code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case : Optional[Any] = logging.get_logger(__name__) snake_case : List[Any] = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class _snake_case ( a_ , a_ ): UpperCamelCase__ = 'nat' UpperCamelCase__ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , _a=4 , _a=3 , _a=64 , _a=[3, 4, 6, 5] , _a=[2, 4, 8, 16] , _a=7 , _a=3.0 , _a=True , _a=0.0 , _a=0.0 , _a=0.1 , _a="gelu" , _a=0.02 , _a=1e-5 , _a=0.0 , _a=None , _a=None , **_a , ): super().__init__(**__SCREAMING_SNAKE_CASE ) __magic_name__ : Optional[int] = patch_size __magic_name__ : Tuple = num_channels __magic_name__ : Optional[int] = embed_dim __magic_name__ : List[str] = depths __magic_name__ : str = len(__SCREAMING_SNAKE_CASE ) __magic_name__ : List[str] = num_heads __magic_name__ : Any = kernel_size __magic_name__ : Tuple = mlp_ratio __magic_name__ : Optional[Any] = qkv_bias __magic_name__ : str = hidden_dropout_prob __magic_name__ : Optional[int] = attention_probs_dropout_prob __magic_name__ : Union[str, Any] = drop_path_rate __magic_name__ : int = hidden_act __magic_name__ : Dict = layer_norm_eps __magic_name__ : Dict = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __magic_name__ : Optional[int] = int(embed_dim * 2 ** (len(__SCREAMING_SNAKE_CASE ) - 1) ) __magic_name__ : Optional[Any] = layer_scale_init_value __magic_name__ : List[Any] = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] __magic_name__ , __magic_name__ : Optional[int] = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
124
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """Salesforce/blip-vqa-base""": """https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json""", """Salesforce/blip-vqa-capfit-large""": ( """https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-base""": ( """https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-large""": ( """https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json""" ), """Salesforce/blip-itm-base-coco""": """https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json""", """Salesforce/blip-itm-large-coco""": """https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json""", """Salesforce/blip-itm-base-flikr""": """https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json""", """Salesforce/blip-itm-large-flikr""": ( """https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json""" ), } class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """blip_text_model""" def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str=3_05_24 , __SCREAMING_SNAKE_CASE : Any=7_68 , __SCREAMING_SNAKE_CASE : List[Any]=7_68 , __SCREAMING_SNAKE_CASE : Tuple=30_72 , __SCREAMING_SNAKE_CASE : Any=7_68 , __SCREAMING_SNAKE_CASE : Tuple=12 , __SCREAMING_SNAKE_CASE : Dict=8 , __SCREAMING_SNAKE_CASE : int=5_12 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : int=1E-12 , __SCREAMING_SNAKE_CASE : Tuple=0.0 , __SCREAMING_SNAKE_CASE : Tuple=0.0 , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : Optional[int]=3_05_22 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : List[str]=0 , __SCREAMING_SNAKE_CASE : Optional[int]=1_02 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Dict=True , **__SCREAMING_SNAKE_CASE : str , ): super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , sep_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __a = vocab_size __a = hidden_size __a = encoder_hidden_size __a = intermediate_size __a = projection_dim __a = hidden_dropout_prob __a = num_hidden_layers __a = num_attention_heads __a = max_position_embeddings __a = layer_norm_eps __a = hidden_act __a = initializer_range __a = attention_probs_dropout_prob __a = is_decoder __a = use_cache @classmethod def _UpperCAmelCase ( cls : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **__SCREAMING_SNAKE_CASE : int ): cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE ) __a , __a = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": __a = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """blip_vision_model""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : str=7_68 , __SCREAMING_SNAKE_CASE : Optional[Any]=30_72 , __SCREAMING_SNAKE_CASE : List[Any]=5_12 , __SCREAMING_SNAKE_CASE : int=12 , __SCREAMING_SNAKE_CASE : Optional[Any]=12 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3_84 , __SCREAMING_SNAKE_CASE : str=16 , __SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=1E-5 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1E-10 , **__SCREAMING_SNAKE_CASE : List[str] , ): super().__init__(**__SCREAMING_SNAKE_CASE ) __a = hidden_size __a = intermediate_size __a = projection_dim __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act @classmethod def _UpperCAmelCase ( cls : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **__SCREAMING_SNAKE_CASE : str ): cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE ) __a , __a = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": __a = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """blip""" _SCREAMING_SNAKE_CASE = True def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : int=5_12 , __SCREAMING_SNAKE_CASE : List[Any]=2.65_92 , __SCREAMING_SNAKE_CASE : Any=2_56 , **__SCREAMING_SNAKE_CASE : Any , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if text_config is None: __a = {} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." ) if vision_config is None: __a = {} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." ) __a = BlipTextConfig(**__SCREAMING_SNAKE_CASE ) __a = BlipVisionConfig(**__SCREAMING_SNAKE_CASE ) __a = self.vision_config.hidden_size __a = projection_dim __a = logit_scale_init_value __a = 1.0 __a = 0.02 __a = image_text_hidden_size @classmethod def _UpperCAmelCase ( cls : Any , __SCREAMING_SNAKE_CASE : BlipTextConfig , __SCREAMING_SNAKE_CASE : BlipVisionConfig , **__SCREAMING_SNAKE_CASE : List[Any] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Union[str, Any] ): __a = copy.deepcopy(self.__dict__ ) __a = self.text_config.to_dict() __a = self.vision_config.to_dict() __a = self.__class__.model_type return output
197
0
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) a__ = logging.getLogger(__name__) def __UpperCAmelCase ( __a : str ) -> List[str]: """simple docstring""" _a : List[Any] = git.Repo(search_parent_directories=__a ) _a : Any = { '''repo_id''': str(__a ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(__a ,'''git_log.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ,indent=4 ) def __UpperCAmelCase ( __a : str ) -> Tuple: """simple docstring""" if params.n_gpu <= 0: _a : Union[str, Any] = 0 _a : Dict = -1 _a : Optional[int] = True _a : Dict = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 _a : Any = int(os.environ['''WORLD_SIZE'''] ) _a : Optional[int] = int(os.environ['''N_GPU_NODE'''] ) _a : Optional[Any] = int(os.environ['''RANK'''] ) # number of nodes / node ID _a : Any = params.world_size // params.n_gpu_per_node _a : Optional[int] = params.global_rank // params.n_gpu_per_node _a : Tuple = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 _a : Union[str, Any] = 1 _a : Optional[int] = 0 _a : Optional[int] = 0 _a : str = 0 _a : Optional[Any] = 1 _a : Union[str, Any] = 1 _a : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode _a : Any = params.node_id == 0 and params.local_rank == 0 _a : str = params.n_nodes > 1 # summary _a : Any = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' ,backend='''nccl''' ,) def __UpperCAmelCase ( __a : Union[str, Any] ) -> List[str]: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
710
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a__ = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' a__ = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' a__ = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowercase ( self , _a , _a , _a=4 , _a=False ) -> List[Any]: _a : Dict = compute_bleu( reference_corpus=_a , translation_corpus=_a , max_order=_a , smooth=_a ) ((_a) , (_a) , (_a) , (_a) , (_a) , (_a)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
578
0
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCamelCase = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=A_ , cache_dir=A_ ) UpperCamelCase = [t[-1] for t in os.walk(os.path.join(A_ , os.listdir(A_ )[0] , 'snapshots' ) )] UpperCamelCase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=A_ ) UpperCamelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) UpperCamelCase = jax.random.PRNGKey(0 ) UpperCamelCase = 4 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(A_ ) # shard inputs and rng UpperCamelCase = replicate(A_ ) UpperCamelCase = jax.random.split(A_ , A_ ) UpperCamelCase = shard(A_ ) UpperCamelCase = pipeline(A_ , A_ , A_ , A_ , jit=A_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_514_745 ) < 1e-3 assert np.abs(np.abs(A_ , dtype=np.floataa ).sum() - 49_947.875 ) < 5e-1 UpperCamelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(A_ ) == num_samples def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=A_ ) UpperCamelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) UpperCamelCase = jax.random.PRNGKey(0 ) UpperCamelCase = 50 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(A_ ) # shard inputs and rng UpperCamelCase = replicate(A_ ) UpperCamelCase = jax.random.split(A_ , A_ ) UpperCamelCase = shard(A_ ) UpperCamelCase = pipeline(A_ , A_ , A_ , A_ , jit=A_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_652_401) ) < 1e-3 assert np.abs((np.abs(A_ , dtype=np.floataa ).sum() - 2_383_808.2) ) < 5e-1 def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=A_ ) UpperCamelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) UpperCamelCase = jax.random.PRNGKey(0 ) UpperCamelCase = 50 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(A_ ) # shard inputs and rng UpperCamelCase = replicate(A_ ) UpperCamelCase = jax.random.split(A_ , A_ ) UpperCamelCase = shard(A_ ) UpperCamelCase = pipeline(A_ , A_ , A_ , A_ , jit=A_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(A_ , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) UpperCamelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) UpperCamelCase = jax.random.PRNGKey(0 ) UpperCamelCase = 50 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(A_ ) # shard inputs and rng UpperCamelCase = replicate(A_ ) UpperCamelCase = jax.random.split(A_ , A_ ) UpperCamelCase = shard(A_ ) UpperCamelCase = pipeline(A_ , A_ , A_ , A_ , jit=A_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3 assert np.abs((np.abs(A_ , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1 def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = FlaxDDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=A_ , steps_offset=1 , ) UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=A_ , safety_checker=A_ , ) UpperCamelCase = scheduler.create_state() UpperCamelCase = scheduler_state UpperCamelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) UpperCamelCase = jax.random.PRNGKey(0 ) UpperCamelCase = 50 UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = pipeline.prepare_inputs(A_ ) # shard inputs and rng UpperCamelCase = replicate(A_ ) UpperCamelCase = jax.random.split(A_ , A_ ) UpperCamelCase = shard(A_ ) UpperCamelCase = pipeline(A_ , A_ , A_ , A_ , jit=A_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045_043_945) ) < 1e-3 assert np.abs((np.abs(A_ , dtype=np.floataa ).sum() - 2_347_693.5) ) < 5e-1 def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = jax.random.split(jax.random.PRNGKey(0 ) , A_ ) UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=A_ , ) UpperCamelCase = replicate(A_ ) UpperCamelCase = pipeline.prepare_inputs(A_ ) UpperCamelCase = shard(A_ ) UpperCamelCase = pipeline(A_ , A_ , A_ , jit=A_ ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCamelCase = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCamelCase , UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=A_ , use_memory_efficient_attention=A_ , ) UpperCamelCase = replicate(A_ ) UpperCamelCase = pipeline.prepare_inputs(A_ ) UpperCamelCase = shard(A_ ) UpperCamelCase = pipeline(A_ , A_ , A_ , jit=A_ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCamelCase = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
3
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase : List[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase : List[Any] = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase : Tuple = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase : List[Any] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
3
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def A ( lowercase__ : List[str] , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Optional[Any] ) -> Optional[int]: for attribute in key.split(""".""" ): UpperCamelCase__ :Dict = getattr(lowercase__ , lowercase__ ) if weight_type is not None: UpperCamelCase__ :Dict = getattr(lowercase__ , lowercase__ ).shape else: UpperCamelCase__ :Dict = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCamelCase__ :int = value elif weight_type == "weight_g": UpperCamelCase__ :Optional[Any] = value elif weight_type == "weight_v": UpperCamelCase__ :Optional[Any] = value elif weight_type == "bias": UpperCamelCase__ :Any = value else: UpperCamelCase__ :str = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def A ( lowercase__ : str , lowercase__ : Dict , lowercase__ : Dict ) -> Any: UpperCamelCase__ :Optional[Any] = [] UpperCamelCase__ :List[str] = fairseq_model.state_dict() UpperCamelCase__ :Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ :Tuple = False if "conv_layers" in name: load_conv_layer( lowercase__ , lowercase__ , lowercase__ , lowercase__ , hf_model.config.feat_extract_norm == """group""" , ) UpperCamelCase__ :Optional[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ :Optional[Any] = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): UpperCamelCase__ :str = True if "*" in mapped_key: UpperCamelCase__ :str = name.split(lowercase__ )[0].split(""".""" )[-2] UpperCamelCase__ :int = mapped_key.replace("""*""" , lowercase__ ) if "weight_g" in name: UpperCamelCase__ :List[Any] = """weight_g""" elif "weight_v" in name: UpperCamelCase__ :Optional[Any] = """weight_v""" elif "weight" in name: UpperCamelCase__ :List[Any] = """weight""" elif "bias" in name: UpperCamelCase__ :Union[str, Any] = """bias""" else: UpperCamelCase__ :str = None set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) continue if not is_used: unused_weights.append(lowercase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def A ( lowercase__ : Any , lowercase__ : Union[str, Any] , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Dict ) -> Tuple: UpperCamelCase__ :List[str] = full_name.split("""conv_layers.""" )[-1] UpperCamelCase__ :Any = name.split(""".""" ) UpperCamelCase__ :str = int(items[0] ) UpperCamelCase__ :Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCamelCase__ :Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCamelCase__ :Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCamelCase__ :int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCamelCase__ :str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase__ ) @torch.no_grad() def A ( lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Union[str, Any]=None , lowercase__ : Any=None , lowercase__ : int=True ) -> Optional[int]: if config_path is not None: UpperCamelCase__ :List[str] = HubertConfig.from_pretrained(lowercase__ ) else: UpperCamelCase__ :int = HubertConfig() if is_finetuned: if dict_path: UpperCamelCase__ :int = Dictionary.load(lowercase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ :Any = target_dict.pad_index UpperCamelCase__ :Any = target_dict.bos_index UpperCamelCase__ :str = target_dict.eos_index UpperCamelCase__ :Tuple = len(target_dict.symbols ) UpperCamelCase__ :Union[str, Any] = os.path.join(lowercase__ , """vocab.json""" ) if not os.path.isdir(lowercase__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase__ ) ) return os.makedirs(lowercase__ , exist_ok=lowercase__ ) with open(lowercase__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , lowercase__ ) UpperCamelCase__ :Dict = WavaVecaCTCTokenizer( lowercase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowercase__ , ) UpperCamelCase__ :int = True if config.feat_extract_norm == """layer""" else False UpperCamelCase__ :Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=lowercase__ , return_attention_mask=lowercase__ , ) UpperCamelCase__ :Optional[Any] = WavaVecaProcessor(feature_extractor=lowercase__ , tokenizer=lowercase__ ) processor.save_pretrained(lowercase__ ) UpperCamelCase__ :List[str] = HubertForCTC(lowercase__ ) else: UpperCamelCase__ :Tuple = HubertModel(lowercase__ ) if is_finetuned: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) UpperCamelCase__ :Dict = model[0].eval() recursively_load_weights(lowercase__ , lowercase__ , lowercase__ ) hf_wavavec.save_pretrained(lowercase__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCamelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
383
def A ( lowercase__ : str ) -> bool: UpperCamelCase__ :Any = 0 for ch in input_str: UpperCamelCase__ :List[Any] = ord(lowercase__ ) UpperCamelCase__ :int = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
383
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class SCREAMING_SNAKE_CASE__ (snake_case__ ): @slow @require_torch def A__ ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) lowerCAmelCase__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowerCAmelCase__ = bertabert.config.encoder.vocab_size lowerCAmelCase__ = tokenizer.sep_token_id lowerCAmelCase__ = tokenizer.cls_token_id lowerCAmelCase__ = 1_28 lowerCAmelCase__ = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) lowerCAmelCase__ = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) lowerCAmelCase__ = train_dataset.select(range(32 ) ) lowerCAmelCase__ = val_dataset.select(range(16 ) ) lowerCAmelCase__ = 4 def _map_to_encoder_decoder_inputs(__lowerCamelCase : Union[str, Any] ): # Tokenizer will automatically set [BOS] <text> [EOS] lowerCAmelCase__ = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=__lowercase , max_length=5_12 ) lowerCAmelCase__ = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=__lowercase , max_length=1_28 ) lowerCAmelCase__ = inputs.input_ids lowerCAmelCase__ = inputs.attention_mask lowerCAmelCase__ = outputs.input_ids lowerCAmelCase__ = outputs.input_ids.copy() lowerCAmelCase__ = [ [-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] lowerCAmelCase__ = outputs.attention_mask assert all(len(__lowercase ) == 5_12 for x in inputs.input_ids ) assert all(len(__lowercase ) == 1_28 for x in outputs.input_ids ) return batch def _compute_metrics(__lowerCamelCase : Union[str, Any] ): lowerCAmelCase__ = pred.label_ids lowerCAmelCase__ = pred.predictions # all unnecessary tokens are removed lowerCAmelCase__ = tokenizer.batch_decode(__lowercase , skip_special_tokens=__lowercase ) lowerCAmelCase__ = tokenizer.batch_decode(__lowercase , skip_special_tokens=__lowercase ) lowerCAmelCase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowercase ) )] ) / len(__lowercase ) return {"accuracy": accuracy} # map train dataset lowerCAmelCase__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowercase , batch_size=__lowercase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset lowerCAmelCase__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowercase , batch_size=__lowercase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) lowerCAmelCase__ = self.get_auto_remove_tmp_dir() lowerCAmelCase__ = SeqaSeqTrainingArguments( output_dir=__lowercase , per_device_train_batch_size=__lowercase , per_device_eval_batch_size=__lowercase , predict_with_generate=__lowercase , evaluation_strategy='''steps''' , do_train=__lowercase , do_eval=__lowercase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowerCAmelCase__ = SeqaSeqTrainer( model=__lowercase , args=__lowercase , compute_metrics=_compute_metrics , train_dataset=__lowercase , eval_dataset=__lowercase , tokenizer=__lowercase , ) # start training trainer.train()
615
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" __snake_case : Tuple = """marian""" __snake_case : Any = ["""past_key_values"""] __snake_case : Optional[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :List[Any] , __lowercase :Any=5_8101 , __lowercase :Tuple=None , __lowercase :Union[str, Any]=1024 , __lowercase :Dict=12 , __lowercase :int=4096 , __lowercase :int=16 , __lowercase :List[Any]=12 , __lowercase :Dict=4096 , __lowercase :Dict=16 , __lowercase :Tuple=0.0 , __lowercase :Tuple=0.0 , __lowercase :List[Any]=True , __lowercase :int=True , __lowercase :Tuple="gelu" , __lowercase :str=1024 , __lowercase :Optional[int]=0.1 , __lowercase :List[str]=0.0 , __lowercase :Union[str, Any]=0.0 , __lowercase :Dict=0.02 , __lowercase :Tuple=5_8100 , __lowercase :Optional[Any]=False , __lowercase :int=5_8100 , __lowercase :Any=0 , __lowercase :str=0 , __lowercase :str=True , **__lowercase :Any , ): __lowerCamelCase : List[Any] =vocab_size __lowerCamelCase : Optional[int] =decoder_vocab_size or vocab_size __lowerCamelCase : Tuple =max_position_embeddings __lowerCamelCase : List[Any] =d_model __lowerCamelCase : Any =encoder_ffn_dim __lowerCamelCase : str =encoder_layers __lowerCamelCase : List[str] =encoder_attention_heads __lowerCamelCase : str =decoder_ffn_dim __lowerCamelCase : Tuple =decoder_layers __lowerCamelCase : Any =decoder_attention_heads __lowerCamelCase : List[Any] =dropout __lowerCamelCase : Any =attention_dropout __lowerCamelCase : Union[str, Any] =activation_dropout __lowerCamelCase : Optional[int] =activation_function __lowerCamelCase : Dict =init_std __lowerCamelCase : List[Any] =encoder_layerdrop __lowerCamelCase : Optional[Any] =decoder_layerdrop __lowerCamelCase : Any =use_cache __lowerCamelCase : Any =encoder_layers __lowerCamelCase : Optional[int] =scale_embedding # scale factor will be sqrt(d_model) if True __lowerCamelCase : int =share_encoder_decoder_embeddings super().__init__( pad_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , decoder_start_token_id=__lowercase , forced_eos_token_id=__lowercase , **__lowercase , ) class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __lowercase ( self :int ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase : Tuple =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowerCamelCase : Optional[Any] ={0: '''batch'''} __lowerCamelCase : Any ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowerCamelCase : Optional[Any] ={0: '''batch''', 1: '''decoder_sequence'''} __lowerCamelCase : List[Any] ={0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowerCamelCase : Any =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowerCamelCase , __lowerCamelCase : str =self.num_layers for i in range(__lowercase ): __lowerCamelCase : Optional[int] ={0: '''batch''', 2: '''past_sequence + sequence'''} __lowerCamelCase : List[str] ={0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowerCamelCase : List[str] =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __lowercase ( self :Optional[int] ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase : Tuple =super().outputs else: __lowerCamelCase : List[str] =super(__lowercase , self ).outputs if self.use_past: __lowerCamelCase , __lowerCamelCase : int =self.num_layers for i in range(__lowercase ): __lowerCamelCase : Any ={0: '''batch''', 2: '''past_sequence + sequence'''} __lowerCamelCase : Optional[int] ={0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __lowercase ( self :str , __lowercase :PreTrainedTokenizer , __lowercase :int = -1 , __lowercase :int = -1 , __lowercase :bool = False , __lowercase :Optional[TensorType] = None , ): __lowerCamelCase : List[str] =self._generate_dummy_inputs_for_encoder_and_decoder( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # Generate decoder inputs __lowerCamelCase : Optional[Any] =seq_length if not self.use_past else 1 __lowerCamelCase : List[Any] =self._generate_dummy_inputs_for_encoder_and_decoder( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) __lowerCamelCase : Dict ={f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __lowerCamelCase : str =dict(**__lowercase , **__lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowerCamelCase , __lowerCamelCase : int =common_inputs['''input_ids'''].shape __lowerCamelCase : Optional[Any] =common_inputs['''decoder_input_ids'''].shape[1] __lowerCamelCase , __lowerCamelCase : Optional[int] =self.num_attention_heads __lowerCamelCase : Any =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowerCamelCase : Dict =decoder_seq_length + 3 __lowerCamelCase : Tuple =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowerCamelCase : Optional[int] =torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__lowercase , __lowercase )] , dim=1 ) __lowerCamelCase : Any =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowerCamelCase , __lowerCamelCase : str =self.num_layers __lowerCamelCase : List[Any] =min(__lowercase , __lowercase ) __lowerCamelCase : int =max(__lowercase , __lowercase ) - min_num_layers __lowerCamelCase : Any ='''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), ) ) # TODO: test this. __lowerCamelCase : Dict =encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__lowercase , __lowercase ): common_inputs["past_key_values"].append((torch.zeros(__lowercase ), torch.zeros(__lowercase )) ) return common_inputs def __lowercase ( self :Dict , __lowercase :PreTrainedTokenizer , __lowercase :int = -1 , __lowercase :int = -1 , __lowercase :bool = False , __lowercase :Optional[TensorType] = None , ): __lowerCamelCase : List[str] =self._generate_dummy_inputs_for_encoder_and_decoder( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowerCamelCase , __lowerCamelCase : int =common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowerCamelCase : str =seqlen + 2 __lowerCamelCase , __lowerCamelCase : List[str] =self.num_layers __lowerCamelCase , __lowerCamelCase : Optional[Any] =self.num_attention_heads __lowerCamelCase : List[str] =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowerCamelCase : Any =common_inputs['''attention_mask'''].dtype __lowerCamelCase : Optional[int] =torch.cat( [common_inputs['''attention_mask'''], torch.ones(__lowercase , __lowercase , dtype=__lowercase )] , dim=1 ) __lowerCamelCase : List[str] =[ (torch.zeros(__lowercase ), torch.zeros(__lowercase )) for _ in range(__lowercase ) ] return common_inputs def __lowercase ( self :int , __lowercase :PreTrainedTokenizer , __lowercase :int = -1 , __lowercase :int = -1 , __lowercase :bool = False , __lowercase :Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowerCamelCase : Union[str, Any] =compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowerCamelCase : Optional[int] =tokenizer.num_special_tokens_to_add(__lowercase ) __lowerCamelCase : Optional[int] =compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowercase ) # Generate dummy inputs according to compute batch and sequence __lowerCamelCase : Any =[''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowerCamelCase : Union[str, Any] =dict(tokenizer(__lowercase , return_tensors=__lowercase ) ) return common_inputs def __lowercase ( self :Tuple , __lowercase :PreTrainedTokenizer , __lowercase :int = -1 , __lowercase :int = -1 , __lowercase :bool = False , __lowercase :Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase : int =self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) else: __lowerCamelCase : List[Any] =self._generate_dummy_inputs_for_causal_lm( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) return common_inputs def __lowercase ( self :Optional[int] , __lowercase :Tuple , __lowercase :Tuple , __lowercase :Dict , __lowercase :List[str] ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase : str =super()._flatten_past_key_values_(__lowercase , __lowercase , __lowercase , __lowercase ) else: __lowerCamelCase : Optional[Any] =super(__lowercase , self )._flatten_past_key_values_( __lowercase , __lowercase , __lowercase , __lowercase ) @property def __lowercase ( self :List[str] ): return 1e-4
179
0
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _snake_case = get_logger(__name__) class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): """simple docstring""" UpperCamelCase = ( os.path.join(SCREAMING_SNAKE_CASE__ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) UpperCamelCase = Extractor def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" UpperCamelCase = os.path.abspath(SCREAMING_SNAKE_CASE__ ) return os.path.join(self.extract_dir , hash_url_to_filename(SCREAMING_SNAKE_CASE__ ) ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool ): """simple docstring""" return force_extract or ( not os.path.isfile(SCREAMING_SNAKE_CASE__ ) and not (os.path.isdir(SCREAMING_SNAKE_CASE__ ) and os.listdir(SCREAMING_SNAKE_CASE__ )) ) def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" UpperCamelCase = self.extractor.infer_extractor_format(SCREAMING_SNAKE_CASE__ ) if not extractor_format: return input_path UpperCamelCase = self._get_output_path(SCREAMING_SNAKE_CASE__ ) if self._do_extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return output_path class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" @classmethod @abstractmethod def __lowerCAmelCase ( cls : Dict , SCREAMING_SNAKE_CASE__ : Union[Path, str] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" ... @staticmethod @abstractmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[Path, str] , SCREAMING_SNAKE_CASE__ : Union[Path, str] ): """simple docstring""" ... class _lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[bytes] =[] @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[Path, str] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ , 'rb' ) as f: return f.read(SCREAMING_SNAKE_CASE__ ) @classmethod def __lowerCAmelCase ( cls : Any , SCREAMING_SNAKE_CASE__ : Union[Path, str] , SCREAMING_SNAKE_CASE__ : bytes = b"" ): """simple docstring""" if not magic_number: UpperCamelCase = max(len(SCREAMING_SNAKE_CASE__ ) for cls_magic_number in cls.magic_numbers ) try: UpperCamelCase = cls.read_magic_number(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except OSError: return False return any(magic_number.startswith(SCREAMING_SNAKE_CASE__ ) for cls_magic_number in cls.magic_numbers ) class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" @classmethod def __lowerCAmelCase ( cls : Any , SCREAMING_SNAKE_CASE__ : Union[Path, str] , **SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" return tarfile.is_tarfile(SCREAMING_SNAKE_CASE__ ) @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" def resolved(SCREAMING_SNAKE_CASE__ : str ) -> str: return os.path.realpath(os.path.abspath(SCREAMING_SNAKE_CASE__ ) ) def badpath(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ).startswith(SCREAMING_SNAKE_CASE__ ) def badlink(SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ) -> bool: # Links are interpreted relative to the directory containing the link UpperCamelCase = resolved(os.path.join(SCREAMING_SNAKE_CASE__ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = resolved(SCREAMING_SNAKE_CASE__ ) for finfo in members: if badpath(finfo.name , SCREAMING_SNAKE_CASE__ ): logger.error(F'Extraction of {finfo.name} is blocked (illegal path)' ) elif finfo.issym() and badlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): logger.error(F'Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}' ) elif finfo.islnk() and badlink(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): logger.error(F'Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}' ) else: yield finfo @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[Path, str] , SCREAMING_SNAKE_CASE__ : Union[Path, str] ): """simple docstring""" os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = tarfile.open(SCREAMING_SNAKE_CASE__ ) tar_file.extractall(SCREAMING_SNAKE_CASE__ , members=TarExtractor.safemembers(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) tar_file.close() class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] =[B"\x1F\x8B"] @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[Path, str] , SCREAMING_SNAKE_CASE__ : Union[Path, str] ): """simple docstring""" with gzip.open(SCREAMING_SNAKE_CASE__ , 'rb' ) as gzip_file: with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] =[ B"PK\x03\x04", B"PK\x05\x06", # empty archive B"PK\x07\x08", # spanned archive ] @classmethod def __lowerCAmelCase ( cls : Dict , SCREAMING_SNAKE_CASE__ : Union[Path, str] , SCREAMING_SNAKE_CASE__ : bytes = b"" ): """simple docstring""" if super().is_extractable(SCREAMING_SNAKE_CASE__ , magic_number=SCREAMING_SNAKE_CASE__ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(SCREAMING_SNAKE_CASE__ , 'rb' ) as fp: UpperCamelCase = _EndRecData(SCREAMING_SNAKE_CASE__ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: UpperCamelCase = fp.read(SCREAMING_SNAKE_CASE__ ) # CD is where we expect it to be if len(SCREAMING_SNAKE_CASE__ ) == sizeCentralDir: UpperCamelCase = struct.unpack(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[Path, str] , SCREAMING_SNAKE_CASE__ : Union[Path, str] ): """simple docstring""" os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ , 'r' ) as zip_file: zip_file.extractall(SCREAMING_SNAKE_CASE__ ) zip_file.close() class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] =[B"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[Path, str] , SCREAMING_SNAKE_CASE__ : Union[Path, str] ): """simple docstring""" with lzma.open(SCREAMING_SNAKE_CASE__ ) as compressed_file: with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] =[B"Rar!\x1a\x07\x00", B"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[Path, str] , SCREAMING_SNAKE_CASE__ : Union[Path, str] ): """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError('Please pip install rarfile' ) import rarfile os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = rarfile.RarFile(SCREAMING_SNAKE_CASE__ ) rf.extractall(SCREAMING_SNAKE_CASE__ ) rf.close() class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int =[B"\x28\xb5\x2F\xFD"] @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[Path, str] , SCREAMING_SNAKE_CASE__ : Union[Path, str] ): """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError('Please pip install zstandard' ) import zstandard as zstd UpperCamelCase = zstd.ZstdDecompressor() with open(SCREAMING_SNAKE_CASE__ , 'rb' ) as ifh, open(SCREAMING_SNAKE_CASE__ , 'wb' ) as ofh: dctx.copy_stream(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str =[B"\x42\x5A\x68"] @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[Path, str] , SCREAMING_SNAKE_CASE__ : Union[Path, str] ): """simple docstring""" with bza.open(SCREAMING_SNAKE_CASE__ , 'rb' ) as compressed_file: with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =[B"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[Path, str] , SCREAMING_SNAKE_CASE__ : Union[Path, str] ): """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError('Please pip install py7zr' ) import pyazr os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) with pyazr.SevenZipFile(SCREAMING_SNAKE_CASE__ , 'r' ) as archive: archive.extractall(SCREAMING_SNAKE_CASE__ ) class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] =[B"\x04\x22\x4D\x18"] @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[Path, str] , SCREAMING_SNAKE_CASE__ : Union[Path, str] ): """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError('Please pip install lz4' ) import lza.frame with lza.frame.open(SCREAMING_SNAKE_CASE__ , 'rb' ) as compressed_file: with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class _lowerCAmelCase : """simple docstring""" # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) SCREAMING_SNAKE_CASE_ : Dict[str, Type[BaseExtractor]] ={ "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def __lowerCAmelCase ( cls : int ): """simple docstring""" return max( len(SCREAMING_SNAKE_CASE__ ) for extractor in cls.extractors.values() if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[Path, str] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(SCREAMING_SNAKE_CASE__ , magic_number_length=SCREAMING_SNAKE_CASE__ ) except OSError: return b"" @classmethod def __lowerCAmelCase ( cls : int , SCREAMING_SNAKE_CASE__ : Union[Path, str] , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" warnings.warn( 'Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'infer_extractor_format\' instead.' , category=SCREAMING_SNAKE_CASE__ , ) UpperCamelCase = cls.infer_extractor_format(SCREAMING_SNAKE_CASE__ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def __lowerCAmelCase ( cls : int , SCREAMING_SNAKE_CASE__ : Union[Path, str] ): # <Added version="2.4.0"/> """simple docstring""" UpperCamelCase = cls._get_magic_number_max_length() UpperCamelCase = cls._read_magic_number(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(SCREAMING_SNAKE_CASE__ , magic_number=SCREAMING_SNAKE_CASE__ ): return extractor_format @classmethod def __lowerCAmelCase ( cls : List[str] , SCREAMING_SNAKE_CASE__ : Union[Path, str] , SCREAMING_SNAKE_CASE__ : Union[Path, str] , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : Optional[BaseExtractor] = "deprecated" , ): """simple docstring""" os.makedirs(os.path.dirname(SCREAMING_SNAKE_CASE__ ) , exist_ok=SCREAMING_SNAKE_CASE__ ) # Prevent parallel extractions UpperCamelCase = str(Path(SCREAMING_SNAKE_CASE__ ).with_suffix('.lock' ) ) with FileLock(SCREAMING_SNAKE_CASE__ ): shutil.rmtree(SCREAMING_SNAKE_CASE__ , ignore_errors=SCREAMING_SNAKE_CASE__ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # passed as positional arg warnings.warn( 'Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'extractor_format\' instead.' , category=SCREAMING_SNAKE_CASE__ , ) UpperCamelCase = extractor if extractor != 'deprecated' else extractor_format else: UpperCamelCase = cls.extractors[extractor_format] return extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: warnings.warn( 'Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ' 'exception in 3.0.0.' , category=SCREAMING_SNAKE_CASE__ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(SCREAMING_SNAKE_CASE__ ): return extractor.extract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
170
import math import sys def __lowerCamelCase ( _lowercase ) -> int: if number != int(_lowercase ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 UpperCamelCase = [-1] * (number + 1) UpperCamelCase = 0 for i in range(1 , number + 1 ): UpperCamelCase = sys.maxsize UpperCamelCase = int(math.sqrt(_lowercase ) ) for j in range(1 , root + 1 ): UpperCamelCase = 1 + answers[i - (j**2)] UpperCamelCase = min(_lowercase , _lowercase ) UpperCamelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
170
1
"""simple docstring""" import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } lowerCAmelCase__ = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } lowerCAmelCase__ = { '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } lowerCAmelCase__ = { '''num_train_timesteps''': 40, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } lowerCAmelCase__ = { '''num_train_timesteps''': 201, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } lowerCAmelCase__ = { '''num_train_timesteps''': 151, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } def snake_case_ ( A_ : List[str] ): '''simple docstring''' if isinstance(A_, A_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def snake_case_ ( A_ : Union[str, Any], A_ : Optional[Any], A_ : Tuple, A_ : Dict, A_ : Optional[Any]=False ): '''simple docstring''' _lowerCamelCase : Dict = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _lowerCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _lowerCamelCase : List[str] = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _lowerCamelCase : Any = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _lowerCamelCase : int = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _lowerCamelCase : List[Any] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _lowerCamelCase : List[str] = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _lowerCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _lowerCamelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _lowerCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _lowerCamelCase : Any = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _lowerCamelCase : str = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def snake_case_ ( A_ : Optional[int], A_ : Tuple, A_ : Union[str, Any], A_ : Tuple, A_ : str=None ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3, dim=0 ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3, dim=0 ) _lowerCamelCase : Tuple = checkpoint[F'''{old_prefix}.norm.weight'''] _lowerCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.norm.bias'''] _lowerCamelCase : Tuple = weight_q.squeeze(-1 ).squeeze(-1 ) _lowerCamelCase : Optional[int] = bias_q.squeeze(-1 ).squeeze(-1 ) _lowerCamelCase : int = weight_k.squeeze(-1 ).squeeze(-1 ) _lowerCamelCase : int = bias_k.squeeze(-1 ).squeeze(-1 ) _lowerCamelCase : str = weight_v.squeeze(-1 ).squeeze(-1 ) _lowerCamelCase : int = bias_v.squeeze(-1 ).squeeze(-1 ) _lowerCamelCase : Optional[Any] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _lowerCamelCase : List[Any] = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def snake_case_ ( A_ : str, A_ : Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = torch.load(A_, map_location='''cpu''' ) _lowerCamelCase : List[str] = {} _lowerCamelCase : str = checkpoint['''time_embed.0.weight'''] _lowerCamelCase : Tuple = checkpoint['''time_embed.0.bias'''] _lowerCamelCase : str = checkpoint['''time_embed.2.weight'''] _lowerCamelCase : List[str] = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: _lowerCamelCase : List[str] = checkpoint['''label_emb.weight'''] _lowerCamelCase : Any = checkpoint['''input_blocks.0.0.weight'''] _lowerCamelCase : Dict = checkpoint['''input_blocks.0.0.bias'''] _lowerCamelCase : str = unet_config['''down_block_types'''] _lowerCamelCase : int = unet_config['''layers_per_block'''] _lowerCamelCase : Any = unet_config['''attention_head_dim'''] _lowerCamelCase : Optional[int] = unet_config['''block_out_channels'''] _lowerCamelCase : int = 1 _lowerCamelCase : List[Any] = channels_list[0] for i, layer_type in enumerate(A_ ): _lowerCamelCase : Tuple = channels_list[i] _lowerCamelCase : int = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(A_ ): _lowerCamelCase : Union[str, Any] = F'''down_blocks.{i}.resnets.{j}''' _lowerCamelCase : Optional[int] = F'''input_blocks.{current_layer}.0''' _lowerCamelCase : int = True if j == 0 and downsample_block_has_skip else False _lowerCamelCase : Optional[Any] = convert_resnet(A_, A_, A_, A_, has_skip=A_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(A_ ): _lowerCamelCase : Optional[Any] = F'''down_blocks.{i}.resnets.{j}''' _lowerCamelCase : int = F'''input_blocks.{current_layer}.0''' _lowerCamelCase : List[str] = True if j == 0 and downsample_block_has_skip else False _lowerCamelCase : Union[str, Any] = convert_resnet(A_, A_, A_, A_, has_skip=A_ ) _lowerCamelCase : Tuple = F'''down_blocks.{i}.attentions.{j}''' _lowerCamelCase : Any = F'''input_blocks.{current_layer}.1''' _lowerCamelCase : Optional[Any] = convert_attention( A_, A_, A_, A_, A_ ) current_layer += 1 if i != len(A_ ) - 1: _lowerCamelCase : Dict = F'''down_blocks.{i}.downsamplers.0''' _lowerCamelCase : Any = F'''input_blocks.{current_layer}.0''' _lowerCamelCase : List[Any] = convert_resnet(A_, A_, A_, A_ ) current_layer += 1 _lowerCamelCase : Tuple = current_channels # hardcoded the mid-block for now _lowerCamelCase : Union[str, Any] = '''mid_block.resnets.0''' _lowerCamelCase : Dict = '''middle_block.0''' _lowerCamelCase : Optional[Any] = convert_resnet(A_, A_, A_, A_ ) _lowerCamelCase : List[str] = '''mid_block.attentions.0''' _lowerCamelCase : Dict = '''middle_block.1''' _lowerCamelCase : Union[str, Any] = convert_attention(A_, A_, A_, A_, A_ ) _lowerCamelCase : Tuple = '''mid_block.resnets.1''' _lowerCamelCase : Optional[int] = '''middle_block.2''' _lowerCamelCase : Any = convert_resnet(A_, A_, A_, A_ ) _lowerCamelCase : str = 0 _lowerCamelCase : Any = unet_config['''up_block_types'''] for i, layer_type in enumerate(A_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _lowerCamelCase : str = F'''up_blocks.{i}.resnets.{j}''' _lowerCamelCase : List[str] = F'''output_blocks.{current_layer}.0''' _lowerCamelCase : Union[str, Any] = convert_resnet(A_, A_, A_, A_, has_skip=A_ ) current_layer += 1 if i != len(A_ ) - 1: _lowerCamelCase : Optional[Any] = F'''up_blocks.{i}.upsamplers.0''' _lowerCamelCase : int = F'''output_blocks.{current_layer-1}.1''' _lowerCamelCase : str = convert_resnet(A_, A_, A_, A_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _lowerCamelCase : Any = F'''up_blocks.{i}.resnets.{j}''' _lowerCamelCase : Optional[int] = F'''output_blocks.{current_layer}.0''' _lowerCamelCase : Optional[Any] = convert_resnet(A_, A_, A_, A_, has_skip=A_ ) _lowerCamelCase : str = F'''up_blocks.{i}.attentions.{j}''' _lowerCamelCase : Tuple = F'''output_blocks.{current_layer}.1''' _lowerCamelCase : int = convert_attention( A_, A_, A_, A_, A_ ) current_layer += 1 if i != len(A_ ) - 1: _lowerCamelCase : Any = F'''up_blocks.{i}.upsamplers.0''' _lowerCamelCase : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' _lowerCamelCase : List[str] = convert_resnet(A_, A_, A_, A_ ) _lowerCamelCase : str = checkpoint['''out.0.weight'''] _lowerCamelCase : Any = checkpoint['''out.0.bias'''] _lowerCamelCase : int = checkpoint['''out.2.weight'''] _lowerCamelCase : Optional[Any] = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = strabool(args.class_cond) lowerCAmelCase__ = os.path.basename(args.unet_path) print(F"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ = TEST_UNET_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: lowerCAmelCase__ = None lowerCAmelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") lowerCAmelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
83
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCamelCase : def __init__( self : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict=13 , UpperCAmelCase__ : str=32 , UpperCAmelCase__ : Tuple=2 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : List[str]=16 , UpperCAmelCase__ : str=[1, 2, 1] , UpperCAmelCase__ : Union[str, Any]=[2, 2, 4] , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : List[str]=2.0 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : int=0.0 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : List[Any]="gelu" , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : str=True , UpperCAmelCase__ : List[str]=0.0_2 , UpperCAmelCase__ : List[str]=1E-5 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Dict=10 , UpperCAmelCase__ : str=8 , UpperCAmelCase__ : Tuple=["stage1", "stage2", "stage3"] , UpperCAmelCase__ : Union[str, Any]=[1, 2, 3] , ) -> str: _a : Union[str, Any] = parent _a : str = batch_size _a : int = image_size _a : Optional[Any] = patch_size _a : Tuple = num_channels _a : str = embed_dim _a : int = depths _a : List[Any] = num_heads _a : int = window_size _a : Optional[int] = mlp_ratio _a : Optional[int] = qkv_bias _a : Dict = hidden_dropout_prob _a : Any = attention_probs_dropout_prob _a : Tuple = drop_path_rate _a : List[Any] = hidden_act _a : List[Any] = use_absolute_embeddings _a : Optional[Any] = patch_norm _a : Dict = layer_norm_eps _a : Dict = initializer_range _a : Union[str, Any] = is_training _a : List[str] = scope _a : Any = use_labels _a : Any = type_sequence_label_size _a : Dict = encoder_stride _a : Optional[int] = out_features _a : Any = out_indices def _lowercase ( self : Optional[Any] ) -> int: _a : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Tuple = None if self.use_labels: _a : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Any = self.get_config() return config, pixel_values, labels def _lowercase ( self : Optional[int] ) -> List[str]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowercase ( self : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple ) -> List[str]: _a : int = MaskFormerSwinModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : Any = model(UpperCAmelCase__ ) _a : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _a : List[str] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[Any]: _a : Optional[Any] = MaskFormerSwinBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : Union[str, Any] = model(UpperCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(UpperCAmelCase__ ): _a : Dict = ["""stem"""] _a : Optional[int] = MaskFormerSwinBackbone(config=UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ) -> Tuple: _a : Optional[int] = self.prepare_config_and_inputs() _a , _a , _a : str = config_and_inputs _a : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : str = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) UpperCamelCase : Optional[Any] = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} UpperCamelCase : str = False UpperCamelCase : List[str] = False UpperCamelCase : str = False UpperCamelCase : Tuple = False UpperCamelCase : Optional[int] = False def _lowercase ( self : Any ) -> int: _a : Optional[int] = MaskFormerSwinModelTester(self ) _a : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase__ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def _lowercase ( self : int ) -> str: pass def _lowercase ( self : Dict ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self : Tuple ) -> Union[str, Any]: return def _lowercase ( self : List[Any] ) -> Optional[Any]: _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : str ) -> Tuple: _a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase__ ) @unittest.skip("""Swin does not use inputs_embeds""" ) def _lowercase ( self : Dict ) -> List[str]: pass @unittest.skip("""Swin does not support feedforward chunking""" ) def _lowercase ( self : Optional[Any] ) -> Dict: pass def _lowercase ( self : int ) -> Union[str, Any]: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Tuple = model_class(UpperCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase__ , nn.Linear ) ) def _lowercase ( self : Any ) -> Tuple: _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(UpperCAmelCase__ ) _a : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Dict = [*signature.parameters.keys()] _a : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def _lowercase ( self : Optional[Any] ) -> int: pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def _lowercase ( self : Any ) -> List[Any]: pass def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str ) -> Union[str, Any]: _a : Optional[Any] = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): _a : Tuple = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) _a : Dict = outputs.hidden_states _a : Optional[int] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) # Swin has a different seq_length _a : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _lowercase ( self : str ) -> Dict: _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _a : Optional[Any] = True self.check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : str = True self.check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) -> Optional[Any]: _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : Tuple = 3 _a : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _a : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a : Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _a : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _a : Optional[int] = True self.check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Union[str, Any] = True self.check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def _lowercase ( self : Any ) -> Any: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _lowercase ( self : List[str] ) -> Optional[int]: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _lowercase ( self : Union[str, Any] ) -> Tuple: pass def _lowercase ( self : Dict ) -> List[str]: _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(UpperCAmelCase__ : List[Any] ): _a : int = 0 return t def check_equivalence(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any]={} ): with torch.no_grad(): _a : Union[str, Any] = model(**UpperCAmelCase__ , return_dict=UpperCAmelCase__ , **UpperCAmelCase__ ) _a : Any = model(**UpperCAmelCase__ , return_dict=UpperCAmelCase__ , **UpperCAmelCase__ ).to_tuple() def recursive_check(UpperCAmelCase__ : int , UpperCAmelCase__ : str ): if isinstance(UpperCAmelCase__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase__ , UpperCAmelCase__ ): recursive_check(UpperCAmelCase__ , UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(UpperCAmelCase__ , UpperCAmelCase__ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(UpperCAmelCase__ ) , set_nan_tensor_to_zero(UpperCAmelCase__ ) , atol=1E-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(UpperCAmelCase__ ).any()} and `inf`: {torch.isinf(UpperCAmelCase__ )}. Dict has""" f""" `nan`: {torch.isnan(UpperCAmelCase__ ).any()} and `inf`: {torch.isinf(UpperCAmelCase__ )}.""" ) , ) recursive_check(UpperCAmelCase__ , UpperCAmelCase__ ) for model_class in self.all_model_classes: _a : Any = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : Dict = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Any = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) check_equivalence(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) _a : List[Any] = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) check_equivalence(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _a : Any = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Union[str, Any] = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) check_equivalence(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , {"""output_hidden_states""": True} ) _a : int = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) _a : Tuple = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) check_equivalence(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , {"""output_hidden_states""": True} ) @require_torch class UpperCamelCase ( unittest.TestCase , snake_case_ ): UpperCamelCase : Tuple = (MaskFormerSwinBackbone,) if is_torch_available() else () UpperCamelCase : Dict = MaskFormerSwinConfig def _lowercase ( self : int ) -> int: _a : Union[str, Any] = MaskFormerSwinModelTester(self ) def _lowercase ( self : List[Any] ) -> Optional[Any]: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() _a : str = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: _a : Optional[int] = backbone_class(UpperCAmelCase__ ) backbone.to(UpperCAmelCase__ ) backbone.eval() _a : Any = backbone(**UpperCAmelCase__ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , UpperCAmelCase__ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _a : Union[str, Any] = backbone(**UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _a , _a , _a : Optional[int] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _a : Any = backbone(**UpperCAmelCase__ , output_attentions=UpperCAmelCase__ ) self.assertIsNotNone(outputs.attentions )
