a * (ppmc - aaa) _lowercase : List[Any] = pmc + aaa _lowercase : List[str] = 2 * mpc _lowercase : Optional[int] = pmc - aaa _lowercase : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
720
'''simple docstring''' import unittest from transformers import DonutProcessor lowerCamelCase__ = 'naver-clova-ix/donut-base' class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowercase ( self : Tuple ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = DonutProcessor.from_pretrained(UpperCamelCase_ ) def __lowercase ( self : Tuple ) -> Tuple: '''simple docstring''' _lowercase : str = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } _lowercase : List[str] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) _lowercase : str = self.processor.tokenajson(UpperCamelCase_ ) self.assertDictEqual(UpperCamelCase_ , UpperCamelCase_ )
411
0
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A_ ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any ) -> int: __SCREAMING_SNAKE_CASE : Union[str, Any] = OmegaConf.load(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model'''] __SCREAMING_SNAKE_CASE : Optional[int] = list(state_dict.keys() ) # extract state_dict for VQVAE __SCREAMING_SNAKE_CASE : Optional[int] = {} __SCREAMING_SNAKE_CASE : str = '''first_stage_model.''' for key in keys: if key.startswith(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE : Dict = state_dict[key] # extract state_dict for UNetLDM __SCREAMING_SNAKE_CASE : Optional[int] = {} __SCREAMING_SNAKE_CASE : Tuple = '''model.diffusion_model.''' for key in keys: if key.startswith(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE : Tuple = state_dict[key] __SCREAMING_SNAKE_CASE : List[Any] = config.model.params.first_stage_config.params __SCREAMING_SNAKE_CASE : List[Any] = config.model.params.unet_config.params __SCREAMING_SNAKE_CASE : Union[str, Any] = VQModel(**__SCREAMING_SNAKE_CASE ).eval() vqvae.load_state_dict(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Dict = UNetLDMModel(**__SCREAMING_SNAKE_CASE ).eval() unet.load_state_dict(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Any = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE : Optional[int] = LDMPipeline(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) pipeline.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) _A = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
158
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _A = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def A_ ( __SCREAMING_SNAKE_CASE : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: __SCREAMING_SNAKE_CASE : Optional[int] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __SCREAMING_SNAKE_CASE : Dict = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __SCREAMING_SNAKE_CASE : str = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(f'Job {i:>2} is {job[0]} at {job[1]}')
158
1
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int=1 ) -> Tuple: """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split("." )[n_shave_prefix_segments:] ) else: return ".".join(path.split("." )[:n_shave_prefix_segments] ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any]=0 ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : str = [] for old_item in old_list: UpperCAmelCase_ : Tuple = old_item.replace("in_layers.0" , "norm1" ) UpperCAmelCase_ : Any = new_item.replace("in_layers.2" , "conv1" ) UpperCAmelCase_ : Any = new_item.replace("out_layers.0" , "norm2" ) UpperCAmelCase_ : Any = new_item.replace("out_layers.3" , "conv2" ) UpperCAmelCase_ : str = new_item.replace("emb_layers.1" , "time_emb_proj" ) UpperCAmelCase_ : List[str] = new_item.replace("skip_connection" , "conv_shortcut" ) UpperCAmelCase_ : int = shave_segments(_SCREAMING_SNAKE_CASE , n_shave_prefix_segments=_SCREAMING_SNAKE_CASE ) mapping.append({"old": old_item, "new": new_item} ) return mapping def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str]=0 ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = [] for old_item in old_list: UpperCAmelCase_ : Tuple = old_item UpperCAmelCase_ : Dict = new_item.replace("norm.weight" , "group_norm.weight" ) UpperCAmelCase_ : Union[str, Any] = new_item.replace("norm.bias" , "group_norm.bias" ) UpperCAmelCase_ : Dict = new_item.replace("proj_out.weight" , "proj_attn.weight" ) UpperCAmelCase_ : Tuple = new_item.replace("proj_out.bias" , "proj_attn.bias" ) UpperCAmelCase_ : Union[str, Any] = shave_segments(_SCREAMING_SNAKE_CASE , n_shave_prefix_segments=_SCREAMING_SNAKE_CASE ) mapping.append({"old": old_item, "new": new_item} ) return mapping def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : int=None , _SCREAMING_SNAKE_CASE : List[Any]=None ) -> int: """simple docstring""" assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase_ : Any = old_checkpoint[path] UpperCAmelCase_ : Dict = old_tensor.shape[0] // 3 UpperCAmelCase_ : List[str] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase_ : Optional[int] = old_tensor.shape[0] // config["num_head_channels"] // 3 UpperCAmelCase_ : int = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase_ : Dict = query.reshape(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = key.reshape(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = value.reshape(_SCREAMING_SNAKE_CASE ) for path in paths: UpperCAmelCase_ : int = path["new"] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase_ : List[str] = new_path.replace("middle_block.0" , "mid_block.resnets.0" ) UpperCAmelCase_ : Dict = new_path.replace("middle_block.1" , "mid_block.attentions.0" ) UpperCAmelCase_ : List[Any] = new_path.replace("middle_block.2" , "mid_block.resnets.1" ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase_ : Any = new_path.replace(replacement["old"] , replacement["new"] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase_ : List[Any] = old_checkpoint[path["old"]][:, :, 0] else: UpperCAmelCase_ : int = old_checkpoint[path["old"]] def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase_ : Any = {} UpperCAmelCase_ : Optional[Any] = checkpoint["time_embed.0.weight"] UpperCAmelCase_ : int = checkpoint["time_embed.0.bias"] UpperCAmelCase_ : Any = checkpoint["time_embed.2.weight"] UpperCAmelCase_ : Any = checkpoint["time_embed.2.bias"] UpperCAmelCase_ : int = checkpoint["input_blocks.0.0.weight"] UpperCAmelCase_ : Dict = checkpoint["input_blocks.0.0.bias"] UpperCAmelCase_ : str = checkpoint["out.0.weight"] UpperCAmelCase_ : str = checkpoint["out.0.bias"] UpperCAmelCase_ : str = checkpoint["out.2.weight"] UpperCAmelCase_ : str = checkpoint["out.2.bias"] # Retrieves the keys for the input blocks only UpperCAmelCase_ : str = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "input_blocks" in layer} ) UpperCAmelCase_ : int = { layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key] for layer_id in range(_SCREAMING_SNAKE_CASE ) } # Retrieves the keys for the middle blocks only UpperCAmelCase_ : Any = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "middle_block" in layer} ) UpperCAmelCase_ : List[Any] = { layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key] for layer_id in range(_SCREAMING_SNAKE_CASE ) } # Retrieves the keys for the output blocks only UpperCAmelCase_ : List[str] = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "output_blocks" in layer} ) UpperCAmelCase_ : Union[str, Any] = { layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key] for layer_id in range(_SCREAMING_SNAKE_CASE ) } for i in range(1 , _SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Dict = (i - 1) // (config["num_res_blocks"] + 1) UpperCAmelCase_ : Optional[Any] = (i - 1) % (config["num_res_blocks"] + 1) UpperCAmelCase_ : Tuple = [key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key] UpperCAmelCase_ : Tuple = [key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key] if F'''input_blocks.{i}.0.op.weight''' in checkpoint: UpperCAmelCase_ : str = checkpoint[ F'''input_blocks.{i}.0.op.weight''' ] UpperCAmelCase_ : List[str] = checkpoint[ F'''input_blocks.{i}.0.op.bias''' ] continue UpperCAmelCase_ : Union[str, Any] = renew_resnet_paths(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = {"old": F'''input_blocks.{i}.0''', "new": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} UpperCAmelCase_ : List[Any] = {"old": "resnets.2.op", "new": "downsamplers.0.op"} assign_to_checkpoint( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , additional_replacements=[meta_path, resnet_op] , config=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : str = renew_attention_paths(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = { "old": F'''input_blocks.{i}.1''', "new": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } UpperCAmelCase_ : Optional[Any] = { F'''input_blocks.{i}.1.qkv.bias''': { "key": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', "query": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', "value": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''input_blocks.{i}.1.qkv.weight''': { "key": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', "query": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', "value": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , attention_paths_to_split=_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase_ : Any = middle_blocks[0] UpperCAmelCase_ : List[str] = middle_blocks[1] UpperCAmelCase_ : Tuple = middle_blocks[2] UpperCAmelCase_ : Union[str, Any] = renew_resnet_paths(_SCREAMING_SNAKE_CASE ) assign_to_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = renew_resnet_paths(_SCREAMING_SNAKE_CASE ) assign_to_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = renew_attention_paths(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = { "middle_block.1.qkv.bias": { "key": "mid_block.attentions.0.key.bias", "query": "mid_block.attentions.0.query.bias", "value": "mid_block.attentions.0.value.bias", }, "middle_block.1.qkv.weight": { "key": "mid_block.attentions.0.key.weight", "query": "mid_block.attentions.0.query.weight", "value": "mid_block.attentions.0.value.weight", }, } assign_to_checkpoint( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , attention_paths_to_split=_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Union[str, Any] = i // (config["num_res_blocks"] + 1) UpperCAmelCase_ : int = i % (config["num_res_blocks"] + 1) UpperCAmelCase_ : List[Any] = [shave_segments(_SCREAMING_SNAKE_CASE , 2 ) for name in output_blocks[i]] UpperCAmelCase_ : Union[str, Any] = {} for layer in output_block_layers: UpperCAmelCase_ , UpperCAmelCase_ : str = layer.split("." )[0], shave_segments(_SCREAMING_SNAKE_CASE , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : Optional[int] = [layer_name] if len(_SCREAMING_SNAKE_CASE ) > 1: UpperCAmelCase_ : str = [key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key] UpperCAmelCase_ : Any = [key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key] UpperCAmelCase_ : Union[str, Any] = renew_resnet_paths(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = renew_resnet_paths(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = {"old": F'''output_blocks.{i}.0''', "new": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=_SCREAMING_SNAKE_CASE ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase_ : Any = list(output_block_list.values() ).index(["conv.weight", "conv.bias"] ) UpperCAmelCase_ : str = checkpoint[ F'''output_blocks.{i}.{index}.conv.weight''' ] UpperCAmelCase_ : Any = checkpoint[ F'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(_SCREAMING_SNAKE_CASE ) == 2: UpperCAmelCase_ : Dict = [] if len(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : str = renew_attention_paths(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = { "old": F'''output_blocks.{i}.1''', "new": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } UpperCAmelCase_ : List[str] = { F'''output_blocks.{i}.1.qkv.bias''': { "key": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', "query": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', "value": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''output_blocks.{i}.1.qkv.weight''': { "key": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', "query": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', "value": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("qkv" in key for key in attentions ) else None , config=_SCREAMING_SNAKE_CASE , ) else: UpperCAmelCase_ : List[str] = renew_resnet_paths(_SCREAMING_SNAKE_CASE , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase_ : List[Any] = ".".join(["output_blocks", str(_SCREAMING_SNAKE_CASE ), path["old"]] ) UpperCAmelCase_ : Dict = ".".join(["up_blocks", str(_SCREAMING_SNAKE_CASE ), "resnets", str(_SCREAMING_SNAKE_CASE ), path["new"]] ) UpperCAmelCase_ : List[str] = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowerCamelCase = parser.parse_args() _lowerCamelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowerCamelCase = json.loads(f.read()) _lowerCamelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowerCamelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowerCamelCase = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowerCamelCase = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowerCamelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
323
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCamelCase = {"""UserAgent""": UserAgent().random} def a__ ( _SCREAMING_SNAKE_CASE : Any ) -> dict: """simple docstring""" UpperCAmelCase_ : Any = script.contents[0] UpperCAmelCase_ : Dict = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _snake_case : def __init__( self ,_snake_case ): UpperCAmelCase_ : Union[str, Any] = f'''https://www.instagram.com/{username}/''' UpperCAmelCase_ : List[str] = self.get_json() def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = requests.get(self.url ,headers=_snake_case ).text UpperCAmelCase_ : List[Any] = BeautifulSoup(_snake_case ,"html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def UpperCamelCase__ ( self ): return self.user_data["username"] @property def UpperCamelCase__ ( self ): return self.user_data["full_name"] @property def UpperCamelCase__ ( self ): return self.user_data["biography"] @property def UpperCamelCase__ ( self ): return self.user_data["business_email"] @property def UpperCamelCase__ ( self ): return self.user_data["external_url"] @property def UpperCamelCase__ ( self ): return self.user_data["edge_followed_by"]["count"] @property def UpperCamelCase__ ( self ): return self.user_data["edge_follow"]["count"] @property def UpperCamelCase__ ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def UpperCamelCase__ ( self ): return self.user_data["profile_pic_url_hd"] @property def UpperCamelCase__ ( self ): return self.user_data["is_verified"] @property def UpperCamelCase__ ( self ): return self.user_data["is_private"] def a__ ( _SCREAMING_SNAKE_CASE : str = "github" ) -> None: """simple docstring""" import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCAmelCase_ : int = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase = InstagramUser("""github""") print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
323
1