code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import math import sys def __snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> int: """simple docstring""" if number != int(SCREAMING_SNAKE_CASE_ ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 UpperCAmelCase = [-1] * (number + 1) UpperCAmelCase = 0 for i in range(1 , number + 1 ): UpperCAmelCase = sys.maxsize UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE_ ) ) for j in range(1 , root + 1 ): UpperCAmelCase = 1 + answers[i - (j**2)] UpperCAmelCase = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
51
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =StableUnCLIPPipeline _lowerCamelCase =TEXT_TO_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCamelCase =False def __snake_case ( self : str ): UpperCAmelCase = 32 UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=a__ , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a__ , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=a__ ) UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a__ , layers_per_block=1 , upcast_attention=a__ , use_linear_projection=a__ , ) torch.manual_seed(0 ) UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=a__ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL() UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def __snake_case ( self : str , a__ : Dict , a__ : List[str]=0 ): if str(a__ ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(a__ ) else: UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __snake_case ( self : List[Any] ): UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=a__ ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Optional[int] ): UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase = pipe('''anime turle''' , generator=a__ , output_type='''np''' ) UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a__ , a__ ) def __snake_case ( self : str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
51
1
def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" stooge(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) - 1 ) return arr def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> List[Any]: """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: snake_case_ , snake_case_ = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: snake_case_ = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE , i + t , (SCREAMING_SNAKE_CASE) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , (h - t) ) if __name__ == "__main__": UpperCAmelCase = input("""Enter numbers separated by a comma:\n""").strip() UpperCAmelCase = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
531
def __lowerCAmelCase (SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = 7 , SCREAMING_SNAKE_CASE = 100_0000 )-> int: """simple docstring""" snake_case_ = 0 snake_case_ = 1 for current_denominator in range(1 , limit + 1 ): snake_case_ = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: snake_case_ = current_numerator snake_case_ = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
531
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {'''vocab_file''': '''vocab.json'''} __a = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } __a = {'''mgp-str''': 27} class __SCREAMING_SNAKE_CASE ( A__ ): A : Union[str, Any] = VOCAB_FILES_NAMES A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="[GO]" , SCREAMING_SNAKE_CASE__="[GO]" , SCREAMING_SNAKE_CASE__="[s]" , SCREAMING_SNAKE_CASE__="[GO]" , **SCREAMING_SNAKE_CASE__ ): super().__init__( unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) with open(SCREAMING_SNAKE_CASE__ , encoding='''utf-8''' ) as vocab_handle: lowercase : str = json.load(SCREAMING_SNAKE_CASE__ ) lowercase : str = {v: k for k, v in self.vocab.items()} @property def __lowerCamelCase ( self ): return len(self.vocab ) def __lowerCamelCase ( self ): return dict(self.vocab , **self.added_tokens_encoder ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[Any] = [] for s in text: char_tokens.extend(SCREAMING_SNAKE_CASE__ ) return char_tokens def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self.vocab.get(SCREAMING_SNAKE_CASE__ , self.vocab.get(self.unk_token ) ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self.decoder.get(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE__ ) ) return lowercase : List[Any] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '''\n''' ) return (vocab_file,)
319
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __a = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __a = direct_transformers_import(PATH_TO_TRANSFORMERS) __a = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __a = re.compile(r'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __a = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def __lowercase ( _UpperCamelCase ) ->Any: """simple docstring""" lowercase : Tuple = None # source code of `config_class` lowercase : Dict = inspect.getsource(_UpperCamelCase ) lowercase : List[str] = _re_checkpoint.findall(_UpperCamelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): lowercase : List[str] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowercase : List[str] = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: lowercase : Dict = ckpt_name break return checkpoint def __lowercase ( ) ->str: """simple docstring""" lowercase : str = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowercase : Optional[int] = get_checkpoint_from_config_class(_UpperCamelCase ) lowercase : Union[str, Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: lowercase : Any = '''\n'''.join(sorted(_UpperCamelCase ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
319
1
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __lowercase ( a__ ): def __init__( self : List[str] , lowercase__ : List[Any] , lowercase__ : Any ): a_ = params a_ = np.array(lowercase__ ) a_ = np.array([len(lowercase__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Any , lowercase__ : Tuple ): return (self.token_ids[index], self.lengths[index]) def __len__( self : Dict ): return len(self.lengths ) def __magic_name__ ( self : Dict ): assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __magic_name__ ( self : Dict ): a_ = self.params.max_model_input_size a_ = self.lengths > max_len logger.info(f"Splitting {sum(lowercase__ )} too long sequences." ) def divide_chunks(lowercase__ : Any , lowercase__ : Optional[Any] ): return [l[i : i + n] for i in range(0 , len(lowercase__ ) , lowercase__ )] a_ = [] a_ = [] if self.params.mlm: a_ , a_ = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token'''] else: a_ , a_ = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token'''] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: a_ = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: a_ = np.insert(lowercase__ , 0 , lowercase__ ) if sub_s[-1] != sep_id: a_ = np.insert(lowercase__ , len(lowercase__ ) , lowercase__ ) assert len(lowercase__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowercase__ ) new_tok_ids.extend(lowercase__ ) new_lengths.extend([len(lowercase__ ) for l in sub_seqs] ) a_ = np.array(lowercase__ ) a_ = np.array(lowercase__ ) def __magic_name__ ( self : Tuple ): a_ = len(self ) a_ = self.lengths > 1_1 a_ = self.token_ids[indices] a_ = self.lengths[indices] a_ = len(self ) logger.info(f"Remove {init_size - new_size} too short (<=11 tokens) sequences." ) def __magic_name__ ( self : Optional[Any] ): if "unk_token" not in self.params.special_tok_ids: return else: a_ = self.params.special_tok_ids['''unk_token'''] a_ = len(self ) a_ = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) a_ = (unk_occs / self.lengths) < 0.5 a_ = self.token_ids[indices] a_ = self.lengths[indices] a_ = len(self ) logger.info(f"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)." ) def __magic_name__ ( self : int ): if not self.params.is_master: return logger.info(f"{len(self )} sequences" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __magic_name__ ( self : str , lowercase__ : Union[str, Any] ): a_ = [t[0] for t in batch] a_ = [t[1] for t in batch] assert len(lowercase__ ) == len(lowercase__ ) # Max for paddings a_ = max(lowercase__ ) # Pad token ids if self.params.mlm: a_ = self.params.special_tok_ids['''pad_token'''] else: a_ = self.params.special_tok_ids['''unk_token'''] a_ = [list(t.astype(lowercase__ ) ) + [pad_idx] * (max_seq_len_ - len(lowercase__ )) for t in token_ids] assert len(tk_ ) == len(lowercase__ ) assert all(len(lowercase__ ) == max_seq_len_ for t in tk_ ) a_ = torch.tensor(tk_ ) # (bs, max_seq_len_) a_ = torch.tensor(lowercase__ ) # (bs) return tk_t, lg_t
711
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __lowercase : def __init__( self : int , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any]=1_3 , lowercase__ : int=7 , lowercase__ : Dict=True , lowercase__ : List[Any]=True , lowercase__ : int=True , lowercase__ : Optional[Any]=True , lowercase__ : Union[str, Any]=9_9 , lowercase__ : Any=6_4 , lowercase__ : int=3_2 , lowercase__ : str=5 , lowercase__ : List[str]=4 , lowercase__ : str=3_7 , lowercase__ : Tuple="gelu" , lowercase__ : Any=0.1 , lowercase__ : Any=0.1 , lowercase__ : Dict=5_1_2 , lowercase__ : List[Any]=1_6 , lowercase__ : List[str]=2 , lowercase__ : Dict=0.02 , lowercase__ : List[Any]=3 , lowercase__ : List[Any]=4 , lowercase__ : Optional[int]=None , ): a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = embedding_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = scope def __magic_name__ ( self : List[Any] ): a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length] ) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ = ids_tensor([self.batch_size] , self.num_choices ) a_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : Optional[Any] ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def __magic_name__ ( self : List[str] , lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : str ): a_ = MegatronBertModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ ) a_ = model(lowercase__ , token_type_ids=lowercase__ ) a_ = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self : Dict , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : Any , lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : int ): a_ = MegatronBertForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : Union[str, Any] , lowercase__ : Dict , lowercase__ : Dict , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : Dict , lowercase__ : Any , lowercase__ : List[str] ): a_ = MegatronBertForCausalLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : Union[str, Any] , lowercase__ : str , lowercase__ : int , lowercase__ : str , lowercase__ : int , lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : List[str] ): a_ = MegatronBertForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __magic_name__ ( self : Tuple , lowercase__ : str , lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : int , lowercase__ : Any , lowercase__ : Optional[int] , lowercase__ : int ): a_ = MegatronBertForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , next_sentence_label=lowercase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __magic_name__ ( self : int , lowercase__ : Any , lowercase__ : Optional[int] , lowercase__ : int , lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : int , lowercase__ : List[Any] ): a_ = MegatronBertForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : str , lowercase__ : Dict , lowercase__ : List[Any] , lowercase__ : int , lowercase__ : str , lowercase__ : Tuple , lowercase__ : str , lowercase__ : List[str] ): a_ = self.num_labels a_ = MegatronBertForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[str] , lowercase__ : Dict , lowercase__ : List[Any] , lowercase__ : Optional[int] , lowercase__ : int , lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] ): a_ = self.num_labels a_ = MegatronBertForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : str , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : Union[str, Any] ): a_ = self.num_choices a_ = MegatronBertForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self : List[Any] ): a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase ( a__ , a__ , unittest.TestCase ): _lowerCAmelCase = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _lowerCAmelCase = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase = True # test_resize_embeddings = False _lowerCAmelCase = False def __magic_name__ ( self : List[Any] , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : Any=False ): a_ = super()._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): a_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase__ ) a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) return inputs_dict def __magic_name__ ( self : Any ): a_ = MegatronBertModelTester(self ) a_ = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7 ) def __magic_name__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def __magic_name__ ( self : Dict ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowercase__ ) def __magic_name__ ( self : List[str] ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowercase__ ) def __magic_name__ ( self : Optional[int] ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowercase__ ) def __magic_name__ ( self : Union[str, Any] ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowercase__ ) def __magic_name__ ( self : Optional[int] ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowercase__ ) def __magic_name__ ( self : Union[str, Any] ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowercase__ ) def __magic_name__ ( self : Tuple ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowercase__ ) def __magic_name__ ( self : int ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowercase__ ) def UpperCAmelCase__ ( _A ): """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) UpperCamelCase__ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class __lowercase ( unittest.TestCase ): @slow @unittest.skip('''Model is not available.''' ) def __magic_name__ ( self : Union[str, Any] ): a_ = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: a_ = os.path.join(os.environ['''MYDIR'''] , lowercase__ ) a_ = MegatronBertModel.from_pretrained(lowercase__ ) model.to(lowercase__ ) model.half() a_ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): a_ = model(lowercase__ )[0] a_ = torch.Size((1, 9, 1_0_2_4) ) self.assertEqual(output.shape , lowercase__ ) a_ = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): a_ = output[0, ii, jj] a_ = expected[3 * ii + jj] a_ = '''ii={} jj={} a={} b={}'''.format(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) self.assertTrue(math.isclose(lowercase__ , lowercase__ , rel_tol=lowercase__ , abs_tol=lowercase__ ) , msg=lowercase__ )
143
0
'''simple docstring''' import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Union[str, Any] ): # Initialise PyTorch model _a = TaConfig.from_json_file(__a ) print(F'''Building PyTorch model from configuration: {config}''' ) _a = TaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tf_weights_in_ta(__a, __a, __a ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__a ) if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __snake_case : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
131
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str=13 , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : Any=24 , lowerCamelCase__ : Optional[Any]=16 , lowerCamelCase__ : int=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[Any]=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Optional[Any]=37 , lowerCamelCase__ : Any="gelu" , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : str=10 , lowerCamelCase__ : Optional[Any]=0.02 , lowerCamelCase__ : str=None , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : Optional[Any]=2 , ): a__ : str = parent a__ : Any = batch_size a__ : Dict = patch_size a__ : List[Any] = max_length a__ : str = num_mel_bins a__ : Optional[Any] = is_training a__ : Optional[int] = use_labels a__ : List[Any] = hidden_size a__ : str = num_hidden_layers a__ : Any = num_attention_heads a__ : Union[str, Any] = intermediate_size a__ : List[str] = hidden_act a__ : str = hidden_dropout_prob a__ : Tuple = attention_probs_dropout_prob a__ : List[Any] = type_sequence_label_size a__ : Any = initializer_range a__ : str = scope a__ : List[str] = frequency_stride a__ : Union[str, Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) a__ : List[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 a__ : List[str] = (self.max_length - self.patch_size) // self.time_stride + 1 a__ : Tuple = frequency_out_dimension * time_out_dimension a__ : List[str] = num_patches + 2 def _UpperCamelCase( self : List[str] ): a__ : Any = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) a__ : List[Any] = None if self.use_labels: a__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : List[str] = self.get_config() return config, input_values, labels def _UpperCamelCase( self : Optional[int] ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] ): a__ : List[Any] = ASTModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : Dict = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase( self : str ): a__ : Dict = self.prepare_config_and_inputs() ( ( a__ ), ( a__ ), ( a__ ), ) : Optional[int] = config_and_inputs a__ : List[Any] = {"input_values": input_values} return config, inputs_dict @require_torch class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" _lowercase = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _lowercase = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) _lowercase = False _lowercase = False _lowercase = False _lowercase = False def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Dict ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _UpperCamelCase( self : str ): a__ : str = ASTModelTester(self ) a__ : Any = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def _UpperCamelCase( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def _UpperCamelCase( self : List[str] ): pass def _UpperCamelCase( self : Optional[int] ): a__, a__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Any = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def _UpperCamelCase( self : Tuple ): a__, a__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Dict = model_class(lowerCamelCase__ ) a__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Optional[Any] = ["input_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) @slow def _UpperCamelCase( self : int ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Union[str, Any] = ASTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCamelCase_ ( ) -> Any: a__ : Optional[int] = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) a__, a__ : List[str] = torchaudio.load(__a ) return audio, sampling_rate @require_torch @require_torchaudio class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase( self : List[str] ): return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def _UpperCamelCase( self : Optional[int] ): a__ : int = self.default_feature_extractor a__ : Optional[Any] = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(lowerCamelCase__ ) a__ : Any = self.default_feature_extractor a__, a__ : Dict = prepare_audio() a__ : str = audio.squeeze().numpy() a__ : Any = feature_extractor(lowerCamelCase__ , sampling_rate=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Any = model(**lowerCamelCase__ ) # verify the logits a__ : Union[str, Any] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) a__ : List[str] = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) )