389
0
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCAmelCase_ ( unittest.TestCase , _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = load_tool("""text-to-speech""" ) self.tool.setup() def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = self.tool("""hey""" ) _lowerCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = self.tool("""hey""" ) _lowerCAmelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
162
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants _lowercase = 300 # TEMPERATURE (unit = K) def A (__lowerCamelCase :float , __lowerCamelCase :float , __lowerCamelCase :float , ): if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
162
1
from __future__ import annotations class A_ : '''simple docstring''' def __init__( self , snake_case ): lowercase = order # a_{0} ... a_{k} lowercase = [1.0] + [0.0] * order # b_{0} ... b_{k} lowercase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] lowercase = [0.0] * self.order # y[n-1] ... y[n-k] lowercase = [0.0] * self.order def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): if len(snake_case ) < self.order: lowercase = [1.0, *a_coeffs] if len(snake_case ) != self.order + 1: lowercase = ( F'''Expected a_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(snake_case )}''' ) raise ValueError(snake_case ) if len(snake_case ) != self.order + 1: lowercase = ( F'''Expected b_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(snake_case )}''' ) raise ValueError(snake_case ) lowercase = a_coeffs lowercase = b_coeffs def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) lowercase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] lowercase = self.input_history[:-1] lowercase = self.output_history[:-1] lowercase = sample lowercase = result return result
84
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCAmelCase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): from transformers.testing_utils import pytest_terminal_summary_main lowercase = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(__SCREAMING_SNAKE_CASE , id=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowercase = 0 # Doctest custom flag to ignore output. UpperCAmelCase = doctest.register_optionflag('''IGNORE_RESULT''') UpperCAmelCase = doctest.OutputChecker class A_ ( __lowerCamelCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , snake_case , snake_case , snake_case ) UpperCAmelCase = CustomOutputChecker UpperCAmelCase = HfDoctestModule UpperCAmelCase = HfDocTestParser
84
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ : str = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Dict = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : str = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys __magic_name__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
410
from __future__ import annotations import math import random from typing import Any class A__ : '''simple docstring''' def __init__( self : str ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = 0 def _SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return self.head == self.tail def _SCREAMING_SNAKE_CASE ( self : int , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" self.data.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.tail + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.data[self.head] UpperCamelCase = self.head + 1 return ret def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return self.tail - self.head def _SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" print(self.data ) print('**************' ) print(self.data[self.head : self.tail] ) class A__ : '''simple docstring''' def __init__( self : Tuple , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" UpperCamelCase = data UpperCamelCase = None UpperCamelCase = None UpperCamelCase = 1 def _SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return self.data def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return self.left def _SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return self.right def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return self.height def _SCREAMING_SNAKE_CASE ( self : List[Any] , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" UpperCamelCase = data def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : MyNode | None ): """simple docstring""" UpperCamelCase = node def _SCREAMING_SNAKE_CASE ( self : str , _SCREAMING_SNAKE_CASE : MyNode | None ): """simple docstring""" UpperCamelCase = node def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" UpperCamelCase = height def lowercase__ ( _UpperCamelCase) -> int: """simple docstring""" if node is None: return 0 return node.get_height() def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> int: """simple docstring""" if a > b: return a return b def lowercase__ ( _UpperCamelCase) -> MyNode: """simple docstring""" print('left rotation node:' , node.get_data()) UpperCamelCase = node.get_left() assert ret is not None node.set_left(ret.get_right()) ret.set_right(_UpperCamelCase) UpperCamelCase = my_max(get_height(node.get_right()) , get_height(node.get_left())) + 1 node.set_height(_UpperCamelCase) UpperCamelCase = my_max(get_height(ret.get_right()) , get_height(ret.get_left())) + 1 ret.set_height(_UpperCamelCase) return ret def lowercase__ ( _UpperCamelCase) -> MyNode: """simple docstring""" print('right rotation node:' , node.get_data()) UpperCamelCase = node.get_right() assert ret is not None node.set_right(ret.get_left()) ret.set_left(_UpperCamelCase) UpperCamelCase = my_max(get_height(node.get_right()) , get_height(node.get_left())) + 1 node.set_height(_UpperCamelCase) UpperCamelCase = my_max(get_height(ret.get_right()) , get_height(ret.get_left())) + 1 ret.set_height(_UpperCamelCase) return ret def lowercase__ ( _UpperCamelCase) -> MyNode: """simple docstring""" UpperCamelCase = node.get_left() assert left_child is not None node.set_left(left_rotation(_UpperCamelCase)) return right_rotation(_UpperCamelCase) def lowercase__ ( _UpperCamelCase) -> MyNode: """simple docstring""" UpperCamelCase = node.get_right() assert right_child is not None node.set_right(right_rotation(_UpperCamelCase)) return left_rotation(_UpperCamelCase) def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> MyNode | None: """simple docstring""" if node is None: return MyNode(_UpperCamelCase) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _UpperCamelCase)) if ( get_height(node.get_left()) - get_height(node.get_right()) == 2 ): # an unbalance detected UpperCamelCase = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child UpperCamelCase = right_rotation(_UpperCamelCase) else: UpperCamelCase = lr_rotation(_UpperCamelCase) else: node.set_right(insert_node(node.get_right() , _UpperCamelCase)) if get_height(node.get_right()) - get_height(node.get_left()) == 2: UpperCamelCase = node.get_right() assert right_child is not None if data < right_child.get_data(): UpperCamelCase = rl_rotation(_UpperCamelCase) else: UpperCamelCase = left_rotation(_UpperCamelCase) UpperCamelCase = my_max(get_height(node.get_right()) , get_height(node.get_left())) + 1 node.set_height(_UpperCamelCase) return node def lowercase__ ( _UpperCamelCase) -> Any: """simple docstring""" while True: UpperCamelCase = root.get_right() if right_child is None: break UpperCamelCase = right_child return root.get_data() def lowercase__ ( _UpperCamelCase) -> Any: """simple docstring""" while True: UpperCamelCase = root.get_left() if left_child is None: break UpperCamelCase = left_child return root.get_data() def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> MyNode | None: """simple docstring""" UpperCamelCase = root.get_left() UpperCamelCase = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: UpperCamelCase = get_left_most(_UpperCamelCase) root.set_data(_UpperCamelCase) root.set_right(del_node(_UpperCamelCase , _UpperCamelCase)) elif left_child is not None: UpperCamelCase = left_child elif right_child is not None: UpperCamelCase = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data') return root else: root.set_left(del_node(_UpperCamelCase , _UpperCamelCase)) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_UpperCamelCase , _UpperCamelCase)) if get_height(_UpperCamelCase) - get_height(_UpperCamelCase) == 2: assert right_child is not None if get_height(right_child.get_right()) > get_height(right_child.get_left()): UpperCamelCase = left_rotation(_UpperCamelCase) else: UpperCamelCase = rl_rotation(_UpperCamelCase) elif get_height(_UpperCamelCase) - get_height(_UpperCamelCase) == -2: assert left_child is not None if get_height(left_child.get_left()) > get_height(left_child.get_right()): UpperCamelCase = right_rotation(_UpperCamelCase) else: UpperCamelCase = lr_rotation(_UpperCamelCase) UpperCamelCase = my_max(get_height(root.get_right()) , get_height(root.get_left())) + 1 root.set_height(_UpperCamelCase) return root class A__ : '''simple docstring''' def __init__( self : List[str] ): """simple docstring""" UpperCamelCase = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" return get_height(self.root ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" print('insert:' + str(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = insert_node(self.root , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : str , _SCREAMING_SNAKE_CASE : Any ): """simple docstring""" print('delete:' + str(_SCREAMING_SNAKE_CASE ) ) if self.root is None: print('Tree is empty!' ) return UpperCamelCase = del_node(self.root , _SCREAMING_SNAKE_CASE ) def __str__( self : Any , ): # a level traversale, gives a more intuitive look on the tree """simple docstring""" UpperCamelCase = '' UpperCamelCase = MyQueue() q.push(self.root ) UpperCamelCase = self.get_height() if layer == 0: return output UpperCamelCase = 0 while not q.is_empty(): UpperCamelCase = q.pop() UpperCamelCase = ' ' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(_SCREAMING_SNAKE_CASE ) q.push(_SCREAMING_SNAKE_CASE ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space UpperCamelCase = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , _SCREAMING_SNAKE_CASE ) - 1: UpperCamelCase = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowercase__ ( ) -> None: """simple docstring""" import doctest doctest.testmod() if __name__ == "__main__": _test() __magic_name__ : Any = AVLtree() __magic_name__ : str = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
410
1
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def lowerCamelCase ( self : str , lowerCamelCase : str ) -> Optional[int]: """simple docstring""" raise NotImplementedError() def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" raise NotImplementedError() class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : str , lowerCamelCase : "AutoTokenizer" , lowerCamelCase : bool = False , **lowerCamelCase : Any ) -> Dict: """simple docstring""" _UpperCAmelCase = tokenizer _UpperCAmelCase = skip_prompt _UpperCAmelCase = decode_kwargs # variables used in the streaming process _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = True def lowerCamelCase ( self : Any , lowerCamelCase : List[str] ) -> List[Any]: """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: _UpperCAmelCase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _UpperCAmelCase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _UpperCAmelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): _UpperCAmelCase = text[self.print_len :] _UpperCAmelCase = [] _UpperCAmelCase = 0 # If the last token is a CJK character, we print the characters. elif len(lowerCamelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _UpperCAmelCase = text[self.print_len :] self.print_len += len(lowerCamelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _UpperCAmelCase = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(lowerCamelCase ) self.on_finalized_text(lowerCamelCase ) def lowerCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" # Flush the cache, if it exists if len(self.token_cache ) > 0: _UpperCAmelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _UpperCAmelCase = text[self.print_len :] _UpperCAmelCase = [] _UpperCAmelCase = 0 else: _UpperCAmelCase = """""" _UpperCAmelCase = True self.on_finalized_text(lowerCamelCase , stream_end=lowerCamelCase ) def lowerCamelCase ( self : Optional[int] , lowerCamelCase : str , lowerCamelCase : bool = False ) -> Any: """simple docstring""" print(lowerCamelCase , flush=lowerCamelCase , end="""""" if not stream_end else None ) def lowerCamelCase ( self : int , lowerCamelCase : Any ) -> int: """simple docstring""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : "AutoTokenizer" , lowerCamelCase : bool = False , lowerCamelCase : Optional[float] = None , **lowerCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" super().__init__(lowerCamelCase , lowerCamelCase , **lowerCamelCase ) _UpperCAmelCase = Queue() _UpperCAmelCase = None _UpperCAmelCase = timeout def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : bool = False ) -> Optional[int]: """simple docstring""" self.text_queue.put(lowerCamelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Any ) -> Union[str, Any]: """simple docstring""" return self def lowerCamelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
108
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } a_ = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } a_ = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } a_ = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } a_ = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } a_ = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } a_ = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class UpperCAmelCase_ ( snake_case ): UpperCamelCase =VOCAB_FILES_NAMES UpperCamelCase =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class UpperCAmelCase_ ( snake_case ): UpperCamelCase =VOCAB_FILES_NAMES UpperCamelCase =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) a_ = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) a_ = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(snake_case ) class UpperCAmelCase_ : def __call__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , return_tensors=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) elif titles is None or texts is None: __lowercase : int = titles if texts is None else texts return super().__call__( UpperCamelCase_ , UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , return_tensors=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) __lowercase : Optional[int] = titles if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) else [titles] __lowercase : Optional[int] = texts if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) else [texts] __lowercase : str = len(UpperCamelCase_ ) __lowercase : List[Any] = questions if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) else [questions] * n_passages if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError( F"""There should be as many titles than texts but got {len(UpperCamelCase_ )} titles and {len(UpperCamelCase_ )} texts.""" ) __lowercase : int = super().__call__(UpperCamelCase_ , UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ )['''input_ids'''] __lowercase : List[Any] = super().__call__(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ )['''input_ids'''] __lowercase : Optional[Any] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCamelCase_ , UpperCamelCase_ ) ] } if return_attention_mask is not False: __lowercase : str = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowercase : List[str] = attention_mask return self.pad(UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 16 , UpperCamelCase_ = 64 , UpperCamelCase_ = 4 , ) -> List[DPRSpanPrediction]: __lowercase : List[Any] = reader_input['''input_ids'''] __lowercase ,__lowercase ,__lowercase : List[str] = reader_output[:3] __lowercase : Optional[int] = len(UpperCamelCase_ ) __lowercase : Any = sorted(range(UpperCamelCase_ ) , reverse=UpperCamelCase_ , key=relevance_logits.__getitem__ ) __lowercase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: __lowercase : Any = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowercase : Tuple = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowercase : Optional[Any] = sequence_ids.index(self.pad_token_id ) else: __lowercase : List[Any] = len(UpperCamelCase_ ) __lowercase : List[str] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCamelCase_ , top_spans=UpperCamelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCamelCase_ , start_index=UpperCamelCase_ , end_index=UpperCamelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(UpperCamelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> List[DPRSpanPrediction]: __lowercase : Tuple = [] for start_index, start_score in enumerate(UpperCamelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowercase : int = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x[1] , reverse=UpperCamelCase_ ) __lowercase : Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) __lowercase : Any = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(UpperCamelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(snake_case ) class UpperCAmelCase_ ( snake_case , snake_case ): UpperCamelCase =VOCAB_FILES_NAMES UpperCamelCase =READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase =READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase =["input_ids", "attention_mask"]
76
0
"""simple docstring""" def __UpperCamelCase ( SCREAMING_SNAKE_CASE = 50 ) -> int: """simple docstring""" __snake_case = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
716
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _SCREAMING_SNAKE_CASE = ["""text""", """image""", """audio"""] def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" __snake_case = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((5_12, 5_12) ) ) elif input_type == "audio": inputs.append(torch.ones(30_00 ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): inputs.append(create_inputs(SCREAMING_SNAKE_CASE ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" __snake_case = [] for output in outputs: if isinstance(SCREAMING_SNAKE_CASE , (str, AgentText) ): output_types.append("text" ) elif isinstance(SCREAMING_SNAKE_CASE , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(SCREAMING_SNAKE_CASE , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class __magic_name__ : def lowerCAmelCase ( self : Optional[int] ): self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) __snake_case = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) __snake_case = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCAmelCase ( self : int ): __snake_case = create_inputs(self.tool.inputs ) __snake_case = self.tool(*snake_case_ ) # There is a single output if len(self.tool.outputs ) == 1: __snake_case = [outputs] self.assertListEqual(output_types(snake_case_ ) , self.tool.outputs ) def lowerCAmelCase ( self : Union[str, Any] ): self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def lowerCAmelCase ( self : Any ): __snake_case = create_inputs(self.tool.inputs ) __snake_case = self.tool(*snake_case_ ) if not isinstance(snake_case_ , snake_case_ ): __snake_case = [outputs] self.assertEqual(len(snake_case_ ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case_ , self.tool.outputs ): __snake_case = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case_ , snake_case_ ) ) def lowerCAmelCase ( self : Tuple ): __snake_case = create_inputs(self.tool.inputs ) __snake_case = [] for _input, input_type in zip(snake_case_ , self.tool.inputs ): if isinstance(snake_case_ , snake_case_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error __snake_case = self.tool(*snake_case_ ) if not isinstance(snake_case_ , snake_case_ ): __snake_case = [outputs] self.assertEqual(len(snake_case_ ) , len(self.tool.outputs ) )
614
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __snake_case ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = StableDiffusionLDMaDPipeline UpperCamelCase_ = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self : Tuple ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,) lowerCAmelCase_ : Any = DDIMScheduler( beta_start=0.00_085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ,clip_sample=lowerCAmelCase__ ,set_alpha_to_one=lowerCAmelCase__ ,) torch.manual_seed(0 ) lowerCAmelCase_ : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=6 ,out_channels=6 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,) torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) lowerCAmelCase_ : Optional[int] = CLIPTextModel(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase_ : List[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : List[str]=0 ) -> Dict: '''simple docstring''' if str(lowerCAmelCase__ ).startswith("mps" ): lowerCAmelCase_ : Optional[int] = torch.manual_seed(lowerCAmelCase__ ) else: lowerCAmelCase_ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : str = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : List[str] = self.get_dummy_components() lowerCAmelCase_ : Union[str, Any] = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Any = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Any = output.rgb, output.depth lowerCAmelCase_ : Dict = rgb[0, -3:, -3:, -1] lowerCAmelCase_ : Tuple = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCAmelCase_ : Optional[Any] = np.array( [0.37_338_176, 0.70_247, 0.74_203_193, 0.51_643_604, 0.58_256_793, 0.60_932_136, 0.4_181_095, 0.48_355_877, 0.46_535_262] ) lowerCAmelCase_ : Tuple = np.array([103.46_727, 85.812_004, 87.849_236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def UpperCAmelCase_ ( self : int ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Dict = self.get_dummy_components() lowerCAmelCase_ : List[str] = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : str = 3 * [inputs["prompt"]] # forward lowerCAmelCase_ : Union[str, Any] = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = output.rgb, output.depth lowerCAmelCase_ : str = rgb_slice_a[0, -3:, -3:, -1] lowerCAmelCase_ : List[str] = depth_slice_a[0, -3:, -1] lowerCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = 3 * [inputs.pop("prompt" )] lowerCAmelCase_ : str = ldmad_pipe.tokenizer( lowerCAmelCase__ ,padding="max_length" ,max_length=ldmad_pipe.tokenizer.model_max_length ,truncation=lowerCAmelCase__ ,return_tensors="pt" ,) lowerCAmelCase_ : Union[str, Any] = text_inputs["input_ids"].to(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = ldmad_pipe.text_encoder(lowerCAmelCase__ )[0] lowerCAmelCase_ : Optional[int] = prompt_embeds # forward lowerCAmelCase_ : str = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : str = output.rgb, output.depth lowerCAmelCase_ : Optional[Any] = rgb_slice_a[0, -3:, -3:, -1] lowerCAmelCase_ : Tuple = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Optional[int] = self.get_dummy_components() lowerCAmelCase_ : Dict = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : Any = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = "french fries" lowerCAmelCase_ : Optional[int] = ldmad_pipe(**lowerCAmelCase__ ,negative_prompt=lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = output.rgb, output.depth lowerCAmelCase_ : Any = rgb[0, -3:, -3:, -1] lowerCAmelCase_ : Tuple = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCAmelCase_ : int = np.array( [0.37_044, 0.71_811_503, 0.7_223_251, 0.48_603_675, 0.5_638_391, 0.6_364_948, 0.42_833_704, 0.4_901_315, 0.47_926_217] ) lowerCAmelCase_ : Union[str, Any] = np.array([107.84_738, 84.62_802, 89.962_135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Dict="cpu" ,lowerCAmelCase__ : Union[str, Any]=torch.floataa ,lowerCAmelCase__ : List[str]=0 ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase_ : Optional[Any] = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ ,dtype=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ) lowerCAmelCase_ : List[str] = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = self.get_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Dict = output.rgb, output.depth lowerCAmelCase_ : List[str] = rgb[0, -3:, -3:, -1].flatten() lowerCAmelCase_ : Optional[int] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12) lowerCAmelCase_ : int = np.array( [0.53_805_465, 0.56_707_305, 0.5_486_515, 0.57_012_236, 0.5_814_511, 0.56_253_487, 0.54_843_014, 0.55_092_263, 0.6_459_706] ) lowerCAmelCase_ : Optional[Any] = np.array( [0.9_263_781, 0.6_678_672, 0.5_486_515, 0.92_202_145, 0.67_831_135, 0.56_253_487, 0.9_241_694, 0.7_551_478, 0.6_459_706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Dict="cpu" ,lowerCAmelCase__ : List[str]=torch.floataa ,lowerCAmelCase__ : Optional[int]=0 ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase_ : Any = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ ,dtype=lowerCAmelCase__ ) lowerCAmelCase_ : int = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : Dict ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ).to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = self.get_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Any = output.rgb, output.depth lowerCAmelCase_ : Dict = 0.495_586 lowerCAmelCase_ : Optional[Any] = 0.33_795_515 lowerCAmelCase_ : Any = 112.48_518 lowerCAmelCase_ : List[Any] = 98.489_746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def UpperCAmelCase_ ( self : Tuple ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : int = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d-4c" ).to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : str = self.get_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = ldmad_pipe(**lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = output.rgb, output.depth lowerCAmelCase_ : List[str] = 0.4_194_127 lowerCAmelCase_ : List[str] = 0.35_375_586 lowerCAmelCase_ : str = 0.5_638_502 lowerCAmelCase_ : Optional[Any] = 0.34_686_103 assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
659
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _lowercase = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = {} state_dict.pop("pixel_mean" , snake_case__) state_dict.pop("pixel_std" , snake_case__) lowerCAmelCase_ : List[Any] = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCAmelCase_ : Dict = key.replace(snake_case__ , snake_case__) if re.match(snake_case__ , snake_case__): lowerCAmelCase_ : Any = int(re.match(snake_case__ , snake_case__).group(2)) if layer_nb == 0: lowerCAmelCase_ : List[Any] = key.replace("layers.0" , "proj_in") elif layer_nb == 1: lowerCAmelCase_ : List[Any] = key.replace("layers.1" , "layers.0") elif layer_nb == 2: lowerCAmelCase_ : int = key.replace("layers.2" , "proj_out") lowerCAmelCase_ : int = value lowerCAmelCase_ : Optional[int] = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__="ybelkada/segment-anything"): lowerCAmelCase_ : Optional[int] = hf_hub_download(snake_case__ , F'''checkpoints/{model_name}.pth''') if "sam_vit_b" in model_name: lowerCAmelCase_ : Optional[Any] = SamConfig() elif "sam_vit_l" in model_name: lowerCAmelCase_ : Optional[int] = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) lowerCAmelCase_ : Union[str, Any] = SamConfig( vision_config=snake_case__ , ) elif "sam_vit_h" in model_name: lowerCAmelCase_ : Optional[Any] = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) lowerCAmelCase_ : Tuple = SamConfig( vision_config=snake_case__ , ) lowerCAmelCase_ : Optional[Any] = torch.load(snake_case__ , map_location="cpu") lowerCAmelCase_ : Union[str, Any] = replace_keys(snake_case__) lowerCAmelCase_ : List[Any] = SamImageProcessor() lowerCAmelCase_ : Any = SamProcessor(image_processor=snake_case__) lowerCAmelCase_ : Any = SamModel(snake_case__) hf_model.load_state_dict(snake_case__) lowerCAmelCase_ : Dict = hf_model.to("cuda") lowerCAmelCase_ : List[str] = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" lowerCAmelCase_ : List[Any] = Image.open(requests.get(snake_case__ , stream=snake_case__).raw).convert("RGB") lowerCAmelCase_ : Optional[int] = [[[4_00, 6_50]]] lowerCAmelCase_ : int = [[1]] lowerCAmelCase_ : Optional[Any] = processor(images=np.array(snake_case__) , return_tensors="pt").to("cuda") with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = hf_model(**snake_case__) lowerCAmelCase_ : Optional[int] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_890_251_159_668 lowerCAmelCase_ : Any = processor( images=np.array(snake_case__) , input_points=snake_case__ , input_labels=snake_case__ , return_tensors="pt").to("cuda") with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = hf_model(**snake_case__) lowerCAmelCase_ : Union[str, Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_712_603_092_193_604 lowerCAmelCase_ : Tuple = ((75, 2_75, 17_25, 8_50),) lowerCAmelCase_ : Optional[Any] = processor(images=np.array(snake_case__) , input_boxes=snake_case__ , return_tensors="pt").to("cuda") with torch.no_grad(): lowerCAmelCase_ : List[Any] = hf_model(**snake_case__) lowerCAmelCase_ : str = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_686_015_605_926_514 # Test with 2 points and 1 image. lowerCAmelCase_ : int = [[[4_00, 6_50], [8_00, 6_50]]] lowerCAmelCase_ : Optional[Any] = [[1, 1]] lowerCAmelCase_ : List[Any] = processor( images=np.array(snake_case__) , input_points=snake_case__ , input_labels=snake_case__ , return_tensors="pt").to("cuda") with torch.no_grad(): lowerCAmelCase_ : Tuple = hf_model(**snake_case__) lowerCAmelCase_ : str = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_936_047_792_434_692 if __name__ == "__main__": _lowercase = argparse.ArgumentParser() _lowercase = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) _lowercase = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
659
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor lowerCamelCase = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" warnings.warn( "The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ImageGPTImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
705
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowerCamelCase = TypeVar("""T""") class _a ( Generic[T] ): '''simple docstring''' def __init__( self , __UpperCAmelCase = True ): """simple docstring""" a__ : dict[T, list[T]] = {} # dictionary of lists a__ : Dict = directed def _A ( self , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCAmelCase ) self.adj_list[destination_vertex].append(__UpperCAmelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCAmelCase ) a__ : Optional[Any] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(__UpperCAmelCase ) a__ : Optional[int] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: a__ : str = [destination_vertex] a__ : int = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCAmelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCAmelCase ) a__ : List[str] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: a__ : int = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: a__ : List[str] = [destination_vertex] a__ : int = [] return self def __repr__( self ): """simple docstring""" return pformat(self.adj_list )
207
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): a: Optional[Any] = StableDiffusionInpaintPipeline a: Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS a: str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a: Dict = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a: Optional[int] = frozenset([] ) def _A ( self: Dict ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__UpperCamelCase , ) _a = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) _a = CLIPTextModel(__UpperCamelCase ) _a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _A ( self: Any , __UpperCamelCase: Any , __UpperCamelCase: Union[str, Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert('''RGB''' ).resize((64, 64) ) _a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(__UpperCamelCase ).startswith('''mps''' ): _a = torch.manual_seed(__UpperCamelCase ) else: _a = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _A ( self: Union[str, Any] ): _a = '''cpu''' # ensure determinism for the device-dependent torch.Generator _a = self.get_dummy_components() _a = StableDiffusionInpaintPipeline(**__UpperCamelCase ) _a = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) _a = self.get_dummy_inputs(__UpperCamelCase ) _a = sd_pipe(**__UpperCamelCase ).images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a = np.array([0.4_7_2_7, 0.5_7_3_5, 0.3_9_4_1, 0.5_4_4_6, 0.5_9_2_6, 0.4_3_9_4, 0.5_0_6_2, 0.4_6_5_4, 0.4_4_7_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _A ( self: List[str] ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def _A ( self: Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self: List[str] ): _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) _a = '''stabilityai/stable-diffusion-2-inpainting''' _a = StableDiffusionInpaintPipeline.from_pretrained(__UpperCamelCase , safety_checker=__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() _a = '''Face of a yellow cat, high resolution, sitting on a park bench''' _a = torch.manual_seed(0 ) _a = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , generator=__UpperCamelCase , output_type='''np''' , ) _a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def _A ( self: Any ): _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) _a = '''stabilityai/stable-diffusion-2-inpainting''' _a = StableDiffusionInpaintPipeline.from_pretrained( __UpperCamelCase , torch_dtype=torch.floataa , safety_checker=__UpperCamelCase , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() _a = '''Face of a yellow cat, high resolution, sitting on a park bench''' _a = torch.manual_seed(0 ) _a = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , generator=__UpperCamelCase , output_type='''np''' , ) _a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _A ( self: List[str] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _a = '''stabilityai/stable-diffusion-2-inpainting''' _a = PNDMScheduler.from_pretrained(__UpperCamelCase , subfolder='''scheduler''' ) _a = StableDiffusionInpaintPipeline.from_pretrained( __UpperCamelCase , safety_checker=__UpperCamelCase , scheduler=__UpperCamelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _a = '''Face of a yellow cat, high resolution, sitting on a park bench''' _a = torch.manual_seed(0 ) _a = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=2 , output_type='''np''' , ) _a = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.6_5 * 10**9
487
def __snake_case ( _UpperCamelCase ) -> int: _a = len(_UpperCamelCase ) _a = sum(_UpperCamelCase ) _a = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _a = True for i in range(1 , s + 1 ): _a = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _a = dp[i][j - 1] if arr[i - 1] <= j: _a = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _a = s - 2 * j break return diff
487
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : Any = 'fnet' def __init__( self , lowerCamelCase__=3_2_0_0_0 , lowerCamelCase__=7_6_8 , lowerCamelCase__=1_2 , lowerCamelCase__=3_0_7_2 , lowerCamelCase__="gelu_new" , lowerCamelCase__=0.1 , lowerCamelCase__=5_1_2 , lowerCamelCase__=4 , lowerCamelCase__=0.0_2 , lowerCamelCase__=1e-12 , lowerCamelCase__=False , lowerCamelCase__=5_1_2 , lowerCamelCase__=3 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ): super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) _lowerCamelCase = vocab_size _lowerCamelCase = max_position_embeddings _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = initializer_range _lowerCamelCase = type_vocab_size _lowerCamelCase = layer_norm_eps _lowerCamelCase = use_tpu_fourier_optimizations _lowerCamelCase = tpu_short_seq_length
623
"""simple docstring""" import numpy as np def lowerCAmelCase_( lowercase_ : np.array ) -> np.array: return 1 / (1 + np.exp(-vector )) def lowerCAmelCase_( lowercase_ : np.array ) -> np.array: return vector * sigmoid(1.7_0_2 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
623
1
"""simple docstring""" import qiskit def UpperCAmelCase ( snake_case : int , snake_case : int ): _lowerCAmelCase:Optional[Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register _lowerCAmelCase:Optional[int] = qiskit.QuantumCircuit(snake_case , snake_case ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _lowerCAmelCase:Any = qiskit.execute(snake_case , snake_case , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(snake_case ) if __name__ == "__main__": UpperCamelCase__ = single_qubit_measure(2, 2) print(F"Total count for various states are: {counts}")
227
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( snake_case : BertModel , snake_case : str , snake_case : str ): _lowerCAmelCase:Dict = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') _lowerCAmelCase:Optional[int] = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(snake_case ): os.makedirs(snake_case ) _lowerCAmelCase:Dict = model.state_dict() def to_tf_var_name(snake_case : str ): for patt, repl in iter(snake_case ): _lowerCAmelCase:Any = name.replace(snake_case , snake_case ) return F'bert/{name}' def create_tf_var(snake_case : np.ndarray , snake_case : str , snake_case : tf.Session ): _lowerCAmelCase:Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase:Any = tf.get_variable(dtype=snake_case , shape=tensor.shape , name=snake_case , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(snake_case ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase:List[str] = to_tf_var_name(snake_case ) _lowerCAmelCase:int = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase:int = torch_tensor.T _lowerCAmelCase:int = create_tf_var(tensor=snake_case , name=snake_case , session=snake_case ) tf.keras.backend.set_value(snake_case , snake_case ) _lowerCAmelCase:Any = session.run(snake_case ) print(F'Successfully created {tf_name}: {np.allclose(snake_case , snake_case )}' ) _lowerCAmelCase:Optional[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(snake_case , os.path.join(snake_case , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def UpperCAmelCase ( snake_case : Optional[int]=None ): _lowerCAmelCase:Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=snake_case , required=snake_case , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=snake_case , default=snake_case , required=snake_case , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=snake_case , required=snake_case , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=snake_case , required=snake_case , help='''Directory in which to save tensorflow model''' ) _lowerCAmelCase:Tuple = parser.parse_args(snake_case ) _lowerCAmelCase:Union[str, Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=snake_case , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
227
1
"""simple docstring""" from math import asin, atan, cos, radians, sin, sqrt, tan __SCREAMING_SNAKE_CASE = 6_378_137.0 __SCREAMING_SNAKE_CASE = 6_356_752.314_245 __SCREAMING_SNAKE_CASE = 6_378_137 def A_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCamelCase_ : List[Any] =(AXIS_A - AXIS_B) / AXIS_A UpperCamelCase_ : Dict =atan((1 - flattening) * tan(radians(__lowercase ) ) ) UpperCamelCase_ : str =atan((1 - flattening) * tan(radians(__lowercase ) ) ) UpperCamelCase_ : List[Any] =radians(__lowercase ) UpperCamelCase_ : str =radians(__lowercase ) # Equation UpperCamelCase_ : str =sin((phi_a - phi_a) / 2 ) UpperCamelCase_ : Union[str, Any] =sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda UpperCamelCase_ : str =sqrt(sin_sq_phi + (cos(__lowercase ) * cos(__lowercase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
717
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class a__ ( A__ ): def lowerCamelCase_ ( self :Any ): '''simple docstring''' UpperCamelCase_ : List[str] =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCamelCase , 'tf_padding' ) ) self.parent.assertTrue(hasattr(_lowerCamelCase , 'depth_multiplier' ) ) class a__ : def __init__( self :Tuple , _lowerCamelCase :int , _lowerCamelCase :Optional[Any]=13 , _lowerCamelCase :List[Any]=3 , _lowerCamelCase :Optional[Any]=32 , _lowerCamelCase :str=0.25 , _lowerCamelCase :str=8 , _lowerCamelCase :str=8 , _lowerCamelCase :Tuple=6 , _lowerCamelCase :Optional[Any]=32 , _lowerCamelCase :Union[str, Any]=True , _lowerCamelCase :int=True , _lowerCamelCase :Optional[int]=True , _lowerCamelCase :Tuple="relu6" , _lowerCamelCase :List[Any]=1_280 , _lowerCamelCase :Optional[int]=0.1 , _lowerCamelCase :Optional[Any]=0.02 , _lowerCamelCase :Dict=True , _lowerCamelCase :List[str]=True , _lowerCamelCase :List[str]=10 , _lowerCamelCase :List[Any]=None , ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =parent UpperCamelCase_ : Optional[Any] =batch_size UpperCamelCase_ : List[str] =num_channels UpperCamelCase_ : Union[str, Any] =image_size UpperCamelCase_ : Union[str, Any] =depth_multiplier UpperCamelCase_ : Optional[Any] =depth_divisible_by UpperCamelCase_ : Optional[Any] =min_depth UpperCamelCase_ : List[Any] =expand_ratio UpperCamelCase_ : Any =tf_padding UpperCamelCase_ : List[str] =output_stride UpperCamelCase_ : Tuple =first_layer_is_expansion UpperCamelCase_ : Any =finegrained_output UpperCamelCase_ : Dict =hidden_act UpperCamelCase_ : int =last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCamelCase_ : Optional[int] =classifier_dropout_prob UpperCamelCase_ : str =use_labels UpperCamelCase_ : List[Any] =is_training UpperCamelCase_ : Tuple =num_labels UpperCamelCase_ : Optional[int] =initializer_range UpperCamelCase_ : Union[str, Any] =scope def lowerCamelCase_ ( self :str ): '''simple docstring''' UpperCamelCase_ : str =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ : Dict =None UpperCamelCase_ : Dict =None if self.use_labels: UpperCamelCase_ : List[str] =ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase_ : List[Any] =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase_ : Any =self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase_ ( self :Any ): '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self :List[str] , _lowerCamelCase :Optional[int] , _lowerCamelCase :str , _lowerCamelCase :Tuple , _lowerCamelCase :List[str] ): '''simple docstring''' UpperCamelCase_ : List[Any] =MobileNetVaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_ : List[Any] =model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCamelCase_ ( self :Dict , _lowerCamelCase :int , _lowerCamelCase :Optional[Any] , _lowerCamelCase :str , _lowerCamelCase :Optional[Any] ): '''simple docstring''' UpperCamelCase_ : Tuple =self.num_labels UpperCamelCase_ : List[str] =MobileNetVaForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_ : List[str] =model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self :Any , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :str , _lowerCamelCase :Dict ): '''simple docstring''' UpperCamelCase_ : Tuple =self.num_labels UpperCamelCase_ : int =MobileNetVaForSemanticSegmentation(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_ : Dict =model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCamelCase_ : int =model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self :Any ): '''simple docstring''' UpperCamelCase_ : str =self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : int =config_and_inputs UpperCamelCase_ : Dict ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class a__ ( A__ , A__ , unittest.TestCase ): UpperCAmelCase__ = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def lowerCamelCase_ ( self :Union[str, Any] ): '''simple docstring''' UpperCamelCase_ : Dict =MobileNetVaModelTester(self ) UpperCamelCase_ : Any =MobileNetVaConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def lowerCamelCase_ ( self :int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def lowerCamelCase_ ( self :int ): '''simple docstring''' pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def lowerCamelCase_ ( self :str ): '''simple docstring''' pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def lowerCamelCase_ ( self :int ): '''simple docstring''' pass def lowerCamelCase_ ( self :List[Any] ): '''simple docstring''' UpperCamelCase_ , UpperCamelCase_ : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Tuple =model_class(_lowerCamelCase ) UpperCamelCase_ : Dict =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ : Optional[int] =[*signature.parameters.keys()] UpperCamelCase_ : List[str] =['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def lowerCamelCase_ ( self :List[str] ): '''simple docstring''' UpperCamelCase_ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowerCamelCase_ ( self :Dict ): '''simple docstring''' def check_hidden_states_output(_lowerCamelCase :List[Any] , _lowerCamelCase :List[Any] , _lowerCamelCase :List[Any] ): UpperCamelCase_ : List[str] =model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_ : str =model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) UpperCamelCase_ : Optional[Any] =outputs.hidden_states UpperCamelCase_ : List[str] =16 self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) UpperCamelCase_ , UpperCamelCase_ : str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Dict =True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ : Dict =True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( self :Any ): '''simple docstring''' UpperCamelCase_ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def lowerCamelCase_ ( self :Optional[Any] ): '''simple docstring''' UpperCamelCase_ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @slow def lowerCamelCase_ ( self :str ): '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ : List[str] =MobileNetVaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def A_ ( ): UpperCamelCase_ : Dict =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self :Tuple ): '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self :Tuple ): '''simple docstring''' UpperCamelCase_ : Optional[int] =MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(_lowerCamelCase ) UpperCamelCase_ : List[Any] =self.default_image_processor UpperCamelCase_ : List[Any] =prepare_img() UpperCamelCase_ : List[str] =image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_ : List[Any] =model(**_lowerCamelCase ) # verify the logits UpperCamelCase_ : Optional[int] =torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) UpperCamelCase_ : Optional[Any] =torch.tensor([0.2445, -1.1993, 0.1905] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self :Tuple ): '''simple docstring''' UpperCamelCase_ : Dict =MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) UpperCamelCase_ : Optional[int] =model.to(_lowerCamelCase ) UpperCamelCase_ : Dict =MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) UpperCamelCase_ : Any =prepare_img() UpperCamelCase_ : List[Any] =image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_ : Any =model(**_lowerCamelCase ) UpperCamelCase_ : Any =outputs.logits # verify the logits UpperCamelCase_ : Optional[int] =torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , _lowerCamelCase ) UpperCamelCase_ : List[Any] =torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=_lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1E-4 ) )
395
0
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __UpperCamelCase = "http://www.mocksite.com/file1.txt" __UpperCamelCase = "\"text\": [\"foo\", \"foo\"]" __UpperCamelCase = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class _A : lowercase__: str = 200 lowercase__: List[str] = {'''Content-Length''': '''100'''} lowercase__: Union[str, Any] = {} def lowercase__ ( self : Any , **__magic_name__ : List[Any] ) -> Dict: """simple docstring""" return [bytes(__magic_name__ , """utf-8""" )] def _a ( *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: """simple docstring""" return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" import requests monkeypatch.setattr(_lowerCamelCase , """request""" , _lowerCamelCase ) __snake_case : Union[str, Any] = URL if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : str = url elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [url] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Union[str, Any] = {"""train""": url} __snake_case : Dict = """dummy""" __snake_case : List[str] = """downloads""" __snake_case : List[Any] = tmp_path __snake_case : List[Any] = DownloadConfig( cache_dir=os.path.join(_lowerCamelCase , _lowerCamelCase ) , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : int = dl_manager.download(_lowerCamelCase ) __snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Any = [downloaded_paths] __snake_case : List[Any] = [urls] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in downloaded_paths.keys() __snake_case : Tuple = downloaded_paths.values() __snake_case : Optional[int] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCamelCase , _lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __snake_case : List[str] = Path(_lowerCamelCase ) __snake_case : Any = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __snake_case : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT __snake_case : List[str] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __snake_case : Union[str, Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" __snake_case : Any = str(_lowerCamelCase ) if issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Optional[int] = filename elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Tuple = [filename] elif issubclass(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = {"""train""": filename} __snake_case : Optional[Any] = """dummy""" __snake_case : List[Any] = xz_file.parent __snake_case : int = """extracted""" __snake_case : Dict = DownloadConfig( cache_dir=_lowerCamelCase , use_etag=_lowerCamelCase , ) __snake_case : List[str] = DownloadManager(dataset_name=_lowerCamelCase , download_config=_lowerCamelCase ) __snake_case : Optional[Any] = dl_manager.extract(_lowerCamelCase ) __snake_case : Union[str, Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case : Dict = [extracted_paths] __snake_case : int = [paths] elif isinstance(_lowerCamelCase , _lowerCamelCase ): assert "train" in extracted_paths.keys() __snake_case : int = extracted_paths.values() __snake_case : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCamelCase , _lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] __snake_case : Any = Path(_lowerCamelCase ) __snake_case : str = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCamelCase , etag=_lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __snake_case : Optional[int] = extracted_path.read_text() __snake_case : str = text_file.read_text() assert extracted_file_content == expected_file_content def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(_lowerCamelCase , start=1 ): __snake_case : Tuple = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Any = request.getfixturevalue(_lowerCamelCase ) __snake_case : str = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> List[str]: """simple docstring""" __snake_case : int = request.getfixturevalue(_lowerCamelCase ) __snake_case : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCamelCase ) , start=1 ): _test_jsonl(_lowerCamelCase , _lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : List[str] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCamelCase ) , start=1 ): assert os.path.basename(_lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
26
def lowercase ( a , a , a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :int = [False] * len(a ) SCREAMING_SNAKE_CASE_ :List[Any] = [] queue.append(a ) SCREAMING_SNAKE_CASE_ :int = True while queue: SCREAMING_SNAKE_CASE_ :int = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(a ) SCREAMING_SNAKE_CASE_ :Tuple = True SCREAMING_SNAKE_CASE_ :Optional[int] = u return visited[t] def lowercase ( a , a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Any = [-1] * (len(a )) SCREAMING_SNAKE_CASE_ :Tuple = 0 while bfs(a , a , a , a ): SCREAMING_SNAKE_CASE_ :List[Any] = float("Inf" ) SCREAMING_SNAKE_CASE_ :str = sink while s != source: # Find the minimum value in select path SCREAMING_SNAKE_CASE_ :str = min(a , graph[parent[s]][s] ) SCREAMING_SNAKE_CASE_ :Optional[Any] = parent[s] max_flow += path_flow SCREAMING_SNAKE_CASE_ :Dict = sink while v != source: SCREAMING_SNAKE_CASE_ :int = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow SCREAMING_SNAKE_CASE_ :Any = parent[v] return max_flow SCREAMING_SNAKE_CASE__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 0, 5 print(ford_fulkerson(graph, source, sink))
631
0
"""simple docstring""" def _lowerCamelCase( a ): __a = len(a ) while cur > 1: # Find the maximum number in arr __a = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __a = arr[mi::-1] + arr[mi + 1 : len(a )] # Reverse whole list __a = arr[cur - 1 :: -1] + arr[cur : len(a )] cur -= 1 return arr if __name__ == "__main__": SCREAMING_SNAKE_CASE__:List[Any] = input("""Enter numbers separated by a comma:\n""").strip() SCREAMING_SNAKE_CASE__:List[Any] = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
67
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging SCREAMING_SNAKE_CASE__:List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:Optional[Any] = { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class snake_case__ ( snake_case_ ): _snake_case : str = """blenderbot-small""" _snake_case : str = ["""past_key_values"""] _snake_case : List[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowerCamelCase=50265 , lowerCamelCase=512 , lowerCamelCase=8 , lowerCamelCase=2048 , lowerCamelCase=16 , lowerCamelCase=8 , lowerCamelCase=2048 , lowerCamelCase=16 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase="gelu" , lowerCamelCase=512 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.02 , lowerCamelCase=1 , lowerCamelCase=False , lowerCamelCase=0 , lowerCamelCase=1 , lowerCamelCase=2 , lowerCamelCase=2 , **lowerCamelCase , ): __a = vocab_size __a = max_position_embeddings __a = d_model __a = encoder_ffn_dim __a = encoder_layers __a = encoder_attention_heads __a = decoder_ffn_dim __a = decoder_layers __a = decoder_attention_heads __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = encoder_layerdrop __a = decoder_layerdrop __a = use_cache __a = encoder_layers __a = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , is_encoder_decoder=lowerCamelCase , decoder_start_token_id=lowerCamelCase , forced_eos_token_id=lowerCamelCase , **lowerCamelCase , ) class snake_case__ ( snake_case_ ): @property def a__ ( self ): if self.task in ["default", "seq2seq-lm"]: __a = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __a = {0: "batch"} __a = {0: "batch", 1: "past_decoder_sequence + sequence"} else: __a = {0: "batch", 1: "decoder_sequence"} __a = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. __a = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __a , __a = self.num_layers for i in range(lowerCamelCase ): __a = {0: "batch", 2: "past_sequence + sequence"} __a = {0: "batch", 2: "past_sequence + sequence"} else: __a = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def a__ ( self ): if self.task in ["default", "seq2seq-lm"]: __a = super().outputs else: __a = super(lowerCamelCase , self ).outputs if self.use_past: __a , __a = self.num_layers for i in range(lowerCamelCase ): __a = {0: "batch", 2: "past_sequence + sequence"} __a = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def a__ ( self , lowerCamelCase , lowerCamelCase = -1 , lowerCamelCase = -1 , lowerCamelCase = False , lowerCamelCase = None , ): __a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Generate decoder inputs __a = seq_length if not self.use_past else 1 __a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __a = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __a = dict(**lowerCamelCase , **lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __a , __a = common_inputs["input_ids"].shape __a = common_inputs["decoder_input_ids"].shape[1] __a , __a = self.num_attention_heads __a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __a = decoder_seq_length + 3 __a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __a = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(lowerCamelCase , lowerCamelCase )] , dim=1 ) __a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __a , __a = self.num_layers __a = min(lowerCamelCase , lowerCamelCase ) __a = max(lowerCamelCase , lowerCamelCase ) - min_num_layers __a = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), ) ) # TODO: test this. __a = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(lowerCamelCase , lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) ) return common_inputs def a__ ( self , lowerCamelCase , lowerCamelCase = -1 , lowerCamelCase = -1 , lowerCamelCase = False , lowerCamelCase = None , ): __a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __a , __a = common_inputs["input_ids"].shape # Not using the same length for past_key_values __a = seqlen + 2 __a , __a = self.num_layers __a , __a = self.num_attention_heads __a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __a = common_inputs["attention_mask"].dtype __a = torch.cat( [common_inputs["attention_mask"], torch.ones(lowerCamelCase , lowerCamelCase , dtype=lowerCamelCase )] , dim=1 ) __a = [ (torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) for _ in range(lowerCamelCase ) ] return common_inputs def a__ ( self , lowerCamelCase , lowerCamelCase = -1 , lowerCamelCase = -1 , lowerCamelCase = False , lowerCamelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __a = compute_effective_axis_dimension( lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __a = tokenizer.num_special_tokens_to_add(lowerCamelCase ) __a = compute_effective_axis_dimension( lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence __a = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size __a = dict(tokenizer(lowerCamelCase , return_tensors=lowerCamelCase ) ) return common_inputs def a__ ( self , lowerCamelCase , lowerCamelCase = -1 , lowerCamelCase = -1 , lowerCamelCase = False , lowerCamelCase = None , ): if self.task in ["default", "seq2seq-lm"]: __a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCamelCase , batch_size=lowerCamelCase , seq_length=lowerCamelCase , is_pair=lowerCamelCase , framework=lowerCamelCase ) elif self.task == "causal-lm": __a = self._generate_dummy_inputs_for_causal_lm( lowerCamelCase , batch_size=lowerCamelCase , seq_length=lowerCamelCase , is_pair=lowerCamelCase , framework=lowerCamelCase ) else: __a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase , batch_size=lowerCamelCase , seq_length=lowerCamelCase , is_pair=lowerCamelCase , framework=lowerCamelCase ) return common_inputs def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if self.task in ["default", "seq2seq-lm"]: __a = super()._flatten_past_key_values_(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __a = super(lowerCamelCase , self )._flatten_past_key_values_( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
67
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
65
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = 'yolos' def __init__( self , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , lowerCAmelCase=[512, 864] , lowerCAmelCase=16 , lowerCAmelCase=3 , lowerCAmelCase=True , lowerCAmelCase=100 , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=1 , lowerCAmelCase=5 , lowerCAmelCase=2 , lowerCAmelCase=5 , lowerCAmelCase=2 , lowerCAmelCase=0.1 , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = num_detection_tokens UpperCAmelCase_ = use_mid_position_embeddings UpperCAmelCase_ = auxiliary_loss # Hungarian matcher UpperCAmelCase_ = class_cost UpperCAmelCase_ = bbox_cost UpperCAmelCase_ = giou_cost # Loss coefficients UpperCAmelCase_ = bbox_loss_coefficient UpperCAmelCase_ = giou_loss_coefficient UpperCAmelCase_ = eos_coefficient class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : int = version.parse('1.11' ) @property def A__ ( self ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def A__ ( self ): return 1e-4 @property def A__ ( self ): return 12
579
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _A = logging.get_logger(__name__) class lowerCamelCase (__lowerCAmelCase ): '''simple docstring''' a = ['''pixel_values'''] def __init__( self : List[Any] , _snake_case : List[str] = True , _snake_case : List[str] = None , _snake_case : Dict = PILImageResampling.BICUBIC , _snake_case : Tuple = True , _snake_case : Union[str, Any] = True , _snake_case : int = 1 / 255 , _snake_case : Dict = None , _snake_case : Union[str, Any] = True , _snake_case : str = None , _snake_case : Dict = None , **_snake_case : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = size if size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE__ = get_size_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = crop_size if crop_size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE__ = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ , param_name="crop_size" ) SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = do_center_crop SCREAMING_SNAKE_CASE__ = crop_size SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = resample SCREAMING_SNAKE_CASE__ = rescale_factor SCREAMING_SNAKE_CASE__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN SCREAMING_SNAKE_CASE__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCAmelCase_ ( self : Optional[int] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : str = PILImageResampling.BILINEAR , _snake_case : Union[str, Any] = None , **_snake_case : List[str] , ) -> np.ndarray: SCREAMING_SNAKE_CASE__ = get_size_dict(lowerCAmelCase_ ) if "shortest_edge" in size: SCREAMING_SNAKE_CASE__ = get_resize_output_image_size(lowerCAmelCase_ , size=size["shortest_edge"] , default_to_square=lowerCAmelCase_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: SCREAMING_SNAKE_CASE__ = (size["height"], size["width"]) else: raise ValueError(F"""Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}""" ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase_ ( self : List[Any] , _snake_case : Optional[Any] , _snake_case : Tuple , _snake_case : Optional[int] = None , **_snake_case : str , ) -> np.ndarray: SCREAMING_SNAKE_CASE__ = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase_ ( self : Dict , _snake_case : Dict , _snake_case : Tuple , _snake_case : Optional[Any] = None , **_snake_case : Dict ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase_ ( self : Union[str, Any] , _snake_case : int , _snake_case : List[Any] , _snake_case : int , _snake_case : str = None , **_snake_case : Dict , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase_ ( self : str , _snake_case : Union[str, Any] , _snake_case : Union[str, Any] = None , _snake_case : Optional[Any] = None , _snake_case : str = None , _snake_case : Any = None , _snake_case : str = None , _snake_case : int = None , _snake_case : List[str] = None , _snake_case : Optional[Any] = None , _snake_case : Union[str, Any] = None , _snake_case : List[str] = None , _snake_case : Any = None , _snake_case : List[Any] = ChannelDimension.FIRST , **_snake_case : List[str] , ) -> BatchFeature: SCREAMING_SNAKE_CASE__ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE__ = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE__ = get_size_dict(lowerCAmelCase_ , param_name="crop_size" , default_to_square=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ = size if size is not None else self.size SCREAMING_SNAKE_CASE__ = get_size_dict(lowerCAmelCase_ ) if not is_batched(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = [images] if not valid_images(lowerCAmelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE__ = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] SCREAMING_SNAKE_CASE__ = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] SCREAMING_SNAKE_CASE__ = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
717
"""simple docstring""" import math def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ) -> float: if initial_intensity < 0: raise ValueError("The value of intensity cannot be negative" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("In Malus Law, the angle is in the range 0-360 degrees" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__UpperCAmelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
538
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable SCREAMING_SNAKE_CASE: Dict = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE: List[str] = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE: Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
360
'''simple docstring''' def __UpperCamelCase ( lowercase_ : list[int] , lowercase_ : list[int] , lowercase_ : int ): """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(lowercase_ ) ) def __UpperCamelCase ( lowercase_ : list[list[int]] , lowercase_ : int , lowercase_ : list[int] , lowercase_ : int ): """simple docstring""" if index == len(lowercase_ ): return True # Recursive Step for i in range(lowercase_ ): if valid_coloring(graph[index] , lowercase_ , lowercase_ ): # Color current vertex a_ = i # Validate coloring if util_color(lowercase_ , lowercase_ , lowercase_ , index + 1 ): return True # Backtrack a_ = -1 return False def __UpperCamelCase ( lowercase_ : list[list[int]] , lowercase_ : int ): """simple docstring""" a_ = [-1] * len(lowercase_ ) if util_color(lowercase_ , lowercase_ , lowercase_ , 0 ): return colored_vertices return []
536
0
class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Dict: snake_case__ :List[str] = name snake_case__ :Any = value snake_case__ :Optional[int] = weight def __repr__( self ) -> Any: return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCAmelCase_ ( self ) -> Union[str, Any]: return self.value def lowerCAmelCase_ ( self ) -> Optional[Any]: return self.name def lowerCAmelCase_ ( self ) -> Optional[Any]: return self.weight def lowerCAmelCase_ ( self ) -> Dict: return self.value / self.weight def lowercase_ ( __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : str ) -> str: '''simple docstring''' snake_case__ :List[str] = [] for i in range(len(__snake_case ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def lowercase_ ( __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[int] ) -> Optional[Any]: '''simple docstring''' snake_case__ :Union[str, Any] = sorted(__snake_case , key=__snake_case , reverse=__snake_case ) snake_case__ :Optional[int] = [] snake_case__ , snake_case__ :Tuple = 0.0, 0.0 for i in range(len(__snake_case ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowercase_ ( ) -> Dict: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
57
from __future__ import annotations import math def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : bool , __snake_case : list[int] , __snake_case : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :List[Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case__ :int = math.log(len(__snake_case ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __snake_case , __snake_case , __snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __snake_case : List[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class lowercase_ ( datasets.BuilderConfig ): a_ = 1_0000 a_ = None a_ = None class lowercase_ ( datasets.ArrowBasedBuilder ): a_ = ParquetConfig def lowerCamelCase_ ( self ) -> int: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) UpperCAmelCase_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCamelCase__ , (str, list, tuple) ): UpperCAmelCase_ = data_files if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase_ = [dl_manager.iter_files(UpperCamelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] UpperCAmelCase_ = [] for split_name, files in data_files.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase_ = [dl_manager.iter_files(UpperCamelCase__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(UpperCamelCase__ ): with open(UpperCamelCase__ , "rb" ) as f: UpperCAmelCase_ = datasets.Features.from_arrow_schema(pq.read_schema(UpperCamelCase__ ) ) break splits.append(datasets.SplitGenerator(name=UpperCamelCase__ , gen_kwargs={"files": files} ) ) return splits def lowerCamelCase_ ( self , UpperCamelCase__ ) -> pa.Table: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example UpperCAmelCase_ = table_cast(UpperCamelCase__ , self.info.features.arrow_schema ) return pa_table def lowerCamelCase_ ( self , UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCamelCase__ ) ): with open(UpperCamelCase__ , "rb" ) as f: UpperCAmelCase_ = pq.ParquetFile(UpperCamelCase__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): UpperCAmelCase_ = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"""{file_idx}_{batch_idx}""", self._cast_table(UpperCamelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCamelCase__ )}: {e}""" ) raise
660
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __snake_case : List[str] = logging.get_logger(__name__) class lowercase_ ( _A ): a_ = """linear""" a_ = """cosine""" a_ = """cosine_with_restarts""" a_ = """polynomial""" a_ = """constant""" a_ = """constant_with_warmup""" a_ = """piecewise_constant""" def lowerCamelCase__ ( A_ , A_ = -1 ): return LambdaLR(A_ , lambda A_ : 1 , last_epoch=A_ ) def lowerCamelCase__ ( A_ , A_ , A_ = -1 ): def lr_lambda(A_ ): if current_step < num_warmup_steps: return float(A_ ) / float(max(1.0 , A_ ) ) return 1.0 return LambdaLR(A_ , A_ , last_epoch=A_ ) def lowerCamelCase__ ( A_ , A_ , A_ = -1 ): UpperCAmelCase_ = {} UpperCAmelCase_ = step_rules.split("," ) for rule_str in rule_list[:-1]: UpperCAmelCase_ , UpperCAmelCase_ = rule_str.split(":" ) UpperCAmelCase_ = int(A_ ) UpperCAmelCase_ = float(A_ ) UpperCAmelCase_ = value UpperCAmelCase_ = float(rule_list[-1] ) def create_rules_function(A_ , A_ ): def rule_func(A_ ) -> float: UpperCAmelCase_ = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(A_ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func UpperCAmelCase_ = create_rules_function(A_ , A_ ) return LambdaLR(A_ , A_ , last_epoch=A_ ) def lowerCamelCase__ ( A_ , A_ , A_ , A_=-1 ): def lr_lambda(A_ ): if current_step < num_warmup_steps: return float(A_ ) / float(max(1 , A_ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(A_ , A_ , A_ ) def lowerCamelCase__ ( A_ , A_ , A_ , A_ = 0.5 , A_ = -1 ): def lr_lambda(A_ ): if current_step < num_warmup_steps: return float(A_ ) / float(max(1 , A_ ) ) UpperCAmelCase_ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(A_ ) * 2.0 * progress )) ) return LambdaLR(A_ , A_ , A_ ) def lowerCamelCase__ ( A_ , A_ , A_ , A_ = 1 , A_ = -1 ): def lr_lambda(A_ ): if current_step < num_warmup_steps: return float(A_ ) / float(max(1 , A_ ) ) UpperCAmelCase_ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(A_ ) * progress) % 1.0) )) ) return LambdaLR(A_ , A_ , A_ ) def lowerCamelCase__ ( A_ , A_ , A_ , A_=1e-7 , A_=1.0 , A_=-1 ): UpperCAmelCase_ = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(A_ ): if current_step < num_warmup_steps: return float(A_ ) / float(max(1 , A_ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: UpperCAmelCase_ = lr_init - lr_end UpperCAmelCase_ = num_training_steps - num_warmup_steps UpperCAmelCase_ = 1 - (current_step - num_warmup_steps) / decay_steps UpperCAmelCase_ = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(A_ , A_ , A_ ) __snake_case : str = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowerCamelCase__ ( A_ , A_ , A_ = None , A_ = None , A_ = None , A_ = 1 , A_ = 1.0 , A_ = -1 , ): UpperCAmelCase_ = SchedulerType(A_ ) UpperCAmelCase_ = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(A_ , last_epoch=A_ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(A_ , step_rules=A_ , last_epoch=A_ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(A_ , num_warmup_steps=A_ , last_epoch=A_ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( A_ , num_warmup_steps=A_ , num_training_steps=A_ , num_cycles=A_ , last_epoch=A_ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( A_ , num_warmup_steps=A_ , num_training_steps=A_ , power=A_ , last_epoch=A_ , ) return schedule_func( A_ , num_warmup_steps=A_ , num_training_steps=A_ , last_epoch=A_ )
660
1
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" A__ : Any = HfArgumentParser(lowercase_ ) A__ : List[Any] = parser.parse_args_into_dataclasses()[0] A__ : str = TensorFlowBenchmark(args=lowercase_ ) try: A__ : str = parser.parse_args_into_dataclasses()[0] except ValueError as e: A__ : List[Any] = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" A__ : Tuple = """ """.join(str(lowercase_ ).split(''' ''' )[:-1] ) A__ : str = """""" A__ : Tuple = eval(str(lowercase_ ).split(''' ''' )[-1] ) A__ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase_ ) if len(lowercase_ ) > 0: A__ : str = full_error_msg + begin_error_msg + str(lowercase_ ) raise ValueError(lowercase_ ) benchmark.run() if __name__ == "__main__": main()
719
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image , __UpperCamelCase : float ) -> Image: """simple docstring""" def brightness(__UpperCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : Dict = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
55
0
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {"""vocab_file""": """vocab.json"""} _a = { """vocab_file""": { """mgp-str""": """https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json""", } } _a = {"""mgp-str""": 27} class _UpperCAmelCase( lowerCamelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __a , __a="[GO]" , __a="[GO]" , __a="[s]" , __a="[GO]" , **__a) -> Dict: '''simple docstring''' super().__init__( unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , **__a , ) with open(__a , encoding='''utf-8''') as vocab_handle: _UpperCamelCase = json.load(__a) _UpperCamelCase = {v: k for k, v in self.vocab.items()} @property def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return len(self.vocab) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder) def UpperCAmelCase ( self , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = [] for s in text: char_tokens.extend(__a) return char_tokens def UpperCAmelCase ( self , __a) -> Optional[Any]: '''simple docstring''' return self.vocab.get(__a , self.vocab.get(self.unk_token)) def UpperCAmelCase ( self , __a) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(__a) def UpperCAmelCase ( self , __a , __a = None) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__a): logger.error('''Vocabulary path ({}) should be a directory'''.format(__a)) return _UpperCamelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) with open(__a , '''w''' , encoding='''utf-8''') as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__a , ensure_ascii=__a) + '''\n''') return (vocab_file,)
19
"""simple docstring""" import heapq def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" _UpperCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__snake_case, [-1 * len(__snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices _UpperCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _UpperCamelCase = heapq.heappop(__snake_case )[1][0] chosen_vertices.add(__snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _UpperCamelCase = elem[1][1].index(__snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _a = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
19
1
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = u for i in range(1 , lowerCAmelCase_ ): lowercase = temp * (u - i) return temp def UpperCAmelCase_ ( ): """simple docstring""" lowercase = int(input("enter the numbers of values: " ) ) lowercase = [] for _ in range(lowerCAmelCase_ ): y.append([] ) for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): y[i].append(lowerCAmelCase_ ) lowercase = 0 print("enter the values of parameters in a list: " ) lowercase = list(map(lowerCAmelCase_ , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(lowerCAmelCase_ ): lowercase = float(input() ) lowercase = int(input("enter the value to interpolate: " ) ) lowercase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , lowerCAmelCase_ ): for j in range(n - i ): lowercase = y[j + 1][i - 1] - y[j][i - 1] lowercase = y[0][0] for i in range(1 , lowerCAmelCase_ ): summ += (ucal(lowerCAmelCase_ , lowerCAmelCase_ ) * y[0][i]) / math.factorial(lowerCAmelCase_ ) print(f'the value at {value} is {summ}' ) if __name__ == "__main__": main()
711
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCAmelCase ( _lowercase ): @staticmethod def UpperCAmelCase__ (A__ : ArgumentParser ) -> List[Any]: lowercase = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=A__ , default=A__ , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=A__ , help="Name of the model to download" ) download_parser.set_defaults(func=A__ ) def __init__(self : Tuple , A__ : str , A__ : str , A__ : bool , A__ : bool ) -> str: lowercase = model lowercase = cache lowercase = force lowercase = trust_remote_code def UpperCAmelCase__ (self : Union[str, Any] ) -> Dict: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
459
0
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
546
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : int =logging.getLogger(__name__) @dataclass(frozen=__a ) class A_ : _A :str _A :str _A :Optional[str] = None _A :Optional[str] = None _A :Optional[str] = None @dataclass(frozen=__a ) class A_ : _A :List[int] _A :Optional[List[int]] = None _A :Optional[List[int]] = None _A :Optional[Union[int, float]] = None _A :Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ ( __a ): _A :List[InputFeatures] def __init__( self : List[Any] , snake_case__ : str , snake_case__ : PreTrainedTokenizer , snake_case__ : str , snake_case__ : Optional[int] = None , snake_case__ : Optional[int]=False , snake_case__ : bool = False , ): lowercase = hans_processors[task]() lowercase = os.path.join( snake_case__ , """cached_{}_{}_{}_{}""".format( """dev""" if evaluate else """train""" , tokenizer.__class__.__name__ , str(snake_case__ ) , snake_case__ , ) , ) lowercase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase , lowercase = label_list[2], label_list[1] lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase = cached_features_file + """.lock""" with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) lowercase = torch.load(snake_case__ ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) lowercase = ( processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) ) logger.info("""Training examples: %s""" , len(snake_case__ ) ) lowercase = hans_convert_examples_to_features(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) logger.info("""Saving features into cached file %s""" , snake_case__ ) torch.save(self.features , snake_case__ ) def __len__( self : List[str] ): return len(self.features ) def __getitem__( self : int , snake_case__ : int ): return self.features[i] def SCREAMING_SNAKE_CASE__ ( self : int ): return self.label_list if is_tf_available(): import tensorflow as tf class A_ : _A :List[InputFeatures] def __init__( self : Union[str, Any] , snake_case__ : str , snake_case__ : PreTrainedTokenizer , snake_case__ : str , snake_case__ : Optional[int] = 1_28 , snake_case__ : Union[str, Any]=False , snake_case__ : bool = False , ): lowercase = hans_processors[task]() lowercase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase , lowercase = label_list[2], label_list[1] lowercase = label_list lowercase = processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) lowercase = hans_convert_examples_to_features(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="""convert examples to features""" ): if ex_index % 1_00_00 == 0: logger.info("""Writing example %d of %d""" % (ex_index, len(snake_case__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowercase = tf.data.Dataset.from_generator( snake_case__ , ( { """example_id""": tf.intaa, """input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa, }, tf.intaa, ) , ( { """example_id""": tf.TensorShape([] ), """input_ids""": tf.TensorShape([None, None] ), """attention_mask""": tf.TensorShape([None, None] ), """token_type_ids""": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def SCREAMING_SNAKE_CASE__ ( self : str ): return self.dataset def __len__( self : int ): return len(self.features ) def __getitem__( self : Optional[Any] , snake_case__ : Union[str, Any] ): return self.features[i] def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return self.label_list class A_ ( __a ): def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case__ : Optional[Any] ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ , """heuristics_train_set.txt""" ) ) , """train""" ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case__ : List[str] ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ , """heuristics_evaluation_set.txt""" ) ) , """dev""" ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return ["contradiction", "entailment", "neutral"] def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case__ : List[str] , snake_case__ : str ): lowercase = [] for i, line in enumerate(snake_case__ ): if i == 0: continue lowercase = """%s-%s""" % (set_type, line[0]) lowercase = line[5] lowercase = line[6] lowercase = line[7][2:] if line[7].startswith("""ex""" ) else line[7] lowercase = line[0] examples.append(InputExample(guid=snake_case__ , text_a=snake_case__ , text_b=snake_case__ , label=snake_case__ , pairID=snake_case__ ) ) return examples def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): lowercase = {label: i for i, label in enumerate(lowerCAmelCase__ )} lowercase = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCAmelCase__ ) ,desc="""convert examples to features""" ): if ex_index % 10_000 == 0: logger.info("""Writing example %d""" % (ex_index) ) lowercase = tokenizer( example.text_a ,example.text_b ,add_special_tokens=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="""max_length""" ,truncation=lowerCAmelCase__ ,return_overflowing_tokens=lowerCAmelCase__ ,) lowercase = label_map[example.label] if example.label in label_map else 0 lowercase = int(example.pairID ) features.append(InputFeatures(**lowerCAmelCase__ ,label=lowerCAmelCase__ ,pairID=lowerCAmelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info("""*** Example ***""" ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features __SCREAMING_SNAKE_CASE : Optional[int] ={ '''hans''': 3, } __SCREAMING_SNAKE_CASE : List[str] ={ '''hans''': HansProcessor, }
428
0
from __future__ import annotations from decimal import Decimal from numpy import array def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[float]] ) -> list[list[float]]: __lowerCAmelCase : Optional[int] = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(SCREAMING_SNAKE_CASE ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix __lowerCAmelCase : Optional[int] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements __lowerCAmelCase : List[Any] = [[0.0, 0.0], [0.0, 0.0]] __lowerCAmelCase : str = matrix[1][1], matrix[0][0] __lowerCAmelCase : str = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(SCREAMING_SNAKE_CASE ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(SCREAMING_SNAKE_CASE ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __lowerCAmelCase : Union[str, Any] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix __lowerCAmelCase : List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] __lowerCAmelCase : Optional[int] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) __lowerCAmelCase : str = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) __lowerCAmelCase : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) __lowerCAmelCase : Any = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) __lowerCAmelCase : List[str] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) __lowerCAmelCase : Dict = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) __lowerCAmelCase : Optional[Any] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) __lowerCAmelCase : Tuple = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) __lowerCAmelCase : Tuple = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) __lowerCAmelCase : Optional[Any] = array(SCREAMING_SNAKE_CASE ) for i in range(3 ): for j in range(3 ): __lowerCAmelCase : List[Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __lowerCAmelCase : List[Any] = array(SCREAMING_SNAKE_CASE ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(SCREAMING_SNAKE_CASE ) # Calculate the inverse of the matrix return [[float(d(SCREAMING_SNAKE_CASE ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
712
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :str ) -> str: if not (isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) __lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : Dict = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __lowerCAmelCase : List[str] = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __lowerCAmelCase : Tuple = i __lowerCAmelCase : Any = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
240
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = tempfile.mkdtemp() snake_case: List[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] snake_case: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) snake_case: str = { 'do_resize': True, 'size': {'height': 2_24, 'width': 2_24}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], 'do_convert_rgb': True, } snake_case: List[str] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case: List[Any] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_tokenizer() snake_case: Union[str, Any] = self.get_rust_tokenizer() snake_case: Dict = self.get_image_processor() snake_case: Union[str, Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case: List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case: str = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case: Optional[Any] = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) snake_case: Union[str, Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.get_image_processor() snake_case: Optional[int] = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: str = self.prepare_image_inputs() snake_case: Optional[Any] = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) snake_case: Tuple = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = self.get_image_processor() snake_case: List[Any] = self.get_tokenizer() snake_case: int = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = 'Alexandra,T-shirt的价格是15便士。' snake_case: int = processor(text=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.get_image_processor() snake_case: Optional[int] = self.get_tokenizer() snake_case: Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = 'Alexandra,T-shirt的价格是15便士。' snake_case: Any = self.prepare_image_inputs() snake_case: Optional[int] = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.get_image_processor() snake_case: Optional[Any] = self.get_tokenizer() snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case: Optional[Any] = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.get_image_processor() snake_case: Union[str, Any] = self.get_tokenizer() snake_case: List[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = 'Alexandra,T-shirt的价格是15便士。' snake_case: Union[str, Any] = self.prepare_image_inputs() snake_case: Dict = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
329
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCAmelCase = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
329
1
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE( snake_case_ : Any , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Optional[int]="attention" ) ->Optional[Any]: '''simple docstring''' _lowercase : int = params[F"{prefix}/layers_{i}/{layer_name}/key/kernel"] _lowercase : Union[str, Any] = params[F"{prefix}/layers_{i}/{layer_name}/out/kernel"] _lowercase : Union[str, Any] = params[F"{prefix}/layers_{i}/{layer_name}/query/kernel"] _lowercase : Tuple = params[F"{prefix}/layers_{i}/{layer_name}/value/kernel"] return k, o, q, v def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : Tuple=False ) ->Dict: '''simple docstring''' if split_mlp_wi: _lowercase : Union[str, Any] = params[F"{prefix}/layers_{i}/mlp/wi_0/kernel"] _lowercase : Tuple = params[F"{prefix}/layers_{i}/mlp/wi_1/kernel"] _lowercase : Optional[Any] = (wi_a, wi_a) else: _lowercase : int = params[F"{prefix}/layers_{i}/mlp/wi/kernel"] _lowercase : Any = params[F"{prefix}/layers_{i}/mlp/wo/kernel"] return wi, wo def _SCREAMING_SNAKE_CASE( snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : Optional[int] ) ->Any: '''simple docstring''' return params[F"{prefix}/layers_{i}/{layer_name}/scale"] def _SCREAMING_SNAKE_CASE( snake_case_ : dict , *, snake_case_ : int , snake_case_ : bool ) ->List[Any]: '''simple docstring''' _lowercase : str = traverse_util.flatten_dict(variables['''target'''] ) _lowercase : Dict = {'''/'''.join(lowerCAmelCase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _lowercase : str = '''encoder/layers_0/mlp/wi_0/kernel''' in old print('''Split MLP:''' , lowerCAmelCase__ ) _lowercase : int = collections.OrderedDict() # Shared embeddings. _lowercase : int = old['''token_embedder/embedding'''] # Encoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). _lowercase : Optional[int] = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''encoder''' , '''pre_attention_layer_norm''' ) _lowercase , _lowercase , _lowercase , _lowercase : str = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''encoder''' , '''attention''' ) _lowercase : Tuple = layer_norm _lowercase : List[Any] = k.T _lowercase : Optional[int] = o.T _lowercase : Tuple = q.T _lowercase : Tuple = v.T # Block i, layer 1 (MLP). _lowercase : Optional[int] = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''encoder''' , '''pre_mlp_layer_norm''' ) _lowercase , _lowercase : Tuple = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''encoder''' , lowerCAmelCase__ ) _lowercase : Optional[int] = layer_norm if split_mlp_wi: _lowercase : Tuple = wi[0].T _lowercase : List[str] = wi[1].T else: _lowercase : Any = wi.T _lowercase : int = wo.T _lowercase : Optional[Any] = old[ '''encoder/relpos_bias/rel_embedding''' ].T _lowercase : int = old['''encoder/encoder_norm/scale'''] if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). _lowercase : int = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''decoder''' , '''pre_self_attention_layer_norm''' ) _lowercase , _lowercase , _lowercase , _lowercase : str = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''decoder''' , '''self_attention''' ) _lowercase : List[str] = layer_norm _lowercase : str = k.T _lowercase : List[str] = o.T _lowercase : Optional[Any] = q.T _lowercase : Union[str, Any] = v.T # Block i, layer 1 (Cross Attention). _lowercase : Dict = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''decoder''' , '''pre_cross_attention_layer_norm''' ) _lowercase , _lowercase , _lowercase , _lowercase : int = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''decoder''' , '''encoder_decoder_attention''' ) _lowercase : List[Any] = layer_norm _lowercase : Tuple = k.T _lowercase : List[str] = o.T _lowercase : Union[str, Any] = q.T _lowercase : Any = v.T # Block i, layer 2 (MLP). _lowercase : int = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''decoder''' , '''pre_mlp_layer_norm''' ) _lowercase , _lowercase : Any = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , '''decoder''' , lowerCAmelCase__ ) _lowercase : Any = layer_norm if split_mlp_wi: _lowercase : Optional[int] = wi[0].T _lowercase : Union[str, Any] = wi[1].T else: _lowercase : Union[str, Any] = wi.T _lowercase : Union[str, Any] = wo.T _lowercase : Any = old['''decoder/decoder_norm/scale'''] _lowercase : List[Any] = old[ '''decoder/relpos_bias/rel_embedding''' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _lowercase : Optional[Any] = old['''decoder/logits_dense/kernel'''].T return new def _SCREAMING_SNAKE_CASE( snake_case_ : Any , snake_case_ : bool ) ->Optional[Any]: '''simple docstring''' _lowercase : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _lowercase : str = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _lowercase : Dict = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) _lowercase : Tuple = state_dict['''shared.weight'''] return state_dict def _SCREAMING_SNAKE_CASE( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : List[Any] ) ->Union[str, Any]: '''simple docstring''' _lowercase : Tuple = checkpoints.load_tax_checkpoint(lowerCAmelCase__ ) _lowercase : Union[str, Any] = convert_tax_to_pytorch(lowerCAmelCase__ , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase__ ) _lowercase : List[Any] = make_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : bool = False ) ->List[str]: '''simple docstring''' _lowercase : Optional[int] = TaConfig.from_json_file(lowerCAmelCase__ ) print(F"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _lowercase : List[Any] = TaEncoderModel(lowerCAmelCase__ ) else: _lowercase : Optional[Any] = TaForConditionalGeneration(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(lowerCAmelCase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase__ ) print('''Done''' ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) lowerCamelCase__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
721
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): '''simple docstring''' snake_case_ = ['pixel_values'] def __init__( self : Union[str, Any] , UpperCamelCase_ : bool = True , UpperCamelCase_ : int = 32 , UpperCamelCase_ : List[str]=PILImageResampling.BILINEAR , UpperCamelCase_ : bool = True , **UpperCamelCase_ : List[str] , ) -> None: '''simple docstring''' _lowercase : Any = do_resize _lowercase : Any = do_rescale _lowercase : Optional[Any] = size_divisor _lowercase : Any = resample super().__init__(**UpperCamelCase_ ) def __lowercase ( self : Dict , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[ChannelDimension] = None , **UpperCamelCase_ : List[str] ) -> np.ndarray: '''simple docstring''' _lowercase , _lowercase : Dict = get_image_size(UpperCamelCase_ ) # Rounds the height and width down to the closest multiple of size_divisor _lowercase : int = height // size_divisor * size_divisor _lowercase : List[Any] = width // size_divisor * size_divisor _lowercase : Dict = resize(UpperCamelCase_ , (new_h, new_w) , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) return image def __lowercase ( self : Union[str, Any] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : float , UpperCamelCase_ : Optional[ChannelDimension] = None , **UpperCamelCase_ : Dict ) -> np.ndarray: '''simple docstring''' return rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def __lowercase ( self : Optional[int] , UpperCamelCase_ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[Union[TensorType, str]] = None , UpperCamelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase_ : int , ) -> BatchFeature: '''simple docstring''' _lowercase : Any = do_resize if do_resize is not None else self.do_resize _lowercase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : List[str] = size_divisor if size_divisor is not None else self.size_divisor _lowercase : Any = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) _lowercase : Tuple = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. _lowercase : List[str] = [to_numpy_array(UpperCamelCase_ ) for img in images] if do_resize: _lowercase : Union[str, Any] = [self.resize(UpperCamelCase_ , size_divisor=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_rescale: _lowercase : Optional[int] = [self.rescale(UpperCamelCase_ , scale=1 / 255 ) for image in images] _lowercase : List[Any] = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] _lowercase : List[Any] = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
411
0
"""simple docstring""" def __snake_case ( __A = 50 ) -> int: lowercase : Dict = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 ,5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'{solution() = }')
607
"""simple docstring""" from ... import PretrainedConfig lowerCAmelCase: str ={ "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class lowerCamelCase__ ( __UpperCamelCase ): __UpperCAmelCase = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __UpperCAmelCase = """nezha""" def __init__( self , snake_case=2_1_1_2_8 , snake_case=7_6_8 , snake_case=1_2 , snake_case=1_2 , snake_case=3_0_7_2 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=5_1_2 , snake_case=6_4 , snake_case=2 , snake_case=0.02 , snake_case=1E-12 , snake_case=0.1 , snake_case=0 , snake_case=2 , snake_case=3 , snake_case=True , **snake_case , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) lowercase : int = vocab_size lowercase : Tuple = hidden_size lowercase : Any = num_hidden_layers lowercase : str = num_attention_heads lowercase : Optional[int] = hidden_act lowercase : int = intermediate_size lowercase : Union[str, Any] = hidden_dropout_prob lowercase : Optional[int] = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : List[str] = max_relative_position lowercase : List[str] = type_vocab_size lowercase : Dict = initializer_range lowercase : Any = layer_norm_eps lowercase : Optional[int] = classifier_dropout lowercase : Union[str, Any] = use_cache