37
0
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP lowercase =False try: lowercase =_is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class __magic_name__ : def __init__( self , snake_case = None , snake_case = []) -> Dict: '''simple docstring''' _UpperCAmelCase : int =0 _UpperCAmelCase : Union[str, Any] =choices _UpperCAmelCase : str =prompt if sys.platform == "win32": _UpperCAmelCase : int ='*' else: _UpperCAmelCase : Optional[int] ='➔ ' def lowerCAmelCase ( self , snake_case , snake_case = "") -> Tuple: '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index] , 3_2 , snake_case) else: forceWrite(self.choices[index] , snake_case) def lowerCAmelCase ( self , snake_case) -> Any: '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(snake_case) else: forceWrite(f" {self.choices[index]}") reset_cursor() def lowerCAmelCase ( self , snake_case , snake_case = 1) -> Dict: '''simple docstring''' _UpperCAmelCase : Tuple =self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(snake_case) move_cursor(snake_case , direction.name) self.print_choice(self.position) @input.mark(KEYMAP['up']) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.move_direction(Direction.UP) @input.mark(KEYMAP['down']) def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' self.move_direction(Direction.DOWN) @input.mark(KEYMAP['newline']) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' move_cursor(len(self.choices) - self.position , 'DOWN') return self.position @input.mark(KEYMAP['interrupt']) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' move_cursor(len(self.choices) - self.position , 'DOWN') raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(snake_case)] for number in range(1_0)]) def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] =int(chr(self.current_selection)) _UpperCAmelCase : Tuple =index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP , -movement) elif self.position < index: self.move_direction(Direction.DOWN , snake_case) else: return else: return def lowerCAmelCase ( self , snake_case = 0) -> Any: '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt , '\n') if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n') else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n') _UpperCAmelCase : int =default_choice for i in range(len(self.choices)): self.print_choice(snake_case) forceWrite('\n') move_cursor(len(self.choices) - self.position , 'UP') with cursor.hide(): while True: if in_colab: try: _UpperCAmelCase : List[Any] =int(builtins.input()) except ValueError: _UpperCAmelCase : str =default_choice else: _UpperCAmelCase : Tuple =self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1 , 'UP') clear_line() self.write_choice(snake_case , '\n') return choice
331
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase =logging.get_logger(__name__) lowercase ={ 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/config.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/config.json' # See all FNet models at https://huggingface.co/models?filter=fnet } class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="fnet" def __init__( self , snake_case=3_2_0_0_0 , snake_case=7_6_8 , snake_case=1_2 , snake_case=3_0_7_2 , snake_case="gelu_new" , snake_case=0.1 , snake_case=5_1_2 , snake_case=4 , snake_case=0.02 , snake_case=1E-1_2 , snake_case=False , snake_case=5_1_2 , snake_case=3 , snake_case=1 , snake_case=2 , **snake_case , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case) _UpperCAmelCase : List[Any] =vocab_size _UpperCAmelCase : Dict =max_position_embeddings _UpperCAmelCase : str =hidden_size _UpperCAmelCase : Any =num_hidden_layers _UpperCAmelCase : Optional[int] =intermediate_size _UpperCAmelCase : List[str] =hidden_act _UpperCAmelCase : Tuple =hidden_dropout_prob _UpperCAmelCase : Union[str, Any] =initializer_range _UpperCAmelCase : Tuple =type_vocab_size _UpperCAmelCase : Union[str, Any] =layer_norm_eps _UpperCAmelCase : str =use_tpu_fourier_optimizations _UpperCAmelCase : Optional[int] =tpu_short_seq_length
331
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' # A local function to see if a dot lands in the circle. def is_in_circle(UpperCamelCase_ : float , UpperCamelCase_ : float ) -> bool: _lowerCAmelCase : List[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _lowerCAmelCase : Optional[Any] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(UpperCamelCase_ ) ) # The ratio of the area for circle to square is pi/4. _lowerCAmelCase : Dict = proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def _UpperCAmelCase (UpperCamelCase_ : int , UpperCamelCase_ : Callable[[float], float] , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(UpperCamelCase_ , UpperCamelCase_ ) ) for _ in range(UpperCamelCase_ ) ) * (max_value - min_value) def _UpperCAmelCase (UpperCamelCase_ : int , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : float = 1.0 ): '''simple docstring''' def identity_function(UpperCamelCase_ : float ) -> float: return x _lowerCAmelCase : List[Any] = area_under_curve_estimator( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase : List[Any] = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("""******************""" ) def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' def function_to_integrate(UpperCamelCase_ : float ) -> float: return sqrt(4.0 - x * x ) _lowerCAmelCase : Optional[int] = area_under_curve_estimator( UpperCamelCase_ , UpperCamelCase_ , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
429
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : Union[str, Any] = "▁" _lowerCamelCase : Dict = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class __snake_case (_a , unittest.TestCase ): lowerCAmelCase__ = BertGenerationTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: '''simple docstring''' super().setUp() _lowerCAmelCase : Dict = BertGenerationTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Dict = """<s>""" _lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(_UpperCAmelCase ) , 1002 ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : Dict = BertGenerationTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) _lowerCAmelCase : List[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) _lowerCAmelCase : int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: '''simple docstring''' return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : int = """Hello World!""" _lowerCAmelCase : List[Any] = [1_8536, 2260, 101] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: '''simple docstring''' _lowerCAmelCase : Optional[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) _lowerCAmelCase : Union[str, Any] = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: '''simple docstring''' import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _lowerCAmelCase : Tuple = list(self.big_tokenizer.get_vocab().keys() )[:10] _lowerCAmelCase : Optional[Any] = """ """.join(_UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = self.big_tokenizer.encode_plus(_UpperCAmelCase , return_tensors="""pt""" , return_token_type_ids=_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=_UpperCAmelCase ) _lowerCAmelCase : str = BertGenerationConfig() _lowerCAmelCase : Dict = BertGenerationEncoder(_UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCAmelCase ) model(**_UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: '''simple docstring''' _lowerCAmelCase : Optional[Any] = {"""input_ids""": [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
429
1
'''simple docstring''' from __future__ import annotations from typing import Any class lowercase_ : """simple docstring""" def __init__( self : List[str] ,lowercase__ : Optional[Any] ): __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : int ,lowercase__ : Optional[Any] ): self.m_edges.append([u_node, v_node, weight] ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Optional[Any] ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Any ): if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(A_ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ): if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(A_ ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(A_ ) component_size[u_node] += component_size[v_node] self.set_component(A_ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(A_ ,A_ ): __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(A_ ,A_ ,A_ ) print(F"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(F"The total weight of the minimal spanning tree is: {mst_weight}" ) def _A ( ): """simple docstring""" pass if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' def _A ( A__ = 50 ): """simple docstring""" __lowercase = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
624
0
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _lowercase : List[Any] =logging.get_logger(__name__) _lowercase : Optional[Any] ={"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED _lowercase : Optional[int] ={ "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } _lowercase : Union[str, Any] ={ "allenai/led-base-16384": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" a__ : Dict = ( list(range(ord("""!""") , ord("""~""") + 1)) + list(range(ord("""¡""") , ord("""¬""") + 1)) + list(range(ord("""®""") , ord("""ÿ""") + 1)) ) a__ : List[str] = bs[:] a__ : List[str] = 0 for b in range(2**8): if b not in bs: bs.append(_lowercase) cs.append(2**8 + n) n += 1 a__ : Optional[Any] = [chr(_lowercase) for n in cs] return dict(zip(_lowercase , _lowercase)) def lowerCAmelCase_ ( _lowercase : Dict) -> Optional[int]: """simple docstring""" a__ : str = set() a__ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) a__ : int = char return pairs class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :str = VOCAB_FILES_NAMES __lowerCAmelCase :List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase :str = ["input_ids", "attention_mask"] def __init__( self , __lowercase , __lowercase , __lowercase="replace" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase=False , **__lowercase , ) -> Tuple: """simple docstring""" a__ : Dict = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else bos_token a__ : Optional[int] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else eos_token a__ : str = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else sep_token a__ : Tuple = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else cls_token a__ : Optional[int] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else unk_token a__ : str = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it a__ : Optional[int] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token super().__init__( errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , ) with open(__lowercase , encoding="""utf-8""" ) as vocab_handle: a__ : List[str] = json.load(__lowercase ) a__ : Optional[Any] = {v: k for k, v in self.encoder.items()} a__ : Any = errors # how to handle errors in decoding a__ : Tuple = bytes_to_unicode() a__ : List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__lowercase , encoding="""utf-8""" ) as merges_handle: a__ : Any = merges_handle.read().split("""\n""" )[1:-1] a__ : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] a__ : str = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) a__ : Any = {} a__ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a__ : List[str] = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" return len(self.encoder ) def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] a__ : Optional[int] = tuple(__lowercase ) a__ : Tuple = get_pairs(__lowercase ) if not pairs: return token while True: a__ : Tuple = min(__lowercase , key=lambda __lowercase : self.bpe_ranks.get(__lowercase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break a__ , a__ : Optional[Any] = bigram a__ : List[Any] = [] a__ : List[Any] = 0 while i < len(__lowercase ): try: a__ : int = word.index(__lowercase , __lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a__ : str = j if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a__ : int = tuple(__lowercase ) a__ : Dict = new_word if len(__lowercase ) == 1: break else: a__ : int = get_pairs(__lowercase ) a__ : Union[str, Any] = """ """.join(__lowercase ) a__ : Dict = word return word def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Union[str, Any]: """simple docstring""" a__ : Tuple = [] for token in re.findall(self.pat , __lowercase ): a__ : List[str] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowercase ).split(""" """ ) ) return bpe_tokens def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Dict: """simple docstring""" return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[Any]: """simple docstring""" return self.decoder.get(__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str: """simple docstring""" a__ : Any = """""".join(__lowercase ) a__ : Any = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a__ : Dict = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) a__ : Optional[int] = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + """\n""" ) a__ : int = 0 with open(__lowercase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) a__ : int = token_index writer.write(""" """.join(__lowercase ) + """\n""" ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a__ : Optional[int] = [self.cls_token_id] a__ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None , __lowercase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1] def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> List[int]: """simple docstring""" a__ : str = [self.sep_token_id] a__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=False , **__lowercase ) -> Tuple: """simple docstring""" a__ : str = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowercase ) > 0 and not text[0].isspace()): a__ : int = """ """ + text return (text, kwargs) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None , __lowercase = PaddingStrategy.DO_NOT_PAD , __lowercase = None , __lowercase = None , ) -> dict: """simple docstring""" a__ : Union[str, Any] = super()._pad( encoded_inputs=__lowercase , max_length=__lowercase , padding_strategy=__lowercase , pad_to_multiple_of=__lowercase , return_attention_mask=__lowercase , ) # Load from model defaults if return_attention_mask is None: a__ : List[Any] = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: a__ : List[Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. a__ : Optional[Any] = len(encoded_inputs["""global_attention_mask"""] ) != len(__lowercase ) if needs_to_be_padded: a__ : Dict = len(__lowercase ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` a__ : Optional[int] = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": a__ : Optional[int] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
136
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class snake_case__ : """simple docstring""" def __init__( self , __lowercase ) -> Optional[Any]: """simple docstring""" if isinstance(__lowercase , __lowercase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden a__ : int = deepcopy(__lowercase ) elif os.path.exists(__lowercase ): with io.open(__lowercase , """r""" , encoding="""utf-8""" ) as f: a__ : str = json.load(__lowercase ) else: try: a__ : Union[str, Any] = baseaa.urlsafe_baadecode(__lowercase ).decode("""utf-8""" ) a__ : Tuple = json.loads(__lowercase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) a__ : Tuple = config self.set_stage_and_offload() def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : List[Any] = self.get_value("""zero_optimization.stage""" , -1 ) # offload a__ : Tuple = False if self.is_zeroa() or self.is_zeroa(): a__ : Any = set(["""cpu""", """nvme"""] ) a__ : List[str] = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: a__ : Tuple = True def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple: """simple docstring""" a__ : Optional[Any] = self.config # find the config node of interest if it exists a__ : Any = ds_key_long.split(""".""" ) a__ : List[Any] = nodes.pop() for node in nodes: a__ : Any = config.get(__lowercase ) if config is None: return None, ds_key return config, ds_key def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=None ) -> Any: """simple docstring""" a__ , a__ : int = self.find_config_node(__lowercase ) if config is None: return default return config.get(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=False ) -> Dict: """simple docstring""" a__ : Dict = self.config # find the config node of interest if it exists a__ : Dict = ds_key_long.split(""".""" ) for node in nodes: a__ : Any = config a__ : Optional[Any] = config.get(__lowercase ) if config is None: if must_exist: raise ValueError(F'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Optional[Any]: """simple docstring""" a__ : Tuple = self.get_value(__lowercase ) return False if value is None else bool(__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple: """simple docstring""" a__ : int = self.get_value(__lowercase ) return False if value is None else not bool(__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" return self._stage == 2 def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" return self._stage == 3 def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" return self._offload class snake_case__ : """simple docstring""" def __init__( self , __lowercase ) -> Optional[int]: """simple docstring""" a__ : List[str] = engine def SCREAMING_SNAKE_CASE__( self , __lowercase , **__lowercase ) -> List[str]: """simple docstring""" self.engine.backward(__lowercase , **__lowercase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class snake_case__ (A__ ): """simple docstring""" def __init__( self , __lowercase ) -> int: """simple docstring""" super().__init__(__lowercase , device_placement=__lowercase , scaler=__lowercase ) a__ : Any = hasattr(self.optimizer , """overflow""" ) def SCREAMING_SNAKE_CASE__( self , __lowercase=None ) -> int: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class snake_case__ (A__ ): """simple docstring""" def __init__( self , __lowercase , __lowercase ) -> Dict: """simple docstring""" super().__init__(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class snake_case__ : """simple docstring""" def __init__( self , __lowercase , __lowercase=0.0_0_1 , __lowercase=0 , **__lowercase ) -> List[str]: """simple docstring""" a__ : Optional[int] = params a__ : List[str] = lr a__ : List[str] = weight_decay a__ : Tuple = kwargs class snake_case__ : """simple docstring""" def __init__( self , __lowercase , __lowercase=None , __lowercase=0 , **__lowercase ) -> Optional[int]: """simple docstring""" a__ : List[Any] = optimizer a__ : List[Any] = total_num_steps a__ : Optional[Any] = warmup_num_steps a__ : Optional[int] = kwargs