607
1
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class a ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE : List[Any] = False def lowerCamelCase__ ( self : int ) -> Any: super().setUp() __UpperCAmelCase : List[Any] = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] __UpperCAmelCase : Dict = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __UpperCAmelCase : Tuple = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] __UpperCAmelCase : Optional[int] = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} __UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase__ ) ) def lowerCamelCase__ ( self : Tuple , **snake_case : List[Any] ) -> List[Any]: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowerCamelCase__ ( self : Any , snake_case : Union[str, Any] ) -> str: __UpperCAmelCase : Optional[Any] = "adapt act apte" __UpperCAmelCase : Tuple = "adapt act apte" return input_text, output_text def lowerCamelCase__ ( self : Optional[int] ) -> Dict: __UpperCAmelCase : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase : Optional[Any] = "adapt act apte" __UpperCAmelCase : Union[str, Any] = ["adapt", "act", "ap@@", "te"] __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : Dict = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __UpperCAmelCase : int = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: __UpperCAmelCase : Dict = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1384] __UpperCAmelCase : List[Any] = "I am a small frog." __UpperCAmelCase : List[Any] = tok([src_text] , padding=lowerCamelCase__ , truncation=lowerCamelCase__ )["input_ids"] __UpperCAmelCase : List[Any] = tok.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def lowerCamelCase__ ( self : Union[str, Any] ) -> Tuple: __UpperCAmelCase : Optional[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) __UpperCAmelCase : Tuple = "I am a small frog ." __UpperCAmelCase : int = "." __UpperCAmelCase : Optional[int] = tok(lowerCamelCase__ )["input_ids"] __UpperCAmelCase : int = tok(lowerCamelCase__ )["input_ids"] assert encoded[-1] == encoded_dot[0]
718
'''simple docstring''' from scipy.stats import pearsonr import datasets __UpperCAmelCase :Tuple = "\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n" __UpperCAmelCase :List[str] = "\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results['pearsonr'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n ['p-value', 'pearsonr']\n >>> print(round(results['pearsonr'], 2))\n -0.74\n >>> print(round(results['p-value'], 2))\n 0.15\n" __UpperCAmelCase :List[Any] = "\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): """simple docstring""" def lowerCamelCase__ ( self : List[Any] ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def lowerCamelCase__ ( self : Any , snake_case : Union[str, Any] , snake_case : int , snake_case : Dict=False ) -> List[Any]: if return_pvalue: __UpperCAmelCase : Tuple = pearsonr(snake_case , snake_case ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(snake_case , snake_case )[0] )}
266
0
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
242
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json", "google/bigbird-roberta-large": "https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json", "google/bigbird-base-trivia-itc": "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'big_bird' def __init__( self , __snake_case=5_0358 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu_new" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=4096 , __snake_case=2 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=True , __snake_case=0 , __snake_case=1 , __snake_case=2 , __snake_case=66 , __snake_case="block_sparse" , __snake_case=True , __snake_case=False , __snake_case=64 , __snake_case=3 , __snake_case=None , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , sep_token_id=__snake_case , **__snake_case , ) __a =vocab_size __a =max_position_embeddings __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =type_vocab_size __a =layer_norm_eps __a =use_cache __a =rescale_embeddings __a =attention_type __a =use_bias __a =block_size __a =num_random_blocks __a =classifier_dropout class __magic_name__ ( lowerCAmelCase_ ): @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __a ={0: 'batch', 1: 'choice', 2: 'sequence'} else: __a ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
242
1
'''simple docstring''' def lowercase_ ( __A : str , __A : str ) -> int: """simple docstring""" if len(__A ) != len(__A ): raise ValueError('''String lengths must match!''' ) lowercase : List[Any] =0 for chara, chara in zip(__A , __A ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
1
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } SCREAMING_SNAKE_CASE_ = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } SCREAMING_SNAKE_CASE_ = { '''ctrl''': 256, } SCREAMING_SNAKE_CASE_ = { '''Pregnancy''': 16_8629, '''Christianity''': 7675, '''Explain''': 10_6423, '''Fitness''': 6_3440, '''Saving''': 6_3163, '''Ask''': 2_7171, '''Ass''': 9_5985, '''Joke''': 16_3509, '''Questions''': 4_5622, '''Thoughts''': 4_9605, '''Retail''': 5_2342, '''Feminism''': 16_4338, '''Writing''': 1_1992, '''Atheism''': 19_2263, '''Netflix''': 4_8616, '''Computing''': 3_9639, '''Opinion''': 4_3213, '''Alone''': 4_4967, '''Funny''': 5_8917, '''Gaming''': 4_0358, '''Human''': 4088, '''India''': 1331, '''Joker''': 7_7138, '''Diet''': 3_6206, '''Legal''': 1_1859, '''Norman''': 4939, '''Tip''': 7_2689, '''Weight''': 5_2343, '''Movies''': 4_6273, '''Running''': 2_3425, '''Science''': 2090, '''Horror''': 3_7793, '''Confession''': 6_0572, '''Finance''': 1_2250, '''Politics''': 1_6360, '''Scary''': 19_1985, '''Support''': 1_2654, '''Technologies''': 3_2516, '''Teenage''': 6_6160, '''Event''': 3_2769, '''Learned''': 6_7460, '''Notion''': 18_2770, '''Wikipedia''': 3_7583, '''Books''': 6665, '''Extract''': 7_6050, '''Confessions''': 10_2701, '''Conspiracy''': 7_5932, '''Links''': 6_3674, '''Narcissus''': 15_0425, '''Relationship''': 5_4766, '''Relationships''': 13_4796, '''Reviews''': 4_1671, '''News''': 4256, '''Translation''': 2_6820, '''multilingual''': 12_8406, } def lowercase__ ( lowerCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase = set() UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase = char UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) return pairs class _UpperCAmelCase ( __snake_case ): __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = CONTROL_CODES def __init__( self , lowercase_ , lowercase_ , lowercase_="<unk>" , **lowercase_ ) -> List[str]: super().__init__(unk_token=lowercase_ , **lowercase_ ) with open(lowercase_ , encoding='utf-8' ) as vocab_handle: UpperCAmelCase = json.load(lowercase_ ) UpperCAmelCase = {v: k for k, v in self.encoder.items()} with open(lowercase_ , encoding='utf-8' ) as merges_handle: UpperCAmelCase = merges_handle.read().split('\n' )[1:-1] UpperCAmelCase = [tuple(merge.split() ) for merge in merges] UpperCAmelCase = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase = {} @property def a_ ( self ) -> str: return len(self.encoder ) def a_ ( self ) -> List[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def a_ ( self , lowercase_ ) -> List[Any]: if token in self.cache: return self.cache[token] UpperCAmelCase = tuple(lowercase_ ) UpperCAmelCase = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) UpperCAmelCase = get_pairs(lowercase_ ) if not pairs: return token while True: UpperCAmelCase = min(lowercase_ , key=lambda lowercase_ : self.bpe_ranks.get(lowercase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase = bigram UpperCAmelCase = [] UpperCAmelCase = 0 while i < len(lowercase_ ): try: UpperCAmelCase = word.index(lowercase_ , lowercase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase = j if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase = tuple(lowercase_ ) UpperCAmelCase = new_word if len(lowercase_ ) == 1: break else: UpperCAmelCase = get_pairs(lowercase_ ) UpperCAmelCase = '@@ '.join(lowercase_ ) UpperCAmelCase = word[:-4] UpperCAmelCase = word return word def a_ ( self , lowercase_ ) -> Any: UpperCAmelCase = [] UpperCAmelCase = re.findall(R'\S+\n?' , lowercase_ ) for token in words: split_tokens.extend(list(self.bpe(lowercase_ ).split(' ' ) ) ) return split_tokens def a_ ( self , lowercase_ ) -> Dict: return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) ) def a_ ( self , lowercase_ ) -> Tuple: return self.decoder.get(lowercase_ , self.unk_token ) def a_ ( self , lowercase_ ) -> Dict: UpperCAmelCase = ' '.join(lowercase_ ).replace('@@ ' , '' ).strip() return out_string def a_ ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowercase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + '\n' ) UpperCAmelCase = 0 with open(lowercase_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase_ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) UpperCAmelCase = token_index writer.write(' '.join(lowercase_ ) + '\n' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
373
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = ["image_processor", "tokenizer"] lowerCAmelCase_ = "CLIPImageProcessor" lowerCAmelCase_ = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Optional[int]: _snake_case = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCAmelCase , ) _snake_case = kwargs.pop("""feature_extractor""" ) _snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Tuple: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _snake_case = self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if images is not None: _snake_case = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and images is not None: _snake_case = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def lowercase (self , *UpperCAmelCase , **UpperCAmelCase ) -> Dict: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def lowercase (self ) -> str: _snake_case = self.tokenizer.model_input_names _snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
585
0
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _lowercase = logging.getLogger() def lowerCamelCase__ ( ): __snake_case = argparse.ArgumentParser() parser.add_argument('-f' ) __snake_case = parser.parse_args() return args.f class a_ ( UpperCAmelCase__ ): def lowercase__ ( self : Optional[Any] ): __snake_case = logging.StreamHandler(sys.stdout ) logger.addHandler(__lowerCAmelCase ) def lowercase__ ( self : int , __lowerCAmelCase : List[str] ): __snake_case = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , 'run_glue_deebert.py' ) with patch.object(__lowerCAmelCase , 'argv' , __lowerCAmelCase ): __snake_case = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__lowerCAmelCase , 0.666 ) @slow @require_torch_non_multi_gpu def lowercase__ ( self : List[Any] ): __snake_case = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(__lowerCAmelCase ) __snake_case = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(__lowerCAmelCase ) __snake_case = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(__lowerCAmelCase )
427
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( UpperCAmelCase__ , unittest.TestCase ): lowercase_ : int = RobertaTokenizer lowercase_ : int = RobertaTokenizerFast lowercase_ : int = True lowercase_ : Dict = {'''cls_token''': '''<s>'''} def lowercase__ ( self : Union[str, Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __snake_case = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) __snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __snake_case = {'unk_token': '<unk>'} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__lowerCAmelCase ) ) def lowercase__ ( self : Tuple , **__lowerCAmelCase : List[str] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def lowercase__ ( self : Dict , **__lowerCAmelCase : Tuple ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def lowercase__ ( self : Optional[Any] , __lowerCAmelCase : int ): __snake_case = 'lower newer' __snake_case = 'lower newer' return input_text, output_text def lowercase__ ( self : Union[str, Any] ): __snake_case = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __snake_case = 'lower newer' __snake_case = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] __snake_case = tokenizer.tokenize(__lowerCAmelCase ) # , add_prefix_space=True) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def lowercase__ ( self : Tuple ): __snake_case = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=__lowerCAmelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=__lowerCAmelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def lowercase__ ( self : int ): __snake_case = self.tokenizer_class.from_pretrained('roberta-base' ) __snake_case = tokenizer.encode('sequence builders' , add_special_tokens=__lowerCAmelCase ) __snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=__lowerCAmelCase ) __snake_case = tokenizer.encode( 'sequence builders' , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) __snake_case = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) __snake_case = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase ) __snake_case = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowercase__ ( self : int ): __snake_case = self.get_tokenizer() __snake_case = 'Encode this sequence.' __snake_case = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments __snake_case = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) __snake_case = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing spaces after special tokens __snake_case = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase )} ) # mask token has a left space __snake_case = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) __snake_case = 'Encode <mask> sequence' __snake_case = 'Encode <mask>sequence' __snake_case = tokenizer.encode(__lowerCAmelCase ) __snake_case = encoded.index(__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) __snake_case = tokenizer.encode(__lowerCAmelCase ) __snake_case = encoded.index(__lowerCAmelCase ) __snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) def lowercase__ ( self : List[str] ): pass def lowercase__ ( self : Dict ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __snake_case = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __snake_case = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __snake_case = 'A, <mask> AllenNLP sentence.' __snake_case = tokenizer_r.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) __snake_case = tokenizer_p.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) __snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) __snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __lowerCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( __lowerCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def lowercase__ ( self : Optional[int] ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __snake_case = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __snake_case = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , __lowerCAmelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , __lowerCAmelCase ) self.assertEqual(post_processor_state['trim_offsets'] , __lowerCAmelCase ) def lowercase__ ( self : Optional[Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __snake_case = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` __snake_case = F'{text_of_1_token} {text_of_1_token}' __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ) + 1, 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) __snake_case = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) __snake_case = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
427
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ ): assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), f'The input value of [n={number}] is not an integer' if number == 1: return 2 elif number < 1: lowerCAmelCase__ : List[str] = f'The input value of [n={number}] has to be > 0' raise ValueError(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Dict = sylvester(number - 1 ) lowerCAmelCase__ : Any = num - 1 lowerCAmelCase__ : str = num return lower * upper + 1 if __name__ == "__main__": print(F'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
450
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue_model_parallelism.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, ] ) class a_ ( unittest.TestCase ): def UpperCamelCase_ ( self ): if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=__UpperCamelCase , ) assert hasattr(self , """env""" ) def UpperCamelCase_ ( self , __UpperCamelCase ): # configuration for running training on smdistributed Model Parallel _lowercase = { """enabled""": True, """processes_per_host""": 8, } _lowercase = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } _lowercase = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} _lowercase = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=__UpperCamelCase , instance_type=self.instance_type , debugger_hook_config=__UpperCamelCase , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=__UpperCamelCase , py_version="""py36""" , ) def UpperCamelCase_ ( self , __UpperCamelCase ): TrainingJobAnalytics(__UpperCamelCase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def UpperCamelCase_ ( self , __UpperCamelCase ): # create estimator _lowercase = self.create_estimator(__UpperCamelCase ) # run training estimator.fit() # result dataframe _lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _lowercase = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) _lowercase = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , __UpperCamelCase )
287
0
'''simple docstring''' import os import sys import unittest SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE__ : int = os.path.join(git_repo_path, """src""", """diffusers""") class __lowerCAmelCase( unittest.TestCase ): def _lowercase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ :int = find_backend(' if not is_torch_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE , 'torch' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") SCREAMING_SNAKE_CASE_ :str = find_backend(' if not (is_torch_available() and is_transformers_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE , 'torch_and_transformers' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") SCREAMING_SNAKE_CASE_ :Optional[int] = find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE , 'torch_and_transformers_and_onnx' ) def _lowercase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[int] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , SCREAMING_SNAKE_CASE ) self.assertIn('torch_and_transformers' , SCREAMING_SNAKE_CASE ) self.assertIn('flax_and_transformers' , SCREAMING_SNAKE_CASE ) self.assertIn('torch_and_transformers_and_onnx' , SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel' , objects['torch'] ) self.assertIn('FlaxUNet2DConditionModel' , objects['flax'] ) self.assertIn('StableDiffusionPipeline' , objects['torch_and_transformers'] ) self.assertIn('FlaxStableDiffusionPipeline' , objects['flax_and_transformers'] ) self.assertIn('LMSDiscreteScheduler' , objects['torch_and_scipy'] ) self.assertIn('OnnxStableDiffusionPipeline' , objects['torch_and_transformers_and_onnx'] ) def _lowercase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ :List[str] = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE , '\nCONSTANT = None\n' ) SCREAMING_SNAKE_CASE_ :Tuple = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( SCREAMING_SNAKE_CASE , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) SCREAMING_SNAKE_CASE_ :List[str] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' SCREAMING_SNAKE_CASE_ :List[str] = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _lowercase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ :List[Any] = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' SCREAMING_SNAKE_CASE_ :Optional[int] = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , SCREAMING_SNAKE_CASE )
233
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE ): # This function is recursive SCREAMING_SNAKE_CASE_ :Union[str, Any] = len(SCREAMING_SNAKE_CASE ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else SCREAMING_SNAKE_CASE_ :Optional[int] = array[0] SCREAMING_SNAKE_CASE_ :Union[str, Any] = False SCREAMING_SNAKE_CASE_ :List[Any] = 1 SCREAMING_SNAKE_CASE_ :list[int] = [] while not is_found and i < array_length: if array[i] < pivot: SCREAMING_SNAKE_CASE_ :List[Any] = True SCREAMING_SNAKE_CASE_ :int = [element for element in array[i:] if element >= array[i]] SCREAMING_SNAKE_CASE_ :Optional[Any] = longest_subsequence(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > len(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ :int = temp_array else: i += 1 SCREAMING_SNAKE_CASE_ :List[Any] = [element for element in array[1:] if element >= pivot] SCREAMING_SNAKE_CASE_ :Optional[Any] = [pivot, *longest_subsequence(SCREAMING_SNAKE_CASE )] if len(SCREAMING_SNAKE_CASE ) > len(SCREAMING_SNAKE_CASE ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
233
1
"""simple docstring""" import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = "MCTCTFeatureExtractor" lowerCAmelCase : int = "AutoTokenizer" def __init__( self : Tuple ,_snake_case : int ,_snake_case : Optional[Any] ) -> str: """simple docstring""" super().__init__(_snake_case ,_snake_case ) lowercase__ : str = self.feature_extractor lowercase__ : Tuple = False def __call__( self : Optional[Any] ,*_snake_case : int ,**_snake_case : int ) -> Union[str, Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_snake_case ,**_snake_case ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) lowercase__ : Union[str, Any] = kwargs.pop('''raw_speech''' ) else: lowercase__ : str = kwargs.pop('''audio''' ,_snake_case ) lowercase__ : Union[str, Any] = kwargs.pop('''sampling_rate''' ,_snake_case ) lowercase__ : Optional[int] = kwargs.pop('''text''' ,_snake_case ) if len(_snake_case ) > 0: lowercase__ : Dict = args[0] lowercase__ : Optional[Any] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: lowercase__ : int = self.feature_extractor(_snake_case ,*_snake_case ,sampling_rate=_snake_case ,**_snake_case ) if text is not None: lowercase__ : Tuple = self.tokenizer(_snake_case ,**_snake_case ) if text is None: return inputs elif audio is None: return encodings else: lowercase__ : Dict = encodings['''input_ids'''] return inputs def UpperCAmelCase ( self : Tuple ,*_snake_case : Any ,**_snake_case : str ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ,*_snake_case : List[str] ,**_snake_case : Optional[Any] ) -> int: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*_snake_case ,**_snake_case ) lowercase__ : Dict = kwargs.pop('''input_features''' ,_snake_case ) lowercase__ : Any = kwargs.pop('''labels''' ,_snake_case ) if len(_snake_case ) > 0: lowercase__ : Tuple = args[0] lowercase__ : str = args[1:] if input_features is not None: lowercase__ : List[str] = self.feature_extractor.pad(_snake_case ,*_snake_case ,**_snake_case ) if labels is not None: lowercase__ : Union[str, Any] = self.tokenizer.pad(_snake_case ,**_snake_case ) if labels is None: return input_features elif input_features is None: return labels else: lowercase__ : Optional[Any] = labels['''input_ids'''] return input_features def UpperCAmelCase ( self : List[Any] ,*_snake_case : Optional[int] ,**_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case ) @contextmanager def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) lowercase__ : List[str] = True lowercase__ : Any = self.tokenizer yield lowercase__ : Optional[int] = self.feature_extractor lowercase__ : Any = False
560
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : List[Any] = tmp_path / '''cache''' lowercase__ : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ : List[str] = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read() _check_sql_dataset(__lowerCamelCase , __lowerCamelCase ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Dict = tmp_path / '''cache''' lowercase__ : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase__ : int = features.copy() if features else default_expected_features lowercase__ : Dict = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ : Dict = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_sql_dataset(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: with contextlib.closing(sqlitea.connect(__lowerCamelCase ) ) as con: lowercase__ : Dict = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : Optional[Any] = tmp_path / '''cache''' lowercase__ : Tuple = os.path.join(__lowerCamelCase , '''tmp.sql''' ) lowercase__ : Union[str, Any] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowerCamelCase ).read() SqlDatasetWriter(__lowerCamelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() lowercase__ : Any = iter_sql_file(__lowerCamelCase ) lowercase__ : Any = iter_sql_file(__lowerCamelCase ) for rowa, rowa in zip(__lowerCamelCase , __lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : Any = tmp_path / '''cache''' lowercase__ : int = os.path.join(__lowerCamelCase , '''tmp.sql''' ) lowercase__ : Optional[int] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowerCamelCase ).read() SqlDatasetWriter(__lowerCamelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() lowercase__ : Optional[Any] = iter_sql_file(__lowerCamelCase ) lowercase__ : List[str] = iter_sql_file(__lowerCamelCase ) for rowa, rowa in zip(__lowerCamelCase , __lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: lowercase__ : List[Any] = tmp_path / '''cache''' lowercase__ : Optional[int] = os.path.join(__lowerCamelCase , '''tmp.sql''' ) lowercase__ : Dict = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowerCamelCase ).read() with pytest.raises(__lowerCamelCase ): SqlDatasetWriter(__lowerCamelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
560
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : List[Any] = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _UpperCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
216
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCamelCase : Optional[int] = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[str] = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : int = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys _UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
216
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm __A = logging.get_logger(__name__) @dataclass class snake_case ( lowercase__ ): SCREAMING_SNAKE_CASE_ : Any = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self : Tuple , **UpperCamelCase__ : int)-> Any: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __lowerCAmelCase: Optional[int] = deprecated_arg[3:] setattr(self , UpperCAmelCase__ , not kwargs.pop(UpperCAmelCase__)) logger.warning( f"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or" f" {positive_arg}={kwargs[positive_arg]}") __lowerCAmelCase: int = kwargs.pop("torchscript" , self.torchscript) __lowerCAmelCase: List[str] = kwargs.pop("torch_xla_tpu_print_metrics" , self.torch_xla_tpu_print_metrics) __lowerCAmelCase: int = kwargs.pop("fp16_opt_level" , self.fpaa_opt_level) super().__init__(**UpperCAmelCase__) SCREAMING_SNAKE_CASE_ : List[str] = field(default=lowercase__, metadata={"""help""": """Trace the models using torchscript"""} ) SCREAMING_SNAKE_CASE_ : str = field(default=lowercase__, metadata={"""help""": """Print Xla/PyTorch tpu metrics"""} ) SCREAMING_SNAKE_CASE_ : Any = field( default="""O1""", metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) }, ) @cached_property def lowercase_ ( self : List[Any])-> int: '''simple docstring''' requires_backends(self , ["torch"]) logger.info("PyTorch: setting up devices") if not self.cuda: __lowerCAmelCase: List[Any] = torch.device("cpu") __lowerCAmelCase: int = 0 elif is_torch_tpu_available(): __lowerCAmelCase: Optional[Any] = xm.xla_device() __lowerCAmelCase: int = 0 else: __lowerCAmelCase: Optional[Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu") __lowerCAmelCase: str = torch.cuda.device_count() return device, n_gpu @property def lowercase_ ( self : Tuple)-> Any: '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def lowercase_ ( self : int)-> Union[str, Any]: '''simple docstring''' requires_backends(self , ["torch"]) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def lowercase_ ( self : int)-> Union[str, Any]: '''simple docstring''' requires_backends(self , ["torch"]) return self._setup_devices[0] @property def lowercase_ ( self : Union[str, Any])-> List[str]: '''simple docstring''' requires_backends(self , ["torch"]) return self._setup_devices[1] @property def lowercase_ ( self : Any)-> Dict: '''simple docstring''' return self.n_gpu > 0
346
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCamelCase_ = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def _lowerCAmelCase ( __magic_name__ : int ) -> Tuple: config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def _lowerCAmelCase ( __magic_name__ : int ) -> Any: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__magic_name__ ) def _lowerCAmelCase ( __magic_name__ : Any ) -> Any: from transformers.testing_utils import pytest_terminal_summary_main lowercase : Optional[Any] =terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__magic_name__ , id=__magic_name__ ) def _lowerCAmelCase ( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] ) -> List[str]: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowercase : Optional[int] =0 # Doctest custom flag to ignore output. UpperCamelCase_ = doctest.register_optionflag("""IGNORE_RESULT""") UpperCamelCase_ = doctest.OutputChecker class __SCREAMING_SNAKE_CASE ( lowercase__ ): def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] ): '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_ = CustomOutputChecker UpperCamelCase_ = HfDoctestModule UpperCamelCase_ = HfDocTestParser
92
0
def a_ ( __snake_case , __snake_case ) -> int: '''simple docstring''' return abs(__snake_case ) if a == 0 else greatest_common_divisor(b % a , __snake_case ) def a_ ( __snake_case , __snake_case ) -> int: '''simple docstring''' while y: # --> when y=0 then loop will terminate and return x as final GCD. UpperCamelCase_ , UpperCamelCase_ = y, x % y return abs(__snake_case ) def a_ ( ) -> Any: '''simple docstring''' try: UpperCamelCase_ = input('Enter two integers separated by comma (,): ' ).split(',' ) UpperCamelCase_ = int(nums[0] ) UpperCamelCase_ = int(nums[1] ) print( F'''greatest_common_divisor({num_a}, {num_a}) = ''' F'''{greatest_common_divisor(__snake_case , __snake_case )}''' ) print(F'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__snake_case , __snake_case )}''' ) except (IndexError, UnboundLocalError, ValueError): print('Wrong input' ) if __name__ == "__main__": main()
559
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __a : Union[str, Any] = logging.get_logger(__name__) def a_ ( __snake_case ) -> str: '''simple docstring''' UpperCamelCase_ = torch.load(__snake_case , map_location='cpu' ) if "model" in sd.keys(): UpperCamelCase_ = torch.load(__snake_case , map_location='cpu' )['model'] # pop unnecessary weights UpperCamelCase_ = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(__snake_case ) UpperCamelCase_ = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCamelCase_ = sd.pop(__snake_case ) UpperCamelCase_ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCamelCase_ = sd[key] # We split QKV in separate Q,K,V UpperCamelCase_ = key.replace('.qkv_proj.' , '.q_proj.' ) UpperCamelCase_ = key.replace('.qkv_proj.' , '.k_proj.' ) UpperCamelCase_ = key.replace('.qkv_proj.' , '.v_proj.' ) UpperCamelCase_ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = torch.split(__snake_case , depth // 3 , dim=0 ) UpperCamelCase_ = q UpperCamelCase_ = k UpperCamelCase_ = v del sd[key] return sd @torch.no_grad() def a_ ( __snake_case , __snake_case , __snake_case=None ) -> List[Any]: '''simple docstring''' UpperCamelCase_ = load_checkpoint(__snake_case ) if config is not None: UpperCamelCase_ = OPTConfig.from_pretrained(__snake_case ) else: UpperCamelCase_ = OPTConfig() UpperCamelCase_ = OPTModel(__snake_case ).half().eval() model.load_state_dict(__snake_case ) # Check results Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) if __name__ == "__main__": __a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __a : Union[str, Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
559
1
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
44
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowercase__ = HfApi() lowercase__ = {} # fmt: off lowercase__ = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) lowercase__ = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) lowercase__ = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) lowercase__ = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) lowercase__ = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) lowercase__ = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) lowercase__ = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) lowercase__ = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) lowercase__ = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) lowercase__ = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) lowercase__ = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) lowercase__ = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) lowercase__ = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) lowercase__ = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) lowercase__ = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on lowercase__ = api.list_models(filter='''diffusers''') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowercase__ = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith('''CompVis'''): lowercase__ = UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''') else: lowercase__ = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowercase__ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowercase__ = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowercase__ = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1E-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
508
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : def __init__( self : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : List[Any]=13 , lowerCamelCase : Dict=32 , lowerCamelCase : str=3 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Optional[int]=[10, 20, 30, 40] , lowerCamelCase : Dict=[2, 2, 3, 2] , lowerCamelCase : Optional[int]=True , lowerCamelCase : str=True , lowerCamelCase : Optional[int]=37 , lowerCamelCase : Any="gelu" , lowerCamelCase : int=10 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : Optional[Any]=["stage2", "stage3", "stage4"] , lowerCamelCase : Optional[int]=[2, 3, 4] , lowerCamelCase : Optional[int]=None , ): """simple docstring""" __A : str = parent __A : List[str] = batch_size __A : Dict = image_size __A : Dict = num_channels __A : Optional[Any] = num_stages __A : Tuple = hidden_sizes __A : Optional[Any] = depths __A : List[str] = is_training __A : List[str] = use_labels __A : str = intermediate_size __A : List[str] = hidden_act __A : Optional[Any] = num_labels __A : int = initializer_range __A : Union[str, Any] = out_features __A : List[str] = out_indices __A : Optional[int] = scope def lowercase_( self : Dict ): """simple docstring""" __A : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A : Optional[int] = None if self.use_labels: __A : Tuple = ids_tensor([self.batch_size] , self.num_labels ) __A : Optional[int] = self.get_config() return config, pixel_values, labels def lowercase_( self : Dict ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowercase_( self : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : str ): """simple docstring""" __A : Tuple = ConvNextModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : Optional[Any] = model(lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase_( self : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : Dict , lowerCamelCase : Optional[int] ): """simple docstring""" __A : Optional[Any] = ConvNextForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : Optional[Any] = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_( self : Optional[int] , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] ): """simple docstring""" __A : Optional[Any] = ConvNextBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : Tuple = model(lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __A : List[str] = None __A : Any = ConvNextBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __A : Optional[Any] = model(lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase_( self : str ): """simple docstring""" __A : List[str] = self.prepare_config_and_inputs() __A , __A , __A : Tuple = config_and_inputs __A : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __A ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): lowerCamelCase =( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) lowerCamelCase =( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) lowerCamelCase =True lowerCamelCase =False lowerCamelCase =False lowerCamelCase =False lowerCamelCase =False def lowercase_( self : List[str] ): """simple docstring""" __A : Optional[int] = ConvNextModelTester(self ) __A : int = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def lowercase_( self : Union[str, Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_( self : Optional[Any] ): """simple docstring""" return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def lowercase_( self : Dict ): """simple docstring""" pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def lowercase_( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def lowercase_( self : Dict ): """simple docstring""" pass def lowercase_( self : str ): """simple docstring""" __A , __A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = model_class(lowerCamelCase ) __A : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : Dict = [*signature.parameters.keys()] __A : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def lowercase_( self : Tuple ): """simple docstring""" __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase_( self : List[str] ): """simple docstring""" __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase ) def lowercase_( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : List[Any] ): __A : List[Any] = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): __A : int = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __A : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __A : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __A , __A : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Optional[Any] = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : int = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowercase_( self : Dict ): """simple docstring""" __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def lowercase_( self : Dict ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : int = ConvNextModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def A_ ( ) -> List[str]: """simple docstring""" __A : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __A ( unittest.TestCase ): @cached_property def lowercase_( self : Tuple ): """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def lowercase_( self : List[Any] ): """simple docstring""" __A : Optional[int] = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(lowerCamelCase ) __A : List[Any] = self.default_image_processor __A : Tuple = prepare_img() __A : Optional[int] = image_processor(images=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __A : List[Any] = model(**lowerCamelCase ) # verify the logits __A : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __A : List[Any] = torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) ) @require_torch class __A ( unittest.TestCase , _SCREAMING_SNAKE_CASE ): lowerCamelCase =(ConvNextBackbone,) if is_torch_available() else () lowerCamelCase =ConvNextConfig lowerCamelCase =False def lowercase_( self : Any ): """simple docstring""" __A : List[Any] = ConvNextModelTester(self )
499
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A__ : List[str] ='pt' elif is_tf_available(): A__ : List[str] ='tf' else: A__ : List[str] ='jax' class __A ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): lowerCamelCase =PerceiverTokenizer lowerCamelCase =False def lowercase_( self : int ): """simple docstring""" super().setUp() __A : Optional[int] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_( self : Any ): """simple docstring""" return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" ) def lowercase_( self : Optional[Any] , **lowerCamelCase : Union[str, Any] ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowercase_( self : Any , lowerCamelCase : List[Any] , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=20 , lowerCamelCase : List[str]=5 ): """simple docstring""" __A : Optional[Any] = [] for i in range(len(lowerCamelCase ) ): try: __A : str = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __A : List[str] = list(filter(lambda lowerCamelCase : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , lowerCamelCase ) ) __A : List[str] = list(filter(lambda lowerCamelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCamelCase ) , lowerCamelCase ) ) if max_length is not None and len(lowerCamelCase ) > max_length: __A : Optional[Any] = toks[:max_length] if min_length is not None and len(lowerCamelCase ) < min_length and len(lowerCamelCase ) > 0: while len(lowerCamelCase ) < min_length: __A : Dict = toks + toks # toks_str = [t[1] for t in toks] __A : Optional[int] = [t[0] for t in toks] # Ensure consistency __A : Optional[Any] = tokenizer.decode(lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase ) if " " not in output_txt and len(lowerCamelCase ) > 1: __A : int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCamelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCamelCase ) ) if with_prefix_space: __A : Union[str, Any] = """ """ + output_txt __A : Any = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) return output_txt, output_ids def lowercase_( self : Optional[Any] ): """simple docstring""" __A : int = self.perceiver_tokenizer __A : List[str] = """Unicode €.""" __A : Dict = tokenizer(lowerCamelCase ) __A : Any = [4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5] self.assertEqual(encoded["""input_ids"""] , lowerCamelCase ) # decoding __A : Dict = tokenizer.decode(lowerCamelCase ) self.assertEqual(lowerCamelCase , """[CLS]Unicode €.[SEP]""" ) __A : int = tokenizer("""e è é ê ë""" ) __A : str = [4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5] self.assertEqual(encoded["""input_ids"""] , lowerCamelCase ) # decoding __A : Optional[Any] = tokenizer.decode(lowerCamelCase ) self.assertEqual(lowerCamelCase , """[CLS]e è é ê ë[SEP]""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" ) def lowercase_( self : Union[str, Any] ): """simple docstring""" __A : Optional[Any] = self.perceiver_tokenizer __A : int = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off __A : Any = [4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0] # fmt: on __A : Optional[int] = tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) if FRAMEWORK != "jax": __A : str = list(batch.input_ids.numpy()[0] ) else: __A : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase_( self : Optional[Any] ): """simple docstring""" __A : str = self.perceiver_tokenizer __A : Any = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __A : Optional[int] = tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , lowerCamelCase ) self.assertIn("""attention_mask""" , lowerCamelCase ) self.assertNotIn("""decoder_input_ids""" , lowerCamelCase ) self.assertNotIn("""decoder_attention_mask""" , lowerCamelCase ) def lowercase_( self : Optional[Any] ): """simple docstring""" __A : Optional[int] = self.perceiver_tokenizer __A : Optional[Any] = [ """Summary of the text.""", """Another summary.""", ] __A : Union[str, Any] = tokenizer( text_target=lowerCamelCase , max_length=32 , padding="""max_length""" , truncation=lowerCamelCase , return_tensors=lowerCamelCase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase_( self : Optional[Any] ): """simple docstring""" __A : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __A : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __A : Optional[int] = tempfile.mkdtemp() __A : List[str] = """ He is very happy, UNwant\u00E9d,running""" __A : str = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) __A : Optional[int] = tokenizer.__class__.from_pretrained(lowerCamelCase ) __A : Optional[int] = after_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) shutil.rmtree(lowerCamelCase ) __A : Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __A : List[Any] = tempfile.mkdtemp() __A : Optional[Any] = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) __A : str = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __A : List[Any] = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) __A : Tuple = tokenizer.__class__.from_pretrained(lowerCamelCase ) __A : Union[str, Any] = after_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __A : List[str] = tokenizer.__class__.from_pretrained(lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCamelCase ) def lowercase_( self : int ): """simple docstring""" __A : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase ) with open(os.path.join(lowerCamelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __A : int = json.load(lowerCamelCase ) with open(os.path.join(lowerCamelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __A : Any = json.load(lowerCamelCase ) __A : str = [f"<extra_id_{i}>" for i in range(1_25 )] __A : int = added_tokens_extra_ids + [ """an_additional_special_token""" ] __A : Any = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(lowerCamelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowerCamelCase , lowerCamelCase ) with open(os.path.join(lowerCamelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowerCamelCase , lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __A : int = tokenizer_class.from_pretrained( lowerCamelCase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __A : int = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=lowerCamelCase )] __A : str = tokenizer_class.from_pretrained( lowerCamelCase , additional_special_tokens=lowerCamelCase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def lowercase_( self : Union[str, Any] ): """simple docstring""" __A : Dict = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_78] ) , """�""" ) def lowercase_( self : Optional[int] ): """simple docstring""" pass def lowercase_( self : Optional[Any] ): """simple docstring""" pass def lowercase_( self : Any ): """simple docstring""" pass def lowercase_( self : Union[str, Any] ): """simple docstring""" pass def lowercase_( self : Optional[int] ): """simple docstring""" __A : Optional[int] = self.get_tokenizers(fast=lowerCamelCase , do_lower_case=lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __A : Optional[int] = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""] __A : List[Any] = tokenizer.convert_tokens_to_string(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase )
499
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ : Optional[int] = logging.get_logger(__name__) class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , *lowercase , **lowercase ) -> None: warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowercase , ) super().__init__(*lowercase , **lowercase )
601
'''simple docstring''' a__ : Optional[int] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a__ : List[Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a__ : Any = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def _lowercase ( __A ,__A ,__A ): '''simple docstring''' assert len(str(__A ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __UpperCamelCase = year // 100 __UpperCamelCase = (5 * (century % 4) + 2) % 7 __UpperCamelCase = year % 100 __UpperCamelCase = centurian % 12 __UpperCamelCase = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __UpperCamelCase = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) __UpperCamelCase = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
601
1
class _lowercase : def __init__( self : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int ) -> int: """simple docstring""" a = None a = None a = graph self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase ) a = len(__lowerCAmelCase ) a = None def A ( self : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ) -> List[Any]: """simple docstring""" if sources is int: a = [sources] if sinks is int: a = [sinks] if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: return a = sources[0] a = sinks[0] # make fake vertex if there are more # than one source or sink if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1: a = 0 for i in sources: max_input_flow += sum(self.graph[i] ) a = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: a = max_input_flow a = 0 a = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: a = max_input_flow a = size - 1 def A ( self : Any ) -> Tuple: """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("You need to set maximum flow algorithm before." ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def A ( self : Optional[int] , __lowerCAmelCase : int ) -> int: """simple docstring""" a = algorithm(self ) class _lowercase : def __init__( self : Optional[Any] , __lowerCAmelCase : int ) -> Optional[Any]: """simple docstring""" a = flow_network a = flow_network.verticesCount a = flow_network.sourceIndex a = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that a = flow_network.graph a = False def A ( self : Any ) -> Dict: """simple docstring""" if not self.executed: self._algorithm() a = True def A ( self : Any ) -> Tuple: """simple docstring""" pass class _lowercase ( UpperCAmelCase__ ): def __init__( self : Dict , __lowerCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" super().__init__(__lowerCAmelCase ) # use this to save your result a = -1 def A ( self : Any ) -> List[str]: """simple docstring""" if not self.executed: raise Exception("You should execute algorithm before using its result!" ) return self.maximum_flow class _lowercase ( UpperCAmelCase__ ): def __init__( self : Any , __lowerCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" super().__init__(__lowerCAmelCase ) a = [[0] * self.verticies_count for i in range(self.verticies_count )] a = [0] * self.verticies_count a = [0] * self.verticies_count def A ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" a = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule a = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list a = 0 while i < len(__lowerCAmelCase ): a = vertices_list[i] a = self.heights[vertex_index] self.process_vertex(__lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) ) a = 0 else: i += 1 a = sum(self.preflow[self.source_index] ) def A ( self : int , __lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__lowerCAmelCase , __lowerCAmelCase ) self.relabel(__lowerCAmelCase ) def A ( self : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ) -> List[str]: """simple docstring""" a = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def A ( self : Any , __lowerCAmelCase : str ) -> int: """simple docstring""" a = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): a = self.heights[to_index] if min_height is not None: a = min_height + 1 if __name__ == "__main__": A_ : str = [0] A_ : Union[str, Any] = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] A_ : Union[str, Any] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network A_ : int = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate A_ : Any = flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
32
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _lowercase ( UpperCAmelCase__ ): def A ( self : Optional[int] , __lowerCAmelCase : str ) -> Union[str, Any]: """simple docstring""" with open(__lowerCAmelCase , encoding="utf-8" ) as input_file: a = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) a = input_file.read() a = regexp.search(__lowerCAmelCase ) return match def A ( self : List[Any] , __lowerCAmelCase : str ) -> Dict: """simple docstring""" with open(__lowerCAmelCase , encoding="utf-8" ) as input_file: a = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) a = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` a = regexp.finditer(__lowerCAmelCase ) a = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def A ( self : List[str] ) -> List[Any]: """simple docstring""" a = Path("./datasets" ) a = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__lowerCAmelCase ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def A ( self : Tuple ) -> Union[str, Any]: """simple docstring""" a = Path("./datasets" ) a = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(__lowerCAmelCase ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
32
1
'''simple docstring''' import copy import re class __SCREAMING_SNAKE_CASE : """simple docstring""" _a : List[Any] = '''hp''' _a : int = {} _a : Tuple = None @classmethod def _a ( cls , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" a_ = prefix a_ = defaults cls.build_naming_info() @staticmethod def _a ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if len(_UpperCAmelCase ) == 0: return "" a_ = None if any(char.isdigit() for char in word ): raise Exception(f'Parameters should not contain numbers: \'{word}\' contains a number' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(_UpperCAmelCase ) + 1 ): a_ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: a_ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(UpperCamelCase__ ): a_ = '' while integer != 0: a_ = chr(ord('A' ) + integer % 10 ) + s integer //= 10 return s a_ = 0 while True: a_ = word + '#' + int_to_alphabetic(_UpperCAmelCase ) if sword in info["reverse_short_word"]: continue else: a_ = sword break a_ = short_word a_ = word return short_word @staticmethod def _a ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" a_ = param_name.split('_' ) a_ = [TrialShortNamer.shortname_for_word(_UpperCAmelCase , _UpperCAmelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name a_ = ['', '_'] for separator in separators: a_ = separator.join(_UpperCAmelCase ) if shortname not in info["reverse_short_param"]: a_ = shortname a_ = param_name return shortname return param_name @staticmethod def _a ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" a_ = TrialShortNamer.shortname_for_key(_UpperCAmelCase , _UpperCAmelCase ) a_ = short_name a_ = param_name @classmethod def _a ( cls ): """simple docstring""" if cls.NAMING_INFO is not None: return a_ = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } a_ = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(_UpperCAmelCase , _UpperCAmelCase ) a_ = info @classmethod def _a ( cls , UpperCamelCase__ ): """simple docstring""" cls.build_naming_info() assert cls.PREFIX is not None a_ = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'You should provide a default value for the param name {k} with value {v}' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue a_ = cls.NAMING_INFO['short_param'][k] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = 1 if v else 0 a_ = '' if isinstance(_UpperCAmelCase , (int, float) ) else '-' a_ = f'{key}{sep}{v}' name.append(_UpperCAmelCase ) return "_".join(_UpperCAmelCase ) @classmethod def _a ( cls , UpperCamelCase__ ): """simple docstring""" a_ = repr[len(cls.PREFIX ) + 1 :] if repr == "": a_ = [] else: a_ = repr.split('_' ) a_ = {} for value in values: if "-" in value: a_ , a_ = value.split('-' ) else: a_ = re.sub('[0-9.]' , '' , _UpperCAmelCase ) a_ = float(re.sub('[^0-9.]' , '' , _UpperCAmelCase ) ) a_ = cls.NAMING_INFO['reverse_short_param'][p_k] a_ = p_v for k in cls.DEFAULTS: if k not in parameters: a_ = cls.DEFAULTS[k] return parameters
536
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A : List[Any] = None A : Optional[Any] = logging.get_logger(__name__) A : str = '▁' A : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A : Optional[int] = { 'google/pegasus-xsum': 5_1_2, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PegasusTokenizer A__ = ['''input_ids''', '''attention_mask'''] def __init__(self : Tuple , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : Optional[Any]="<mask_2>" , _UpperCAmelCase : Optional[Any]="<mask_1>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=103 , **_UpperCAmelCase : Dict , ) -> Dict: """simple docstring""" lowercase__ = offset if additional_special_tokens is not None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError( f'''additional_special_tokens should be of type {type(_UpperCAmelCase )}, but is''' f''' {type(_UpperCAmelCase )}''' ) lowercase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_UpperCAmelCase ) , self.offset - 1 ) ] if len(set(_UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) lowercase__ = additional_special_tokens_extended else: lowercase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , pad_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , mask_token_sent=_UpperCAmelCase , offset=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(_UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ (self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
15
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , ): snake_case_ = parent snake_case_ = 13 snake_case_ = 7 snake_case_ = 30 snake_case_ = self.seq_length + self.mem_len snake_case_ = 15 snake_case_ = True snake_case_ = True snake_case_ = 99 snake_case_ = [10, 50, 80] snake_case_ = 32 snake_case_ = 32 snake_case_ = 4 snake_case_ = 8 snake_case_ = 1_28 snake_case_ = 2 snake_case_ = 2 snake_case_ = None snake_case_ = 1 snake_case_ = 0 snake_case_ = 3 snake_case_ = self.vocab_size - 1 snake_case_ = 0.01 def UpperCamelCase__ ( self ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def UpperCamelCase__ ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = TFTransfoXLModel(_UpperCAmelCase ) snake_case_ , snake_case_ = model(_UpperCAmelCase ).to_tuple() snake_case_ = {'''input_ids''': input_ids_a, '''mems''': mems_a} snake_case_ , snake_case_ = model(_UpperCAmelCase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = TFTransfoXLLMHeadModel(_UpperCAmelCase ) snake_case_ , snake_case_ = model(_UpperCAmelCase ).to_tuple() snake_case_ = {'''input_ids''': input_ids_a, '''labels''': lm_labels} snake_case_ , snake_case_ = model(_UpperCAmelCase ).to_tuple() snake_case_ , snake_case_ = model([input_ids_a, mems_a] ).to_tuple() snake_case_ = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} snake_case_ , snake_case_ = model(_UpperCAmelCase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = TFTransfoXLForSequenceClassification(_UpperCAmelCase ) snake_case_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self ): snake_case_ = self.prepare_config_and_inputs() ((snake_case_) , (snake_case_) , (snake_case_) , (snake_case_)) = config_and_inputs snake_case_ = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __snake_case = () if is_tf_available() else () __snake_case = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __snake_case = False __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def UpperCamelCase__ ( self ): snake_case_ = TFTransfoXLModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCAmelCase , d_embed=37 ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): self.model_tester.set_seed() snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): self.model_tester.set_seed() snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: snake_case_ = model.get_output_embeddings() assert isinstance(_UpperCAmelCase , tf.keras.layers.Layer ) snake_case_ = model.get_bias() assert name is None else: snake_case_ = model.get_output_embeddings() assert x is None snake_case_ = model.get_bias() assert name is None def UpperCamelCase__ ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def UpperCamelCase__ ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = TFTransfoXLModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def UpperCamelCase__ ( self ): pass @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def UpperCamelCase__ ( self ): snake_case_ = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off snake_case_ = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off snake_case_ = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> snake_case_ = model.generate(_UpperCAmelCase , max_length=2_00 , do_sample=_UpperCAmelCase ) self.assertListEqual(output_ids[0].numpy().tolist() , _UpperCAmelCase )
531
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None )-> Any: """simple docstring""" assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' snake_case_ = nn.Parameter(SCREAMING_SNAKE_CASE ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' snake_case_ = nn.Parameter(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> int: """simple docstring""" snake_case_ = np.asarray(weights[0] ) snake_case_ = np.asarray(weights[1] ) snake_case_ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE ).view(-1 , SCREAMING_SNAKE_CASE ).contiguous().transpose(0 , 1 ) , ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" snake_case_ = np.asarray(weights[0] ) snake_case_ = np.asarray(weights[1] ) snake_case_ = np.asarray(weights[2] ) snake_case_ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.self_attention.key , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE ).view(-1 , SCREAMING_SNAKE_CASE ).contiguous().transpose(0 , 1 ) , ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> int: """simple docstring""" snake_case_ = weights[0][0][0] snake_case_ = np.asarray(layer_norm_a[0] ) snake_case_ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE ) , torch.tensor(SCREAMING_SNAKE_CASE ) , ) # lsh weights + output snake_case_ = weights[0][1] if len(SCREAMING_SNAKE_CASE ) < 4: set_layer_weights_in_torch_lsh(SCREAMING_SNAKE_CASE , torch_block.attention , SCREAMING_SNAKE_CASE ) else: set_layer_weights_in_torch_local(SCREAMING_SNAKE_CASE , torch_block.attention , SCREAMING_SNAKE_CASE ) # intermediate weighs snake_case_ = weights[2][0][1][2] # Chunked Feed Forward if len(SCREAMING_SNAKE_CASE ) == 4: snake_case_ = intermediate_weights[2] # layernorm 2 snake_case_ = np.asarray(intermediate_weights[0][0] ) snake_case_ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE ) , torch.tensor(SCREAMING_SNAKE_CASE ) , ) # intermediate dense snake_case_ = np.asarray(intermediate_weights[1][0] ) snake_case_ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE ) , ) # intermediate out snake_case_ = np.asarray(intermediate_weights[4][0] ) snake_case_ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE ) , ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> str: """simple docstring""" snake_case_ = torch_model.reformer # word embeds snake_case_ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(SCREAMING_SNAKE_CASE ) , ) if isinstance(weights[3] , SCREAMING_SNAKE_CASE ): snake_case_ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): snake_case_ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' snake_case_ = nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE ) ) snake_case_ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( SCREAMING_SNAKE_CASE ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): snake_case_ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # output layer norm snake_case_ = np.asarray(weights[7][0] ) snake_case_ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE ) , torch.tensor(SCREAMING_SNAKE_CASE ) , ) # output embeddings snake_case_ = np.asarray(weights[9][0] ) snake_case_ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE ) , ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> int: """simple docstring""" snake_case_ = ReformerConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) snake_case_ = ReformerModelWithLMHead(SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , '''rb''' ) as f: snake_case_ = pickle.load(SCREAMING_SNAKE_CASE )['''weights'''] set_model_weights_in_torch(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
531
1
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a = logging.get_logger(__name__) a = {'''vocab_file''': '''vocab.txt'''} a = { '''vocab_file''': { '''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''', '''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''', }, } a = { '''facebook/esm2_t6_8M_UR50D''': 1_024, '''facebook/esm2_t12_35M_UR50D''': 1_024, } def _snake_case ( _snake_case : Optional[int] ) -> Union[str, Any]: '''simple docstring''' with open(_snake_case , 'r' ) as f: _A = f.read().splitlines() return [l.strip() for l in lines] class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = VOCAB_FILES_NAMES UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : int = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Any="<unk>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : Optional[Any]="<pad>" , _UpperCAmelCase : List[str]="<mask>" , _UpperCAmelCase : List[str]="<eos>" , **_UpperCAmelCase : Dict , ): super().__init__(**_UpperCAmelCase ) _A = load_vocab_file(_UpperCAmelCase ) _A = dict(enumerate(self.all_tokens ) ) _A = {tok: ind for ind, tok in enumerate(self.all_tokens )} _A = unk_token _A = cls_token _A = pad_token _A = mask_token _A = eos_token _A = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : int ): return self._id_to_token.get(_UpperCAmelCase , self.unk_token ) def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : str ): return self._token_to_id.get(_UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : int , **_UpperCAmelCase : List[str] ): return text.split() def lowerCAmelCase_ ( self : int , _UpperCAmelCase : List[str]=False ): return len(self._id_to_token ) def lowerCAmelCase_ ( self : Optional[int] ): return {token: i for i, token in enumerate(self.all_tokens )} def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : str ): return self._token_to_id.get(_UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : int ): return self._id_to_token.get(_UpperCAmelCase , self.unk_token ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): _A = [self.cls_token_id] _A = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def lowerCAmelCase_ ( self : int , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] _A = [1] + ([0] * len(_UpperCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(_UpperCAmelCase ) + [1] return mask def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Any ): _A = os.path.join(_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(_UpperCAmelCase , 'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def lowerCAmelCase_ ( self : int ): return self.get_vocab_size(with_added_tokens=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[List[str], List[AddedToken]] , _UpperCAmelCase : bool = False ): return super()._add_tokens(_UpperCAmelCase , special_tokens=_UpperCAmelCase )
7
def UpperCamelCase ( _UpperCAmelCase : list[int] , _UpperCAmelCase : list[int] ) -> tuple[float, float]: '''simple docstring''' if not len(_UpperCAmelCase ) == len(_UpperCAmelCase ) == 3: raise ValueError("Please enter a valid equation." ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("Both a & b of two equations can't be zero." ) # Extract the coefficients _lowercase , _lowercase , _lowercase : List[str] = equationa _lowercase , _lowercase , _lowercase : List[str] = equationa # Calculate the determinants of the matrices _lowercase : List[Any] = aa * ba - aa * ba _lowercase : Tuple = ca * ba - ca * ba _lowercase : Union[str, Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("Infinite solutions. (Consistent system)" ) else: raise ValueError("No solution. (Inconsistent system)" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _lowercase : str = determinant_x / determinant _lowercase : Union[str, Any] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
461
0
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =DistilBertTokenizer _lowerCamelCase =DistilBertTokenizerFast _lowerCamelCase =True @slow def __snake_case ( self : List[Any] ): UpperCAmelCase = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=a__ ) UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=a__ ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(a__ ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(a__ , a__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
570
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: a__ : Optional[Any] = None a__ : Any = logging.get_logger(__name__) a__ : Union[str, Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a__ : Dict = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } a__ : Optional[Any] = { 'google/fnet-base': 512, 'google/fnet-large': 512, } a__ : int = '▁' class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =VOCAB_FILES_NAMES _lowerCamelCase =PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase =["input_ids", "token_type_ids"] _lowerCamelCase =FNetTokenizer def __init__( self : List[Any] , a__ : Optional[Any]=None , a__ : Optional[int]=None , a__ : List[str]=False , a__ : Tuple=True , a__ : int=True , a__ : Optional[Any]="<unk>" , a__ : Union[str, Any]="[SEP]" , a__ : int="<pad>" , a__ : Dict="[CLS]" , a__ : int="[MASK]" , **a__ : Dict , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase = ( AddedToken(a__ , lstrip=a__ , rstrip=a__ , normalized=a__ ) if isinstance(a__ , a__ ) else mask_token ) super().__init__( a__ , tokenizer_file=a__ , do_lower_case=a__ , remove_space=a__ , keep_accents=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , **a__ , ) UpperCAmelCase = do_lower_case UpperCAmelCase = remove_space UpperCAmelCase = keep_accents UpperCAmelCase = vocab_file UpperCAmelCase = False if not self.vocab_file else True def __snake_case ( self : List[Any] , a__ : List[int] , a__ : Optional[List[int]] = None ): UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __snake_case ( self : List[str] , a__ : List[int] , a__ : Optional[List[int]] = None ): UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case ( self : Optional[Any] , a__ : str , a__ : Optional[str] = None ): if not os.path.isdir(a__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase = os.path.join( a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
570
1
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[int]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __a ( nn.Module ): def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : nn.Module , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' super().__init__() UpperCamelCase__ : Optional[Any] = module UpperCamelCase__ : Optional[Any] = nn.Sequential( nn.Linear(module.in_features , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) , nn.Linear(SCREAMING_SNAKE_CASE , module.out_features , bias=SCREAMING_SNAKE_CASE ) , ) UpperCamelCase__ : str = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=SCREAMING_SNAKE_CASE ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return self.module(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) + self.adapter(SCREAMING_SNAKE_CASE ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __a ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _lowerCAmelCase : Optional[Any] = '''bigscience/bloom-1b7''' # Constant values _lowerCAmelCase : int = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 _lowerCAmelCase : List[str] = '''Hello my name is''' _lowerCAmelCase : Union[str, Any] = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) _lowerCAmelCase : str = 1_0 def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name ) class __a ( A__ ): def __lowercase ( self : Optional[int] ): '''simple docstring''' super().setUp() # Models and tokenizer UpperCamelCase__ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) UpperCamelCase__ : List[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="auto" ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : List[Any] = self.model_abit.config self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "quantization_config" ) ) UpperCamelCase__ : List[Any] = config.to_dict() UpperCamelCase__ : Dict = config.to_diff_dict() UpperCamelCase__ : Tuple = config.to_json_string() def __lowercase ( self : Optional[Any] ): '''simple docstring''' from bitsandbytes.nn import Paramsabit UpperCamelCase__ : Optional[int] = self.model_fpaa.get_memory_footprint() UpperCamelCase__ : str = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) UpperCamelCase__ : Any = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __lowercase ( self : List[Any] ): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(SCREAMING_SNAKE_CASE , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors="pt" ) UpperCamelCase__ : Optional[Any] = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = BitsAndBytesConfig() UpperCamelCase__ : int = True UpperCamelCase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE , device_map="auto" ) UpperCamelCase__ : str = self.tokenizer(self.input_text , return_tensors="pt" ) UpperCamelCase__ : Union[str, Any] = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __lowercase ( self : Dict ): '''simple docstring''' with self.assertRaises(SCREAMING_SNAKE_CASE ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(SCREAMING_SNAKE_CASE ) def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : int = BitsAndBytesConfig() with self.assertRaises(SCREAMING_SNAKE_CASE ): UpperCamelCase__ : List[str] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=SCREAMING_SNAKE_CASE , load_in_abit=SCREAMING_SNAKE_CASE , device_map="auto" , bnb_abit_quant_type="nf4" , ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' with self.assertRaises(SCREAMING_SNAKE_CASE ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(SCREAMING_SNAKE_CASE ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.float() with self.assertRaises(SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything UpperCamelCase__ : List[Any] = self.tokenizer(self.input_text , return_tensors="pt" ) UpperCamelCase__ : List[Any] = self.model_fpaa.to(torch.floataa ) UpperCamelCase__ : List[str] = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error UpperCamelCase__ : List[str] = self.model_fpaa.to("cpu" ) # Check this does not throw an error UpperCamelCase__ : str = self.model_fpaa.half() # Check this does not throw an error UpperCamelCase__ : List[Any] = self.model_fpaa.float() def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : str = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=SCREAMING_SNAKE_CASE , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __a ( unittest.TestCase ): @classmethod def __lowercase ( cls : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : str = "t5-small" UpperCamelCase__ : Any = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(cls.model_name ) UpperCamelCase__ : Dict = "Translate in German: Hello, my dog is cute" def __lowercase ( self : Optional[Any] ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Any ): '''simple docstring''' from transformers import TaForConditionalGeneration UpperCamelCase__ : Optional[int] = TaForConditionalGeneration._keep_in_fpaa_modules UpperCamelCase__ : List[str] = None # test with `t5-small` UpperCamelCase__ : List[str] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="auto" ) UpperCamelCase__ : Optional[int] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCamelCase__ : str = model.generate(**SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` UpperCamelCase__ : Optional[int] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="auto" ) UpperCamelCase__ : Tuple = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCamelCase__ : List[str] = model.generate(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = modules def __lowercase ( self : List[Any] ): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` UpperCamelCase__ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) UpperCamelCase__ : str = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCamelCase__ : int = model.generate(**SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` UpperCamelCase__ : int = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="auto" ) UpperCamelCase__ : Optional[Any] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) UpperCamelCase__ : Optional[Any] = model.generate(**SCREAMING_SNAKE_CASE ) class __a ( A__ ): def __lowercase ( self : Tuple ): '''simple docstring''' super().setUp() # model_name UpperCamelCase__ : Optional[Any] = "bigscience/bloom-560m" UpperCamelCase__ : Any = "t5-small" # Different types of model UpperCamelCase__ : Union[str, Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="auto" ) # Sequence classification model UpperCamelCase__ : Tuple = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="auto" ) # CausalLM model UpperCamelCase__ : Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="auto" ) # Seq2seq model UpperCamelCase__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="auto" ) def __lowercase ( self : List[str] ): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Dict ): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __a ( A__ ): def __lowercase ( self : List[Any] ): '''simple docstring''' super().setUp() def __lowercase ( self : Any ): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass UpperCamelCase__ : List[str] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __a ( A__ ): def __lowercase ( self : str ): '''simple docstring''' super().setUp() def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : List[str] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=SCREAMING_SNAKE_CASE , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model UpperCamelCase__ : Optional[Any] = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch UpperCamelCase__ : Optional[int] = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) class __a ( A__ ): def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Optional[int] = "facebook/opt-350m" super().setUp() def __lowercase ( self : List[str] ): '''simple docstring''' if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters UpperCamelCase__ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=SCREAMING_SNAKE_CASE ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): UpperCamelCase__ : Tuple = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability UpperCamelCase__ : int = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ : Optional[Any] = LoRALayer(module.q_proj , rank=16 ) UpperCamelCase__ : Union[str, Any] = LoRALayer(module.k_proj , rank=16 ) UpperCamelCase__ : Tuple = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch UpperCamelCase__ : Tuple = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): UpperCamelCase__ : Tuple = model.forward(**SCREAMING_SNAKE_CASE ) out.logits.norm().backward() for module in model.modules(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(SCREAMING_SNAKE_CASE , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __a ( A__ ): _lowerCAmelCase : Dict = '''gpt2-xl''' _lowerCAmelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
228
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Dict =logging.get_logger(__name__) lowerCamelCase : int =[ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: UpperCamelCase__ : Optional[int] = k.replace(__lowerCAmelCase , __lowerCAmelCase ) if k.startswith("encoder" ): UpperCamelCase__ : Dict = k.replace(".attn" , ".self_attn" ) UpperCamelCase__ : Optional[int] = k.replace("norm1" , "self_attn_layer_norm" ) UpperCamelCase__ : Dict = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): UpperCamelCase__ : int = k.replace("norm1" , "self_attn_layer_norm" ) UpperCamelCase__ : List[Any] = k.replace("norm2" , "encoder_attn_layer_norm" ) UpperCamelCase__ : str = k.replace("norm3" , "final_layer_norm" ) return k def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: UpperCamelCase__ : str = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: UpperCamelCase__ : Union[str, Any] = sd.pop(__lowerCAmelCase ) UpperCamelCase__ : Dict = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd UpperCamelCase__ : Union[str, Any] = v lowerCamelCase : Any =['''START'''] @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: UpperCamelCase__ : Union[str, Any] = torch.load(__lowerCAmelCase , map_location="cpu" ) UpperCamelCase__ : str = model["model"] UpperCamelCase__ : int = BlenderbotConfig.from_json_file(__lowerCAmelCase ) UpperCamelCase__ : List[Any] = BlenderbotForConditionalGeneration(__lowerCAmelCase ) UpperCamelCase__ : Optional[Any] = m.model.state_dict().keys() UpperCamelCase__ : str = [] UpperCamelCase__ : int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue UpperCamelCase__ : Union[str, Any] = rename_state_dict_key(__lowerCAmelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: UpperCamelCase__ : Optional[int] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__lowerCAmelCase ) m.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) m.half() m.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowerCamelCase : Any =parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
228
1
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor A_ = logging.get_logger(__name__) class _a (lowercase__ ): '''simple docstring''' def __init__( self , *A__ , **A__ ): warnings.warn( """The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use DeformableDetrImageProcessor instead.""" , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
721
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline A_ : Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class _a (datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase__: Optional[datasets.Features] = None UpperCAmelCase__: str = "utf-8" UpperCAmelCase__: Optional[str] = None UpperCAmelCase__: Optional[str] = None UpperCAmelCase__: bool = True # deprecated UpperCAmelCase__: Optional[int] = None # deprecated UpperCAmelCase__: int = 10 << 20 # 10MB UpperCAmelCase__: Optional[bool] = None class _a (datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCAmelCase__: List[str] = JsonConfig def __A ( self ): if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) A__ : Union[str, Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def __A ( self , A__ ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) A__ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A__ , (str, list, tuple) ): A__ : Optional[Any] = data_files if isinstance(A__ , A__ ): A__ : List[str] = [files] A__ : int = [dl_manager.iter_files(A__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] A__ : List[str] = [] for split_name, files in data_files.items(): if isinstance(A__ , A__ ): A__ : Optional[int] = [files] A__ : Optional[int] = [dl_manager.iter_files(A__ ) for file in files] splits.append(datasets.SplitGenerator(name=A__ , gen_kwargs={"""files""": files} ) ) return splits def __A ( self , A__ ): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): A__ : Optional[Any] = self.config.features.arrow_schema.field(A__ ).type A__ : str = pa_table.append_column(A__ , pa.array([None] * len(A__ ) , type=A__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A__ : Optional[int] = table_cast(A__ , self.config.features.arrow_schema ) return pa_table def __A ( self , A__ ): for file_idx, file in enumerate(itertools.chain.from_iterable(A__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(A__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A__ : Optional[Any] = json.load(A__ ) # We keep only the field we are interested in A__ : Optional[int] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(A__ , (list, tuple) ): A__ : Union[str, Any] = set().union(*[row.keys() for row in dataset] ) A__ : Any = {col: [row.get(A__ ) for row in dataset] for col in keys} else: A__ : Any = dataset A__ : Any = pa.Table.from_pydict(A__ ) yield file_idx, self._cast_table(A__ ) # If the file has one json object per line else: with open(A__ , """rb""" ) as f: A__ : List[str] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A__ : List[str] = max(self.config.chunksize // 32 , 16 << 10 ) A__ : Any = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: A__ : Dict = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(A__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A__ : List[Any] = batch.decode(self.config.encoding , errors=A__ ).encode("""utf-8""" ) try: while True: try: A__ : str = paj.read_json( io.BytesIO(A__ ) , read_options=paj.ReadOptions(block_size=A__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(A__ , pa.ArrowInvalid ) and "straddling" not in str(A__ ) or block_size > len(A__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(A__ )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( A__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A__ : Optional[Any] = json.load(A__ ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(A__ )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(A__ , A__ ): # list is the only sequence type supported in JSON try: A__ : str = set().union(*[row.keys() for row in dataset] ) A__ : List[str] = {col: [row.get(A__ ) for row in dataset] for col in keys} A__ : int = pa.Table.from_pydict(A__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(A__ )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(A__ ) break else: logger.error(F"""Failed to read file '{file}' with error {type(A__ )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(A__ ) batch_idx += 1
64
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class lowerCamelCase__ ( __lowerCamelCase ): '''simple docstring''' _lowerCamelCase = """switch_transformers""" _lowerCamelCase = ["""past_key_values"""] _lowerCamelCase = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self ,lowerCamelCase_=3_2_1_2_8 ,lowerCamelCase_=7_6_8 ,lowerCamelCase_=6_4 ,lowerCamelCase_=2_0_4_8 ,lowerCamelCase_=6_4 ,lowerCamelCase_=1_2 ,lowerCamelCase_=3 ,lowerCamelCase_=1_2 ,lowerCamelCase_=3 ,lowerCamelCase_=1_2 ,lowerCamelCase_=8 ,lowerCamelCase_=False ,lowerCamelCase_=0.01 ,lowerCamelCase_="float32" ,lowerCamelCase_=False ,lowerCamelCase_=3_2 ,lowerCamelCase_=1_2_8 ,lowerCamelCase_=0.1 ,lowerCamelCase_=1E-6 ,lowerCamelCase_=0.0_01 ,lowerCamelCase_=0.0_01 ,lowerCamelCase_=1.0 ,lowerCamelCase_="relu" ,lowerCamelCase_=True ,lowerCamelCase_=False ,lowerCamelCase_=True ,lowerCamelCase_=0 ,lowerCamelCase_=1 ,**lowerCamelCase_ ,) -> List[str]: A = vocab_size A = d_model A = d_kv A = d_ff A = num_sparse_encoder_layers A = num_layers A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: A = self.num_layers // self.num_sparse_encoder_layers else: A = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: A = self.num_decoder_layers // self.num_sparse_decoder_layers else: A = self.num_decoder_layers # HACK: this will create 0 sparse layers A = num_heads A = num_experts A = expert_capacity A = router_bias A = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) A = router_dtype A = router_ignore_padding_tokens A = relative_attention_num_buckets A = relative_attention_max_distance A = dropout_rate A = layer_norm_epsilon A = initializer_factor A = feed_forward_proj A = use_cache A = add_router_probs A = router_z_loss_coef A = router_aux_loss_coef A = self.feed_forward_proj.split("""-""" ) A = act_info[-1] A = act_info[0] == """gated""" if len(lowerCamelCase_ ) > 1 and act_info[0] != "gated" or len(lowerCamelCase_ ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """\'gated-gelu\' or \'relu\'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": A = """gelu_new""" super().__init__( pad_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,is_encoder_decoder=lowerCamelCase_ ,**lowerCamelCase_ ,)
617
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = [0] * len(__SCREAMING_SNAKE_CASE ) lowercase = [] lowercase = [] lowercase = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__SCREAMING_SNAKE_CASE ) ): if indegree[i] == 0: queue.append(__SCREAMING_SNAKE_CASE ) while queue: lowercase = queue.pop(0 ) cnt += 1 topo.append(__SCREAMING_SNAKE_CASE ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__SCREAMING_SNAKE_CASE ) if cnt != len(__SCREAMING_SNAKE_CASE ): print('Cycle exists' ) else: print(__SCREAMING_SNAKE_CASE ) # Adjacency List of Graph UpperCAmelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
84
0
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = 0 def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path(SCREAMING_SNAKE_CASE__ ) / """preprocessor_config.json""" SCREAMING_SNAKE_CASE__ : str = Path(SCREAMING_SNAKE_CASE__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(SCREAMING_SNAKE_CASE__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(SCREAMING_SNAKE_CASE__ , """w""" ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = AutoImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Optional[Any] = Path(SCREAMING_SNAKE_CASE__ ) / """preprocessor_config.json""" SCREAMING_SNAKE_CASE__ : Tuple = Path(SCREAMING_SNAKE_CASE__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(SCREAMING_SNAKE_CASE__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(SCREAMING_SNAKE_CASE__ , """w""" ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = AutoImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Optional[Any] = CLIPConfig() # Create a dummy config file with image_proceesor_type SCREAMING_SNAKE_CASE__ : List[Any] = Path(SCREAMING_SNAKE_CASE__ ) / """preprocessor_config.json""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path(SCREAMING_SNAKE_CASE__ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(SCREAMING_SNAKE_CASE__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(SCREAMING_SNAKE_CASE__ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally SCREAMING_SNAKE_CASE__ : Dict = AutoImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ).to_dict() config_dict.pop("""image_processor_type""" ) SCREAMING_SNAKE_CASE__ : List[Any] = CLIPImageProcessor(**SCREAMING_SNAKE_CASE__ ) # save in new folder model_config.save_pretrained(SCREAMING_SNAKE_CASE__ ) config.save_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = AutoImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE__ : str = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Tuple = Path(SCREAMING_SNAKE_CASE__ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(SCREAMING_SNAKE_CASE__ , """w""" ) , ) SCREAMING_SNAKE_CASE__ : Any = AutoImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , """clip-base is not a local folder and is not a valid model identifier""" ): SCREAMING_SNAKE_CASE__ : Any = AutoImageProcessor.from_pretrained("""clip-base""" ) def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): SCREAMING_SNAKE_CASE__ : Dict = AutoImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ , revision="""aaaaaa""" ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : int = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : int = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = AutoImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" try: AutoConfig.register("""custom""" , SCREAMING_SNAKE_CASE__ ) AutoImageProcessor.register(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): AutoImageProcessor.register(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : List[str] = Path(SCREAMING_SNAKE_CASE__ ) / """preprocessor_config.json""" SCREAMING_SNAKE_CASE__ : str = Path(SCREAMING_SNAKE_CASE__ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(SCREAMING_SNAKE_CASE__ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(SCREAMING_SNAKE_CASE__ , """w""" ) ) SCREAMING_SNAKE_CASE__ : Dict = CustomImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = AutoImageProcessor.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __magic_name__ (self ) -> Optional[int]: """simple docstring""" class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] = True try: AutoConfig.register("""custom""" , SCREAMING_SNAKE_CASE__ ) AutoImageProcessor.register(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE__ : str = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE__ : Dict = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE__ : Dict = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(SCREAMING_SNAKE_CASE__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
704
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCAmelCase_ (a__ , a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) __UpperCamelCase : Tuple = ( { '''feature-extraction''': TFMobileBertModel, '''fill-mask''': TFMobileBertForMaskedLM, '''question-answering''': TFMobileBertForQuestionAnswering, '''text-classification''': TFMobileBertForSequenceClassification, '''token-classification''': TFMobileBertForTokenClassification, '''zero-shot''': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : str = False def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=99 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=None , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : List[Any] = seq_length SCREAMING_SNAKE_CASE__ : Any = is_training SCREAMING_SNAKE_CASE__ : List[str] = use_input_mask SCREAMING_SNAKE_CASE__ : List[Any] = use_token_type_ids SCREAMING_SNAKE_CASE__ : List[Any] = use_labels SCREAMING_SNAKE_CASE__ : Optional[int] = vocab_size SCREAMING_SNAKE_CASE__ : int = hidden_size SCREAMING_SNAKE_CASE__ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = intermediate_size SCREAMING_SNAKE_CASE__ : List[Any] = hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Dict = type_vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : str = initializer_range SCREAMING_SNAKE_CASE__ : str = num_labels SCREAMING_SNAKE_CASE__ : Dict = num_choices SCREAMING_SNAKE_CASE__ : Union[str, Any] = scope SCREAMING_SNAKE_CASE__ : Dict = embedding_size def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : str = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = TFMobileBertModel(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : List[Any] = model(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = [input_ids, input_mask] SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = TFMobileBertForMaskedLM(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : List[str] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = TFMobileBertForNextSentencePrediction(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : List[str] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFMobileBertForPreTraining(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE__ : List[Any] = TFMobileBertForSequenceClassification(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.num_choices SCREAMING_SNAKE_CASE__ : List[Any] = TFMobileBertForMultipleChoice(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ : Tuple = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE__ : Optional[int] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.num_labels SCREAMING_SNAKE_CASE__ : Tuple = TFMobileBertForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : List[str] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = TFMobileBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : str = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = TFMobileBertModelTest.TFMobileBertModelTester(self ) SCREAMING_SNAKE_CASE__ : str = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*SCREAMING_SNAKE_CASE__ ) @slow def __magic_name__ (self ) -> List[str]: """simple docstring""" for model_name in ["google/mobilebert-uncased"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = TFMobileBertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_tf class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) SCREAMING_SNAKE_CASE__ : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE__ : Dict = model(SCREAMING_SNAKE_CASE__ )[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = [1, 6, 3_05_22] self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 )
545
0
__lowerCamelCase : str = {str(digit): digit**5 for digit in range(10)} def lowerCamelCase_(lowerCamelCase_ ) -> int: return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCamelCase_ ) ) def lowerCamelCase_() -> int: return sum( number for number in range(1_000 , 1_000_000 ) if number == digits_fifth_powers_sum(lowerCamelCase_ ) ) if __name__ == "__main__": print(solution())
323
__lowerCamelCase : str = [ (1_000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def lowerCamelCase_(lowerCamelCase_ ) -> int: UpperCAmelCase = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000} UpperCAmelCase = 0 UpperCAmelCase = 0 while place < len(lowerCamelCase_ ): if (place + 1 < len(lowerCamelCase_ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowerCamelCase_(lowerCamelCase_ ) -> str: UpperCAmelCase = [] for arabic, roman in ROMAN: ((UpperCAmelCase) , (UpperCAmelCase)) = divmod(lowerCamelCase_ , lowerCamelCase_ ) result.append(roman * factor ) if number == 0: break return "".join(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
323
1
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness UpperCAmelCase_ : Optional[Any] = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' UpperCAmelCase_ : List[str] = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' UpperCAmelCase_ : Any = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' UpperCAmelCase_ : int = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' UpperCAmelCase_ : List[Any] = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :Tuple ): '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def A__ ( self :Optional[Any] , __snake_case :Dict , __snake_case :Union[str, Any] , __snake_case :List[Any]=[1, 10, 1_00] , __snake_case :Dict=4 , __snake_case :Tuple=3.0 ): '''simple docstring''' if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=__UpperCamelCase ) as executor: __magic_name__ : Optional[Any] =[] __magic_name__ : List[Any] =Counter() __magic_name__ : str =0 __magic_name__ : Dict =defaultdict(__UpperCamelCase ) for task_id, (candidates, test_case) in enumerate(zip(__UpperCamelCase , __UpperCamelCase ) ): for candidate in candidates: __magic_name__ : Optional[Any] =candidate + """\n""" + test_case __magic_name__ : str =(test_program, timeout, task_id, completion_id[task_id]) __magic_name__ : List[Any] =executor.submit(__UpperCamelCase , *__UpperCamelCase ) futures.append(__UpperCamelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(__UpperCamelCase ): __magic_name__ : Optional[Any] =future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) __magic_name__ , __magic_name__ : int =[], [] for result in results.values(): result.sort() __magic_name__ : Optional[int] =[r[1]["""passed"""] for r in result] total.append(len(__UpperCamelCase ) ) correct.append(sum(__UpperCamelCase ) ) __magic_name__ : Optional[Any] =np.array(__UpperCamelCase ) __magic_name__ : str =np.array(__UpperCamelCase ) __magic_name__ : Dict =k __magic_name__ : str ={f"pass@{k}": estimate_pass_at_k(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): def estimator(lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(_A , _A ): __magic_name__ : Dict =itertools.repeat(_A , len(_A ) ) else: assert len(_A ) == len(_A ) __magic_name__ : int =iter(_A ) return np.array([estimator(int(_A ) , int(_A ) , _A ) for n, c in zip(_A , _A )] )
719
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCAmelCase_ : str = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
367
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : str = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ['LayoutLMv3FeatureExtractor'] A_ : Union[str, Any] = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys A_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
265
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : Optional[Any] = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
265
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch A_ = logging.get_logger(__name__) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ) -> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = size if size is not None else {'shortest_edge': 224} lowerCamelCase_ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = crop_size if crop_size is not None else {'height': 256, 'width': 256} lowerCamelCase_ = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='crop_size' ) lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = resample lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_flip_channel_order def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PIL.Image.BILINEAR , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: '''simple docstring''' lowerCamelCase_ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) lowerCamelCase_ = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['shortest_edge'] , default_to_square=SCREAMING_SNAKE_CASE_ ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: '''simple docstring''' lowerCamelCase_ = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['height'], size['width']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> str: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> np.ndarray: '''simple docstring''' return flip_channel_order(SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ) -> PIL.Image.Image: '''simple docstring''' lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ = resample if resample is not None else self.resample lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) lowerCamelCase_ = size if size is not None else self.size lowerCamelCase_ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='crop_size' ) lowerCamelCase_ = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) # All transformations expect numpy arrays. lowerCamelCase_ = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: lowerCamelCase_ = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: lowerCamelCase_ = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: lowerCamelCase_ = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: lowerCamelCase_ = [self.flip_channel_order(image=SCREAMING_SNAKE_CASE_ ) for image in images] lowerCamelCase_ = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] lowerCamelCase_ = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[str]: '''simple docstring''' lowerCamelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = target_sizes.numpy() lowerCamelCase_ = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): lowerCamelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase_ = logits.argmax(dim=1 ) lowerCamelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