136
1
def lowerCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] ) -> Optional[int]: '''simple docstring''' A = '' for i in table: res += inp[i - 1] return res def lowerCamelCase_ ( lowerCAmelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' return data[1:] + data[0] def lowerCamelCase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> Any: '''simple docstring''' A = '' for i in range(len(lowerCAmelCase__ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' A = int('0b' + data[0] + data[-1] , 2 ) A = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowerCamelCase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A = message[:4] A = message[4:] A = apply_table(lowerCAmelCase__ , lowerCAmelCase__ ) A = xor(lowerCAmelCase__ , lowerCAmelCase__ ) A = apply_sbox(lowerCAmelCase__ , temp[:4] ) # noqa: E741 A = apply_sbox(lowerCAmelCase__ , temp[4:] ) A = '0' * (2 - len(lowerCAmelCase__ )) + l # noqa: E741 A = '0' * (2 - len(lowerCAmelCase__ )) + r A = apply_table(l + r , lowerCAmelCase__ ) A = xor(lowerCAmelCase__ , lowerCAmelCase__ ) return temp + right if __name__ == "__main__": __snake_case :Tuple =input('Enter 10 bit key: ') __snake_case :Union[str, Any] =input('Enter 8 bit message: ') __snake_case :int =[6, 3, 7, 4, 8, 5, 10, 9] __snake_case :Dict =[3, 5, 2, 7, 4, 10, 1, 9, 8, 6] __snake_case :Optional[int] =[2, 4, 3, 1] __snake_case :Tuple =[2, 6, 3, 1, 4, 8, 5, 7] __snake_case :Dict =[4, 1, 3, 5, 7, 2, 8, 6] __snake_case :str =[4, 1, 2, 3, 2, 3, 4, 1] __snake_case :Optional[int] =[[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __snake_case :Optional[Any] =[[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __snake_case :List[Any] =apply_table(key, paa_table) __snake_case :Tuple =temp[:5] __snake_case :int =temp[5:] __snake_case :int =left_shift(left) __snake_case :List[str] =left_shift(right) __snake_case :Tuple =apply_table(left + right, pa_table) __snake_case :List[Any] =left_shift(left) __snake_case :str =left_shift(right) __snake_case :Optional[Any] =left_shift(left) __snake_case :Optional[Any] =left_shift(right) __snake_case :Any =apply_table(left + right, pa_table) # encryption __snake_case :Optional[Any] =apply_table(message, IP) __snake_case :Optional[int] =function(expansion, sa, sa, keya, temp) __snake_case :Dict =temp[4:] + temp[:4] __snake_case :Any =function(expansion, sa, sa, keya, temp) __snake_case :Optional[int] =apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption __snake_case :str =apply_table(CT, IP) __snake_case :str =function(expansion, sa, sa, keya, temp) __snake_case :List[str] =temp[4:] + temp[:4] __snake_case :Tuple =function(expansion, sa, sa, keya, temp) __snake_case :Optional[int] =apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
224
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case :int =logging.get_logger(__name__) __snake_case :Any ={ 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class lowerCAmelCase__ ( _lowerCamelCase ): A_ : List[Any] = 'switch_transformers' A_ : str = ['past_key_values'] A_ : Optional[int] = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Dict , __UpperCamelCase : List[str]=32_128 , __UpperCamelCase : Optional[Any]=768 , __UpperCamelCase : Optional[int]=64 , __UpperCamelCase : Tuple=2_048 , __UpperCamelCase : Dict=64 , __UpperCamelCase : List[str]=12 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : List[str]=12 , __UpperCamelCase : Tuple=3 , __UpperCamelCase : List[Any]=12 , __UpperCamelCase : Optional[int]=8 , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Optional[int]=0.0_1 , __UpperCamelCase : Any="float32" , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : List[Any]=32 , __UpperCamelCase : List[Any]=128 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : int=1e-6 , __UpperCamelCase : Union[str, Any]=0.0_0_1 , __UpperCamelCase : Tuple=0.0_0_1 , __UpperCamelCase : int=1.0 , __UpperCamelCase : Optional[Any]="relu" , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : List[str]=False , __UpperCamelCase : List[Any]=True , __UpperCamelCase : str=0 , __UpperCamelCase : int=1 , **__UpperCamelCase : Union[str, Any] , ) -> Dict: A = vocab_size A = d_model A = d_kv A = d_ff A = num_sparse_encoder_layers A = num_layers A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: A = self.num_layers // self.num_sparse_encoder_layers else: A = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: A = self.num_decoder_layers // self.num_sparse_decoder_layers else: A = self.num_decoder_layers # HACK: this will create 0 sparse layers A = num_heads A = num_experts A = expert_capacity A = router_bias A = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) A = router_dtype A = router_ignore_padding_tokens A = relative_attention_num_buckets A = relative_attention_max_distance A = dropout_rate A = layer_norm_epsilon A = initializer_factor A = feed_forward_proj A = use_cache A = add_router_probs A = router_z_loss_coef A = router_aux_loss_coef A = self.feed_forward_proj.split('-' ) A = act_info[-1] A = act_info[0] == 'gated' if len(__UpperCamelCase ) > 1 and act_info[0] != "gated" or len(__UpperCamelCase ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": A = 'gelu_new' super().__init__( pad_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase , )
224
1
'''simple docstring''' def SCREAMING_SNAKE_CASE ( ) -> Any: '''simple docstring''' _lowercase : List[Any] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] _lowercase : Tuple = 6 _lowercase : List[Any] = 1 _lowercase : Union[str, Any] = 19_01 _lowercase : Optional[Any] = 0 while year < 20_01: day += 7 if (year % 4 == 0 and year % 1_00 != 0) or (year % 4_00 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowercase : Any = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 _lowercase : Optional[Any] = day - 29 else: if day > days_per_month[month - 1]: month += 1 _lowercase : List[Any] = day - days_per_month[month - 2] if month > 12: year += 1 _lowercase : Any = 1 if year < 20_01 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
125
def __magic_name__ ( lowercase = 100 ) -> int: """simple docstring""" lowercase_ : Dict = (n * (n + 1) // 2) ** 2 lowercase_ : List[str] = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
458
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Any = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Dict = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCamelCase__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
711
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Any , _a:Tuple ): return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_a ) for s in shape] )}.npy""" def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Tuple=0 , _a:Dict=(4, 4, 64, 64) , _a:List[Any]=False ): snake_case__ = jnp.bfloataa if fpaa else jnp.floataa snake_case__ = jnp.array(load_hf_numpy(self.get_file_format(_a , _a ) ) , dtype=_a ) return image def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:List[Any]=False , _a:str="CompVis/stable-diffusion-v1-4" ): snake_case__ = jnp.bfloataa if fpaa else jnp.floataa snake_case__ = '''bf16''' if fpaa else None snake_case__ , snake_case__ = FlaxUNetaDConditionModel.from_pretrained( _a , subfolder='''unet''' , dtype=_a , revision=_a ) return model, params def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Optional[int]=0 , _a:Tuple=(4, 77, 7_68) , _a:int=False ): snake_case__ = jnp.bfloataa if fpaa else jnp.floataa snake_case__ = jnp.array(load_hf_numpy(self.get_file_format(_a , _a ) ) , dtype=_a ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 10_00, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Tuple , _a:Optional[Any] , _a:Optional[int] ): snake_case__ , snake_case__ = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=_a ) snake_case__ = self.get_latents(_a , fpaa=_a ) snake_case__ = self.get_encoder_hidden_states(_a , fpaa=_a ) snake_case__ = model.apply( {'''params''': params} , _a , jnp.array(_a , dtype=jnp.intaa ) , encoder_hidden_states=_a , ).sample assert sample.shape == latents.shape snake_case__ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case__ = jnp.array(_a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_a , _a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 10_00, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:Optional[int] , _a:Tuple , _a:str ): snake_case__ , snake_case__ = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=_a ) snake_case__ = self.get_latents(_a , shape=(4, 4, 96, 96) , fpaa=_a ) snake_case__ = self.get_encoder_hidden_states(_a , shape=(4, 77, 10_24) , fpaa=_a ) snake_case__ = model.apply( {'''params''': params} , _a , jnp.array(_a , dtype=jnp.intaa ) , encoder_hidden_states=_a , ).sample assert sample.shape == latents.shape snake_case__ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case__ = jnp.array(_a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_a , _a , atol=1e-2 )
208
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _snake_case( _a ): __snake_case: Tuple = """openai/whisper-base""" __snake_case: Optional[Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) __snake_case: Dict = """transcriber""" __snake_case: List[Any] = WhisperProcessor __snake_case: int = WhisperForConditionalGeneration __snake_case: int = ["""audio"""] __snake_case: Union[str, Any] = ["""text"""] def _UpperCamelCase (self : Dict , a : Any ) -> Optional[int]: """simple docstring""" return self.pre_processor(a , return_tensors='pt' ).input_features def _UpperCamelCase (self : Optional[int] , a : Tuple ) -> List[str]: """simple docstring""" return self.model.generate(inputs=a ) def _UpperCamelCase (self : Any , a : Tuple ) -> Optional[Any]: """simple docstring""" return self.pre_processor.batch_decode(a , skip_special_tokens=a )[0]
531
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase=0.9_99 , _lowerCAmelCase="cosine" , ) -> int: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCAmelCase ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __snake_case = [] for i in range(_lowerCAmelCase ): __snake_case = i / num_diffusion_timesteps __snake_case = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCAmelCase ) / alpha_bar_fn(_lowerCAmelCase ) , _lowerCAmelCase ) ) return torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) class UpperCamelCase( _a , _a ): snake_case_ : Tuple = [e.name for e in KarrasDiffusionSchedulers] snake_case_ : Union[str, Any] = 2 @register_to_config def __init__( self : List[str] , SCREAMING_SNAKE_CASE : int = 1_0_0_0 , SCREAMING_SNAKE_CASE : float = 0.00085 , SCREAMING_SNAKE_CASE : float = 0.012 , SCREAMING_SNAKE_CASE : str = "linear" , SCREAMING_SNAKE_CASE : Optional[Union[np.ndarray, List[float]]] = None , SCREAMING_SNAKE_CASE : str = "epsilon" , SCREAMING_SNAKE_CASE : str = "linspace" , SCREAMING_SNAKE_CASE : int = 0 , ) -> Optional[int]: '''simple docstring''' if trained_betas is not None: __snake_case = torch.tensor(SCREAMING_SNAKE_CASE , dtype=torch.floataa ) elif beta_schedule == "linear": __snake_case = torch.linspace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __snake_case = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __snake_case = betas_for_alpha_bar(SCREAMING_SNAKE_CASE ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __snake_case = 1.0 - self.betas __snake_case = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int=None ) -> Optional[int]: '''simple docstring''' if schedule_timesteps is None: __snake_case = self.timesteps __snake_case = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __snake_case = 1 if len(SCREAMING_SNAKE_CASE ) > 1 else 0 else: __snake_case = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE ) else timestep __snake_case = self._index_counter[timestep_int] return indices[pos].item() @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> int: '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: '''simple docstring''' __snake_case = self.index_for_timestep(SCREAMING_SNAKE_CASE ) if self.state_in_first_order: __snake_case = self.sigmas[step_index] else: __snake_case = self.sigmas_interpol[step_index] __snake_case = sample / ((sigma**2 + 1) ** 0.5) return sample def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, torch.device] = None , SCREAMING_SNAKE_CASE : Optional[int] = None , ) -> Optional[int]: '''simple docstring''' __snake_case = num_inference_steps __snake_case = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __snake_case = np.linspace(0 , num_train_timesteps - 1 , SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE )[::-1].copy() elif self.config.timestep_spacing == "leading": __snake_case = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __snake_case = (np.arange(0 , SCREAMING_SNAKE_CASE ) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __snake_case = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __snake_case = (np.arange(SCREAMING_SNAKE_CASE , 0 , -step_ratio )).round().copy().astype(SCREAMING_SNAKE_CASE ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __snake_case = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __snake_case = torch.from_numpy(np.log(SCREAMING_SNAKE_CASE ) ).to(SCREAMING_SNAKE_CASE ) __snake_case = np.interp(SCREAMING_SNAKE_CASE , np.arange(0 , len(SCREAMING_SNAKE_CASE ) ) , SCREAMING_SNAKE_CASE ) __snake_case = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __snake_case = torch.from_numpy(SCREAMING_SNAKE_CASE ).to(device=SCREAMING_SNAKE_CASE ) # interpolate sigmas __snake_case = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __snake_case = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __snake_case = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(SCREAMING_SNAKE_CASE ).startswith("mps" ): # mps does not support float64 __snake_case = torch.from_numpy(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE , dtype=torch.floataa ) else: __snake_case = torch.from_numpy(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) # interpolate timesteps __snake_case = self.sigma_to_t(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE , dtype=timesteps.dtype ) __snake_case = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __snake_case = torch.cat([timesteps[:1], interleaved_timesteps] ) __snake_case = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __snake_case = defaultdict(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: '''simple docstring''' __snake_case = sigma.log() # get distribution __snake_case = log_sigma - self.log_sigmas[:, None] # get sigmas range __snake_case = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __snake_case = low_idx + 1 __snake_case = self.log_sigmas[low_idx] __snake_case = self.log_sigmas[high_idx] # interpolate sigmas __snake_case = (low - log_sigma) / (low - high) __snake_case = w.clamp(0 , 1 ) # transform interpolation to time range __snake_case = (1 - w) * low_idx + w * high_idx __snake_case = t.view(sigma.shape ) return t @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> int: '''simple docstring''' return self.sample is None def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE : Union[torch.FloatTensor, np.ndarray] , SCREAMING_SNAKE_CASE : Union[float, torch.FloatTensor] , SCREAMING_SNAKE_CASE : Union[torch.FloatTensor, np.ndarray] , SCREAMING_SNAKE_CASE : bool = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' __snake_case = self.index_for_timestep(SCREAMING_SNAKE_CASE ) # advance index counter by 1 __snake_case = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __snake_case = self.sigmas[step_index] __snake_case = self.sigmas_interpol[step_index + 1] __snake_case = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __snake_case = self.sigmas[step_index - 1] __snake_case = self.sigmas_interpol[step_index] __snake_case = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __snake_case = 0 __snake_case = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __snake_case = sigma_hat if self.state_in_first_order else sigma_interpol __snake_case = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __snake_case = sigma_hat if self.state_in_first_order else sigma_interpol __snake_case = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __snake_case = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __snake_case = sigma_interpol - sigma_hat # store for 2nd order step __snake_case = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __snake_case = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __snake_case = sigma_next - sigma_hat __snake_case = self.sample __snake_case = None __snake_case = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : torch.FloatTensor , ) -> torch.FloatTensor: '''simple docstring''' __snake_case = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE ): # mps does not support float64 __snake_case = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __snake_case = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __snake_case = self.timesteps.to(original_samples.device ) __snake_case = timesteps.to(original_samples.device ) __snake_case = [self.index_for_timestep(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for t in timesteps] __snake_case = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __snake_case = sigma.unsqueeze(-1 ) __snake_case = original_samples + noise * sigma return noisy_samples def __len__( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return self.config.num_train_timesteps
371