714
'''simple docstring''' A_ = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} A_ = ["a", "b", "c", "d", "e"] def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[str]: lowerCamelCase_ = start # add current to visited visited.append(__UpperCamelCase ) lowerCamelCase_ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowerCamelCase_ = topological_sort(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # if all neighbors visited add current to sort sort.append(__UpperCamelCase ) # if all vertices haven't been visited select a new one to visit if len(__UpperCamelCase ) != len(__UpperCamelCase ): for vertice in vertices: if vertice not in visited: lowerCamelCase_ = topological_sort(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # return sort return sort if __name__ == "__main__": A_ = topological_sort("a", [], []) print(sort)
384
0
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase__ = object() # For specifying empty leaf dict `{}` lowercase__ = object() def __magic_name__ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] ): __a : Optional[int] = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(_lowerCamelCase ) - len(_lowerCamelCase ) + 1 ): __a : Union[str, Any] = [x.match(_lowerCamelCase ) for x, y in zip(_lowerCamelCase , ks[i:] )] if matches and all(_lowerCamelCase ): return True return False def __magic_name__ ( _lowerCamelCase : str ): def replace(_lowerCamelCase : List[Any] , _lowerCamelCase : List[str] ): for rule, replacement in rules: if _match(_lowerCamelCase , _lowerCamelCase ): return replacement return val return replace def __magic_name__ ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""" , _lowerCamelCase )), (("transformer", "wte", "embedding"), P("""mp""" , _lowerCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(_lowerCamelCase , """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""" , _lowerCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(_lowerCamelCase , """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""" , _lowerCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __magic_name__ ( _lowerCamelCase : Union[str, Any] ): __a : Union[str, Any] = _get_partition_rules() __a : Any = _replacement_rules(_lowerCamelCase ) __a : Tuple = {k: _unmatched for k in flatten_dict(_lowerCamelCase )} __a : Any = {k: replace(_lowerCamelCase , _lowerCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(_lowerCamelCase ) )
581
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "blip_2_vision_model" def __init__(self , _lowercase=1408 , _lowercase=6144 , _lowercase=39 , _lowercase=16 , _lowercase=224 , _lowercase=14 , _lowercase="gelu" , _lowercase=0.0_0001 , _lowercase=0.0 , _lowercase=1e-10 , _lowercase=True , **_lowercase , ): '''simple docstring''' super().__init__(**_lowercase ) __a : Tuple = hidden_size __a : Any = intermediate_size __a : Dict = num_hidden_layers __a : Optional[Any] = num_attention_heads __a : str = patch_size __a : Union[str, Any] = image_size __a : List[Any] = initializer_range __a : List[str] = attention_dropout __a : Union[str, Any] = layer_norm_eps __a : Optional[int] = hidden_act __a : int = qkv_bias @classmethod def lowerCAmelCase__(cls , _lowercase , **_lowercase ): '''simple docstring''' cls._set_token_in_kwargs(_lowercase ) __a , __a : Optional[int] = cls.get_config_dict(_lowercase , **_lowercase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": __a : Tuple = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowercase , **_lowercase ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "blip_2_qformer" def __init__(self , _lowercase=30522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase=2 , _lowercase=1408 , **_lowercase , ): '''simple docstring''' super().__init__(pad_token_id=_lowercase , **_lowercase ) __a : int = vocab_size __a : Union[str, Any] = hidden_size __a : Union[str, Any] = num_hidden_layers __a : Any = num_attention_heads __a : List[str] = hidden_act __a : Union[str, Any] = intermediate_size __a : Optional[int] = hidden_dropout_prob __a : Any = attention_probs_dropout_prob __a : List[str] = max_position_embeddings __a : Union[str, Any] = initializer_range __a : Union[str, Any] = layer_norm_eps __a : Any = position_embedding_type __a : Union[str, Any] = cross_attention_frequency __a : str = encoder_hidden_size @classmethod def lowerCAmelCase__(cls , _lowercase , **_lowercase ): '''simple docstring''' cls._set_token_in_kwargs(_lowercase ) __a , __a : Optional[int] = cls.get_config_dict(_lowercase , **_lowercase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": __a : Optional[int] = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowercase , **_lowercase ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "blip-2" _lowerCAmelCase = True def __init__(self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=32 , **_lowercase ): '''simple docstring''' super().__init__(**_lowercase ) if vision_config is None: __a : List[Any] = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: __a : Optional[int] = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: __a : Optional[int] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) __a : List[Any] = BlipaVisionConfig(**_lowercase ) __a : List[str] = BlipaQFormerConfig(**_lowercase ) __a : str = text_config["""model_type"""] if """model_type""" in text_config else """opt""" __a : Optional[Any] = CONFIG_MAPPING[text_model_type](**_lowercase ) __a : Dict = self.text_config.tie_word_embeddings __a : Optional[Any] = self.text_config.is_encoder_decoder __a : Union[str, Any] = num_query_tokens __a : Union[str, Any] = self.vision_config.hidden_size __a : Tuple = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a : Optional[Any] = 1.0 __a : List[str] = 0.02 @classmethod def lowerCAmelCase__(cls , _lowercase , _lowercase , _lowercase , **_lowercase , ): '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_lowercase , ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = copy.deepcopy(self.__dict__ ) __a : Union[str, Any] = self.vision_config.to_dict() __a : int = self.qformer_config.to_dict() __a : List[Any] = self.text_config.to_dict() __a : int = self.__class__.model_type return output
581
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowercase =logging.get_logger(__name__) def lowerCamelCase__ ( __lowerCamelCase : List[str] ): '''simple docstring''' _UpperCAmelCase : Dict =SwinConfig( embed_dim=1_9_2 , depths=(2, 2, 1_8, 2) , num_heads=(6, 1_2, 2_4, 4_8) , window_size=1_2 , out_features=['stage2', 'stage3', 'stage4'] , ) _UpperCAmelCase : List[str] =DetaConfig( backbone_config=__lowerCamelCase , num_queries=9_0_0 , encoder_ffn_dim=2_0_4_8 , decoder_ffn_dim=2_0_4_8 , num_feature_levels=5 , assign_first_stage=__lowerCamelCase , with_box_refine=__lowerCamelCase , two_stage=__lowerCamelCase , ) # set labels _UpperCAmelCase : Dict ='huggingface/label-files' if "o365" in model_name: _UpperCAmelCase : Any =3_6_6 _UpperCAmelCase : int ='object365-id2label.json' else: _UpperCAmelCase : str =9_1 _UpperCAmelCase : List[str] ='coco-detection-id2label.json' _UpperCAmelCase : Optional[int] =num_labels _UpperCAmelCase : int =json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='dataset' ) ) , 'r' ) ) _UpperCAmelCase : int ={int(__lowerCamelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : int =idalabel _UpperCAmelCase : Tuple ={v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] ): '''simple docstring''' _UpperCAmelCase : str =[] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((f"backbone.0.body.layers.{i}.downsample.reduction.weight", f"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.weight", f"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.bias", f"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", f"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", f"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", f"model.encoder.layers.{i}.self_attn.attention_weights.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", f"model.encoder.layers.{i}.self_attn.attention_weights.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.weight", f"model.encoder.layers.{i}.self_attn.value_proj.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.bias", f"model.encoder.layers.{i}.self_attn.value_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.weight", f"model.encoder.layers.{i}.self_attn.output_proj.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.bias", f"model.encoder.layers.{i}.self_attn.output_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.weight", f"model.encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"model.encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"model.encoder.layers.{i}.fc1.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"model.encoder.layers.{i}.fc1.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"model.encoder.layers.{i}.fc2.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"model.encoder.layers.{i}.fc2.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"model.encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"model.encoder.layers.{i}.final_layer_norm.bias") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", f"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", f"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", f"model.decoder.layers.{i}.encoder_attn.value_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", f"model.decoder.layers.{i}.encoder_attn.value_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", f"model.decoder.layers.{i}.encoder_attn.output_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", f"model.decoder.layers.{i}.encoder_attn.output_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.weight", f"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"model.decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"model.decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.weight", f"model.decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.bias", f"model.decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"model.decoder.layers.{i}.fc1.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"model.decoder.layers.{i}.fc1.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"model.decoder.layers.{i}.fc2.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"model.decoder.layers.{i}.fc2.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"model.decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"model.decoder.layers.{i}.final_layer_norm.bias") ) # fmt: on return rename_keys def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] ): '''simple docstring''' _UpperCAmelCase : int =dct.pop(__lowerCamelCase ) _UpperCAmelCase : Union[str, Any] =val def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : List[str] ): '''simple docstring''' _UpperCAmelCase : Dict =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _UpperCAmelCase : int =num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _UpperCAmelCase : Tuple =state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" ) _UpperCAmelCase : int =state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : int =in_proj_weight[:dim, :] _UpperCAmelCase : Dict =in_proj_bias[: dim] _UpperCAmelCase : Tuple =in_proj_weight[ dim : dim * 2, : ] _UpperCAmelCase : Optional[int] =in_proj_bias[ dim : dim * 2 ] _UpperCAmelCase : str =in_proj_weight[ -dim :, : ] _UpperCAmelCase : Tuple =in_proj_bias[-dim :] # fmt: on def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : str =config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention _UpperCAmelCase : Dict =state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) _UpperCAmelCase : Optional[int] =state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Optional[Any] =in_proj_weight[:hidden_size, :] _UpperCAmelCase : Dict =in_proj_bias[:hidden_size] _UpperCAmelCase : Optional[int] =in_proj_weight[ hidden_size : hidden_size * 2, : ] _UpperCAmelCase : str =in_proj_bias[hidden_size : hidden_size * 2] _UpperCAmelCase : Any =in_proj_weight[-hidden_size:, :] _UpperCAmelCase : Dict =in_proj_bias[-hidden_size:] def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : Optional[Any] ='http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase : str =Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] ): '''simple docstring''' _UpperCAmelCase : List[str] =get_deta_config(__lowerCamelCase ) # load original state dict if model_name == "deta-swin-large": _UpperCAmelCase : Optional[Any] =hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": _UpperCAmelCase : List[str] =hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f"Model name {model_name} not supported" ) _UpperCAmelCase : Dict =torch.load(__lowerCamelCase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__lowerCamelCase , param.shape ) # rename keys _UpperCAmelCase : Any =create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_swin_q_k_v(__lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(__lowerCamelCase , __lowerCamelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: _UpperCAmelCase : List[str] =state_dict.pop(__lowerCamelCase ) _UpperCAmelCase : List[str] =val if "input_proj" in key: _UpperCAmelCase : str =state_dict.pop(__lowerCamelCase ) _UpperCAmelCase : str =val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: _UpperCAmelCase : int =state_dict.pop(__lowerCamelCase ) _UpperCAmelCase : Tuple =val # finally, create HuggingFace model and load state dict _UpperCAmelCase : Any =DetaForObjectDetection(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() _UpperCAmelCase : str ='cuda' if torch.cuda.is_available() else 'cpu' model.to(__lowerCamelCase ) # load image processor _UpperCAmelCase : Tuple =DetaImageProcessor(format='coco_detection' ) # verify our conversion on image _UpperCAmelCase : Union[str, Any] =prepare_img() _UpperCAmelCase : int =processor(images=__lowerCamelCase , return_tensors='pt' ) _UpperCAmelCase : Dict =encoding['pixel_values'] _UpperCAmelCase : Any =model(pixel_values.to(__lowerCamelCase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": _UpperCAmelCase : Any =torch.tensor( [[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]] ) _UpperCAmelCase : Optional[Any] =torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]] ) elif model_name == "deta-swin-large-o365": _UpperCAmelCase : Optional[int] =torch.tensor( [[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]] ) _UpperCAmelCase : int =torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__lowerCamelCase ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__lowerCamelCase ) , atol=1e-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f"jozhang97/{model_name}" ) processor.push_to_hub(f"jozhang97/{model_name}" ) if __name__ == "__main__": lowercase =argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowercase =parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
702
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="EncodecFeatureExtractor" UpperCAmelCase =("T5Tokenizer", "T5TokenizerFast") def __init__( self , snake_case , snake_case) -> List[str]: '''simple docstring''' super().__init__(snake_case , snake_case) _UpperCAmelCase : Dict =self.feature_extractor _UpperCAmelCase : List[str] =False def lowerCAmelCase ( self , snake_case=None , snake_case=None , snake_case=True) -> Optional[Any]: '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=snake_case , language=snake_case , no_timestamps=snake_case) def __call__( self , *snake_case , **snake_case) -> List[Any]: '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*snake_case , **snake_case) _UpperCAmelCase : Union[str, Any] =kwargs.pop('audio' , snake_case) _UpperCAmelCase : str =kwargs.pop('sampling_rate' , snake_case) _UpperCAmelCase : str =kwargs.pop('text' , snake_case) if len(snake_case) > 0: _UpperCAmelCase : Union[str, Any] =args[0] _UpperCAmelCase : int =args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.') if text is not None: _UpperCAmelCase : List[str] =self.tokenizer(snake_case , **snake_case) if audio is not None: _UpperCAmelCase : int =self.feature_extractor(snake_case , *snake_case , sampling_rate=snake_case , **snake_case) if audio is None: return inputs elif text is None: return audio_inputs else: _UpperCAmelCase : Union[str, Any] =audio_inputs['input_values'] if "padding_mask" in audio_inputs: _UpperCAmelCase : Tuple =audio_inputs['padding_mask'] return inputs def lowerCAmelCase ( self , *snake_case , **snake_case) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] =kwargs.pop('audio' , snake_case) _UpperCAmelCase : str =kwargs.pop('padding_mask' , snake_case) if len(snake_case) > 0: _UpperCAmelCase : Tuple =args[0] _UpperCAmelCase : Optional[int] =args[1:] if audio_values is not None: return self._decode_audio(snake_case , padding_mask=snake_case) else: return self.tokenizer.batch_decode(*snake_case , **snake_case) def lowerCAmelCase ( self , *snake_case , **snake_case) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*snake_case , **snake_case) def lowerCAmelCase ( self , snake_case , snake_case = None) -> List[np.ndarray]: '''simple docstring''' _UpperCAmelCase : List[str] =to_numpy(snake_case) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] =audio_values.shape if padding_mask is None: return list(snake_case) _UpperCAmelCase : Optional[Any] =to_numpy(snake_case) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _UpperCAmelCase : List[str] =seq_len - padding_mask.shape[-1] _UpperCAmelCase : List[str] =1 - self.feature_extractor.padding_value _UpperCAmelCase : Optional[int] =np.pad(snake_case , ((0, 0), (0, difference)) , 'constant' , constant_values=snake_case) _UpperCAmelCase : List[str] =audio_values.tolist() for i in range(snake_case): _UpperCAmelCase : Dict =np.asarray(audio_values[i])[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _UpperCAmelCase : Union[str, Any] =sliced_audio.reshape(snake_case , -1) return audio_values
331
0
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class A( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self : str , A_ : float , A_ : Callable , A_ : int , A_ : float = 1.0 , A_ : str = None , ) -> Any: """simple docstring""" super().__init__() lowerCamelCase_ = initial_learning_rate lowerCamelCase_ = warmup_steps lowerCamelCase_ = power lowerCamelCase_ = decay_schedule_fn lowerCamelCase_ = name def __call__( self : Dict , A_ : Any ) -> int: """simple docstring""" with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCamelCase_ = tf.cast(A_ , tf.floataa ) lowerCamelCase_ = tf.cast(self.warmup_steps , tf.floataa ) lowerCamelCase_ = global_step_float / warmup_steps_float lowerCamelCase_ = self.initial_learning_rate * tf.math.pow(A_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=A_ , ) def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : int , lowercase : int , lowercase : float = 0.0 , lowercase : float = 0.9 , lowercase : float = 0.999 , lowercase : float = 1e-8 , lowercase : Optional[float] = None , lowercase : Optional[float] = None , lowercase : float = 0.0 , lowercase : float = 1.0 , lowercase : Optional[List[str]] = None , ): '''simple docstring''' lowerCamelCase_ = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=lowercase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=lowercase , ) if num_warmup_steps: lowerCamelCase_ = WarmUp( initial_learning_rate=lowercase , decay_schedule_fn=lowercase , warmup_steps=lowercase , ) if weight_decay_rate > 0.0: lowerCamelCase_ = AdamWeightDecay( learning_rate=lowercase , weight_decay_rate=lowercase , beta_a=lowercase , beta_a=lowercase , epsilon=lowercase , clipnorm=lowercase , global_clipnorm=lowercase , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=lowercase , ) else: lowerCamelCase_ = tf.keras.optimizers.Adam( learning_rate=lowercase , beta_a=lowercase , beta_a=lowercase , epsilon=lowercase , clipnorm=lowercase , global_clipnorm=lowercase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , A_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , A_ : float = 0.9 , A_ : float = 0.999 , A_ : float = 1E-7 , A_ : bool = False , A_ : float = 0.0 , A_ : Optional[List[str]] = None , A_ : Optional[List[str]] = None , A_ : str = "AdamWeightDecay" , **A_ : int , ) -> Any: """simple docstring""" super().__init__(A_ , A_ , A_ , A_ , A_ , A_ , **A_ ) lowerCamelCase_ = weight_decay_rate lowerCamelCase_ = include_in_weight_decay lowerCamelCase_ = exclude_from_weight_decay @classmethod def a__ ( cls : Optional[Any] , A_ : List[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = {'WarmUp': WarmUp} return super(A_ , cls ).from_config(A_ , custom_objects=A_ ) def a__ ( self : Dict , A_ : List[str] , A_ : Optional[int] , A_ : Optional[int] ) -> Optional[int]: """simple docstring""" super(A_ , self )._prepare_local(A_ , A_ , A_ ) lowerCamelCase_ = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def a__ ( self : int , A_ : str , A_ : Any , A_ : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def a__ ( self : int , A_ : Any , A_ : Optional[int]=None , **A_ : Any ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = list(zip(*A_ ) ) return super(A_ , self ).apply_gradients(zip(A_ , A_ ) , name=A_ , **A_ ) def a__ ( self : Any , A_ : Tuple , A_ : List[str] , A_ : List[str] ) -> str: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCamelCase_ = apply_state or {} lowerCamelCase_ = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCamelCase_ = self._fallback_apply_state(A_ , A_ ) lowerCamelCase_ = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def a__ ( self : Dict , A_ : str , A_ : Dict , A_ : str=None ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self._get_lr(var.device , var.dtype.base_dtype , A_ ) lowerCamelCase_ = self._decay_weights_op(A_ , A_ , A_ ) with tf.control_dependencies([decay] ): return super(A_ , self )._resource_apply_dense(A_ , A_ , **A_ ) def a__ ( self : Tuple , A_ : List[Any] , A_ : Union[str, Any] , A_ : List[str] , A_ : Tuple=None ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self._get_lr(var.device , var.dtype.base_dtype , A_ ) lowerCamelCase_ = self._decay_weights_op(A_ , A_ , A_ ) with tf.control_dependencies([decay] ): return super(A_ , self )._resource_apply_sparse(A_ , A_ , A_ , **A_ ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def a__ ( self : Any , A_ : Union[str, Any] ) -> Any: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(A_ , A_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(A_ , A_ ) is not None: return False return True class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ = [] lowerCamelCase_ = None @property def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" if self._accum_steps is None: lowerCamelCase_ = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=A_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : List[Any] , A_ : int ) -> int: """simple docstring""" if not self._gradients: lowerCamelCase_ = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(A_ ) , trainable=A_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(A_ ) != len(self._gradients ): raise ValueError(f"""Expected {len(self._gradients )} gradients, but got {len(A_ )}""" ) for accum_gradient, gradient in zip(self._gradients , A_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(A_ ) self._accum_steps.assign_add(1 ) def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(A_ ) )
70
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _UpperCamelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=64 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=[1, 16, 4, 4] , _a=None , ): """simple docstring""" a__ = parent a__ = batch_size a__ = image_size a__ = patch_size a__ = num_channels a__ = is_training a__ = use_labels a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = type_sequence_label_size a__ = initializer_range a__ = scope a__ = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size a__ = (self.image_size // 32) ** 2 a__ = num_patches + 1 def lowercase__ ( self ): """simple docstring""" a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" a__ = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_a , ) def lowercase__ ( self , _a , _a , _a ): """simple docstring""" a__ = ViTHybridModel(config=_a ) model.to(_a ) model.eval() a__ = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self , _a , _a , _a ): """simple docstring""" a__ = self.type_sequence_label_size a__ = ViTHybridForImageClassification(_a ) model.to(_a ) model.eval() a__ = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self ): """simple docstring""" a__ = self.prepare_config_and_inputs() a__ , a__ , a__ = config_and_inputs a__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( _A , _A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE:Union[str, Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE:Tuple = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE:Union[str, Any] = False SCREAMING_SNAKE_CASE:Optional[int] = False SCREAMING_SNAKE_CASE:Tuple = False def lowercase__ ( self ): """simple docstring""" a__ = ViTHybridModelTester(self ) a__ = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def lowercase__ ( self ): """simple docstring""" a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(_a ) a__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _a ) def lowercase__ ( self ): """simple docstring""" a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def lowercase__ ( self ): """simple docstring""" a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def lowercase__ ( self ): """simple docstring""" a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = _config_zero_init(_a ) for model_class in self.all_model_classes: a__ = model_class(config=_a ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": a__ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = ViTHybridModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): a__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self ): """simple docstring""" return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" a__ = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _a ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=_a , return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): a__ = model(**_a ) # verify the logits a__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) a__ = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @slow @require_accelerate def lowercase__ ( self ): """simple docstring""" a__ = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) a__ = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) a__ = prepare_img() a__ = image_processor(images=_a , return_tensors='pt' ) a__ = model(**_a ) a__ = outputs.logits # model predicts one of the 1000 ImageNet classes a__ = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
394
0
def lowercase_ ( A__ ) -> bool: """simple docstring""" return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def lowercase_ ( A__ ) -> bool: """simple docstring""" snake_case = credit_card_number snake_case = 0 snake_case = len(A__ ) - 2 for i in range(A__ , -1 , -2 ): # double the value of every second digit snake_case = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 snake_case = cc_number[:i] + str(A__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(A__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowercase_ ( A__ ) -> bool: """simple docstring""" snake_case = F'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(F'{error_message} it has nonnumerical characters.' ) return False if not 13 <= len(A__ ) <= 16: print(F'{error_message} of its length.' ) return False if not validate_initial_digits(A__ ): print(F'{error_message} of its first two digits.' ) return False if not luhn_validation(A__ ): print(F'{error_message} it fails the Luhn check.' ) return False print(F'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
715
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase(self : List[str] ) -> Optional[int]: snake_case = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=_A ).to(_A ) snake_case = AutoTokenizer.from_pretrained("google/mt5-small" ) snake_case = tokenizer("Hello there" , return_tensors="pt" ).input_ids snake_case = tokenizer("Hi I am" , return_tensors="pt" ).input_ids snake_case = model(input_ids.to(_A ) , labels=labels.to(_A ) ).loss snake_case = -(labels.shape[-1] * loss.item()) snake_case = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
294
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : str = '''bert-generation''' def __init__( self : Tuple , __lowerCamelCase : Optional[int]=5_0_3_5_8 , __lowerCamelCase : List[str]=1_0_2_4 , __lowerCamelCase : Optional[Any]=2_4 , __lowerCamelCase : Any=1_6 , __lowerCamelCase : Union[str, Any]=4_0_9_6 , __lowerCamelCase : Optional[Any]="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=5_1_2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : Tuple=1E-12 , __lowerCamelCase : Any=0 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]="absolute" , __lowerCamelCase : str=True , **__lowerCamelCase : List[Any] , ): """simple docstring""" super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = position_embedding_type _snake_case = use_cache
103
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : Dict = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _a : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
447
0
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ): if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) SCREAMING_SNAKE_CASE__ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 SCREAMING_SNAKE_CASE__ = 1 if upper_limit > 0: SCREAMING_SNAKE_CASE__ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(UpperCamelCase__ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: _lowerCamelCase = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(F'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
59
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _lowerCamelCase = data_utils.TransfoXLTokenizer _lowerCamelCase = data_utils.TransfoXLCorpus _lowerCamelCase = data_utils _lowerCamelCase = data_utils def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Any , UpperCamelCase__: Any , UpperCamelCase__: Tuple ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCamelCase__ , """rb""" ) as fp: SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase__ , encoding="""latin1""" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) SCREAMING_SNAKE_CASE__ = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""] print(f'''Save vocabulary to {pytorch_vocab_dump_path}''' ) SCREAMING_SNAKE_CASE__ = corpus.vocab.__dict__ torch.save(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""" , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = pytorch_dump_folder_path + """/""" + CORPUS_NAME print(f'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model SCREAMING_SNAKE_CASE__ = os.path.abspath(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = os.path.abspath(UpperCamelCase__ ) print(f'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": SCREAMING_SNAKE_CASE__ = TransfoXLConfig() else: SCREAMING_SNAKE_CASE__ = TransfoXLConfig.from_json_file(UpperCamelCase__ ) print(f'''Building PyTorch model from configuration: {config}''' ) SCREAMING_SNAKE_CASE__ = TransfoXLLMHeadModel(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = load_tf_weights_in_transfo_xl(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) print(f'''Save PyTorch model to {os.path.abspath(UpperCamelCase__ )}''' ) torch.save(model.state_dict() , UpperCamelCase__ ) print(f'''Save configuration file to {os.path.abspath(UpperCamelCase__ )}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) _lowerCamelCase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
59
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A): """simple docstring""" _a = 2 _a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__A) if n > 1: factors.append(__A) return factors if __name__ == "__main__": import doctest doctest.testmod()
11
"""simple docstring""" def _snake_case ( __snake_case : str , __snake_case : str ): """simple docstring""" _lowerCamelCase : str = len(__snake_case ) _lowerCamelCase : Union[str, Any] = len(__snake_case ) _lowerCamelCase : int = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _lowerCamelCase : Union[str, Any] = True for i in range(__snake_case ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _lowerCamelCase : Tuple = True if a[i].islower(): _lowerCamelCase : Tuple = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
88
0
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( snake_case_ : list[int] ): if not nums: return 0 __magic_name__ = nums[0] __magic_name__ = 0 for num in nums[1:]: __magic_name__ , __magic_name__ = ( max_excluding + num, max(UpperCAmelCase__ , UpperCAmelCase__ ), ) return max(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
710
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = scope __magic_name__ = self.vocab_size - 1 def __A ( self ) -> str: '''simple docstring''' __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ = None __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __magic_name__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __A ( self , A , A , A , A , *A ) -> Tuple: '''simple docstring''' __magic_name__ = OpenAIGPTModel(config=A ) model.to(A ) model.eval() __magic_name__ = model(A , token_type_ids=A , head_mask=A ) __magic_name__ = model(A , token_type_ids=A ) __magic_name__ = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A , A , A , A , *A ) -> Dict: '''simple docstring''' __magic_name__ = OpenAIGPTLMHeadModel(A ) model.to(A ) model.eval() __magic_name__ = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , *A ) -> List[Any]: '''simple docstring''' __magic_name__ = OpenAIGPTDoubleHeadsModel(A ) model.to(A ) model.eval() __magic_name__ = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , *A ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.num_labels __magic_name__ = OpenAIGPTForSequenceClassification(A ) model.to(A ) model.eval() __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _a = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _a = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _a = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __A ( self , A , A , A , A , A ) -> List[str]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __A ( self , A , A , A=False ) -> List[str]: '''simple docstring''' __magic_name__ = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=A , ) __magic_name__ = inputs_dict['''labels'''] __magic_name__ = inputs_dict['''labels'''] __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=A , ) __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def __A ( self ) -> str: '''simple docstring''' __magic_name__ = OpenAIGPTModelTester(self ) __magic_name__ = ConfigTester(self , config_class=A , n_embd=37 ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*A ) def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*A ) def __A ( self ) -> List[str]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*A ) def __A ( self ) -> Optional[int]: '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*A ) @slow def __A ( self ) -> List[str]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = OpenAIGPTModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(A ) __magic_name__ = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=A ) # the president is __magic_name__ = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the __magic_name__ = model.generate(A , do_sample=A ) self.assertListEqual(output_ids[0].tolist() , A )
678
0
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase_ ( __lowerCamelCase , unittest.TestCase ): __lowerCamelCase = MobileBertTokenizer __lowerCamelCase = MobileBertTokenizerFast __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = filter_non_english __lowerCamelCase = 'google/mobilebert-uncased' def __UpperCAmelCase ( self ): super().setUp() UpperCAmelCase__ : Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) UpperCAmelCase__ : List[str] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __UpperCAmelCase ( self , _lowerCAmelCase ): UpperCAmelCase__ : Tuple = """UNwant\u00E9d,running""" UpperCAmelCase__ : Union[str, Any] = """unwanted, running""" return input_text, output_text def __UpperCAmelCase ( self ): UpperCAmelCase__ : Tuple = self.tokenizer_class(self.vocab_file ) UpperCAmelCase__ : Tuple = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(_lowerCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def __UpperCAmelCase ( self ): if not self.test_rust_tokenizer: return UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : Dict = self.get_rust_tokenizer() UpperCAmelCase__ : List[str] = """UNwant\u00E9d,running""" UpperCAmelCase__ : Optional[int] = tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ : Tuple = self.get_rust_tokenizer() UpperCAmelCase__ : Any = tokenizer.encode(_lowerCAmelCase ) UpperCAmelCase__ : str = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) # With lower casing UpperCAmelCase__ : Tuple = self.get_tokenizer(do_lower_case=_lowerCAmelCase ) UpperCAmelCase__ : Tuple = self.get_rust_tokenizer(do_lower_case=_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = """UNwant\u00E9d,running""" UpperCAmelCase__ : int = tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase__ : Any = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ : List[Any] = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase__ : List[str] = tokenizer.encode(_lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Tuple = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Union[str, Any] = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[str] = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[str] = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : int = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = BasicTokenizer(do_lower_case=_lowerCAmelCase , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : int = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] UpperCAmelCase__ : List[str] = {} for i, token in enumerate(_lowerCAmelCase ): UpperCAmelCase__ : Optional[Any] = i UpperCAmelCase__ : str = WordpieceTokenizer(vocab=_lowerCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def __UpperCAmelCase ( self ): self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_lowerCAmelCase ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(_lowerCAmelCase ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) UpperCAmelCase__ : List[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) UpperCAmelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __UpperCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ : Any = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." UpperCAmelCase__ : Optional[Any] = tokenizer_r.encode_plus( _lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , ) UpperCAmelCase__ : Any = tokenizer_r.do_lower_case if hasattr(_lowerCAmelCase , """do_lower_case""" ) else False UpperCAmelCase__ : Optional[int] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Tuple = ["""的""", """人""", """有"""] UpperCAmelCase__ : Tuple = """""".join(_lowerCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : Optional[Any] = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : Tuple = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = tokenizer_p.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = tokenizer_r.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase__ : Any = tokenizer_r.convert_ids_to_tokens(_lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = tokenizer_p.convert_ids_to_tokens(_lowerCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : Tuple = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = tokenizer_r.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = tokenizer_p.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = tokenizer_r.convert_ids_to_tokens(_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(_lowerCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase__ : List[str] = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(_lowerCAmelCase ) ] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
79
import argparse import copy def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[Any]: """simple docstring""" a = {} with open(snake_case_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: a = [] _list.append([line.split()[1], line.split()[2]] ) a = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: a = [] _list.append([line.split()[0], line.split()[2]] ) a = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> str: """simple docstring""" with open(snake_case_ ) as f: a = f.read(1 ) a = start_node a = [] a = start_node a = 0 while visiting not in first_solution: a = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(snake_case_ ) and k[0] not in first_solution: a = k[1] a = k[0] first_solution.append(snake_case_ ) a = distance_of_first_solution + int(snake_case_ ) a = best_node first_solution.append(snake_case_ ) a = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 a = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int: """simple docstring""" a = [] for n in solution[1:-1]: a = solution.index(snake_case_ ) for kn in solution[1:-1]: a = solution.index(snake_case_ ) if n == kn: continue a = copy.deepcopy(snake_case_ ) a = kn a = n a = 0 for k in _tmp[:-1]: a = _tmp[_tmp.index(snake_case_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: a = distance + int(i[1] ) _tmp.append(snake_case_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) a = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda snake_case_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Optional[Any]: """simple docstring""" a = 1 a = first_solution a = [] a = distance_of_first_solution a = solution while count <= iters: a = find_neighborhood(snake_case_, snake_case_ ) a = 0 a = neighborhood[index_of_best_solution] a = len(snake_case_ ) - 1 a = False while not found: a = 0 while i < len(snake_case_ ): if best_solution[i] != solution[i]: a = best_solution[i] a = solution[i] break a = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) a = True a = best_solution[:-1] a = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: a = cost a = solution else: a = index_of_best_solution + 1 a = neighborhood[index_of_best_solution] if len(snake_case_ ) >= size: tabu_list.pop(0 ) a = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( snake_case_=None ) -> List[str]: """simple docstring""" a = generate_neighbours(args.File ) a , a = generate_first_solution( args.File, snake_case_ ) a , a = tabu_search( snake_case_, snake_case_, snake_case_, args.Iterations, args.Size, ) print(f"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
387
0
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline UpperCAmelCase__ : Dict = { """n_samples""": 64, """horizon""": 32, """num_inference_steps""": 20, """n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network """scale_grad_by_std""": True, """scale""": 0.1, """eta""": 0.0, """t_grad_cutoff""": 2, """device""": """cpu""", } if __name__ == "__main__": UpperCAmelCase__ : List[Any] = """hopper-medium-v2""" UpperCAmelCase__ : Union[str, Any] = gym.make(env_name) UpperCAmelCase__ : str = ValueGuidedRLPipeline.from_pretrained( """bglick13/hopper-medium-v2-value-function-hor32""", env=env, ) env.seed(0) UpperCAmelCase__ : Union[str, Any] = env.reset() UpperCAmelCase__ : List[str] = 0 UpperCAmelCase__ : Tuple = 0 UpperCAmelCase__ : Union[str, Any] = 1_000 UpperCAmelCase__ : Dict = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy UpperCAmelCase__ : Optional[int] = pipeline(obs, planning_horizon=32) # execute action in environment UpperCAmelCase__ : Dict = env.step(denorm_actions) UpperCAmelCase__ : str = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" F""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) UpperCAmelCase__ : Tuple = next_observation except KeyboardInterrupt: pass print(F"""Total reward: {total_reward}""")
710
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ : List[Any] = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Union[str, Any] = ["""ViTFeatureExtractor"""] UpperCAmelCase__ : List[Any] = ["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[Any] = [ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : str = [ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys UpperCAmelCase__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
446
0
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter lowerCamelCase : List[Any] = True except ImportError: lowerCamelCase : Optional[Any] = False lowerCamelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase__( A ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class snake_case__ ( UpperCamelCase_ ): @staticmethod def UpperCAmelCase__ ( _lowerCamelCase : ArgumentParser ): snake_case__ : Tuple = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' , action='store_true' , help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' , type=_lowerCamelCase , help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' , type=_lowerCamelCase , help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=_lowerCamelCase ) def __init__( self : Any , _lowerCamelCase : bool , _lowerCamelCase : str , _lowerCamelCase : Any=None , *_lowerCamelCase : List[str] ): snake_case__ : str = testing snake_case__ : Optional[Any] = testing_file snake_case__ : Dict = path def UpperCAmelCase__ ( self : Union[str, Any] ): warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case__ : Tuple = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:2_2]] if len(_lowerCamelCase ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) snake_case__ : Optional[Any] = ( Path(_lowerCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case__ : Optional[Any] = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(_lowerCamelCase ) ) else: with open(self._testing_file , 'r' ) as configuration_file: snake_case__ : Optional[Any] = json.load(_lowerCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=_lowerCamelCase , extra_context=_lowerCamelCase , ) snake_case__ : str = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:2_2]][0] # Retrieve configuration with open(directory + '/configuration.json' , 'r' ) as configuration_file: snake_case__ : Dict = json.load(_lowerCamelCase ) snake_case__ : Dict = configuration['lowercase_modelname'] snake_case__ : Any = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F'''{directory}/configuration.json''' ) snake_case__ : Any = 'PyTorch' in generate_tensorflow_pytorch_and_flax snake_case__ : List[Any] = 'TensorFlow' in generate_tensorflow_pytorch_and_flax snake_case__ : int = 'Flax' in generate_tensorflow_pytorch_and_flax snake_case__ : str = F'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) os.makedirs(F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=_lowerCamelCase ) # Tests require submodules as they have parent imports with open(F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , 'w' ): pass shutil.move( F'''{directory}/__init__.py''' , F'''{model_dir}/__init__.py''' , ) shutil.move( F'''{directory}/configuration_{lowercase_model_name}.py''' , F'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(_lowerCamelCase : Optional[int] ): with open(_lowerCamelCase , 'r' ) as f: snake_case__ : List[Any] = f.readlines() with open(_lowerCamelCase , 'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(_lowerCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(F'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_tf_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(F'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/modeling_flax_{lowercase_model_name}.py''' , F'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , F'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(F'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(F'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( F'''{directory}/{lowercase_model_name}.md''' , F'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( F'''{directory}/tokenization_{lowercase_model_name}.py''' , F'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( F'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , F'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : List[str] ): # Create temp file snake_case__ , snake_case__ : str = mkstemp() snake_case__ : List[Any] = False with fdopen(_lowerCamelCase , 'w' ) as new_file: with open(_lowerCamelCase ) as old_file: for line in old_file: new_file.write(_lowerCamelCase ) if line_to_copy_below in line: snake_case__ : str = True for line_to_copy in lines_to_copy: new_file.write(_lowerCamelCase ) if not line_found: raise ValueError(F'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(_lowerCamelCase , _lowerCamelCase ) # Remove original file remove(_lowerCamelCase ) # Move new file move(_lowerCamelCase , _lowerCamelCase ) def skip_units(_lowerCamelCase : Dict ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(_lowerCamelCase : int ): with open(_lowerCamelCase ) as datafile: snake_case__ : Dict = [] snake_case__ : List[Any] = False snake_case__ : Dict = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case__ : Optional[Any] = line.split('"' )[1] snake_case__ : int = skip_units(_lowerCamelCase ) elif "# Below: " in line and "##" not in line: snake_case__ : str = line.split('"' )[1] snake_case__ : str = skip_units(_lowerCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) snake_case__ : Any = [] elif "# Replace with" in line and "##" not in line: snake_case__ : List[str] = [] elif "##" not in line: lines_to_copy.append(_lowerCamelCase ) remove(_lowerCamelCase ) replace_in_files(F'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(_lowerCamelCase )
170