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCamelCase__ ( snake_case_ ): """simple docstring""" __magic_name__ = """visual_bert""" def __init__( self , UpperCAmelCase__=3_0_5_2_2 , UpperCAmelCase__=7_6_8 , UpperCAmelCase__=5_1_2 , UpperCAmelCase__=1_2 , UpperCAmelCase__=1_2 , UpperCAmelCase__=3_0_7_2 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=5_1_2 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=False , UpperCAmelCase__=True , UpperCAmelCase__=1 , UpperCAmelCase__=0 , UpperCAmelCase__=2 , **UpperCAmelCase__ , ) -> str: super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) _A : int = vocab_size _A : Tuple = max_position_embeddings _A : List[Any] = hidden_size _A : Optional[Any] = visual_embedding_dim _A : int = num_hidden_layers _A : str = num_attention_heads _A : Any = intermediate_size _A : Dict = hidden_act _A : Dict = hidden_dropout_prob _A : List[str] = attention_probs_dropout_prob _A : int = initializer_range _A : List[Any] = type_vocab_size _A : List[str] = layer_norm_eps _A : Union[str, Any] = bypass_transformer _A : Optional[Any] = special_visual_initialize
417
'''simple docstring''' import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCamelCase__ : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=1_3 , UpperCAmelCase__=7 , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=9_9 , UpperCAmelCase__=3_2 , UpperCAmelCase__=5 , UpperCAmelCase__=4 , UpperCAmelCase__=4 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.1 , UpperCAmelCase__=True , UpperCAmelCase__=5_1_2 , UpperCAmelCase__=1_6 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=3 , UpperCAmelCase__=4 , UpperCAmelCase__=None , ) -> int: _A : Dict = parent _A : Tuple = batch_size _A : Optional[Any] = seq_length _A : Dict = is_training _A : Tuple = use_input_mask _A : int = use_token_type_ids _A : Tuple = use_labels _A : Optional[int] = vocab_size _A : List[Any] = hidden_size _A : List[Any] = num_hidden_layers _A : Union[str, Any] = num_attention_heads _A : int = intermediate_multiple_size _A : Optional[int] = hidden_act _A : Any = hidden_dropout _A : Union[str, Any] = attention_dropout _A : Tuple = weight_tying _A : Dict = max_position_embeddings _A : Tuple = type_vocab_size _A : Optional[int] = type_sequence_label_size _A : str = initializer_range _A : str = num_labels _A : int = num_choices _A : Optional[int] = scope def _lowerCamelCase ( self ) -> Dict: _A : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A : Any = None if self.use_input_mask: _A : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _A : List[Any] = None if self.use_labels: _A : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A : int = self.get_config() return config, input_ids, input_mask, token_labels def _lowerCamelCase ( self ) -> Optional[int]: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self ) -> List[Any]: _A , _A , _A , _A : Optional[Any] = self.prepare_config_and_inputs() _A : List[Any] = True return config, input_ids, input_mask, token_labels def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: _A : Dict = GPTNeoXJapaneseModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _A : Tuple = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) _A : Optional[Any] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: _A : int = True _A : Tuple = GPTNeoXJapaneseModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _A : Optional[int] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> str: _A : int = GPTNeoXJapaneseForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _A : List[Any] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: _A : str = True _A : List[str] = GPTNeoXJapaneseForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # first forward pass _A : Optional[int] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) _A : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _A : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _A : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _A : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _A : Dict = torch.cat([input_mask, next_mask] , dim=-1 ) _A : Dict = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ ) _A : str = output_from_no_past['''hidden_states'''][0] _A : Optional[int] = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['''hidden_states'''][0] # select random slice _A : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() _A : int = output_from_no_past[:, -3:, random_slice_idx].detach() _A : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3 ) ) def _lowerCamelCase ( self ) -> Dict: _A : Any = self.prepare_config_and_inputs() _A , _A , _A , _A : Tuple = config_and_inputs _A : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" __magic_name__ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () __magic_name__ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () __magic_name__ = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def _lowerCamelCase ( self ) -> List[str]: _A : Dict = GPTNeoXJapaneseModelTester(self ) _A : Any = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def _lowerCamelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self ) -> Tuple: _A , _A , _A , _A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> Dict: _A , _A , _A , _A : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> Optional[int]: # This regression test was failing with PyTorch < 1.3 _A , _A , _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() _A : Tuple = None self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> Optional[int]: _A , _A , _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> Tuple: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*UpperCAmelCase__ ) @slow def _lowerCamelCase ( self ) -> Union[str, Any]: _A : Union[str, Any] = '''abeja/gpt-neox-japanese-2.7b''' _A : Optional[Any] = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] _A : List[str] = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] _A : int = GPTNeoXJapaneseTokenizer.from_pretrained(UpperCAmelCase__ ) _A : Union[str, Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(UpperCAmelCase__ ) _A : Union[str, Any] = [] for prompt in prompts: _A : int = tokenizer(UpperCAmelCase__ , return_tensors='''pt''' ).input_ids _A : Optional[int] = model.generate(UpperCAmelCase__ , max_length=5_0 ) _A : Optional[Any] = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) predicted_outputs += generated_string self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
417
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ : Optional[int] = { 'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'], 'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : str = ['VisionTextDualEncoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = ['FlaxVisionTextDualEncoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = ['TFVisionTextDualEncoderModel'] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowerCAmelCase_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
527
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } lowerCAmelCase_ : Any = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def UpperCAmelCase ( A : Dict ): SCREAMING_SNAKE_CASE : Optional[Any] = {} with open(A , '''r''' ) as file: for line_number, line in enumerate(A ): SCREAMING_SNAKE_CASE : Dict = line.strip() if line: SCREAMING_SNAKE_CASE : Union[str, Any] = line.split() SCREAMING_SNAKE_CASE : Any = line_number SCREAMING_SNAKE_CASE : Any = words[0] SCREAMING_SNAKE_CASE : Optional[Any] = value return result def UpperCAmelCase ( A : Union[str, Any] , A : Tuple , A : List[Any] , A : str , A : int ): for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE : Optional[Any] = getattr(A , A ) SCREAMING_SNAKE_CASE : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A ): SCREAMING_SNAKE_CASE : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] SCREAMING_SNAKE_CASE : Tuple = '''param''' if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE : List[Any] = getattr(A , A ).shape elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE : List[str] = hf_pointer for attribute in hf_param_name.split('''.''' ): SCREAMING_SNAKE_CASE : int = getattr(A , A ) SCREAMING_SNAKE_CASE : int = shape_pointer.shape # let's reduce dimension SCREAMING_SNAKE_CASE : Dict = value[0] else: SCREAMING_SNAKE_CASE : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : str = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : List[str] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : Dict = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): SCREAMING_SNAKE_CASE : List[str] = getattr(A , A ) SCREAMING_SNAKE_CASE : Optional[Any] = value else: SCREAMING_SNAKE_CASE : Tuple = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def UpperCAmelCase ( A : Optional[Any] , A : List[str] , A : Optional[int] , A : Tuple , A : Tuple ): SCREAMING_SNAKE_CASE : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A ): SCREAMING_SNAKE_CASE : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] SCREAMING_SNAKE_CASE : List[Any] = '''param''' if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE : Tuple = '''.'''.join([key, hf_param_name] ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = key SCREAMING_SNAKE_CASE : int = value if '''lm_head''' in full_key else value[0] lowerCAmelCase_ : Union[str, Any] = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def UpperCAmelCase ( A : List[Any] , A : Tuple , A : Dict=None , A : Optional[int]=None ): SCREAMING_SNAKE_CASE : Union[str, Any] = False for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE : Optional[Any] = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE : Optional[int] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : int = name.split(A )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE : Union[str, Any] = mapped_key.replace('''*''' , A ) if "weight_g" in name: SCREAMING_SNAKE_CASE : List[Any] = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE : int = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE : str = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE : Optional[Any] = '''weight''' else: SCREAMING_SNAKE_CASE : Optional[int] = None if hf_dict is not None: rename_dict(A , A , A , A , A ) else: set_recursively(A , A , A , A , A ) return is_used return is_used def UpperCAmelCase ( A : Optional[int] , A : Any , A : int ): SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Any = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : List[str] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : str = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE : List[str] = True else: SCREAMING_SNAKE_CASE : Optional[Any] = load_wavaveca_layer(A , A , A ) if not is_used: unused_weights.append(A ) logger.warning(F"""Unused weights: {unused_weights}""" ) def UpperCAmelCase ( A : Tuple , A : int , A : Tuple , A : int , A : Union[str, Any] ): SCREAMING_SNAKE_CASE : str = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE : Optional[Any] = name.split('''.''' ) SCREAMING_SNAKE_CASE : Tuple = int(items[0] ) SCREAMING_SNAKE_CASE : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : Tuple = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : Tuple = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(A ) @torch.no_grad() def UpperCAmelCase ( A : Any , A : Union[str, Any] , A : Optional[Any]=None , A : Any=None , A : Any=True , A : str=False ): if config_path is not None: SCREAMING_SNAKE_CASE : List[Any] = WavaVecaConfig.from_pretrained(A ) else: SCREAMING_SNAKE_CASE : Any = WavaVecaConfig() if is_seq_class: SCREAMING_SNAKE_CASE : List[Any] = read_txt_into_dict(A ) SCREAMING_SNAKE_CASE : Optional[Any] = idalabel SCREAMING_SNAKE_CASE : Tuple = WavaVecaForSequenceClassification(A ) SCREAMING_SNAKE_CASE : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) feature_extractor.save_pretrained(A ) elif is_finetuned: if dict_path: SCREAMING_SNAKE_CASE : Optional[Any] = Dictionary.load(A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE : List[str] = target_dict.pad_index SCREAMING_SNAKE_CASE : Optional[Any] = target_dict.bos_index SCREAMING_SNAKE_CASE : Dict = target_dict.eos_index SCREAMING_SNAKE_CASE : Dict = len(target_dict.symbols ) SCREAMING_SNAKE_CASE : str = os.path.join(A , '''vocab.json''' ) if not os.path.isdir(A ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(A ) ) return os.makedirs(A , exist_ok=A ) SCREAMING_SNAKE_CASE : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Tuple = 1 with open(A , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(A , A ) SCREAMING_SNAKE_CASE : Any = WavaVecaCTCTokenizer( A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=A , ) SCREAMING_SNAKE_CASE : Optional[Any] = True if config.feat_extract_norm == '''layer''' else False SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) SCREAMING_SNAKE_CASE : Any = WavaVecaProcessor(feature_extractor=A , tokenizer=A ) processor.save_pretrained(A ) SCREAMING_SNAKE_CASE : List[str] = WavaVecaForCTC(A ) else: SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaForPreTraining(A ) if is_finetuned or is_seq_class: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: SCREAMING_SNAKE_CASE : str = argparse.Namespace(task='''audio_pretraining''' ) SCREAMING_SNAKE_CASE : Dict = fairseq.tasks.setup_task(A ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=A ) SCREAMING_SNAKE_CASE : List[Any] = model[0].eval() recursively_load_weights(A , A , not is_finetuned ) hf_wavavec.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase_ : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) lowerCAmelCase_ : Union[str, Any] = parser.parse_args() lowerCAmelCase_ : Dict = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
527
1
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __A = logging.get_logger(__name__) class __lowerCAmelCase ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' super().__init__() __lowerCamelCase = nn.ModuleList(UpperCamelCase_ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = True , ) -> Optional[int]: '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(UpperCamelCase_ , UpperCamelCase_ , self.nets ) ): __lowerCamelCase , __lowerCamelCase = controlnet( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) # merge samples if i == 0: __lowerCamelCase , __lowerCamelCase = down_samples, mid_sample else: __lowerCamelCase = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(UpperCamelCase_ , UpperCamelCase_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = None , ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = save_directory for controlnet in self.nets: controlnet.save_pretrained( UpperCamelCase_ , is_main_process=UpperCamelCase_ , save_function=UpperCamelCase_ , safe_serialization=UpperCamelCase_ , variant=UpperCamelCase_ , ) idx += 1 __lowerCamelCase = model_path_to_save + f"""_{idx}""" @classmethod def lowercase_ ( cls , lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __lowerCamelCase = pretrained_model_path while os.path.isdir(UpperCamelCase_ ): __lowerCamelCase = ControlNetModel.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) controlnets.append(UpperCamelCase_ ) idx += 1 __lowerCamelCase = pretrained_model_path + f"""_{idx}""" logger.info(f"""{len(UpperCamelCase_ )} controlnets loaded from {pretrained_model_path}.""" ) if len(UpperCamelCase_ ) == 0: raise ValueError( f"""No ControlNets found under {os.path.dirname(UpperCamelCase_ )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(UpperCamelCase_ )
714
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __A = logging.getLogger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''summarization''' snake_case_ = ['''loss'''] snake_case_ = ROUGE_KEYS snake_case_ = '''rouge2''' def __init__( self , lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' if hparams.sortish_sampler and hparams.gpus > 1: __lowerCamelCase = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' ) if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' ) super().__init__(lowerCamelCase__ , num_labels=lowerCamelCase__ , mode=self.mode , **lowerCamelCase__ ) use_task_specific_params(self.model , 'summarization' ) save_git_info(self.hparams.output_dir ) __lowerCamelCase = Path(self.output_dir ) / 'metrics.json' __lowerCamelCase = Path(self.output_dir ) / 'hparams.pkl' pickle_save(self.hparams , self.hparams_save_path ) __lowerCamelCase = 0 __lowerCamelCase = defaultdict(lowerCamelCase__ ) __lowerCamelCase = self.config.model_type __lowerCamelCase = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size __lowerCamelCase = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } __lowerCamelCase = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } __lowerCamelCase = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} __lowerCamelCase = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f"""target_lens: {self.target_lens}""" assert self.target_lens["train"] <= self.target_lens["test"], f"""target_lens: {self.target_lens}""" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) __lowerCamelCase = get_git_info()['repo_sha'] __lowerCamelCase = hparams.num_workers __lowerCamelCase = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowerCamelCase__ ): __lowerCamelCase = self.tokenizer.lang_code_to_id[hparams.tgt_lang] __lowerCamelCase = self.decoder_start_token_id __lowerCamelCase = ( SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset ) __lowerCamelCase = False __lowerCamelCase = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: __lowerCamelCase = self.hparams.eval_max_gen_length else: __lowerCamelCase = self.model.config.max_length __lowerCamelCase = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def lowercase_ ( self , lowerCamelCase__ ) -> Dict[str, List[str]]: '''simple docstring''' __lowerCamelCase = { k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(lowerCamelCase__ , Path(self.output_dir ) / 'text_batch.json' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / 'tok_batch.json' ) __lowerCamelCase = True return readable_batch def lowercase_ ( self , lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.model(lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = self.tokenizer.batch_decode( lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ ) return lmap(str.strip , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.tokenizer.pad_token_id __lowerCamelCase , __lowerCamelCase = batch['input_ids'], batch['attention_mask'] __lowerCamelCase = batch['labels'] if isinstance(self.model , lowerCamelCase__ ): __lowerCamelCase = self.model._shift_right(lowerCamelCase__ ) else: __lowerCamelCase = shift_tokens_right(lowerCamelCase__ , lowerCamelCase__ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero __lowerCamelCase = decoder_input_ids self.save_readable_batch(lowerCamelCase__ ) __lowerCamelCase = self(lowerCamelCase__ , attention_mask=lowerCamelCase__ , decoder_input_ids=lowerCamelCase__ , use_cache=lowerCamelCase__ ) __lowerCamelCase = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id __lowerCamelCase = nn.CrossEntropyLoss(ignore_index=lowerCamelCase__ ) assert lm_logits.shape[-1] == self.vocab_size __lowerCamelCase = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: __lowerCamelCase = nn.functional.log_softmax(lowerCamelCase__ , dim=-1 ) __lowerCamelCase , __lowerCamelCase = label_smoothed_nll_loss( lowerCamelCase__ , lowerCamelCase__ , self.hparams.label_smoothing , ignore_index=lowerCamelCase__ ) return (loss,) @property def lowercase_ ( self ) -> int: '''simple docstring''' return self.tokenizer.pad_token_id def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: '''simple docstring''' __lowerCamelCase = self._step(lowerCamelCase__ ) __lowerCamelCase = dict(zip(self.loss_names , lowerCamelCase__ ) ) # tokens per batch __lowerCamelCase = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum() __lowerCamelCase = batch['input_ids'].shape[0] __lowerCamelCase = batch['input_ids'].eq(self.pad ).sum() __lowerCamelCase = batch['input_ids'].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: '''simple docstring''' return self._generative_step(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__="val" ) -> Dict: '''simple docstring''' self.step_count += 1 __lowerCamelCase = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} __lowerCamelCase = losses['loss'] __lowerCamelCase = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } __lowerCamelCase = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ).type_as(lowerCamelCase__ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowerCamelCase__ ) __lowerCamelCase = {f"""{prefix}_avg_{k}""": x for k, x in losses.items()} __lowerCamelCase = self.step_count self.metrics[prefix].append(lowerCamelCase__ ) # callback writes this to self.metrics_save_path __lowerCamelCase = flatten_list([x['preds'] for x in outputs] ) return { "log": all_metrics, "preds": preds, f"""{prefix}_loss""": loss, f"""{prefix}_{self.val_metric}""": metric_tensor, } def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: '''simple docstring''' return calculate_rouge(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> dict: '''simple docstring''' __lowerCamelCase = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') __lowerCamelCase = self.model.generate( batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=lowerCamelCase__ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) __lowerCamelCase = (time.time() - ta) / batch['input_ids'].shape[0] __lowerCamelCase = self.ids_to_clean_text(lowerCamelCase__ ) __lowerCamelCase = self.ids_to_clean_text(batch['labels'] ) __lowerCamelCase = self._step(lowerCamelCase__ ) __lowerCamelCase = dict(zip(self.loss_names , lowerCamelCase__ ) ) __lowerCamelCase = self.calc_generative_metrics(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = np.mean(lmap(lowerCamelCase__ , lowerCamelCase__ ) ) base_metrics.update(gen_time=lowerCamelCase__ , gen_len=lowerCamelCase__ , preds=lowerCamelCase__ , target=lowerCamelCase__ , **lowerCamelCase__ ) return base_metrics def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: '''simple docstring''' return self._generative_step(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.validation_epoch_end(lowerCamelCase__ , prefix='test' ) def lowercase_ ( self , lowerCamelCase__ ) -> SeqaSeqDataset: '''simple docstring''' __lowerCamelCase = self.n_obs[type_path] __lowerCamelCase = self.target_lens[type_path] __lowerCamelCase = self.dataset_class( self.tokenizer , type_path=lowerCamelCase__ , n_obs=lowerCamelCase__ , max_target_length=lowerCamelCase__ , **self.dataset_kwargs , ) return dataset def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ) -> DataLoader: '''simple docstring''' __lowerCamelCase = self.get_dataset(lowerCamelCase__ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": __lowerCamelCase = dataset.make_sortish_sampler(lowerCamelCase__ , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCamelCase__ , batch_size=lowerCamelCase__ , collate_fn=dataset.collate_fn , shuffle=lowerCamelCase__ , num_workers=self.num_workers , sampler=lowerCamelCase__ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": __lowerCamelCase = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCamelCase__ , batch_sampler=lowerCamelCase__ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowerCamelCase__ , batch_size=lowerCamelCase__ , collate_fn=dataset.collate_fn , shuffle=lowerCamelCase__ , num_workers=self.num_workers , sampler=lowerCamelCase__ , ) def lowercase_ ( self ) -> DataLoader: '''simple docstring''' __lowerCamelCase = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=lowerCamelCase__ ) return dataloader def lowercase_ ( self ) -> DataLoader: '''simple docstring''' return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size ) def lowercase_ ( self ) -> DataLoader: '''simple docstring''' return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size ) @staticmethod def lowercase_ ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' BaseTransformer.add_model_specific_args(lowerCamelCase__ , lowerCamelCase__ ) add_generic_args(lowerCamelCase__ , lowerCamelCase__ ) parser.add_argument( '--max_source_length' , default=1_024 , type=lowerCamelCase__ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--max_target_length' , default=56 , type=lowerCamelCase__ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--val_max_target_length' , default=142 , type=lowerCamelCase__ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--test_max_target_length' , default=142 , type=lowerCamelCase__ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument('--freeze_encoder' , action='store_true' ) parser.add_argument('--freeze_embeds' , action='store_true' ) parser.add_argument('--sortish_sampler' , action='store_true' , default=lowerCamelCase__ ) parser.add_argument('--overwrite_output_dir' , action='store_true' , default=lowerCamelCase__ ) parser.add_argument('--max_tokens_per_batch' , type=lowerCamelCase__ , default=lowerCamelCase__ ) parser.add_argument('--logger_name' , type=lowerCamelCase__ , choices=['default', 'wandb', 'wandb_shared'] , default='default' ) parser.add_argument('--n_train' , type=lowerCamelCase__ , default=-1 , required=lowerCamelCase__ , help='# examples. -1 means use all.' ) parser.add_argument('--n_val' , type=lowerCamelCase__ , default=500 , required=lowerCamelCase__ , help='# examples. -1 means use all.' ) parser.add_argument('--n_test' , type=lowerCamelCase__ , default=-1 , required=lowerCamelCase__ , help='# examples. -1 means use all.' ) parser.add_argument( '--task' , type=lowerCamelCase__ , default='summarization' , required=lowerCamelCase__ , help='# examples. -1 means use all.' ) parser.add_argument('--label_smoothing' , type=lowerCamelCase__ , default=0.0 , required=lowerCamelCase__ ) parser.add_argument('--src_lang' , type=lowerCamelCase__ , default='' , required=lowerCamelCase__ ) parser.add_argument('--tgt_lang' , type=lowerCamelCase__ , default='' , required=lowerCamelCase__ ) parser.add_argument('--eval_beams' , type=lowerCamelCase__ , default=lowerCamelCase__ , required=lowerCamelCase__ ) parser.add_argument( '--val_metric' , type=lowerCamelCase__ , default=lowerCamelCase__ , required=lowerCamelCase__ , choices=['bleu', 'rouge2', 'loss', None] ) parser.add_argument('--eval_max_gen_length' , type=lowerCamelCase__ , default=lowerCamelCase__ , help='never generate more than n tokens' ) parser.add_argument('--save_top_k' , type=lowerCamelCase__ , default=1 , required=lowerCamelCase__ , help='How many checkpoints to save' ) parser.add_argument( '--early_stopping_patience' , type=lowerCamelCase__ , default=-1 , required=lowerCamelCase__ , help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ) , ) return parser class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''translation''' snake_case_ = ['''loss'''] snake_case_ = ['''bleu'''] snake_case_ = '''bleu''' def __init__( self , lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' super().__init__(lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = hparams.src_lang __lowerCamelCase = hparams.tgt_lang def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> dict: '''simple docstring''' return calculate_bleu(lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict=None ) -> SummarizationModule: """simple docstring""" Path(args.output_dir ).mkdir(exist_ok=UpperCamelCase__ ) check_output_dir(UpperCamelCase__ , expected_items=3 ) if model is None: if "summarization" in args.task: __lowerCamelCase = SummarizationModule(UpperCamelCase__ ) else: __lowerCamelCase = TranslationModule(UpperCamelCase__ ) __lowerCamelCase = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('/tmp' ) or str(args.output_dir ).startswith('/var' ) ): __lowerCamelCase = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger __lowerCamelCase = os.environ.get('WANDB_PROJECT' , UpperCamelCase__ ) __lowerCamelCase = WandbLogger(name=model.output_dir.name , project=UpperCamelCase__ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger __lowerCamelCase = WandbLogger(name=model.output_dir.name , project=F"""hf_{dataset}""" ) if args.early_stopping_patience >= 0: __lowerCamelCase = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: __lowerCamelCase = False __lowerCamelCase = args.val_metric == 'loss' __lowerCamelCase = generic_train( UpperCamelCase__ , UpperCamelCase__ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , UpperCamelCase__ ) , early_stopping_callback=UpperCamelCase__ , logger=UpperCamelCase__ , ) pickle_save(model.hparams , model.output_dir / 'hparams.pkl' ) if not args.do_predict: return model __lowerCamelCase = '' __lowerCamelCase = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt' ) , recursive=UpperCamelCase__ ) ) if checkpoints: __lowerCamelCase = checkpoints[-1] __lowerCamelCase = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __A = argparse.ArgumentParser() __A = pl.Trainer.add_argparse_args(parser) __A = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __A = parser.parse_args() main(args)
167
0
"""simple docstring""" import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() a = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] a = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def lowercase (snake_case__ : Any , snake_case__ : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks lowerCAmelCase = int(re.match(R""".*layer_(\d*).*""" , UpperCamelCase__ )[1] ) layer_number -= 3 return f'''h.{layer_number}.''' + key def lowercase (snake_case__ : Dict ) -> Dict: '''simple docstring''' if dtype == torch.bool: return 1 / 8 lowerCAmelCase = re.search(R"""[^\d](\d+)$""" , str(UpperCamelCase__ ) ) if bit_search is None: raise ValueError(f'''`dtype` is not a valid dtype: {dtype}.''' ) lowerCAmelCase = int(bit_search.groups()[0] ) return bit_size // 8 def lowercase (snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : str ) -> Optional[Any]: '''simple docstring''' if bloom_config_file == "": lowerCAmelCase = BloomConfig() else: lowerCAmelCase = BloomConfig.from_json_file(UpperCamelCase__ ) if shard_model: lowerCAmelCase = os.listdir(UpperCamelCase__ ) lowerCAmelCase = sorted(filter(lambda snake_case__ : s.startswith("""layer""" ) and "model_00" in s , UpperCamelCase__ ) ) lowerCAmelCase = {'weight_map': {}, 'metadata': {}} lowerCAmelCase = 0 lowerCAmelCase = None lowerCAmelCase = BloomConfig() for j, file in enumerate(UpperCamelCase__ ): print("""Processing file: {}""".format(UpperCamelCase__ ) ) lowerCAmelCase = None for i in range(UpperCamelCase__ ): # load all TP files lowerCAmelCase = file.replace("""model_00""" , f'''model_0{i}''' ) lowerCAmelCase = torch.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , map_location="""cpu""" ) # Rename keys in the transformers names lowerCAmelCase = list(temp.keys() ) for key in keys: lowerCAmelCase = temp.pop(UpperCamelCase__ ) if tensors is None: lowerCAmelCase = temp else: for key in tensors.keys(): if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase = torch.cat([tensors[key], temp[key]] , dim=UpperCamelCase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase = tensors[key] / pretraining_tp torch.save( UpperCamelCase__ , os.path.join( UpperCamelCase__ , """pytorch_model_{}-of-{}.bin""".format(str(j + 1 ).zfill(5 ) , str(len(UpperCamelCase__ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): lowerCAmelCase = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: lowerCAmelCase = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(UpperCamelCase__ ) ).zfill(5 ) ) lowerCAmelCase = BloomConfig() lowerCAmelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME lowerCAmelCase = total_size with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) with open(os.path.join(UpperCamelCase__ , WEIGHTS_NAME + """.index.json""" ) , """w""" , encoding="""utf-8""" ) as f: lowerCAmelCase = json.dumps(UpperCamelCase__ , indent=2 , sort_keys=UpperCamelCase__ ) + '\n' f.write(UpperCamelCase__ ) else: lowerCAmelCase = BloomModel(UpperCamelCase__ ) lowerCAmelCase = os.listdir(UpperCamelCase__ ) lowerCAmelCase = sorted(filter(lambda snake_case__ : s.startswith("""layer""" ) and "model_00" in s , UpperCamelCase__ ) ) lowerCAmelCase = None for i, file in enumerate(UpperCamelCase__ ): lowerCAmelCase = None for i in range(UpperCamelCase__ ): # load all TP files lowerCAmelCase = file.replace("""model_00""" , f'''model_0{i}''' ) lowerCAmelCase = torch.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , map_location="""cpu""" ) # Rename keys in the transformers names lowerCAmelCase = list(temp.keys() ) for key in keys: lowerCAmelCase = temp.pop(UpperCamelCase__ ) if tensors is None: lowerCAmelCase = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel lowerCAmelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks lowerCAmelCase = torch.cat([tensors[key], temp[key]] , dim=UpperCamelCase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): lowerCAmelCase = tensors[key] / pretraining_tp lowerCAmelCase = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert not other_keys.unexpected_keys, f'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: lowerCAmelCase = set(other_keys.missing_keys ) else: lowerCAmelCase = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) lowerCAmelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCAmelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: lowerCAmelCase = model.to(config.torch_dtype ) torch.save(model.state_dict() , UpperCamelCase__ ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) a = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
169
'''simple docstring''' from math import factorial UpperCAmelCase_ : List[str] = {str(d): factorial(d) for d in range(1_0)} def _lowercase ( UpperCamelCase__ : int ): return sum(DIGIT_FACTORIAL[d] for d in str(UpperCamelCase__ ) ) def _lowercase ( ): __A : Union[str, Any] = 7 * factorial(9 ) + 1 return sum(i for i in range(3, UpperCamelCase__ ) if sum_of_digit_factorial(UpperCamelCase__ ) == i ) if __name__ == "__main__": print(f'''{solution() = }''')
365
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class UpperCAmelCase : def __init__( self: Any , __UpperCamelCase: int , __UpperCamelCase: int=13 , __UpperCamelCase: Optional[Any]=7 , __UpperCamelCase: int=True , __UpperCamelCase: List[Any]=True , __UpperCamelCase: Any=True , __UpperCamelCase: Optional[Any]=True , __UpperCamelCase: Any=99 , __UpperCamelCase: Dict=64 , __UpperCamelCase: Optional[Any]=32 , __UpperCamelCase: List[str]=5 , __UpperCamelCase: List[str]=4 , __UpperCamelCase: Any=37 , __UpperCamelCase: Union[str, Any]="gelu" , __UpperCamelCase: Optional[Any]=0.1 , __UpperCamelCase: int=0.1 , __UpperCamelCase: Tuple=512 , __UpperCamelCase: str=16 , __UpperCamelCase: Tuple=2 , __UpperCamelCase: Dict=0.0_2 , __UpperCamelCase: int=3 , __UpperCamelCase: Dict=4 , __UpperCamelCase: List[Any]=None , ): _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = embedding_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def _A ( self: str ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A ( self: Optional[int] ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def _A ( self: str , __UpperCamelCase: Tuple , __UpperCamelCase: List[Any] , __UpperCamelCase: Tuple , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Optional[Any] , __UpperCamelCase: str , __UpperCamelCase: List[Any] ): _a = MegatronBertModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _a = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) _a = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) _a = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _A ( self: int , __UpperCamelCase: Optional[Any] , __UpperCamelCase: str , __UpperCamelCase: str , __UpperCamelCase: Tuple , __UpperCamelCase: int , __UpperCamelCase: List[Any] , __UpperCamelCase: List[str] ): _a = MegatronBertForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _a = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self: List[Any] , __UpperCamelCase: str , __UpperCamelCase: int , __UpperCamelCase: List[Any] , __UpperCamelCase: List[Any] , __UpperCamelCase: Any , __UpperCamelCase: List[str] , __UpperCamelCase: Dict ): _a = MegatronBertForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _a = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self: List[str] , __UpperCamelCase: List[str] , __UpperCamelCase: Optional[int] , __UpperCamelCase: Optional[int] , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: List[str] , __UpperCamelCase: List[str] ): _a = MegatronBertForNextSentencePrediction(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _a = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _A ( self: List[str] , __UpperCamelCase: str , __UpperCamelCase: Optional[int] , __UpperCamelCase: str , __UpperCamelCase: Tuple , __UpperCamelCase: List[str] , __UpperCamelCase: Dict , __UpperCamelCase: Tuple ): _a = MegatronBertForPreTraining(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _a = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , next_sentence_label=__UpperCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _A ( self: Tuple , __UpperCamelCase: Any , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: str , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: Dict , __UpperCamelCase: Any , __UpperCamelCase: List[Any] ): _a = MegatronBertForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _a = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A ( self: Any , __UpperCamelCase: str , __UpperCamelCase: str , __UpperCamelCase: Optional[int] , __UpperCamelCase: int , __UpperCamelCase: Tuple , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Union[str, Any] ): _a = self.num_labels _a = MegatronBertForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _a = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self: Any , __UpperCamelCase: Tuple , __UpperCamelCase: Optional[Any] , __UpperCamelCase: List[str] , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: Optional[int] , __UpperCamelCase: Dict ): _a = self.num_labels _a = MegatronBertForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _a = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self: Dict , __UpperCamelCase: Tuple , __UpperCamelCase: Dict , __UpperCamelCase: int , __UpperCamelCase: List[str] , __UpperCamelCase: str , __UpperCamelCase: Optional[int] , __UpperCamelCase: List[Any] ): _a = self.num_choices _a = MegatronBertForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A ( self: Any ): _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): a: Tuple = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a: Optional[int] = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a: Union[str, Any] = True # test_resize_embeddings = False a: Optional[int] = False def _A ( self: List[str] , __UpperCamelCase: Any , __UpperCamelCase: Tuple , __UpperCamelCase: Any=False ): _a = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _a = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCamelCase ) _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) return inputs_dict def _A ( self: Dict ): _a = MegatronBertModelTester(self ) _a = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def _A ( self: List[Any] ): self.config_tester.run_common_tests() def _A ( self: Any ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__UpperCamelCase ) def _A ( self: int ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__UpperCamelCase ) def _A ( self: Tuple ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__UpperCamelCase ) def _A ( self: Any ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__UpperCamelCase ) def _A ( self: List[str] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__UpperCamelCase ) def _A ( self: Any ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__UpperCamelCase ) def _A ( self: Any ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__UpperCamelCase ) def _A ( self: List[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__UpperCamelCase ) def __snake_case ( _UpperCamelCase ) -> Optional[int]: return torch.tensor( _UpperCamelCase , dtype=torch.long , device=_UpperCamelCase , ) lowerCamelCase :Tuple = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): @slow @unittest.skip('''Model is not available.''' ) def _A ( self: List[Any] ): _a = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: _a = os.path.join(os.environ['''MYDIR'''] , __UpperCamelCase ) _a = MegatronBertModel.from_pretrained(__UpperCamelCase ) model.to(__UpperCamelCase ) model.half() _a = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): _a = model(__UpperCamelCase )[0] _a = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , __UpperCamelCase ) _a = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3 ): for jj in range(3 ): _a = output[0, ii, jj] _a = expected[3 * ii + jj] _a = '''ii={} jj={} a={} b={}'''.format(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) self.assertTrue(math.isclose(__UpperCamelCase , __UpperCamelCase , rel_tol=__UpperCamelCase , abs_tol=__UpperCamelCase ) , msg=__UpperCamelCase )
346
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: # Initialise PyTorch model _a = BertConfig.from_json_file(_UpperCamelCase ) print(f"Building PyTorch model from configuration: {config}" ) _a = BertForPreTraining(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _UpperCamelCase ) if __name__ == "__main__": lowerCamelCase :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase :Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
346
1
import argparse import os import re SCREAMING_SNAKE_CASE = 'src/transformers' # Pattern that looks at the indentation in a line. SCREAMING_SNAKE_CASE = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. SCREAMING_SNAKE_CASE = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. SCREAMING_SNAKE_CASE = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. SCREAMING_SNAKE_CASE = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. SCREAMING_SNAKE_CASE = re.compile(r'\[([^\]]+)\]') def a (lowerCAmelCase__ ): __a = _re_indent.search(lowerCAmelCase__ ) return "" if search is None else search.groups()[0] def a (lowerCAmelCase__ , lowerCAmelCase__="" , lowerCAmelCase__=None , lowerCAmelCase__=None ): __a = 0 __a = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(lowerCAmelCase__ ): index += 1 __a = ["""\n""".join(lines[:index] )] else: __a = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __a = [lines[index]] index += 1 while index < len(lowerCAmelCase__ ) and (end_prompt is None or not lines[index].startswith(lowerCAmelCase__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCAmelCase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(lowerCAmelCase__ ) ) if index < len(lowerCAmelCase__ ) - 1: __a = [lines[index + 1]] index += 1 else: __a = [] else: blocks.append("""\n""".join(lowerCAmelCase__ ) ) __a = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCAmelCase__ ) > 0: blocks.append("""\n""".join(lowerCAmelCase__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCAmelCase__ ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def a (lowerCAmelCase__ ): def _inner(lowerCAmelCase__ ): return key(lowerCAmelCase__ ).lower().replace("""_""" , """""" ) return _inner def a (lowerCAmelCase__ , lowerCAmelCase__=None ): # If no key is provided, we use a noop. def noop(lowerCAmelCase__ ): return x if key is None: __a = noop # Constants are all uppercase, they go first. __a = [obj for obj in objects if key(lowerCAmelCase__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __a = [obj for obj in objects if key(lowerCAmelCase__ )[0].isupper() and not key(lowerCAmelCase__ ).isupper()] # Functions begin with a lowercase, they go last. __a = [obj for obj in objects if not key(lowerCAmelCase__ )[0].isupper()] __a = ignore_underscore(lowerCAmelCase__ ) return sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) def a (lowerCAmelCase__ ): # This inner function sort imports between [ ]. def _replace(lowerCAmelCase__ ): __a = match.groups()[0] if "," not in imports: return f'''[{imports}]''' __a = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __a = keys[:-1] return "[" + ", ".join([f'''"{k}"''' for k in sort_objects(lowerCAmelCase__ )] ) + "]" __a = import_statement.split("""\n""" ) if len(lowerCAmelCase__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __a = 2 if lines[1].strip() == """[""" else 1 __a = [(i, _re_strip_line.search(lowerCAmelCase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __a = sort_objects(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[1] ) __a = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCAmelCase__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __a = _re_bracket_content.sub(_replace , lines[1] ) else: __a = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __a = keys[:-1] __a = get_indent(lines[1] ) + """, """.join([f'''"{k}"''' for k in sort_objects(lowerCAmelCase__ )] ) return "\n".join(lowerCAmelCase__ ) else: # Finally we have to deal with imports fitting on one line __a = _re_bracket_content.sub(_replace , lowerCAmelCase__ ) return import_statement def a (lowerCAmelCase__ , lowerCAmelCase__=True ): with open(lowerCAmelCase__ , encoding="""utf-8""" ) as f: __a = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __a = split_code_in_indented_blocks( lowerCAmelCase__ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCAmelCase__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __a = main_blocks[block_idx] __a = block.split("""\n""" ) # Get to the start of the imports. __a = 0 while line_idx < len(lowerCAmelCase__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __a = len(lowerCAmelCase__ ) else: line_idx += 1 if line_idx >= len(lowerCAmelCase__ ): continue # Ignore beginning and last line: they don't contain anything. __a = """\n""".join(block_lines[line_idx:-1] ) __a = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __a = split_code_in_indented_blocks(lowerCAmelCase__ , indent_level=lowerCAmelCase__ ) # We have two categories of import key: list or _import_structure[key].append/extend __a = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __a = [(pattern.search(lowerCAmelCase__ ).groups()[0] if pattern.search(lowerCAmelCase__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __a = [(i, key) for i, key in enumerate(lowerCAmelCase__ ) if key is not None] __a = [x[0] for x in sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __a = 0 __a = [] for i in range(len(lowerCAmelCase__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: __a = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCAmelCase__ ) count += 1 # And we put our main block back together with its first and last line. __a = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCAmelCase__ ): if check_only: return True else: print(f'''Overwriting {file}.''' ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(lowerCAmelCase__ ) ) def a (lowerCAmelCase__=True ): __a = [] for root, _, files in os.walk(lowerCAmelCase__ ): if "__init__.py" in files: __a = sort_imports(os.path.join(lowerCAmelCase__ , """__init__.py""" ) , check_only=lowerCAmelCase__ ) if result: __a = [os.path.join(lowerCAmelCase__ , """__init__.py""" )] if len(lowerCAmelCase__ ) > 0: raise ValueError(f'''Would overwrite {len(lowerCAmelCase__ )} files, run `make style`.''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') SCREAMING_SNAKE_CASE = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
99
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy A_ : List[Any] =logging.get_logger(__name__) class lowercase_ ( UpperCamelCase__): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): """simple docstring""" a_ = feature_size a_ = sampling_rate a_ = padding_value a_ = kwargs.pop("""padding_side""" , """right""" ) a_ = kwargs.pop("""return_attention_mask""" , _UpperCAmelCase ) super().__init__(**_UpperCAmelCase ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): """simple docstring""" if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): a_ = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) a_ = processed_features[self.model_input_names[0]] a_ = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_UpperCAmelCase ) == 0: if return_attention_mask: a_ = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch a_ = required_input[0] if isinstance(_UpperCAmelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. a_ = 0 while len(required_input[index] ) == 0: index += 1 if index < len(_UpperCAmelCase ): a_ = required_input[index][0] if return_tensors is None: if is_tf_tensor(_UpperCAmelCase ): a_ = """tf""" elif is_torch_tensor(_UpperCAmelCase ): a_ = """pt""" elif isinstance(_UpperCAmelCase , (int, float, list, tuple, np.ndarray) ): a_ = """np""" else: raise ValueError( f"type of {first_element} unknown: {type(_UpperCAmelCase )}. " """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): a_ = to_numpy(_UpperCAmelCase ) else: a_ = [to_numpy(_UpperCAmelCase ) for v in value] # Convert padding_strategy in PaddingStrategy a_ = self._get_padding_strategies(padding=_UpperCAmelCase , max_length=_UpperCAmelCase ) a_ = processed_features[self.model_input_names[0]] a_ = len(_UpperCAmelCase ) if not all(len(_UpperCAmelCase ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) a_ = [] for i in range(_UpperCAmelCase ): a_ = {k: v[i] for k, v in processed_features.items()} # truncation a_ = self._truncate( _UpperCAmelCase , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , truncation=_UpperCAmelCase , ) truncated_inputs.append(_UpperCAmelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length a_ = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) a_ = PaddingStrategy.MAX_LENGTH a_ = {} for i in range(_UpperCAmelCase ): # padding a_ = self._pad( truncated_inputs[i] , max_length=_UpperCAmelCase , padding_strategy=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) for key, value in outputs.items(): if key not in batch_outputs: a_ = [] if value.dtype is np.dtype(np.floataa ): a_ = value.astype(np.floataa ) batch_outputs[key].append(_UpperCAmelCase ) return BatchFeature(_UpperCAmelCase , tensor_type=_UpperCAmelCase ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , _UpperCAmelCase = None , _UpperCAmelCase = None , ): """simple docstring""" a_ = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: a_ = len(_UpperCAmelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): a_ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of a_ = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_UpperCAmelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: a_ = np.ones(len(_UpperCAmelCase ) , dtype=np.intaa ) if needs_to_be_padded: a_ = max_length - len(_UpperCAmelCase ) if self.padding_side == "right": if return_attention_mask: a_ = np.pad( processed_features["""attention_mask"""] , (0, difference) ) a_ = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) a_ = np.pad( _UpperCAmelCase , _UpperCAmelCase , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: a_ = np.pad( processed_features["""attention_mask"""] , (difference, 0) ) a_ = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) a_ = np.pad( _UpperCAmelCase , _UpperCAmelCase , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) a_ = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): a_ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of a_ = len(_UpperCAmelCase ) > max_length if needs_to_be_truncated: a_ = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: a_ = processed_features["""attention_mask"""][:max_length] return processed_features def lowercase__ ( self , _UpperCAmelCase=False , _UpperCAmelCase=None ): """simple docstring""" if padding is not False: if padding is True: a_ = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = PaddingStrategy(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = padding else: a_ = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
483
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): snake_case__ : int = TextToVideoSDPipeline snake_case__ : Dict = TEXT_TO_IMAGE_PARAMS snake_case__ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. snake_case__ : Optional[Any] = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: torch.manual_seed(0 ) a_ : Dict = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=3_2 , attention_head_dim=4 , ) a_ : Dict = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) a_ : List[Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) a_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) a_ : List[Any] = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a_ : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]=0 ) -> Optional[int]: if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): a_ : Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: a_ : Dict = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: a_ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator a_ : List[str] = self.get_dummy_components() a_ : Any = TextToVideoSDPipeline(**SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) a_ : int = 'np' a_ : Optional[Any] = sd_pipe(**SCREAMING_SNAKE_CASE__ ).frames a_ : Tuple = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) a_ : List[str] = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE__ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE__ , expected_max_diff=1E-2 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: pass def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: return super().test_progress_bar() @slow @skip_mps class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: a_ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' ) a_ : int = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) a_ : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) a_ : int = pipe.to('cuda' ) a_ : List[str] = 'Spiderman is surfing' a_ : int = torch.Generator(device='cpu' ).manual_seed(0 ) a_ : List[Any] = pipe(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2_5 , output_type='pt' ).frames a_ : Any = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: a_ : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' ) a_ : Dict = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) a_ : str = pipe.to('cuda' ) a_ : Dict = 'Spiderman is surfing' a_ : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) a_ : Optional[int] = pipe(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type='pt' ).frames a_ : Any = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
701
def SCREAMING_SNAKE_CASE_ ( __A : int ) -> bool: """simple docstring""" a_ : List[Any] = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
443
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class UpperCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__( self : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int]=7 , UpperCamelCase_ : Optional[int]=3 , UpperCamelCase_ : Any=1_8 , UpperCamelCase_ : List[Any]=3_0 , UpperCamelCase_ : Optional[Any]=4_0_0 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=True , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCamelCase_ : Optional[int]=[0.5, 0.5, 0.5] , ): '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = image_size __magic_name__ = min_resolution __magic_name__ = max_resolution __magic_name__ = do_resize __magic_name__ = size if size is not None else {'height': 1_8, 'width': 2_0} __magic_name__ = do_thumbnail __magic_name__ = do_align_axis __magic_name__ = do_pad __magic_name__ = do_normalize __magic_name__ = image_mean __magic_name__ = image_std def a__ ( self : List[str] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCamelCase__ ( a_ , unittest.TestCase): """simple docstring""" __UpperCAmelCase = DonutImageProcessor if is_vision_available() else None def a__ ( self : Union[str, Any] ): '''simple docstring''' __magic_name__ = DonutImageProcessingTester(self ) @property def a__ ( self : List[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : Union[str, Any] ): '''simple docstring''' __magic_name__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(__lowerCamelCase , 'size' ) ) self.assertTrue(hasattr(__lowerCamelCase , 'do_thumbnail' ) ) self.assertTrue(hasattr(__lowerCamelCase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(__lowerCamelCase , 'do_pad' ) ) self.assertTrue(hasattr(__lowerCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(__lowerCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(__lowerCamelCase , 'image_std' ) ) def a__ ( self : List[str] ): '''simple docstring''' __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 2_0} ) __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) # Previous config had dimensions in (width, height) order __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict , size=(4_2, 8_4) ) self.assertEqual(image_processor.size , {'height': 8_4, 'width': 4_2} ) def a__ ( self : Any ): '''simple docstring''' pass @is_flaky() def a__ ( self : Optional[int] ): '''simple docstring''' __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __magic_name__ = image_processing(__lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def a__ ( self : Union[str, Any] ): '''simple docstring''' __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __magic_name__ = image_processing(__lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def a__ ( self : Union[str, Any] ): '''simple docstring''' __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __magic_name__ = image_processing(__lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