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case__ ( UpperCamelCase_ ): def __init__( self : int , _lowerCamelCase : str , _lowerCamelCase : Tuple ): super().__init__() # make sure scheduler can always be converted to DDIM snake_case__ : List[Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self : Optional[int] , _lowerCamelCase : int = 1 , _lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCamelCase : float = 0.0 , _lowerCamelCase : int = 5_0 , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : Optional[str] = "pil" , _lowerCamelCase : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , _lowerCamelCase ): snake_case__ : Optional[Any] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: snake_case__ : Any = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_lowerCamelCase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case__ : int = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case__ : Optional[int] = self.unet(_lowerCamelCase , _lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case__ : int = self.scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , eta=_lowerCamelCase , use_clipped_model_output=_lowerCamelCase , generator=_lowerCamelCase ).prev_sample snake_case__ : int = (image / 2 + 0.5).clamp(0 , 1 ) snake_case__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case__ : Union[str, Any] = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
170
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __SCREAMING_SNAKE_CASE = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = ['MaskFormerFeatureExtractor'] __SCREAMING_SNAKE_CASE = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] __SCREAMING_SNAKE_CASE = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure)
703
"""simple docstring""" def A_ ( __lowercase = 10 ): if not isinstance(__lowercase , __lowercase ) or n < 0: raise ValueError('Invalid input' ) UpperCamelCase_ : int =10**n UpperCamelCase_ : List[str] =2_84_33 * (pow(2 , 7_83_04_57 , __lowercase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
395
0
"""simple docstring""" import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowercase__ : '''simple docstring''' @property def lowerCamelCase_ ( self ) -> Dict: return self.get_dummy_input() @property def lowerCamelCase_ ( self ) -> Optional[int]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' ) def lowerCamelCase_ ( self , snake_case=True , snake_case=False , snake_case=False , snake_case=False , ) -> str: _UpperCAmelCase = 4 _UpperCAmelCase = 32 _UpperCAmelCase = (32, 32) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = torch.device(snake_case ) _UpperCAmelCase = (batch_size, num_channels) + sizes _UpperCAmelCase = randn_tensor(snake_case , generator=snake_case , device=snake_case ) _UpperCAmelCase = {'hidden_states': hidden_states} if include_temb: _UpperCAmelCase = 128 _UpperCAmelCase = randn_tensor((batch_size, temb_channels) , generator=snake_case , device=snake_case ) if include_res_hidden_states_tuple: _UpperCAmelCase = torch.manual_seed(1 ) _UpperCAmelCase = (randn_tensor(snake_case , generator=snake_case , device=snake_case ),) if include_encoder_hidden_states: _UpperCAmelCase = floats_tensor((batch_size, 32, 32) ).to(snake_case ) if include_skip_sample: _UpperCAmelCase = randn_tensor(((batch_size, 3) + sizes) , generator=snake_case , device=snake_case ) return dummy_input def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": _UpperCAmelCase = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self , snake_case ) -> Dict: _UpperCAmelCase , _UpperCAmelCase = self.prepare_init_args_and_inputs_for_common() _UpperCAmelCase = self.block_class(**snake_case ) unet_block.to(snake_case ) unet_block.eval() with torch.no_grad(): _UpperCAmelCase = unet_block(**snake_case ) if isinstance(snake_case , snake_case ): _UpperCAmelCase = output[0] self.assertEqual(output.shape , self.output_shape ) _UpperCAmelCase = output[0, -1, -3:, -3:] _UpperCAmelCase = torch.tensor(snake_case ).to(snake_case ) assert torch_all_close(output_slice.flatten() , snake_case , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase , _UpperCAmelCase = self.prepare_init_args_and_inputs_for_common() _UpperCAmelCase = self.block_class(**snake_case ) model.to(snake_case ) model.train() _UpperCAmelCase = model(**snake_case ) if isinstance(snake_case , snake_case ): _UpperCAmelCase = output[0] _UpperCAmelCase = torch.device(snake_case ) _UpperCAmelCase = randn_tensor(output.shape , device=snake_case ) _UpperCAmelCase = torch.nn.functional.mse_loss(snake_case , snake_case ) loss.backward()
573
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''efficientformer''' def __init__( self , snake_case = [3, 2, 6, 4] , snake_case = [48, 96, 224, 448] , snake_case = [True, True, True, True] , snake_case = 448 , snake_case = 32 , snake_case = 4 , snake_case = 7 , snake_case = 5 , snake_case = 8 , snake_case = 4 , snake_case = 0.0 , snake_case = 16 , snake_case = 3 , snake_case = 3 , snake_case = 3 , snake_case = 2 , snake_case = 1 , snake_case = 0.0 , snake_case = 1 , snake_case = True , snake_case = True , snake_case = 1E-5 , snake_case = "gelu" , snake_case = 0.02 , snake_case = 1E-12 , snake_case = 224 , snake_case = 1E-05 , **snake_case , ) -> None: super().__init__(**snake_case ) _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = hidden_sizes _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = depths _UpperCAmelCase = mlp_expansion_ratio _UpperCAmelCase = downsamples _UpperCAmelCase = dim _UpperCAmelCase = key_dim _UpperCAmelCase = attention_ratio _UpperCAmelCase = resolution _UpperCAmelCase = pool_size _UpperCAmelCase = downsample_patch_size _UpperCAmelCase = downsample_stride _UpperCAmelCase = downsample_pad _UpperCAmelCase = drop_path_rate _UpperCAmelCase = num_metaad_blocks _UpperCAmelCase = distillation _UpperCAmelCase = use_layer_scale _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = image_size _UpperCAmelCase = batch_norm_eps
573
1
def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> int: a__ : List[str] = [1] a__ , a__ , a__ : Union[str, Any] = 0, 0, 0 a__ : Optional[Any] = ugly_nums[ia] * 2 a__ : Tuple = ugly_nums[ia] * 3 a__ : Optional[Any] = ugly_nums[ia] * 5 for _ in range(1 , __UpperCamelCase ): a__ : Optional[Any] = min(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ugly_nums.append(__UpperCamelCase ) if next_num == next_a: ia += 1 a__ : List[Any] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 a__ : List[Any] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 a__ : Dict = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F'{ugly_numbers(2_00) = }')
207
def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> float: a__ : Optional[Any] = 0 while len(__UpperCamelCase ) > 1: a__ : str = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): a__ : List[str] = files.index(min(__UpperCamelCase ) ) temp += files[min_index] files.pop(__UpperCamelCase ) files.append(__UpperCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
207
1
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") UpperCAmelCase_ = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: UpperCAmelCase_ = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) UpperCAmelCase_ = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
32
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" _UpperCAmelCase = str(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 9 and set(SCREAMING_SNAKE_CASE_ ) == set('''123456789''' ) def A__ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _UpperCAmelCase = 10_00_02 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCAmelCase = 1_00_20_03 * base_num if is_9_pandigital(SCREAMING_SNAKE_CASE_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
32
1
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A__ ( __lowerCamelCase = "laptop" ): SCREAMING_SNAKE_CASE_ = F'''https://www.amazon.in/laptop/s?k={product}''' SCREAMING_SNAKE_CASE_ = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } SCREAMING_SNAKE_CASE_ = BeautifulSoup(requests.get(__lowerCamelCase, headers=__lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles SCREAMING_SNAKE_CASE_ = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''', attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''}, ), soup.find_all('''div''', attrs={'''class''': '''a-row a-size-base a-color-base'''} ), ): try: SCREAMING_SNAKE_CASE_ = item.ha.text SCREAMING_SNAKE_CASE_ = '''https://www.amazon.in/''' + item.ha.a['''href'''] SCREAMING_SNAKE_CASE_ = item.find('''span''', attrs={'''class''': '''a-offscreen'''} ).text try: SCREAMING_SNAKE_CASE_ = item.find('''span''', attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: SCREAMING_SNAKE_CASE_ = '''Not available''' try: SCREAMING_SNAKE_CASE_ = ( '''₹''' + item.find( '''span''', attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: SCREAMING_SNAKE_CASE_ = '''''' try: SCREAMING_SNAKE_CASE_ = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''', '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''', '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''', '''''' ) ) ) * 1_00 ) except ValueError: SCREAMING_SNAKE_CASE_ = float('''nan''' ) except AttributeError: pass SCREAMING_SNAKE_CASE_ = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] SCREAMING_SNAKE_CASE_ = ''' ''' SCREAMING_SNAKE_CASE_ = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": __UpperCAmelCase = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
700
def A__ ( __lowerCamelCase = 10**12 ): SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F"""{solution() = }""")
597
0
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : float , snake_case__ : float , snake_case__ : int ): """simple docstring""" if principal <= 0: raise Exception("""Principal borrowed must be > 0""" ) if rate_per_annum < 0: raise Exception("""Rate of interest must be >= 0""" ) if years_to_repay <= 0 or not isinstance(snake_case__ , snake_case__ ): raise Exception("""Years to repay must be an integer > 0""" ) # Yearly rate is divided by 12 to get monthly rate _snake_case : Any = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly _snake_case : str = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
609
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() A_ = logging.get_logger(__name__) A_ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" for attribute in key.split(""".""" ): _snake_case : Dict = getattr(snake_case__ , snake_case__ ) if weight_type is not None: _snake_case : List[Any] = getattr(snake_case__ , snake_case__ ).shape else: _snake_case : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": _snake_case : List[str] = value elif weight_type == "weight_g": _snake_case : Optional[int] = value elif weight_type == "weight_v": _snake_case : List[str] = value elif weight_type == "bias": _snake_case : Optional[int] = value else: _snake_case : List[Any] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Any ): """simple docstring""" _snake_case : Optional[int] = [] _snake_case : Optional[Any] = fairseq_model.state_dict() _snake_case : Optional[Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _snake_case : Dict = False if "conv_layers" in name: load_conv_layer( snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == """group""" , ) _snake_case : str = True else: for key, mapped_key in MAPPING.items(): _snake_case : Any = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): _snake_case : Tuple = True if "*" in mapped_key: _snake_case : Dict = name.split(snake_case__ )[0].split(""".""" )[-2] _snake_case : Optional[int] = mapped_key.replace("""*""" , snake_case__ ) if "weight_g" in name: _snake_case : int = """weight_g""" elif "weight_v" in name: _snake_case : Tuple = """weight_v""" elif "weight" in name: _snake_case : Optional[int] = """weight""" elif "bias" in name: _snake_case : str = """bias""" else: _snake_case : Tuple = None set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) continue if not is_used: unused_weights.append(snake_case__ ) logger.warning(F"Unused weights: {unused_weights}" ) def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : int ): """simple docstring""" _snake_case : Optional[int] = full_name.split("""conv_layers.""" )[-1] _snake_case : Tuple = name.split(""".""" ) _snake_case : Dict = int(items[0] ) _snake_case : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _snake_case : Dict = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _snake_case : Optional[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) _snake_case : Optional[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _snake_case : Optional[int] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(snake_case__ ) @torch.no_grad() def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : List[Any]=None , snake_case__ : int=None , snake_case__ : Tuple=True ): """simple docstring""" if config_path is not None: _snake_case : Dict = HubertConfig.from_pretrained(snake_case__ ) else: _snake_case : List[str] = HubertConfig() if is_finetuned: if dict_path: _snake_case : Optional[int] = Dictionary.load(snake_case__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _snake_case : Optional[int] = target_dict.pad_index _snake_case : Union[str, Any] = target_dict.bos_index _snake_case : List[Any] = target_dict.eos_index _snake_case : List[str] = len(target_dict.symbols ) _snake_case : Any = os.path.join(snake_case__ , """vocab.json""" ) if not os.path.isdir(snake_case__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(snake_case__ ) ) return os.makedirs(snake_case__ , exist_ok=snake_case__ ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , snake_case__ ) _snake_case : Any = WavaVecaCTCTokenizer( snake_case__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=snake_case__ , ) _snake_case : List[str] = True if config.feat_extract_norm == """layer""" else False _snake_case : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ , ) _snake_case : Optional[Any] = WavaVecaProcessor(feature_extractor=snake_case__ , tokenizer=snake_case__ ) processor.save_pretrained(snake_case__ ) _snake_case : Tuple = HubertForCTC(snake_case__ ) else: _snake_case : Any = HubertModel(snake_case__ ) if is_finetuned: _snake_case , _snake_case , _snake_case : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _snake_case , _snake_case , _snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _snake_case : List[str] = model[0].eval() recursively_load_weights(snake_case__ , snake_case__ , snake_case__ ) hf_wavavec.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) A_ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
609
1
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Dict = test_results.split(' ' ) UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : Tuple = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase : Union[str, Any] = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(UpperCAmelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = {} UpperCAmelCase : Any = None UpperCAmelCase : Dict = False for line in failures_short_lines.split('\n' ): if re.search(R'_ \[doctest\]' , UpperCAmelCase_ ): UpperCAmelCase : Tuple = True UpperCAmelCase : List[Any] = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): UpperCAmelCase : Dict = line UpperCAmelCase : Optional[Any] = False return failures class A_ : '''simple docstring''' def __init__( self : List[Any] , lowercase_ : str , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Tuple = title UpperCAmelCase : Union[str, Any] = doc_test_results['time_spent'].split(',' )[0] UpperCAmelCase : str = doc_test_results['success'] UpperCAmelCase : Any = doc_test_results['failures'] UpperCAmelCase : int = self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase : int = doc_test_results @property def UpperCAmelCase_ ( self : int ) -> str: UpperCAmelCase : int = [self._time_spent] UpperCAmelCase : Optional[int] = 0 for time in time_spent: UpperCAmelCase : Optional[Any] = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(lowercase_ ) == 1: UpperCAmelCase : str = [0, 0, time_parts[0]] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_600 + minutes * 60 + seconds UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = total_secs // 3_600, (total_secs % 3_600) // 60, total_secs % 60 return f"""{int(lowercase_ )}h{int(lowercase_ )}m{int(lowercase_ )}s""" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": f"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( f"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" f""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def UpperCAmelCase_ ( self : str ) -> Dict: UpperCAmelCase : int = 40 UpperCAmelCase : Union[str, Any] = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(lowercase_ , lowercase_ )} UpperCAmelCase : Union[str, Any] = '' for category, failures in category_failures.items(): if len(lowercase_ ) == 0: continue if report != "": report += "\n\n" report += f"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(lowercase_ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"""The following examples had failures:\n\n\n{report}\n""", }, } @property def UpperCAmelCase_ ( self : List[str] ) -> str: UpperCAmelCase : Optional[int] = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(lowercase_ ) @staticmethod def UpperCAmelCase_ ( ) -> Dict: UpperCAmelCase : Optional[int] = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(lowercase_ )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=lowercase_ , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) UpperCAmelCase : Dict = f"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else 'All tests passed.' UpperCAmelCase : int = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=lowercase_ , ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : int ) -> str: UpperCAmelCase : Tuple = '' for key, value in failures.items(): UpperCAmelCase : int = value[:200] + ' [Truncated]' if len(lowercase_ ) > 250 else value failures_text += f"""*{key}*\n_{value}_\n\n""" UpperCAmelCase : Any = job_name UpperCAmelCase : Any = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: UpperCAmelCase : Optional[Any] = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) UpperCAmelCase : Union[str, Any] = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) UpperCAmelCase : Optional[Any] = sorted(self.doc_test_results.items() , key=lambda lowercase_ : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): UpperCAmelCase : Dict = f"""*Num failures* :{len(job_result["failed"] )} \n""" UpperCAmelCase : Optional[Any] = job_result['failures'] UpperCAmelCase : Any = self.get_reply_blocks(lowercase_ , lowercase_ , lowercase_ , text=lowercase_ ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f"""Results for {job}""" , blocks=lowercase_ , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def UpperCamelCase( ): UpperCAmelCase : int = os.environ['GITHUB_RUN_ID'] UpperCAmelCase : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" UpperCAmelCase : Dict = requests.get(UpperCAmelCase_ ).json() UpperCAmelCase : Dict = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) UpperCAmelCase : Union[str, Any] = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = requests.get(url + F"""&page={i + 2}""" ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , UpperCAmelCase_ ) return {} def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : List[str] = {} if os.path.exists(UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = os.listdir(UpperCAmelCase_ ) for file in files: try: with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , encoding='utf-8' ) as f: UpperCAmelCase : Optional[Any] = f.read() except UnicodeDecodeError as e: raise ValueError(F"""Could not open {os.path.join(UpperCAmelCase_ , UpperCAmelCase_ )}.""" ) from e return _artifact def UpperCamelCase( ): class A_ : '''simple docstring''' def __init__( self : List[str] , lowercase_ : str ) -> Dict: UpperCAmelCase : List[Any] = name UpperCAmelCase : Tuple = [] def __str__( self : Any ) -> Dict: return self.name def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : str ) -> List[Any]: self.paths.append({'name': self.name, 'path': path} ) UpperCAmelCase : Dict[str, Artifact] = {} UpperCAmelCase : Union[str, Any] = filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase : Tuple = directory if artifact_name not in _available_artifacts: UpperCAmelCase : Optional[int] = Artifact(UpperCAmelCase_ ) _available_artifacts[artifact_name].add_path(UpperCAmelCase_ ) return _available_artifacts if __name__ == "__main__": lowercase__ = get_job_links() lowercase__ = retrieve_available_artifacts() lowercase__ = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' lowercase__ = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job lowercase__ = github_actions_job_links.get("run_doctests") lowercase__ = available_artifacts["doc_tests_gpu_test_reports"].paths[0] lowercase__ = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: lowercase__ , lowercase__ , lowercase__ = handle_test_results(artifact["stats"]) lowercase__ = failed lowercase__ = success lowercase__ = time_spent[1:-1] + ", " lowercase__ = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): lowercase__ = line.replace("FAILED ", "") lowercase__ = line.split()[0].replace("\n", "") if "::" in line: lowercase__ , lowercase__ = line.split("::") else: lowercase__ , lowercase__ = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): lowercase__ = docs[file_regex] doc_test_results[category]["failed"].append(test) lowercase__ = all_failures[test] if test in all_failures else "N/A" lowercase__ = failure break lowercase__ = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
695
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase , UpperCAmelCase : Any = 1, 1 UpperCAmelCase : Any = [] for i in range(1 , n + 1 ): UpperCAmelCase : Tuple = prev_numerator + 2 * prev_denominator UpperCAmelCase : Any = prev_numerator + prev_denominator if len(str(UpperCAmelCase_ ) ) > len(str(UpperCAmelCase_ ) ): result.append(UpperCAmelCase_ ) UpperCAmelCase : Dict = numerator UpperCAmelCase : Dict = denominator return len(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
695
1
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin SCREAMING_SNAKE_CASE : List[Any] = random.Random() if is_torch_available(): import torch def __UpperCAmelCase ( snake_case_ : str , snake_case_ : str=1.0 , snake_case_ : Union[str, Any]=None , snake_case_ : int=None ) -> str: """simple docstring""" if rng is None: _lowerCAmelCase = global_rng _lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=400 , lowerCamelCase=2_000 , lowerCamelCase=1 , lowerCamelCase=0.0 , lowerCamelCase=16_000 , lowerCamelCase=True , lowerCamelCase=True , ): '''simple docstring''' _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = min_seq_length _lowerCAmelCase = max_seq_length _lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCAmelCase = feature_size _lowerCAmelCase = padding_value _lowerCAmelCase = sampling_rate _lowerCAmelCase = return_attention_mask _lowerCAmelCase = do_normalize def A__ (self ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def A__ (self , lowerCamelCase=False , lowerCamelCase=False ): '''simple docstring''' def _flatten(lowerCamelCase ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: _lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCAmelCase = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = ASTFeatureExtractor def A__ (self ): '''simple docstring''' _lowerCAmelCase = ASTFeatureExtractionTester(self ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _lowerCAmelCase = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input _lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values _lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) ) # Test batched _lowerCAmelCase = feat_extract(lowerCamelCase , padding=lowerCamelCase , return_tensors="""np""" ).input_values _lowerCAmelCase = feat_extract(lowerCamelCase , padding=lowerCamelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _lowerCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] _lowerCAmelCase = np.asarray(lowerCamelCase ) _lowerCAmelCase = feat_extract(lowerCamelCase , return_tensors="""np""" ).input_values _lowerCAmelCase = feat_extract(lowerCamelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) ) @require_torch def A__ (self ): '''simple docstring''' import torch _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase = np.random.rand(100 ).astype(np.floataa ) _lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCAmelCase = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _lowerCAmelCase = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def A__ (self , lowerCamelCase ): '''simple docstring''' from datasets import load_dataset _lowerCAmelCase = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _lowerCAmelCase = ds.sort("""id""" ).select(range(lowerCamelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] @require_torch def A__ (self ): '''simple docstring''' _lowerCAmelCase = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on _lowerCAmelCase = self._load_datasamples(1 ) _lowerCAmelCase = ASTFeatureExtractor() _lowerCAmelCase = feature_extractor(lowerCamelCase , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 1_024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCamelCase , atol=1e-4 ) )
156
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) def __UpperCAmelCase ( snake_case_ : Union[str, Any] , snake_case_ : str ) -> Union[str, Any]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __lowerCamelCase : __UpperCamelCase = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) __UpperCamelCase = field(metadata={'help': 'Should contain the data files for the task.'} ) __UpperCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , snake_case_ ) # Set seed set_seed(training_args.seed ) try: _lowerCAmelCase = processors[data_args.task_name]() _lowerCAmelCase = processor.get_labels() _lowerCAmelCase = len(snake_case_ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=snake_case_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , ) # Get datasets _lowerCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=snake_case_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _lowerCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=snake_case_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(snake_case_ : EvalPrediction ) -> Dict: _lowerCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(snake_case_ , p.label_ids )} # Data collator _lowerCAmelCase = DataCollatorWithPadding(snake_case_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _lowerCAmelCase = Trainer( model=snake_case_ , args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , compute_metrics=snake_case_ , data_collator=snake_case_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _lowerCAmelCase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase = trainer.evaluate() _lowerCAmelCase = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(snake_case_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , snake_case_ , snake_case_ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(snake_case_ ) return results def __UpperCAmelCase ( snake_case_ : Optional[Any] ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
156
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowerCAmelCase__ : List[str] = False class a ( unittest.TestCase ): """simple docstring""" pass @slow @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : Optional[int] = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) snake_case__ : Optional[int] = torch.manual_seed(0 ) snake_case__ : Tuple = pipe( image=snake_case_ , generator=snake_case_ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='''numpy''' , ).images snake_case__ : Union[str, Any] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Optional[Any] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
717
'''simple docstring''' from collections.abc import Sequence def _a ( __lowerCAmelCase : Sequence[int] | None = None ): """simple docstring""" if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) snake_case__ : Optional[Any] = nums[0] for i in range(1 , len(__lowerCAmelCase ) ): snake_case__ : Tuple = nums[i] snake_case__ : Optional[int] = max(__lowerCAmelCase , ans + num , __lowerCAmelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCAmelCase__ : str = int(input("""Enter number of elements : """).strip()) lowerCAmelCase__ : Dict = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n] print(max_subsequence_sum(array))
502
0
def a_ ( UpperCamelCase_ : int ) -> int: """simple docstring""" lowerCamelCase = abs(UpperCamelCase_ ) lowerCamelCase = 0 while n > 0: res += n % 1_0 n //= 1_0 return res def a_ ( UpperCamelCase_ : int ) -> int: """simple docstring""" lowerCamelCase = abs(UpperCamelCase_ ) return n if n < 1_0 else n % 1_0 + sum_of_digits(n // 1_0 ) def a_ ( UpperCamelCase_ : int ) -> int: """simple docstring""" return sum(int(UpperCamelCase_ ) for c in str(abs(UpperCamelCase_ ) ) ) def a_ ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCamelCase_ : Callable , UpperCamelCase_ : int ) -> None: lowerCamelCase = f'''{func.__name__}({value})''' lowerCamelCase = timeit(f'''__main__.{call}''' , setup='import __main__' ) print(f'''{call:56} = {func(UpperCamelCase_ )} -- {timing:.4f} seconds''' ) for value in (2_6_2_1_4_4, 1_1_2_5_8_9_9_9_0_6_8_4_2_6_2_4, 1_2_6_7_6_5_0_6_0_0_2_2_8_2_2_9_4_0_1_4_9_6_7_0_3_2_0_5_3_7_6): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(UpperCamelCase_ , UpperCamelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
246
from __future__ import annotations _lowerCAmelCase : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __snake_case : dict[str, list[str]] , __snake_case : str ) -> None: '''simple docstring''' lowerCamelCase = graph # mapping node to its parent in resulting breadth first tree lowerCamelCase = {} lowerCamelCase = source_vertex def lowerCamelCase__ ( self : List[Any] ) -> None: '''simple docstring''' lowerCamelCase = {self.source_vertex} lowerCamelCase = None lowerCamelCase = [self.source_vertex] # first in first out queue while queue: lowerCamelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__snake_case ) lowerCamelCase = vertex queue.append(__snake_case ) def lowerCamelCase__ ( self : List[Any] , __snake_case : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex lowerCamelCase = self.parent.get(__snake_case ) if target_vertex_parent is None: lowerCamelCase = ( F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(__snake_case ) return self.shortest_path(__snake_case ) + F'''->{target_vertex}''' if __name__ == "__main__": _lowerCAmelCase : Optional[int] = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
246
1
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class a ( _A ): def __init__( self : List[str] , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : Optional[int] ): super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) _UpperCAmelCase = {} def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Optional[Any] , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : Optional[int] ): _UpperCAmelCase = super().add_tokens(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) if num_added_tokens == 0: raise ValueError( f'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' """ `placeholder_token` that is not already in the tokenizer.""" ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Union[str, Any] , *__lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str=1 , **__lowerCAmelCase : Dict ): _UpperCAmelCase = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) output.append(UpperCamelCase__ ) else: _UpperCAmelCase = [] for i in range(UpperCamelCase__ ): _UpperCAmelCase = placeholder_token + f'''_{i}''' self.try_adding_tokens(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) output.append(UpperCamelCase__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'''The tokenizer already has placeholder token {token} that can get confused with''' f''' {placeholder_token}keep placeholder tokens independent''' ) _UpperCAmelCase = output def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : List[Any]=1.0 ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): _UpperCAmelCase = [] for i in range(len(UpperCamelCase__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCamelCase__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _UpperCAmelCase = self.token_map[placeholder_token] _UpperCAmelCase = tokens[: 1 + int(len(UpperCamelCase__ ) * prop_tokens_to_load )] if vector_shuffle: _UpperCAmelCase = copy.copy(UpperCamelCase__ ) random.shuffle(UpperCamelCase__ ) _UpperCAmelCase = text.replace(UpperCamelCase__ , """ """.join(UpperCamelCase__ ) ) return text def __call__( self : Optional[int] , __lowerCAmelCase : List[str] , *__lowerCAmelCase : Dict , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : str=1.0 , **__lowerCAmelCase : str ): return super().__call__( self.replace_placeholder_tokens_in_text( UpperCamelCase__ , vector_shuffle=UpperCamelCase__ , prop_tokens_to_load=UpperCamelCase__ ) , *UpperCamelCase__ , **UpperCamelCase__ , ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[str] , *__lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Union[str, Any]=1.0 , **__lowerCAmelCase : Optional[Any] ): return super().encode( self.replace_placeholder_tokens_in_text( UpperCamelCase__ , vector_shuffle=UpperCamelCase__ , prop_tokens_to_load=UpperCamelCase__ ) , *UpperCamelCase__ , **UpperCamelCase__ , )
710
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = abs(lowercase ) _UpperCAmelCase = 0 while n > 0: res += n % 10 n //= 10 return res def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = abs(lowercase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __UpperCAmelCase ( lowercase ): """simple docstring""" return sum(int(lowercase ) for c in str(abs(lowercase ) ) ) def __UpperCAmelCase ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase ,lowercase ) -> None: _UpperCAmelCase = f'''{func.__name__}({value})''' _UpperCAmelCase = timeit(f'''__main__.{call}''' ,setup="""import __main__""" ) print(f'''{call:56} = {func(lowercase )} -- {timing:.4f} seconds''' ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(lowercase ,lowercase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
275
0
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] ): if not is_accelerate_available(): return method _A = version.parse(accelerate.__version__ ).base_version if version.parse(__snake_case ) < version.parse('0.17.0' ): return method def wrapper(self : Optional[int] , *__snake_case : List[str] , **__snake_case : int ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *__snake_case , **__snake_case ) return wrapper
107
"""simple docstring""" # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class UpperCAmelCase_ : def __init__( self : Optional[Any] , A : List[str] , A : List[str] , A : bool = True , A : bool = False ): _UpperCAmelCase : Dict = scheduler _UpperCAmelCase : str = optimizers if isinstance(A , (list, tuple) ) else [optimizers] _UpperCAmelCase : List[str] = split_batches _UpperCAmelCase : Dict = step_with_optimizer _UpperCAmelCase : Tuple = GradientState() def snake_case_ ( self : Optional[int] , *A : List[Any] , **A : Optional[int] ): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*A , **A ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*A , **A ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _UpperCAmelCase : int = AcceleratorState().num_processes for _ in range(A ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , "total_steps" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*A , **A ) else: self.scheduler.step(*A , **A ) def snake_case_ ( self : Union[str, Any] ): return self.scheduler.get_last_lr() def snake_case_ ( self : str ): return self.scheduler.state_dict() def snake_case_ ( self : str , A : Optional[Any] ): self.scheduler.load_state_dict(A ) def snake_case_ ( self : Tuple ): return self.scheduler.get_lr() def snake_case_ ( self : Optional[int] , *A : List[str] , **A : Optional[Any] ): return self.scheduler.print_lr(*A , **A )
289
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict ) -> int: '''simple docstring''' _UpperCamelCase : Tuple = AutoConfig.from_pretrained(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = FlaxAutoModelForSeqaSeqLM.from_config(config=UpperCAmelCase_ ) _UpperCamelCase : Any = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) _UpperCamelCase : int = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": _UpperCamelCase : Optional[int] = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": _UpperCamelCase : Any = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCamelCase : Any = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): _UpperCamelCase : str = F'''layers_{str(UpperCAmelCase_ )}''' # Self-Attention _UpperCamelCase : Tuple = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] _UpperCamelCase : str = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] _UpperCamelCase : int = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] _UpperCamelCase : List[Any] = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCamelCase : Optional[Any] = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization _UpperCamelCase : Union[str, Any] = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: _UpperCamelCase : Dict = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] _UpperCamelCase : str = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: _UpperCamelCase : Dict = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] _UpperCamelCase : List[str] = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization _UpperCamelCase : Optional[Any] = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning _UpperCamelCase : int = flax_model.params['encoder']['block'][str(UpperCAmelCase_ )]['layer'] _UpperCamelCase : Any = tax_attention_key _UpperCamelCase : Optional[Any] = tax_attention_out _UpperCamelCase : Optional[Any] = tax_attention_query _UpperCamelCase : Optional[int] = tax_attention_value _UpperCamelCase : Optional[Any] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCamelCase : int = tax_global_layer_norm if split_mlp_wi: _UpperCamelCase : Optional[int] = tax_mlp_wi_a _UpperCamelCase : Tuple = tax_mlp_wi_a else: _UpperCamelCase : List[Any] = tax_mlp_wi _UpperCamelCase : List[str] = tax_mlp_wo _UpperCamelCase : Optional[Any] = tax_mlp_layer_norm _UpperCamelCase : Any = flax_model_encoder_layer_block # Only for layer 0: _UpperCamelCase : Tuple = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T _UpperCamelCase : Dict = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _UpperCamelCase : Dict = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T _UpperCamelCase : Any = tax_encoder_global_rel_embedding # Assigning _UpperCamelCase : Optional[int] = tax_model['target']['encoder']['encoder_norm']['scale'] _UpperCamelCase : Any = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _UpperCamelCase : str = F'''layers_{str(UpperCAmelCase_ )}''' # Self-Attention _UpperCamelCase : Union[str, Any] = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] _UpperCamelCase : Dict = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] _UpperCamelCase : Optional[int] = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] _UpperCamelCase : Optional[Any] = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization _UpperCamelCase : List[str] = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention _UpperCamelCase : Any = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] _UpperCamelCase : Optional[int] = tax_enc_dec_attention_module['key']['kernel'] _UpperCamelCase : Tuple = tax_enc_dec_attention_module['out']['kernel'] _UpperCamelCase : str = tax_enc_dec_attention_module['query']['kernel'] _UpperCamelCase : List[str] = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization _UpperCamelCase : Optional[int] = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: _UpperCamelCase : str = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] _UpperCamelCase : int = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: _UpperCamelCase : Tuple = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] _UpperCamelCase : Optional[int] = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization _UpperCamelCase : List[Any] = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning _UpperCamelCase : List[str] = flax_model.params['decoder']['block'][str(UpperCAmelCase_ )]['layer'] _UpperCamelCase : List[Any] = tax_attention_key _UpperCamelCase : Optional[int] = tax_attention_out _UpperCamelCase : Dict = tax_attention_query _UpperCamelCase : Dict = tax_attention_value _UpperCamelCase : Dict = tax_pre_attention_layer_norm _UpperCamelCase : Optional[Any] = tax_enc_dec_attention_key _UpperCamelCase : List[Any] = tax_enc_dec_attention_out _UpperCamelCase : int = tax_enc_dec_attention_query _UpperCamelCase : int = tax_enc_dec_attention_value _UpperCamelCase : Any = tax_cross_layer_norm if split_mlp_wi: _UpperCamelCase : int = tax_mlp_wi_a _UpperCamelCase : int = tax_mlp_wi_a else: _UpperCamelCase : Any = tax_mlp_wi _UpperCamelCase : Tuple = tax_mlp_wo _UpperCamelCase : List[Any] = txa_mlp_layer_norm _UpperCamelCase : str = flax_model_decoder_layer_block # Decoder Normalization _UpperCamelCase : Optional[Any] = tax_model['target']['decoder']['decoder_norm']['scale'] _UpperCamelCase : Dict = txa_decoder_norm # Only for layer 0: _UpperCamelCase : Optional[int] = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T _UpperCamelCase : str = tax_decoder_rel_embedding # Token Embeddings _UpperCamelCase : List[str] = tax_model['target']['token_embedder']['embedding'] _UpperCamelCase : Optional[int] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _UpperCamelCase : List[str] = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(UpperCAmelCase_ ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path the T5X checkpoint.""" ) parser.add_argument("""--config_name""", default=None, type=str, required=True, help="""Config name of LongT5/T5 model.""") parser.add_argument( """--flax_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output FLAX model.""" ) lowerCAmelCase__ = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
648
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
1
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = RoFormerTokenizer UpperCAmelCase__ = RoFormerTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = True def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: super().setUp() def lowerCamelCase__ ( self : Optional[Any] , **__snake_case : Union[str, Any] ) -> Tuple: return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__snake_case ) def lowerCamelCase__ ( self : Dict , **__snake_case : Optional[int] ) -> List[Any]: return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__snake_case ) def lowerCamelCase__ ( self : Dict ) -> Tuple: __magic_name__: Dict = """永和服装饰品有限公司,今天天气非常好""" __magic_name__: Union[str, Any] = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: __magic_name__: int = self.get_tokenizer() __magic_name__, __magic_name__: List[Any] = self.get_chinese_input_output_texts() __magic_name__: Any = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , output_text.split() ) __magic_name__: List[str] = tokens + [tokenizer.unk_token] __magic_name__: Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def lowerCamelCase__ ( self : Any ) -> Tuple: __magic_name__: str = self.get_rust_tokenizer() __magic_name__, __magic_name__: Optional[Any] = self.get_chinese_input_output_texts() __magic_name__: Any = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , output_text.split() ) __magic_name__: List[Any] = tokens + [tokenizer.unk_token] __magic_name__: List[str] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def lowerCamelCase__ ( self : Dict ) -> List[str]: pass def lowerCamelCase__ ( self : Tuple ) -> Optional[int]: pass def lowerCamelCase__ ( self : Union[str, Any] ) -> int: pass
96
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __magic_name__ : """simple docstring""" lowerCAmelCase : Optional[int] = LEDConfig lowerCAmelCase : List[str] = {} lowerCAmelCase : str = '''gelu''' def __init__( self : int , _lowercase : Tuple , _lowercase : Dict=13 , _lowercase : Union[str, Any]=7 , _lowercase : Optional[int]=True , _lowercase : Any=False , _lowercase : Optional[int]=99 , _lowercase : Dict=32 , _lowercase : Optional[Any]=2 , _lowercase : Union[str, Any]=4 , _lowercase : List[str]=37 , _lowercase : Optional[Any]=0.1 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]=20 , _lowercase : Tuple=2 , _lowercase : str=1 , _lowercase : Optional[int]=0 , _lowercase : List[str]=4 , ): """simple docstring""" _UpperCamelCase: Optional[Any] = parent _UpperCamelCase: Union[str, Any] = batch_size _UpperCamelCase: Optional[Any] = seq_length _UpperCamelCase: str = is_training _UpperCamelCase: Dict = use_labels _UpperCamelCase: List[Any] = vocab_size _UpperCamelCase: Dict = hidden_size _UpperCamelCase: int = num_hidden_layers _UpperCamelCase: Dict = num_attention_heads _UpperCamelCase: Dict = intermediate_size _UpperCamelCase: Union[str, Any] = hidden_dropout_prob _UpperCamelCase: Any = attention_probs_dropout_prob _UpperCamelCase: Optional[Any] = max_position_embeddings _UpperCamelCase: Union[str, Any] = eos_token_id _UpperCamelCase: Union[str, Any] = pad_token_id _UpperCamelCase: Optional[Any] = bos_token_id _UpperCamelCase: Optional[Any] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _UpperCamelCase: Any = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _UpperCamelCase: Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def lowerCAmelCase ( self : int ): """simple docstring""" _UpperCamelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCamelCase: Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCamelCase: Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCamelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase: Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _UpperCamelCase: Dict = prepare_led_inputs_dict(_lowercase , _lowercase , _lowercase ) _UpperCamelCase: Tuple = tf.concat( [tf.zeros_like(_lowercase )[:, :-1], tf.ones_like(_lowercase )[:, -1:]] , axis=-1 , ) _UpperCamelCase: List[Any] = global_attention_mask return config, inputs_dict def lowerCAmelCase ( self : Dict , _lowercase : List[str] , _lowercase : Union[str, Any] ): """simple docstring""" _UpperCamelCase: Optional[Any] = TFLEDModel(config=_lowercase ).get_decoder() _UpperCamelCase: Optional[int] = inputs_dict['''input_ids'''] _UpperCamelCase: Dict = input_ids[:1, :] _UpperCamelCase: Optional[Any] = inputs_dict['''attention_mask'''][:1, :] _UpperCamelCase: Optional[int] = 1 # first forward pass _UpperCamelCase: Optional[Any] = model(_lowercase , attention_mask=_lowercase , use_cache=_lowercase ) _UpperCamelCase , _UpperCamelCase: Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase: Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCamelCase: List[str] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCamelCase: Optional[int] = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCamelCase: Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCamelCase: str = model(_lowercase , attention_mask=_lowercase )[0] _UpperCamelCase: Optional[int] = model(_lowercase , attention_mask=_lowercase , past_key_values=_lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCamelCase: Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCamelCase: Any = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase: Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowercase , _lowercase , rtol=1E-3 ) def lowerCAmelCase_ ( lowercase: Tuple , lowercase: List[str] , lowercase: List[str] , lowercase: int=None , lowercase: int=None , lowercase: List[str]=None , lowercase: List[str]=None , ) -> List[str]: '''simple docstring''' if attention_mask is None: _UpperCamelCase: Optional[Any] = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _UpperCamelCase: int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _UpperCamelCase: str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase: Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __magic_name__ ( __a , __a , unittest.TestCase ): """simple docstring""" lowerCAmelCase : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowerCAmelCase : List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase : Union[str, Any] = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase : str = True lowerCAmelCase : Any = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : Any = False def lowerCAmelCase ( self : Any ): """simple docstring""" _UpperCamelCase: Dict = TFLEDModelTester(self ) _UpperCamelCase: Any = ConfigTester(self , config_class=_lowercase ) def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Tuple ): """simple docstring""" _UpperCamelCase: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowercase ) def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" _UpperCamelCase , _UpperCamelCase: str = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase: str = tf.zeros_like(inputs_dict['''attention_mask'''] ) _UpperCamelCase: Any = 2 _UpperCamelCase: List[str] = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) _UpperCamelCase: int = True _UpperCamelCase: str = self.model_tester.seq_length _UpperCamelCase: Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_lowercase : Union[str, Any] ): _UpperCamelCase: Tuple = outputs.decoder_attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_lowercase : int ): _UpperCamelCase: str = [t.numpy() for t in outputs.encoder_attentions] _UpperCamelCase: Any = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _UpperCamelCase: Optional[int] = True _UpperCamelCase: List[Any] = False _UpperCamelCase: Optional[int] = False _UpperCamelCase: Union[str, Any] = model_class(_lowercase ) _UpperCamelCase: Optional[int] = model(self._prepare_for_class(_lowercase , _lowercase ) ) _UpperCamelCase: List[str] = len(_lowercase ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) if self.is_encoder_decoder: _UpperCamelCase: Optional[int] = model_class(_lowercase ) _UpperCamelCase: Union[str, Any] = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_decoder_attentions_output(_lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCamelCase: Union[str, Any] = True _UpperCamelCase: List[str] = model_class(_lowercase ) _UpperCamelCase: Dict = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) # Check attention is always last and order is fine _UpperCamelCase: str = True _UpperCamelCase: Dict = True _UpperCamelCase: int = model_class(_lowercase ) _UpperCamelCase: Optional[int] = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowercase ) ) self.assertEqual(model.config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def lowerCAmelCase ( self : List[Any] ): """simple docstring""" pass def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" pass def lowerCAmelCase_ ( lowercase: Tuple ) -> List[str]: '''simple docstring''' return tf.constant(lowercase , dtype=tf.intaa ) UpperCAmelCase_ = 1E-4 @slow @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: List[str] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here _UpperCamelCase: List[str] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _UpperCamelCase: int = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _UpperCamelCase: Union[str, Any] = prepare_led_inputs_dict(model.config , _lowercase , _lowercase ) _UpperCamelCase: Optional[Any] = model(**_lowercase )[0] _UpperCamelCase: Optional[int] = (1, 1_024, 768) self.assertEqual(output.shape , _lowercase ) # change to expected output here _UpperCamelCase: Optional[Any] = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1E-3 ) def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCamelCase: Optional[Any] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here _UpperCamelCase: Dict = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _UpperCamelCase: List[str] = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) _UpperCamelCase: Tuple = prepare_led_inputs_dict(model.config , _lowercase , _lowercase ) _UpperCamelCase: Any = model(**_lowercase )[0] _UpperCamelCase: Dict = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , _lowercase ) # change to expected output here _UpperCamelCase: Optional[Any] = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1E-3 , rtol=1E-3 )