545
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ : def __init__( self : Optional[int] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Dict=13 ,__lowerCamelCase : List[Any]=7 ,__lowerCamelCase : Dict=True ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : Optional[Any]=True ,__lowerCamelCase : Any=True ,__lowerCamelCase : Tuple=99 ,__lowerCamelCase : Union[str, Any]=32 ,__lowerCamelCase : Union[str, Any]=5 ,__lowerCamelCase : List[Any]=4 ,__lowerCamelCase : List[Any]=37 ,__lowerCamelCase : List[str]="gelu" ,__lowerCamelCase : Union[str, Any]=0.1 ,__lowerCamelCase : int=0.1 ,__lowerCamelCase : Union[str, Any]=1_28 ,__lowerCamelCase : Optional[Any]=32 ,__lowerCamelCase : Optional[Any]=16 ,__lowerCamelCase : Dict=2 ,__lowerCamelCase : Any=0.02 ,__lowerCamelCase : List[Any]=3 ,__lowerCamelCase : Optional[Any]=4 ,__lowerCamelCase : str=None ,): '''simple docstring''' a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = scope def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' a = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a = None a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a = ids_tensor([self.batch_size] ,self.num_choices ) a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__lowerCamelCase ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = self.prepare_config_and_inputs() a = True a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : int ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Dict ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = NezhaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ) a = model(__lowerCamelCase ,token_type_ids=__lowerCamelCase ) a = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : Dict ,__lowerCamelCase : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Dict ,__lowerCamelCase : List[Any] ,__lowerCamelCase : List[Any] ,): '''simple docstring''' a = True a = NezhaModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model( __lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,encoder_hidden_states=__lowerCamelCase ,encoder_attention_mask=__lowerCamelCase ,) a = model( __lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,encoder_hidden_states=__lowerCamelCase ,) a = model(__lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : str ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Dict ,__lowerCamelCase : Tuple ): '''simple docstring''' a = NezhaForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : str ,__lowerCamelCase : Dict ,__lowerCamelCase : Tuple ,__lowerCamelCase : Dict ,__lowerCamelCase : str ): '''simple docstring''' a = NezhaForNextSentencePrediction(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model( __lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,labels=__lowerCamelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : int ,__lowerCamelCase : Dict ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : str ): '''simple docstring''' a = NezhaForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model( __lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,labels=__lowerCamelCase ,next_sentence_label=__lowerCamelCase ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : int ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Dict ,__lowerCamelCase : List[str] ): '''simple docstring''' a = NezhaForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model( __lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,start_positions=__lowerCamelCase ,end_positions=__lowerCamelCase ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : Dict ,__lowerCamelCase : str ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[str] ,__lowerCamelCase : Dict ,__lowerCamelCase : str ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' a = self.num_labels a = NezhaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[str] ,__lowerCamelCase : Tuple ,__lowerCamelCase : int ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = self.num_labels a = NezhaForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Any ,__lowerCamelCase : int ,__lowerCamelCase : Any ,__lowerCamelCase : Dict ,__lowerCamelCase : Dict ): '''simple docstring''' a = self.num_choices a = NezhaForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() a = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() a = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() a = model( __lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,labels=__lowerCamelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( a_ , a_ , a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = True def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : str ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[Any]=False ): '''simple docstring''' a = super()._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ,return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): a = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=__lowerCamelCase ) a = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=__lowerCamelCase ) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = NezhaModelTester(self ) a = ConfigTester(self ,config_class=__lowerCamelCase ,hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() a = None self.model_tester.create_and_check_model_as_decoder( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = NezhaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return a = True a = model_class(config=__lowerCamelCase ) a = self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) a = torch.jit.trace( __lowerCamelCase ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__lowerCamelCase ,os.path.join(__lowerCamelCase ,'''bert.pt''' ) ) a = torch.jit.load(os.path.join(__lowerCamelCase ,'''bert.pt''' ) ,map_location=__lowerCamelCase ) loaded(inputs_dict['''input_ids'''].to(__lowerCamelCase ) ,inputs_dict['''attention_mask'''].to(__lowerCamelCase ) ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) a = torch.tensor([[0, 1, 2, 3, 4, 5]] ) a = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): a = model(__lowerCamelCase ,attention_mask=__lowerCamelCase )[0] a = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape ,__lowerCamelCase ) a = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,__lowerCamelCase ,atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) a = torch.tensor([[0, 1, 2, 3, 4, 5]] ) a = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): a = model(__lowerCamelCase ,attention_mask=__lowerCamelCase )[0] a = torch.Size((1, 6, 2_11_28) ) self.assertEqual(output.shape ,__lowerCamelCase ) a = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,__lowerCamelCase ,atol=1e-4 ) )
387
0
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase , unittest.TestCase ): __a =LayoutLMTokenizer __a =LayoutLMTokenizerFast __a =True __a =True def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' super().setUp() __a = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __UpperCamelCase ( self , **lowerCamelCase ) ->Any: '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def __UpperCamelCase ( self , lowerCamelCase ) ->Optional[int]: '''simple docstring''' __a = 'UNwant\u00E9d,running' __a = 'unwanted, running' return input_text, output_text def __UpperCamelCase ( self ) ->Dict: '''simple docstring''' __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowerCamelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [7, 4, 5, 10, 8, 9] ) def __UpperCamelCase ( self ) ->Any: '''simple docstring''' pass
270
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __UpperCamelCase : Optional[int] = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
270
1
import argparse import os import re import packaging.version lowerCamelCase : List[Any] = '''examples/''' lowerCamelCase : Union[str, Any] = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } lowerCamelCase : Tuple = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } lowerCamelCase : Union[str, Any] = '''README.md''' def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any ): with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowercase : Dict = f.read() __lowercase , __lowercase : Any = REPLACE_PATTERNS[pattern] __lowercase : str = replace.replace("""VERSION""" , _lowerCAmelCase ) __lowercase : Tuple = re_pattern.sub(_lowerCAmelCase , _lowerCAmelCase ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_lowerCAmelCase ) def snake_case_ ( lowerCAmelCase_ : Dict ): for folder, directories, fnames in os.walk(_lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , pattern="""examples""" ) def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not patch: update_version_in_examples(_lowerCAmelCase ) def snake_case_ ( ): __lowercase : str = """🤗 Transformers currently provides the following architectures""" __lowercase : int = """1. Want to contribute a new model?""" with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowercase : Dict = f.readlines() # Find the start of the list. __lowercase : str = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __lowercase : Tuple = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __lowercase : Tuple = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_lowerCAmelCase ) def snake_case_ ( ): with open(REPLACE_FILES["""init"""] , """r""" ) as f: __lowercase : Any = f.read() __lowercase : Tuple = REPLACE_PATTERNS["""init"""][0].search(_lowerCAmelCase ).groups()[0] return packaging.version.parse(_lowerCAmelCase ) def snake_case_ ( lowerCAmelCase_ : Any=False ): __lowercase : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __lowercase : int = default_version.base_version elif patch: __lowercase : Optional[int] = F"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: __lowercase : List[str] = F"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. __lowercase : Any = input(F"Which version are you releasing? [{default_version}]" ) if len(_lowerCAmelCase ) == 0: __lowercase : str = default_version print(F"Updating version to {version}." ) global_version_update(_lowerCAmelCase , patch=_lowerCAmelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def snake_case_ ( ): __lowercase : Any = get_version() __lowercase : Any = F"{current_version.major}.{current_version.minor + 1}.0.dev0" __lowercase : Dict = current_version.base_version # Check with the user we got that right. __lowercase : List[str] = input(F"Which version are we developing now? [{dev_version}]" ) if len(_lowerCAmelCase ) == 0: __lowercase : int = dev_version print(F"Updating version to {version}." ) global_version_update(_lowerCAmelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') lowerCamelCase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
149
import numpy # List of input, output pairs snake_case__ : Optional[Any] = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) snake_case__ : str = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) snake_case__ : List[Any] = [2, 4, 1, 5] snake_case__ : int = len(train_data) snake_case__ : List[Any] = 0.0_09 def lowercase ( _lowerCAmelCase , _lowerCAmelCase="train" ): return calculate_hypothesis_value(_lowerCAmelCase , _lowerCAmelCase ) - output( _lowerCAmelCase , _lowerCAmelCase ) def lowercase ( _lowerCAmelCase ): UpperCAmelCase__ = 0 for i in range(len(_lowerCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowercase ( _lowerCAmelCase , _lowerCAmelCase ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowercase ( _lowerCAmelCase , _lowerCAmelCase ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowercase ( _lowerCAmelCase , _lowerCAmelCase=m ): UpperCAmelCase__ = 0 for i in range(_lowerCAmelCase ): if index == -1: summation_value += _error(_lowerCAmelCase ) else: summation_value += _error(_lowerCAmelCase ) * train_data[i][0][index] return summation_value def lowercase ( _lowerCAmelCase ): UpperCAmelCase__ = summation_of_cost_derivative(_lowerCAmelCase , _lowerCAmelCase ) / m return cost_derivative_value def lowercase ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase__ = 0.000002 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 while True: j += 1 UpperCAmelCase__ = [0, 0, 0, 0] for i in range(0 , len(_lowerCAmelCase ) ): UpperCAmelCase__ = get_cost_derivative(i - 1 ) UpperCAmelCase__ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _lowerCAmelCase , _lowerCAmelCase , atol=_lowerCAmelCase , rtol=_lowerCAmelCase , ): break UpperCAmelCase__ = temp_parameter_vector print(("""Number of iterations:""", j) ) def lowercase ( ): for i in range(len(_lowerCAmelCase ) ): print(("""Actual output value:""", output(_lowerCAmelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(_lowerCAmelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
392
0
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _UpperCamelCase = logging.get_logger(__name__) class lowerCamelCase__ ( lowercase__ ): '''simple docstring''' A__ = ['''input_features''', '''is_longer'''] def __init__( self : Tuple , __A : List[Any]=64 , __A : str=4_8000 , __A : List[Any]=480 , __A : List[str]=10 , __A : Union[str, Any]=1024 , __A : Union[str, Any]=0.0 , __A : List[Any]=False , __A : float = 0 , __A : float = 1_4000 , __A : int = None , __A : str = "fusion" , __A : str = "repeatpad" , **__A : int , ) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , padding_value=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowerCAmelCase__ = top_db lowerCAmelCase__ = truncation lowerCAmelCase__ = padding lowerCAmelCase__ = fft_window_size lowerCAmelCase__ = (fft_window_size >> 1) + 1 lowerCAmelCase__ = hop_length lowerCAmelCase__ = max_length_s lowerCAmelCase__ = max_length_s * sampling_rate lowerCAmelCase__ = sampling_rate lowerCAmelCase__ = frequency_min lowerCAmelCase__ = frequency_max lowerCAmelCase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCAmelCase__ , min_frequency=UpperCAmelCase__ , max_frequency=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , norm=UpperCAmelCase__ , mel_scale="""htk""" , ) lowerCAmelCase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCAmelCase__ , min_frequency=UpperCAmelCase__ , max_frequency=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , norm="""slaney""" , mel_scale="""slaney""" , ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Any , __A : np.array , __A : Optional[np.array] = None ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = spectrogram( UpperCAmelCase__ , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCAmelCase__ , log_mel="""dB""" , ) return log_mel_spectrogram.T def lowercase__ ( self : Dict , __A : str , __A : int , __A : str ) -> str: '''simple docstring''' lowerCAmelCase__ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase__ = [0] # randomly choose index for each part lowerCAmelCase__ = np.random.choice(ranges[0] ) lowerCAmelCase__ = np.random.choice(ranges[1] ) lowerCAmelCase__ = np.random.choice(ranges[2] ) lowerCAmelCase__ = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase__ = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase__ = torch.tensor(mel[None, None, :] ) lowerCAmelCase__ = torch.nn.functional.interpolate( UpperCAmelCase__ , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=UpperCAmelCase__ ) lowerCAmelCase__ = mel_shrink[0][0].numpy() lowerCAmelCase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowercase__ ( self : Union[str, Any] , __A : np.array , __A : Tuple , __A : Dict , __A : Optional[int] ) -> Tuple: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase__ = len(UpperCAmelCase__ ) - max_length lowerCAmelCase__ = np.random.randint(0 , overflow + 1 ) lowerCAmelCase__ = waveform[idx : idx + max_length] lowerCAmelCase__ = self._np_extract_fbank_features(UpperCAmelCase__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase__ = self._np_extract_fbank_features(UpperCAmelCase__ , self.mel_filters ) lowerCAmelCase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase__ = np.stack([mel, mel, mel, mel] , axis=0 ) lowerCAmelCase__ = False else: lowerCAmelCase__ = self._random_mel_fusion(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase__ = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase__ = int(max_length / len(UpperCAmelCase__ ) ) lowerCAmelCase__ = np.stack(np.tile(UpperCAmelCase__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase__ = int(max_length / len(UpperCAmelCase__ ) ) lowerCAmelCase__ = np.stack(np.tile(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowerCAmelCase__ = np.pad(UpperCAmelCase__ , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": lowerCAmelCase__ = self._np_extract_fbank_features(UpperCAmelCase__ , self.mel_filters ) lowerCAmelCase__ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: lowerCAmelCase__ = self._np_extract_fbank_features(UpperCAmelCase__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , __A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __A : str = None , __A : Optional[str] = None , __A : Optional[int] = None , __A : Optional[int] = None , __A : Optional[Union[str, TensorType]] = None , **__A : str , ) -> int: '''simple docstring''' lowerCAmelCase__ = truncation if truncation is not None else self.truncation lowerCAmelCase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCAmelCase__ = isinstance(UpperCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase__ = is_batched_numpy or ( isinstance(UpperCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase__ = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase__ , np.ndarray ): lowerCAmelCase__ = np.asarray(UpperCAmelCase__ , dtype=np.floataa ) elif isinstance(UpperCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase__ = [np.asarray(UpperCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase__ = [ self._get_input_mel(UpperCAmelCase__ , max_length if max_length else self.nb_max_samples , UpperCAmelCase__ , UpperCAmelCase__ ) for waveform in raw_speech ] lowerCAmelCase__ = [] lowerCAmelCase__ = [] for mel, longer in padded_inputs: input_mel.append(UpperCAmelCase__ ) is_longer.append(UpperCAmelCase__ ) if truncation == "fusion" and sum(UpperCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase__ = np.random.randint(0 , len(UpperCAmelCase__ ) ) lowerCAmelCase__ = True if isinstance(input_mel[0] , UpperCAmelCase__ ): lowerCAmelCase__ = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase__ = [[longer] for longer in is_longer] lowerCAmelCase__ = {'''input_features''': input_mel, '''is_longer''': is_longer} lowerCAmelCase__ = BatchFeature(UpperCAmelCase__ ) if return_tensors is not None: lowerCAmelCase__ = input_features.convert_to_tensors(UpperCAmelCase__ ) return input_features