271
0
import os import re import shutil import sys import tempfile import unittest import black __snake_case : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __snake_case : Any = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) lowerCAmelCase__ = self.transformer_dir shutil.copy( os.path.join(_UpperCamelCase , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 'src/transformers' shutil.rmtree(self.transformer_dir ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" lowerCAmelCase__ = comment + F"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: lowerCAmelCase__ = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result lowerCAmelCase__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowerCAmelCase__ = black.format_str(_UpperCamelCase , mode=_UpperCamelCase ) lowerCAmelCase__ = os.path.join(self.transformer_dir , 'new_code.py' ) with open(_UpperCamelCase , 'w' , newline='\n' ) as f: f.write(_UpperCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCamelCase ) with open(_UpperCamelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" # Base copy consistency self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , _UpperCamelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , _UpperCamelCase ) , ) # Copy consistency with a really long name lowerCAmelCase__ = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , F"{long_class_name}LMPredictionHead" , re.sub('Bert' , _UpperCamelCase , _UpperCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , _UpperCamelCase , overwrite_result=re.sub('Bert' , 'TestModel' , _UpperCamelCase ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = check_copies.LOCALIZED_READMES['README_zh-hans.md'] lowerCAmelCase__ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) lowerCAmelCase__ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) lowerCAmelCase__ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) lowerCAmelCase__ , lowerCAmelCase__ = check_copies.convert_to_localized_md( _UpperCamelCase , _UpperCamelCase , localized_readme['format_model_list'] ) self.assertFalse(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ = check_copies.convert_to_localized_md( _UpperCamelCase , _UpperCamelCase , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_UpperCamelCase ) lowerCAmelCase__ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) lowerCAmelCase__ = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) lowerCAmelCase__ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) lowerCAmelCase__ , lowerCAmelCase__ = check_copies.convert_to_localized_md( _UpperCamelCase , _UpperCamelCase , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(_UpperCamelCase , _UpperCamelCase )
365
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case : Tuple = {"""configuration_glpn""": ["""GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GLPNConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = ["""GLPNFeatureExtractor"""] __snake_case : Optional[Any] = ["""GLPNImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = [ """GLPN_PRETRAINED_MODEL_ARCHIVE_LIST""", """GLPNForDepthEstimation""", """GLPNLayer""", """GLPNModel""", """GLPNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __snake_case : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
365
1
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP __lowercase : str =False try: __lowercase : Optional[int] =_is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class A : def __init__( self: List[Any] , _lowerCAmelCase: str = None , _lowerCAmelCase: list = [] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =choices UpperCAmelCase_ =prompt if sys.platform == "win32": UpperCAmelCase_ ="*" else: UpperCAmelCase_ ="➔ " def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: Dict , _lowerCAmelCase: str = "" ) -> int: '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowerCAmelCase ) else: forceWrite(self.choices[index] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: int ) -> Optional[Any]: '''simple docstring''' if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(_lowerCAmelCase ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: Direction , _lowerCAmelCase: int = 1 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowerCAmelCase ) move_cursor(_lowerCAmelCase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def lowerCAmelCase__ ( self: Optional[Any] ) -> List[Any]: '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[int]: '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def lowerCAmelCase__ ( self: Tuple ) -> Optional[Any]: '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowerCAmelCase )] for number in range(10 )] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =int(chr(self.current_selection ) ) UpperCAmelCase_ =index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowerCAmelCase ) else: return else: return def lowerCAmelCase__ ( self: int , _lowerCAmelCase: int = 0 ) -> Dict: '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt , "\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" ) UpperCAmelCase_ =default_choice for i in range(len(self.choices ) ): self.print_choice(_lowerCAmelCase ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position , "UP" ) with cursor.hide(): while True: if in_colab: try: UpperCAmelCase_ =int(builtins.input() ) except ValueError: UpperCAmelCase_ =default_choice else: UpperCAmelCase_ =self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , "UP" ) clear_line() self.write_choice(_lowerCAmelCase , "\n" ) return choice
54
'''simple docstring''' import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( A : Optional[Any] , A : Optional[int] , A : int ): # Initialise PyTorch model SCREAMING_SNAKE_CASE : str = TaConfig.from_json_file(A ) print(F"""Building PyTorch model from configuration: {config}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = TaForConditionalGeneration(A ) # Load weights from tf checkpoint load_tf_weights_in_ta(A , A , A ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
527
0
"""simple docstring""" import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : Any = LxmertTokenizer _lowerCAmelCase : Union[str, Any] = LxmertTokenizerFast _lowerCAmelCase : List[str] = True _lowerCAmelCase : List[str] = True def _snake_case ( self : Union[str, Any] ): super().setUp() snake_case_ : Tuple = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] snake_case_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _snake_case ( self : Tuple , lowercase_ : List[str] ): snake_case_ : List[str] = '''UNwant\u00E9d,running''' snake_case_ : int = '''unwanted, running''' return input_text, output_text def _snake_case ( self : int ): snake_case_ : Tuple = self.tokenizer_class(self.vocab_file ) snake_case_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(lowercase_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , [7, 4, 5, 10, 8, 9] ) def _snake_case ( self : List[str] ): if not self.test_rust_tokenizer: return snake_case_ : Tuple = self.get_tokenizer() snake_case_ : int = self.get_rust_tokenizer() snake_case_ : Dict = '''I was born in 92000, and this is falsé.''' snake_case_ : int = tokenizer.tokenize(lowercase_ ) snake_case_ : Tuple = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) snake_case_ : List[Any] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) snake_case_ : Optional[int] = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) snake_case_ : Union[str, Any] = self.get_rust_tokenizer() snake_case_ : str = tokenizer.encode(lowercase_ ) snake_case_ : Union[str, Any] = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ )
485
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters lowercase__ : Optional[int] = logging.get_logger(__name__) def __lowercase ( _a , _a , _a , _a=None , _a=None ): # Recurse if needed if "." in tensor_name: snake_case_ : Union[str, Any] = tensor_name.split('''.''' ) for split in splits[:-1]: snake_case_ : Any = getattr(_a , _a ) if new_module is None: raise ValueError(f"{module} has no attribute {split}." ) snake_case_ : int = new_module snake_case_ : str = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}." ) snake_case_ : Tuple = tensor_name in module._buffers snake_case_ : Optional[int] = getattr(_a , _a ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {device}." ) snake_case_ : Optional[Any] = False snake_case_ : List[Any] = False if is_buffer or not is_bitsandbytes_available(): snake_case_ : Optional[Any] = False snake_case_ : Tuple = False else: snake_case_ : Tuple = hasattr(bnb.nn , '''Params4bit''' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) snake_case_ : int = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: snake_case_ : List[str] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: snake_case_ : Any = old_value.to(_a ) elif isinstance(_a , torch.Tensor ): snake_case_ : str = value.to('''cpu''' ) if value.dtype == torch.inta: snake_case_ : List[Any] = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: snake_case_ : Tuple = torch.tensor(_a , device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , _a ) and fpaa_statistics is None: snake_case_ : Any = new_value.T snake_case_ : Tuple = old_value.__dict__ if is_abit: snake_case_ : Tuple = bnb.nn.IntaParams(_a , requires_grad=_a , **_a ).to(_a ) elif is_abit: snake_case_ : Any = bnb.nn.Paramsabit(_a , requires_grad=_a , **_a ).to(_a ) snake_case_ : Union[str, Any] = new_value if fpaa_statistics is not None: setattr(module.weight , '''SCB''' , fpaa_statistics.to(_a ) ) else: if value is None: snake_case_ : Dict = old_value.to(_a ) elif isinstance(_a , torch.Tensor ): snake_case_ : Dict = value.to(_a ) else: snake_case_ : str = torch.tensor(_a , device=_a ) if is_buffer: snake_case_ : Optional[int] = new_value else: snake_case_ : Optional[Any] = nn.Parameter(_a , requires_grad=old_value.requires_grad ) snake_case_ : List[Any] = new_value def __lowercase ( _a , _a=None , _a=None , _a=None , _a=False ): for name, module in model.named_children(): if current_key_name is None: snake_case_ : List[str] = [] current_key_name.append(_a ) if (isinstance(_a , nn.Linear ) or isinstance(_a , _a )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(_a ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_a , _a ): snake_case_, snake_case_ : List[Any] = module.weight.shape else: snake_case_ : Dict = module.in_features snake_case_ : Tuple = module.out_features if quantization_config.quantization_method() == "llm_int8": snake_case_ : str = bnb.nn.LinearabitLt( _a , _a , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) snake_case_ : str = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: snake_case_ : Union[str, Any] = bnb.nn.Linearabit( _a , _a , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) snake_case_ : List[Any] = True # Store the module class in case we need to transpose the weight later snake_case_ : str = type(_a ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_a ) if len(list(module.children() ) ) > 0: snake_case_, snake_case_ : Optional[int] = _replace_with_bnb_linear( _a , _a , _a , _a , has_been_replaced=_a , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __lowercase ( _a , _a=None , _a=None , _a=None ): snake_case_ : Any = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert snake_case_, snake_case_ : List[Any] = _replace_with_bnb_linear( _a , _a , _a , _a ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __lowercase ( *_a , **_a ): warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' , _a , ) return replace_with_bnb_linear(*_a , **_a ) def __lowercase ( *_a , **_a ): warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' , _a , ) return set_module_quantized_tensor_to_device(*_a , **_a ) def __lowercase ( _a ): snake_case_ : List[str] = deepcopy(_a ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() snake_case_ : Optional[Any] = find_tied_parameters(_a ) # For compatibility with Accelerate < 0.18 if isinstance(_a , _a ): snake_case_ : Any = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: snake_case_ : str = sum(_a , [] ) snake_case_ : str = len(_a ) > 0 # Check if it is a base model snake_case_ : Dict = not hasattr(_a , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head snake_case_ : Dict = list(model.named_children() ) snake_case_ : List[Any] = [list_modules[-1][0]] # add last module together with tied weights snake_case_ : Optional[int] = set(_a ) - set(_a ) snake_case_ : List[Any] = list(set(_a ) ) + list(_a ) # remove ".weight" from the keys snake_case_ : Any = ['''.weight''', '''.bias'''] snake_case_ : List[str] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: snake_case_ : List[str] = name.replace(_a , '''''' ) filtered_module_names.append(_a ) return filtered_module_names
485
1
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __A = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' __A = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' __A = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def __A ( _lowercase , _lowercase ): '''simple docstring''' return float((preds == labels).mean() ) def __A ( _lowercase , _lowercase , _lowercase="binary" ): '''simple docstring''' _A = simple_accuracy(_lowercase , _lowercase ) _A = float(fa_score(y_true=_lowercase , y_pred=_lowercase , average=_lowercase ) ) return { "accuracy": acc, "f1": fa, } def __A ( _lowercase , _lowercase ): '''simple docstring''' _A = {} for id_pred, label in zip(_lowercase , _lowercase ): _A = f"""{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}""" _A = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _A = [(pred, label)] _A = [], [] for question, preds_labels in question_map.items(): _A = zip(*_lowercase ) _A = fa_score(y_true=_lowercase , y_pred=_lowercase , average='''macro''' ) fas.append(_lowercase ) _A = int(sum(pred == label for pred, label in preds_labels ) == len(_lowercase ) ) ems.append(_lowercase ) _A = float(sum(_lowercase ) / len(_lowercase ) ) _A = sum(_lowercase ) / len(_lowercase ) _A = float(fa_score(y_true=_lowercase , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def __A ( self: str ) -> Optional[int]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def __A ( self: Optional[int] ) -> str: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def __A ( self: Optional[int] , __A: List[str] , __A: List[str] ) -> Optional[Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_UpperCamelCase , _UpperCamelCase )} elif self.config_name == "cb": return acc_and_fa(_UpperCamelCase , _UpperCamelCase , fa_avg='''macro''' ) elif self.config_name == "record": _A = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] _A = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(_UpperCamelCase , _UpperCamelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(_UpperCamelCase , _UpperCamelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_UpperCamelCase , _UpperCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]''' )
484
def __lowerCAmelCase ( __magic_name__ ): if not isinstance(__magic_name__ , __magic_name__ ): raise TypeError("only integers accepted as input" ) else: _lowercase: Optional[Any] = str(abs(__magic_name__ ) ) _lowercase: Tuple = [list(__magic_name__ ) for char in range(len(__magic_name__ ) )] for index in range(len(__magic_name__ ) ): num_transpositions[index].pop(__magic_name__ ) return max( int("".join(list(__magic_name__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
226
0
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( A,A,unittest.TestCase ): '''simple docstring''' a_ : Union[str, Any] = IFImgaImgSuperResolutionPipeline a_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} a_ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) a_ : Optional[Any] = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self : str ): '''simple docstring''' return self._get_superresolution_dummy_components() def _snake_case ( self : Optional[int] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict=0 ): '''simple docstring''' if str(_lowerCamelCase ).startswith("""mps""" ): __lowerCamelCase : str = torch.manual_seed(_lowerCamelCase ) else: __lowerCamelCase : Tuple = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) __lowerCamelCase : Optional[int] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) __lowerCamelCase : Dict = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) __lowerCamelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self : int ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _snake_case ( self : Dict ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self : List[str] ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def _snake_case ( self : Dict ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _snake_case ( self : Tuple ): '''simple docstring''' self._test_save_load_local() def _snake_case ( self : List[Any] ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
716
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Any = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
458
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_:int = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:List[str] = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_:Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
662
from typing import Any import numpy as np def __UpperCamelCase ( _lowerCAmelCase ) -> bool: """simple docstring""" return np.array_equal(_lowerCAmelCase , matrix.conjugate().T ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Any: """simple docstring""" A : Any = v.conjugate().T A : List[Any] = v_star.dot(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , np.ndarray ) return (v_star_dot.dot(_lowerCAmelCase )) / (v_star.dot(_lowerCAmelCase )) def __UpperCamelCase ( ) -> None: """simple docstring""" A : Any = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) A : str = np.array([[1], [2], [3]] ) assert is_hermitian(_lowerCAmelCase ), f'''{a} is not hermitian.''' print(rayleigh_quotient(_lowerCAmelCase , _lowerCAmelCase ) ) A : Tuple = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_lowerCAmelCase ), f'''{a} is not hermitian.''' assert rayleigh_quotient(_lowerCAmelCase , _lowerCAmelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
662
1
from functools import lru_cache @lru_cache def lowercase_ ( A__ ) -> int: """simple docstring""" if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
716
_A = 0 # The first color of the flag. _A = 1 # The second color of the flag. _A = 2 # The third color of the flag. _A = (red, white, blue) def lowercase_ ( A__ ) -> list: """simple docstring""" if not sequence: return [] if len(A__ ) == 1: return list(A__ ) snake_case = 0 snake_case = len(A__ ) - 1 snake_case = 0 while mid <= high: if sequence[mid] == colors[0]: snake_case , snake_case = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: snake_case , snake_case = sequence[high], sequence[mid] high -= 1 else: snake_case = F'The elements inside the sequence must contains only {colors} values' raise ValueError(A__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() _A = input("Enter numbers separated by commas:\n").strip() _A = [int(item.strip()) for item in user_input.split(",")] print(f"{dutch_national_flag_sort(unsorted)}")
294
0
import argparse import math import traceback import dateutil.parser as date_parser import requests def lowerCamelCase_ ( lowerCAmelCase: Any )-> Union[str, Any]: _snake_case : Dict = {} _snake_case : Any = job['started_at'] _snake_case : Optional[Any] = job['completed_at'] _snake_case : Dict = date_parser.parse(lowercase_ ) _snake_case : int = date_parser.parse(lowercase_ ) _snake_case : Optional[int] = round((end_datetime - start_datetime).total_seconds() / 6_0.0 ) _snake_case : Tuple = start _snake_case : Optional[int] = end _snake_case : List[str] = duration_in_min return job_info def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[int]=None )-> int: _snake_case : int = None if token is not None: _snake_case : List[str] = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} _snake_case : Optional[int] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" _snake_case : List[Any] = requests.get(lowercase_ , headers=lowercase_ ).json() _snake_case : Optional[int] = {} try: job_time.update({job['name']: extract_time_from_single_job(lowercase_ ) for job in result['jobs']} ) _snake_case : Optional[int] = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(lowercase_ ): _snake_case : Any = requests.get(url + F"""&page={i + 2}""" , headers=lowercase_ ).json() job_time.update({job['name']: extract_time_from_single_job(lowercase_ ) for job in result['jobs']} ) return job_time except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = get_job_time(args.workflow_run_id) lowerCAmelCase_ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F"""{k}: {v["duration"]}""")
411
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = 1 lowercase = 3 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image @property def _a ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def _a ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _a ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) lowercase = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(_lowerCAmelCase ) @property def _a ( self ) -> int: '''simple docstring''' def extract(*_lowerCAmelCase , **_lowerCAmelCase ): class __UpperCamelCase : def __init__( self ) -> List[str]: '''simple docstring''' lowercase = torch.ones([0] ) def _a ( self , _lowerCAmelCase ) -> int: '''simple docstring''' self.pixel_values.to(_lowerCAmelCase ) return self return Out() return extract def _a ( self ) -> str: '''simple docstring''' lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowercase = 77 lowercase = self.dummy_image.to(_lowerCAmelCase ) lowercase = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) lowercase = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) lowercase = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=_lowerCAmelCase , ) lowercase = output.images lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) lowercase = alt_pipe( [prompt] , generator=_lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=_lowerCAmelCase , return_dict=_lowerCAmelCase , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _a ( self ) -> str: '''simple docstring''' lowercase = self.dummy_cond_unet lowercase = PNDMScheduler(skip_prk_steps=_lowerCAmelCase ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowercase = 77 lowercase = self.dummy_image.to(_lowerCAmelCase ) # put models in fp16 lowercase = unet.half() lowercase = vae.half() lowercase = bert.half() # make sure here that pndm scheduler skips prk lowercase = AltDiffusionImgaImgPipeline( unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCAmelCase ) lowercase = alt_pipe.to(_lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) lowercase = """A painting of a squirrel eating a burger""" lowercase = torch.manual_seed(0 ) lowercase = alt_pipe( [prompt] , generator=_lowerCAmelCase , num_inference_steps=2 , output_type="""np""" , image=_lowerCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _a ( self ) -> int: '''simple docstring''' lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase = init_image.resize((760, 504) ) lowercase = """BAAI/AltDiffusion""" lowercase = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = """A fantasy landscape, trending on artstation""" lowercase = torch.manual_seed(0 ) lowercase = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type="""np""" , ) lowercase = output.images[0] lowercase = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ) -> Tuple: '''simple docstring''' lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowercase = init_image.resize((768, 512) ) lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) lowercase = """BAAI/AltDiffusion""" lowercase = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCAmelCase , safety_checker=_lowerCAmelCase , ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() lowercase = """A fantasy landscape, trending on artstation""" lowercase = torch.manual_seed(0 ) lowercase = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_lowerCAmelCase , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
588
0
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase_ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=32 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : Optional[Any]=[0, 1, 2, 3] , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : List[Any]=37 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Union[str, Any]=[1, 384, 24, 24] , _UpperCAmelCase : int=True , _UpperCAmelCase : List[str]=None , ): _A = parent _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = backbone_out_indices _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = num_labels _A = backbone_featmap_shape _A = scope _A = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _A = (image_size // patch_size) ** 2 _A = num_patches + 1 def lowerCAmelCase_ ( self : Optional[Any] ): _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _A = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : Tuple ): _A = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [96, 192, 384, 768], 'num_groups': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_UpperCAmelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Tuple ): _A = DPTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ): _A = self.num_labels _A = DPTForDepthEstimation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ): _A = self.num_labels _A = DPTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self : int ): _A = self.prepare_config_and_inputs() _A , _A , _A = config_and_inputs _A = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Tuple = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () UpperCAmelCase : List[Any] = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase : Any = False UpperCAmelCase : Optional[Any] = False UpperCAmelCase : List[Any] = False def lowerCAmelCase_ ( self : int ): _A = DPTModelTester(self ) _A = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='DPT does not use inputs_embeds' ) def lowerCAmelCase_ ( self : str ): pass def lowerCAmelCase_ ( self : Optional[Any] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def lowerCAmelCase_ ( self : List[Any] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = True if model_class in get_values(_UpperCAmelCase ): continue _A = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() _A = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) _A = model(**_UpperCAmelCase ).loss loss.backward() def lowerCAmelCase_ ( self : Optional[Any] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = False _A = True if model_class in get_values(_UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue _A = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() _A = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) _A = model(**_UpperCAmelCase ).loss loss.backward() def lowerCAmelCase_ ( self : str ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _A = model_class(config=_UpperCAmelCase ) # Skip the check for the backbone _A = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _A = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase_ ( self : Union[str, Any] ): pass @slow def lowerCAmelCase_ ( self : Any ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _A = DPTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = 'add' with self.assertRaises(_UpperCAmelCase ): _A = DPTForDepthEstimation(_UpperCAmelCase ) def _snake_case ( ) -> Optional[Any]: '''simple docstring''' _A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision @slow class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Any ): _A = DPTImageProcessor.from_pretrained('Intel/dpt-hybrid-midas' ) _A = DPTForDepthEstimation.from_pretrained('Intel/dpt-hybrid-midas' ).to(_UpperCAmelCase ) _A = prepare_img() _A = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _A = model(**_UpperCAmelCase ) _A = outputs.predicted_depth # verify the predicted depth _A = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _UpperCAmelCase ) _A = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _UpperCAmelCase , atol=1E-4 ) )
703
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
505
0
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Dict = TypeVar("DatasetType", Dataset, IterableDataset) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(lowerCamelCase ): if not isinstance(lowerCamelCase , (Dataset, IterableDataset) ): if isinstance(lowerCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " """is an empty dataset dictionary.""" ) raise ValueError( F"Dataset at position {i} has at least one split: {list(lowerCamelCase )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowerCamelCase ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCamelCase ).__name__}." ) if i == 0: __magic_name__ , __magic_name__ : List[str] =( (Dataset, IterableDataset) if isinstance(lowerCamelCase , lowerCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowerCamelCase , lowerCamelCase , lowerCamelCase , info=lowerCamelCase , split=lowerCamelCase , stopping_strategy=lowerCamelCase ) else: return _interleave_iterable_datasets( lowerCamelCase , lowerCamelCase , lowerCamelCase , info=lowerCamelCase , split=lowerCamelCase , stopping_strategy=lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = 0 , ): if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(lowerCamelCase ): if not isinstance(lowerCamelCase , (Dataset, IterableDataset) ): if isinstance(lowerCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " """is an empty dataset dictionary.""" ) raise ValueError( F"Dataset at position {i} has at least one split: {list(lowerCamelCase )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowerCamelCase ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCamelCase ).__name__}." ) if i == 0: __magic_name__ , __magic_name__ : List[Any] =( (Dataset, IterableDataset) if isinstance(lowerCamelCase , lowerCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowerCamelCase , info=lowerCamelCase , split=lowerCamelCase , axis=lowerCamelCase ) else: return _concatenate_iterable_datasets(lowerCamelCase , info=lowerCamelCase , split=lowerCamelCase , axis=lowerCamelCase )
21
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(lowercase__ , lowercase__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __SCREAMING_SNAKE_CASE : int = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __SCREAMING_SNAKE_CASE : Union[str, Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
696
0
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCAmelCase : List[Any] =logging.get_logger(__name__) lowerCAmelCase : Dict[Optional[str], Type[Formatter]] ={} lowerCAmelCase : Dict[Optional[str], str] ={} lowerCAmelCase : Dict[Optional[str], Exception] ={} def A__ ( __A , __A , __A = None , ): '''simple docstring''' _lowerCamelCase : List[str] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"""Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" ) _lowerCamelCase : Any = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"""Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" ) _lowerCamelCase : Union[str, Any] = format_type def A__ ( __A , __A , __A = None ): '''simple docstring''' _lowerCamelCase : int = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _lowerCamelCase : Optional[Any] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: lowerCAmelCase : Any =ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: lowerCAmelCase : Dict =ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: lowerCAmelCase : Union[str, Any] =ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def A__ ( __A ): '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def A__ ( __A , **__A ): '''simple docstring''' _lowerCamelCase : Any = get_format_type_from_alias(__A ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__A ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'""" )
700
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A__ ( ): '''simple docstring''' _lowerCamelCase : Optional[int] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__A , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__A ) return parser.parse_args() def A__ ( ): '''simple docstring''' _lowerCamelCase : List[str] = parse_args() # Import training_script as a module. _lowerCamelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCamelCase : Optional[Any] = script_fpath.stem _lowerCamelCase : Dict = importlib.import_module(__A ) # Patch sys.argv _lowerCamelCase : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
15
0
def a (lowerCAmelCase__ ): # noqa: E741 __a = len(lowerCAmelCase__ ) __a = 0 __a = [0] * n __a = [False] * n __a = [False] * n def dfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if parent == root: out_edge_count += 1 __a = True __a = at for to in l[at]: if to == parent: pass elif not visited[to]: __a = dfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __a = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __a = True # AP found via cycle if at == low[to]: __a = True else: __a = min(low[at] , lowerCAmelCase__ ) return out_edge_count for i in range(lowerCAmelCase__ ): if not visited[i]: __a = 0 __a = dfs(lowerCAmelCase__ , lowerCAmelCase__ , -1 , lowerCAmelCase__ ) __a = out_edge_count > 1 for x in range(len(lowerCAmelCase__ ) ): if is_art[x] is True: print(lowerCAmelCase__ ) # Adjacency list of graph SCREAMING_SNAKE_CASE = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
99
"""simple docstring""" from math import factorial, radians def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 18 , SCREAMING_SNAKE_CASE = 10 ) -> float: """simple docstring""" __snake_case = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __snake_case = radians(SCREAMING_SNAKE_CASE ) __snake_case = angle_in_radians __snake_case = 3 __snake_case = -1 for _ in range(SCREAMING_SNAKE_CASE ): result += (b * (angle_in_radians**a)) / factorial(SCREAMING_SNAKE_CASE ) __snake_case = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __import__("""doctest""").testmod()
163
0
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets _lowerCamelCase = """\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } """ _lowerCamelCase = """\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. """ _lowerCamelCase = """ Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for 'cvit-mkb-clsr' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for 'cvit-mkb-clsr' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"precision\": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'precision@10': 1.0} """ def a__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[str] ) -> Tuple: """simple docstring""" return float((preds == labels).mean() ) def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Dict = simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Dict = np.array(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = np.array(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = en_sentvecs.shape[0] # mean centering UpperCAmelCase_ : Any = en_sentvecs - np.mean(_SCREAMING_SNAKE_CASE , axis=0 ) UpperCAmelCase_ : Dict = in_sentvecs - np.mean(_SCREAMING_SNAKE_CASE , axis=0 ) UpperCAmelCase_ : List[str] = cdist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "cosine" ) UpperCAmelCase_ : List[Any] = np.array(range(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : Any = sim.argsort(axis=1 )[:, :10] UpperCAmelCase_ : Any = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _snake_case (datasets.Metric): def UpperCamelCase__ ( self ): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ) ,codebase_urls=[] ,reference_urls=[] ,format="numpy" if self.config_name != "cvit-mkb-clsr" else None ,) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(_snake_case ,_snake_case )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(_snake_case ,_snake_case ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(_snake_case ,_snake_case )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
323
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging _lowerCamelCase = logging.get_logger(__name__) class _snake_case (__SCREAMING_SNAKE_CASE): __A : List[Any] =["pixel_values"] def __init__( self ,_snake_case = True ,_snake_case = 1 / 2_55 ,_snake_case = True ,_snake_case = 8 ,**_snake_case ,): super().__init__(**_snake_case ) UpperCAmelCase_ : Optional[Any] = do_rescale UpperCAmelCase_ : int = rescale_factor UpperCAmelCase_ : Optional[Any] = do_pad UpperCAmelCase_ : List[str] = pad_size def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case = None ,**_snake_case ): return rescale(_snake_case ,scale=_snake_case ,data_format=_snake_case ,**_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case = None ): UpperCAmelCase_ , UpperCAmelCase_ : Any = get_image_size(_snake_case ) UpperCAmelCase_ : List[Any] = (old_height // size + 1) * size - old_height UpperCAmelCase_ : Any = (old_width // size + 1) * size - old_width return pad(_snake_case ,((0, pad_height), (0, pad_width)) ,mode="symmetric" ,data_format=_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = None ,_snake_case = ChannelDimension.FIRST ,**_snake_case ,): UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Optional[int] = do_pad if do_pad is not None else self.do_pad UpperCAmelCase_ : Tuple = pad_size if pad_size is not None else self.pad_size UpperCAmelCase_ : Optional[int] = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ : Tuple = [to_numpy_array(_snake_case ) for image in images] if do_rescale: UpperCAmelCase_ : Any = [self.rescale(image=_snake_case ,scale=_snake_case ) for image in images] if do_pad: UpperCAmelCase_ : Dict = [self.pad(_snake_case ,size=_snake_case ) for image in images] UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(_snake_case ,_snake_case ) for image in images] UpperCAmelCase_ : Dict = {"pixel_values": images} return BatchFeature(data=_snake_case ,tensor_type=_snake_case )
323
1
'''simple docstring''' A_ = "Input must be a string of 8 numbers plus letter" A_ = "TRWAGMYFPDXBNJZSQVHLCKE" def _UpperCamelCase ( __UpperCamelCase ) -> bool: if not isinstance(__UpperCamelCase ,__UpperCamelCase ): lowerCamelCase_ = f'''Expected string as input, found {type(__UpperCamelCase ).__name__}''' raise TypeError(__UpperCamelCase ) lowerCamelCase_ = spanish_id.replace('-' ,'' ).upper() if len(__UpperCamelCase ) != 9: raise ValueError(__UpperCamelCase ) try: lowerCamelCase_ = int(spanish_id_clean[0:8] ) lowerCamelCase_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(__UpperCamelCase ) from ex if letter.isdigit(): raise ValueError(__UpperCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
42
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): A_ : Union[str, Any] = tempfile.mkdtemp() A_ : List[Any] = BlipImageProcessor() A_ : Optional[int] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) A_ : Any = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) A_ : Dict = InstructBlipProcessor(lowercase , lowercase , lowercase ) processor.save_pretrained(self.tmpdirname ) def _a (self , **lowercase ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase ).tokenizer def _a (self , **lowercase ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase ).image_processor def _a (self , **lowercase ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase ).qformer_tokenizer def _a (self ): shutil.rmtree(self.tmpdirname ) def _a (self ): A_ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Optional[Any] = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a (self ): A_ : str = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) A_ : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A_ : Optional[Any] = self.get_image_processor(do_normalize=lowercase , padding_value=1.0 ) A_ : str = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase ) self.assertIsInstance(processor.qformer_tokenizer , lowercase ) def _a (self ): A_ : Any = self.get_image_processor() A_ : Union[str, Any] = self.get_tokenizer() A_ : List[str] = self.get_qformer_tokenizer() A_ : int = InstructBlipProcessor( tokenizer=lowercase , image_processor=lowercase , qformer_tokenizer=lowercase ) A_ : List[Any] = self.prepare_image_inputs() A_ : Union[str, Any] = image_processor(lowercase , return_tensors="""np""" ) A_ : Dict = processor(images=lowercase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a (self ): A_ : List[Any] = self.get_image_processor() A_ : Optional[Any] = self.get_tokenizer() A_ : Any = self.get_qformer_tokenizer() A_ : List[str] = InstructBlipProcessor( tokenizer=lowercase , image_processor=lowercase , qformer_tokenizer=lowercase ) A_ : str = """lower newer""" A_ : List[Any] = processor(text=lowercase ) A_ : Optional[int] = tokenizer(lowercase , return_token_type_ids=lowercase ) A_ : List[Any] = qformer_tokenizer(lowercase , return_token_type_ids=lowercase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def _a (self ): A_ : int = self.get_image_processor() A_ : Union[str, Any] = self.get_tokenizer() A_ : Union[str, Any] = self.get_qformer_tokenizer() A_ : Any = InstructBlipProcessor( tokenizer=lowercase , image_processor=lowercase , qformer_tokenizer=lowercase ) A_ : Optional[int] = """lower newer""" A_ : Optional[int] = self.prepare_image_inputs() A_ : Tuple = processor(text=lowercase , images=lowercase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(lowercase ): processor() def _a (self ): A_ : Dict = self.get_image_processor() A_ : str = self.get_tokenizer() A_ : Optional[int] = self.get_qformer_tokenizer() A_ : int = InstructBlipProcessor( tokenizer=lowercase , image_processor=lowercase , qformer_tokenizer=lowercase ) A_ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : Optional[int] = processor.batch_decode(lowercase ) A_ : Dict = tokenizer.batch_decode(lowercase ) self.assertListEqual(lowercase , lowercase ) def _a (self ): A_ : Any = self.get_image_processor() A_ : Dict = self.get_tokenizer() A_ : Union[str, Any] = self.get_qformer_tokenizer() A_ : Optional[int] = InstructBlipProcessor( tokenizer=lowercase , image_processor=lowercase , qformer_tokenizer=lowercase ) A_ : List[Any] = """lower newer""" A_ : Optional[Any] = self.prepare_image_inputs() A_ : Any = processor(text=lowercase , images=lowercase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
667
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers __UpperCAmelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Tuple = os.path.dirname(os.path.realpath(__UpperCamelCase ) ) UpperCAmelCase__ : Dict = os.path.join(__UpperCamelCase , """words.txt""" ) UpperCAmelCase__ : List[Any] = """""" with open(__UpperCamelCase ) as f: UpperCAmelCase__ : Any = f.readline() UpperCAmelCase__ : Tuple = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] UpperCAmelCase__ : Dict = [ word for word in [sum(ord(__UpperCamelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__UpperCamelCase ) if __name__ == "__main__": print(solution())
706
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __lowercase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): snake_case_ = StableDiffusionControlNetImgaImgPipeline snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case_ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) snake_case_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowercase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) torch.manual_seed(0 ) UpperCAmelCase__ : Tuple = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule="""scaled_linear""" ,clip_sample=A ,set_alpha_to_one=A ,) torch.manual_seed(0 ) UpperCAmelCase__ : Any = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) torch.manual_seed(0 ) UpperCAmelCase__ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) UpperCAmelCase__ : List[str] = CLIPTextModel(A ) UpperCAmelCase__ : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase__ : Optional[int] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __lowercase ( self : Union[str, Any] ,A : Dict ,A : Optional[Any]=0 ): '''simple docstring''' if str(A ).startswith("""mps""" ): UpperCAmelCase__ : List[str] = torch.manual_seed(A ) else: UpperCAmelCase__ : List[Any] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase__ : Tuple = 2 UpperCAmelCase__ : Any = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=A ,device=torch.device(A ) ,) UpperCAmelCase__ : str = floats_tensor(control_image.shape ,rng=random.Random(A ) ).to(A ) UpperCAmelCase__ : Dict = image.cpu().permute(0 ,2 ,3 ,1 )[0] UpperCAmelCase__ : List[str] = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ).resize((64, 64) ) UpperCAmelCase__ : Any = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def __lowercase ( self : Dict ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def __lowercase ( self : Any ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class __lowercase ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): snake_case_ = StableDiffusionControlNetImgaImgPipeline snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case_ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def __lowercase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) torch.manual_seed(0 ) def init_weights(A : Union[str, Any] ): if isinstance(A ,torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) UpperCAmelCase__ : int = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(A ) torch.manual_seed(0 ) UpperCAmelCase__ : Dict = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(A ) torch.manual_seed(0 ) UpperCAmelCase__ : str = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule="""scaled_linear""" ,clip_sample=A ,set_alpha_to_one=A ,) torch.manual_seed(0 ) UpperCAmelCase__ : Dict = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) torch.manual_seed(0 ) UpperCAmelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) UpperCAmelCase__ : Optional[Any] = CLIPTextModel(A ) UpperCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase__ : Dict = MultiControlNetModel([controlneta, controlneta] ) UpperCAmelCase__ : Union[str, Any] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __lowercase ( self : Optional[int] ,A : List[Any] ,A : List[Any]=0 ): '''simple docstring''' if str(A ).startswith("""mps""" ): UpperCAmelCase__ : List[str] = torch.manual_seed(A ) else: UpperCAmelCase__ : int = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase__ : Optional[int] = 2 UpperCAmelCase__ : List[Any] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=A ,device=torch.device(A ) ,), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=A ,device=torch.device(A ) ,), ] UpperCAmelCase__ : List[Any] = floats_tensor(control_image[0].shape ,rng=random.Random(A ) ).to(A ) UpperCAmelCase__ : str = image.cpu().permute(0 ,2 ,3 ,1 )[0] UpperCAmelCase__ : Union[str, Any] = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ).resize((64, 64) ) UpperCAmelCase__ : Any = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_dummy_components() UpperCAmelCase__ : List[str] = self.pipeline_class(**A ) pipe.to(A ) UpperCAmelCase__ : Any = 1_0.0 UpperCAmelCase__ : Any = 4 UpperCAmelCase__ : Optional[int] = self.get_dummy_inputs(A ) UpperCAmelCase__ : Optional[Any] = steps UpperCAmelCase__ : List[str] = scale UpperCAmelCase__ : Optional[Any] = pipe(**A )[0] UpperCAmelCase__ : Any = self.get_dummy_inputs(A ) UpperCAmelCase__ : Optional[int] = steps UpperCAmelCase__ : Tuple = scale UpperCAmelCase__ : List[Any] = pipe(**A ,control_guidance_start=0.1 ,control_guidance_end=0.2 )[0] UpperCAmelCase__ : List[str] = self.get_dummy_inputs(A ) UpperCAmelCase__ : Union[str, Any] = steps UpperCAmelCase__ : Any = scale UpperCAmelCase__ : str = pipe(**A ,control_guidance_start=[0.1, 0.3] ,control_guidance_end=[0.2, 0.7] )[0] UpperCAmelCase__ : Any = self.get_dummy_inputs(A ) UpperCAmelCase__ : List[str] = steps UpperCAmelCase__ : Union[str, Any] = scale UpperCAmelCase__ : Union[str, Any] = pipe(**A ,control_guidance_start=0.4 ,control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def __lowercase ( self : Any ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def __lowercase ( self : Optional[int] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = self.get_dummy_components() UpperCAmelCase__ : str = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(A ) except NotImplementedError: pass @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def __lowercase ( self : List[str] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) UpperCAmelCase__ : Tuple = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,safety_checker=A ,controlnet=A ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) UpperCAmelCase__ : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase__ : Dict = """evil space-punk bird""" UpperCAmelCase__ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((512, 512) ) UpperCAmelCase__ : Optional[Any] = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((512, 512) ) UpperCAmelCase__ : List[str] = pipe( A ,A ,control_image=A ,generator=A ,output_type="""np""" ,num_inference_steps=50 ,strength=0.6 ,) UpperCAmelCase__ : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) UpperCAmelCase__ : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9e-2
194
0