700
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _UpperCamelCase = """base_with_context""" def _lowerCAmelCase( UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ) -> Any: lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) lowerCAmelCase__ = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=UpperCAmelCase_ ) for lyr_num, lyr in enumerate(model.encoders ): lowerCAmelCase__ = weights[F'''layers_{lyr_num}'''] lowerCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ = ly_weight["""attention"""] lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def _lowerCAmelCase( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple ) -> Optional[int]: lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=UpperCAmelCase_ ) for lyr_num, lyr in enumerate(model.encoders ): lowerCAmelCase__ = weights[F'''layers_{lyr_num}'''] lowerCAmelCase__ = ly_weight["""attention"""] lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def _lowerCAmelCase( UpperCAmelCase_ : Dict , UpperCAmelCase_ : str ) -> List[str]: lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=UpperCAmelCase_ ) lowerCAmelCase__ = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowerCAmelCase__ = weights[F'''layers_{lyr_num}'''] lowerCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) lowerCAmelCase__ = ly_weight["""self_attention"""] lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowerCAmelCase__ = ly_weight["""MultiHeadDotProductAttention_0"""] lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) lowerCAmelCase__ = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def _lowerCAmelCase( UpperCAmelCase_ : int ) -> Optional[Any]: lowerCAmelCase__ = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowerCAmelCase__ = jnp.tree_util.tree_map(onp.array , UpperCAmelCase_ ) lowerCAmelCase__ = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] lowerCAmelCase__ = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) lowerCAmelCase__ = inference.parse_training_gin_file(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase__ = inference.InferenceModel(args.checkpoint_path , UpperCAmelCase_ ) lowerCAmelCase__ = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) lowerCAmelCase__ = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) lowerCAmelCase__ = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) lowerCAmelCase__ = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowerCAmelCase__ = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , UpperCAmelCase_ ) lowerCAmelCase__ = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , UpperCAmelCase_ ) lowerCAmelCase__ = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , UpperCAmelCase_ ) lowerCAmelCase__ = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) lowerCAmelCase__ = SpectrogramDiffusionPipeline( notes_encoder=UpperCAmelCase_ , continuous_encoder=UpperCAmelCase_ , decoder=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , melgan=UpperCAmelCase_ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=f'{MODEL}/checkpoint_500000', type=str, required=False, help="""Path to the original jax model checkpoint.""", ) _UpperCamelCase = parser.parse_args() main(args)
211
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
75
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup UpperCamelCase_ = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def _UpperCAmelCase ( _lowerCamelCase : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: _lowerCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): _lowerCAmelCase : str = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() _lowerCAmelCase : Tuple = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
384
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]="pt" ) -> Dict: '''simple docstring''' A = {'add_prefix_space': True} if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and not line.startswith(' ' ) else {} A = padding_side return tokenizer( [line] , max_length=lowerCAmelCase__ , padding='max_length' if pad_to_max_length else None , truncation=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , ) def lowerCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Any=None , ) -> Union[str, Any]: '''simple docstring''' A = input_ids.ne(lowerCAmelCase__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCAmelCase__ ( _lowerCamelCase ): def __init__( self : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int="train" , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : str=None , __UpperCamelCase : Union[str, Any]="" , ) -> Any: super().__init__() A = Path(__UpperCamelCase ).joinpath(type_path + '.source' ) A = Path(__UpperCamelCase ).joinpath(type_path + '.target' ) A = self.get_char_lens(self.src_file ) A = max_source_length A = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' A = tokenizer A = prefix if n_obs is not None: A = self.src_lens[:n_obs] A = src_lang A = tgt_lang def __len__( self : Dict ) -> List[str]: return len(self.src_lens ) def __getitem__( self : str , __UpperCamelCase : Dict ) -> Dict[str, torch.Tensor]: A = index + 1 # linecache starts at 1 A = self.prefix + linecache.getline(str(self.src_file ) , __UpperCamelCase ).rstrip('\n' ) A = linecache.getline(str(self.tgt_file ) , __UpperCamelCase ).rstrip('\n' ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , __UpperCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __UpperCamelCase ) else self.tokenizer ) A = self.tokenizer.generator if isinstance(self.tokenizer , __UpperCamelCase ) else self.tokenizer A = encode_line(__UpperCamelCase , __UpperCamelCase , self.max_source_length , 'right' ) A = encode_line(__UpperCamelCase , __UpperCamelCase , self.max_target_length , 'right' ) A = source_inputs['input_ids'].squeeze() A = target_inputs['input_ids'].squeeze() A = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __UpperCamelCase ( __UpperCamelCase : List[str] ) -> Dict: return [len(__UpperCamelCase ) for x in Path(__UpperCamelCase ).open().readlines()] def __UpperCamelCase ( self : str , __UpperCamelCase : Tuple ) -> Dict[str, torch.Tensor]: A = torch.stack([x['input_ids'] for x in batch] ) A = torch.stack([x['attention_mask'] for x in batch] ) A = torch.stack([x['decoder_input_ids'] for x in batch] ) A = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __UpperCamelCase ) else self.tokenizer.pad_token_id ) A = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __UpperCamelCase ) else self.tokenizer.pad_token_id ) A = trim_batch(__UpperCamelCase , __UpperCamelCase ) A , A = trim_batch(__UpperCamelCase , __UpperCamelCase , attention_mask=__UpperCamelCase ) A = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case :Union[str, Any] =getLogger(__name__) def lowerCamelCase_ ( lowerCAmelCase__ : List[List] ) -> Union[str, Any]: '''simple docstring''' return list(itertools.chain.from_iterable(lowerCAmelCase__ ) ) def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> None: '''simple docstring''' A = get_git_info() save_json(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , 'git_log.json' ) ) def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=4 , **lowerCAmelCase__ : str ) -> Tuple: '''simple docstring''' with open(lowerCAmelCase__ , 'w' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ , indent=lowerCAmelCase__ , **lowerCAmelCase__ ) def lowerCamelCase_ ( lowerCAmelCase__ : Union[str, Any] ) -> Any: '''simple docstring''' with open(lowerCAmelCase__ ) as f: return json.load(lowerCAmelCase__ ) def lowerCamelCase_ ( ) -> int: '''simple docstring''' A = git.Repo(search_parent_directories=lowerCAmelCase__ ) A = { 'repo_id': str(lowerCAmelCase__ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def lowerCamelCase_ ( lowerCAmelCase__ : Callable , lowerCAmelCase__ : Iterable ) -> List: '''simple docstring''' return list(map(lowerCAmelCase__ , lowerCAmelCase__ ) ) def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any ) -> Dict: '''simple docstring''' with open(lowerCAmelCase__ , 'wb' ) as f: return pickle.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCamelCase_ ( lowerCAmelCase__ : Union[str, Any] ) -> List[str]: '''simple docstring''' def remove_articles(lowerCAmelCase__ : List[str] ): return re.sub(r'\b(a|an|the)\b' , ' ' , lowerCAmelCase__ ) def white_space_fix(lowerCAmelCase__ : str ): return " ".join(text.split() ) def remove_punc(lowerCAmelCase__ : Optional[Any] ): A = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCAmelCase__ : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCAmelCase__ ) ) ) ) def lowerCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> Tuple: '''simple docstring''' A = normalize_answer(lowerCAmelCase__ ).split() A = normalize_answer(lowerCAmelCase__ ).split() A = Counter(lowerCAmelCase__ ) & Counter(lowerCAmelCase__ ) A = sum(common.values() ) if num_same == 0: return 0 A = 1.0 * num_same / len(lowerCAmelCase__ ) A = 1.0 * num_same / len(lowerCAmelCase__ ) A = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> int: '''simple docstring''' return normalize_answer(lowerCAmelCase__ ) == normalize_answer(lowerCAmelCase__ ) def lowerCamelCase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] ) -> Dict: '''simple docstring''' assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) A = 0 for hypo, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ): em += exact_match_score(lowerCAmelCase__ , lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: em /= len(lowerCAmelCase__ ) return {"em": em} def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> int: '''simple docstring''' return model_prefix.startswith('rag' ) def lowerCamelCase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ) -> Any: '''simple docstring''' A = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A = 'dropout_rate' for p in extra_params: if getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if not hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) and not hasattr(lowerCAmelCase__ , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(lowerCAmelCase__ ) ) delattr(lowerCAmelCase__ , lowerCAmelCase__ ) continue A = p if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) else equivalent_param[p] setattr(lowerCAmelCase__ , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) delattr(lowerCAmelCase__ , lowerCAmelCase__ ) return hparams, config
224
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __snake_case :int =logging.get_logger(__name__) __snake_case :Optional[Any] ={ 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class lowerCAmelCase__ ( _lowerCamelCase ): def __init__( self : Tuple , __UpperCamelCase : int=None , __UpperCamelCase : Tuple=None , *__UpperCamelCase : str , **__UpperCamelCase : Tuple ) -> Dict: super().__init__(*__UpperCamelCase , **__UpperCamelCase ) if config is None: assert isinstance(self.model , __UpperCamelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) A = self.model.config else: A = config A = data_args A = self.config.tgt_vocab_size if isinstance(self.config , __UpperCamelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ' padding..' ) if self.args.label_smoothing == 0: A = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss A = label_smoothed_nll_loss def __UpperCamelCase ( self : Any , __UpperCamelCase : int ) -> Union[str, Any]: if self.optimizer is None: A = ['bias', 'LayerNorm.weight'] A = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] A = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: A = Adafactor A = {'scale_parameter': False, 'relative_step': False} else: A = AdamW A = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } A = self.args.learning_rate if self.sharded_ddp: A = OSS( params=__UpperCamelCase , optim=__UpperCamelCase , **__UpperCamelCase , ) else: A = optimizer_cls(__UpperCamelCase , **__UpperCamelCase ) if self.lr_scheduler is None: A = self._get_lr_scheduler(__UpperCamelCase ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def __UpperCamelCase ( self : str , __UpperCamelCase : str ) -> Optional[int]: A = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": A = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": A = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: A = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__UpperCamelCase ) return scheduler def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __UpperCamelCase ( self : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple ) -> Tuple: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token A = model(**__UpperCamelCase , use_cache=__UpperCamelCase )[0] A = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models A , A = model(**__UpperCamelCase , labels=__UpperCamelCase , use_cache=__UpperCamelCase )[:2] else: # compute label smoothed loss A = model(**__UpperCamelCase , use_cache=__UpperCamelCase )[0] A = torch.nn.functional.log_softmax(__UpperCamelCase , dim=-1 ) A , A = self.loss_fn(__UpperCamelCase , __UpperCamelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def __UpperCamelCase ( self : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict ) -> str: A = inputs.pop('labels' ) A , A = self._compute_loss(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return loss def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : nn.Module , __UpperCamelCase : Dict[str, Union[torch.Tensor, Any]] , __UpperCamelCase : bool , __UpperCamelCase : Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A = self._prepare_inputs(__UpperCamelCase ) A = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: A = self.model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , **__UpperCamelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: A = self._pad_tensors_to_max_len(__UpperCamelCase , gen_kwargs['max_length'] ) A = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data A , A = self._compute_loss(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) A = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: A = self._pad_tensors_to_max_len(__UpperCamelCase , gen_kwargs['max_length'] ) return (loss, logits, labels) def __UpperCamelCase ( self : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] ) -> int: # If PAD token is not defined at least EOS token has to be defined A = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' f''' padded to `max_length`={max_length}''' ) A = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) A = tensor return padded_tensor
224
1
from timeit import timeit def __UpperCamelCase (lowerCAmelCase : int ) -> int: if number < 0: raise ValueError('the value of input must not be negative' ) A = 0 while number: number &= number - 1 result += 1 return result def __UpperCamelCase (lowerCAmelCase : int ) -> int: if number < 0: raise ValueError('the value of input must not be negative' ) A = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCamelCase () -> None: def do_benchmark(lowerCAmelCase : int ) -> None: A = 'import __main__ as z' print(f'''Benchmark when {number = }:''' ) print(f'''{get_set_bits_count_using_modulo_operator(lowerCAmelCase ) = }''' ) A = timeit('z.get_set_bits_count_using_modulo_operator(25)', setup=lowerCAmelCase ) print(f'''timeit() runs in {timing} seconds''' ) print(f'''{get_set_bits_count_using_brian_kernighans_algorithm(lowerCAmelCase ) = }''' ) A = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)', setup=lowerCAmelCase, ) print(f'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
699
from __future__ import annotations import math def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : bool, lowerCAmelCase : list[int], lowerCAmelCase : float ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) if is_max else min( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) ) def __UpperCamelCase () -> None: A = [90, 23, 6, 33, 21, 65, 123, 34_423] A = math.log(len(lowerCAmelCase ), 2 ) print(f'''Optimal value : {minimax(0, 0, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
699
1
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __UpperCAmelCase = imread(R"digital_image_processing/image_data/lena_small.jpg") __UpperCAmelCase = cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Dict = cn.convert_to_negative(__A ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase_ ( ): '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(__A , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Any = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Any = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() snake_case: Any = canny.canny(__A ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase_ ( ): '''simple docstring''' assert gg.gaussian_filter(__A , 5 , sigma=0.9 ).all() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Tuple = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) snake_case: int = conv.img_convolve(__A , __A ).astype(__A ) assert res.any() def lowerCAmelCase_ ( ): '''simple docstring''' assert med.median_filter(__A , 3 ).any() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case , snake_case: str = sob.sobel_filter(__A ) assert grad.any() and theta.any() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Any = sp.make_sepia(__A , 20 ) assert sepia.all() def lowerCAmelCase_ ( __A : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' snake_case: int = bs.Burkes(imread(__A , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase_ ( __A : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' snake_case: List[Any] = rs.NearestNeighbour(imread(__A , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Optional[Any] = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. snake_case: Optional[int] = imread(__A , 0 ) # Test for get_neighbors_pixel function() return not None snake_case: Tuple = 0 snake_case: Optional[int] = 0 snake_case: Union[str, Any] = image[x_coordinate][y_coordinate] snake_case: int = lbp.get_neighbors_pixel( __A , __A , __A , __A ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image snake_case: Dict = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): snake_case: List[Any] = lbp.local_binary_value(__A , __A , __A ) assert lbp_image.any()
692
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def lowerCAmelCase_ ( __A : Tuple ): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'mock-s3-bucket' snake_case: int = f"""s3://{mock_bucket}""" snake_case: Any = extract_path_from_uri(__A ) assert dataset_path.startswith('s3://' ) is False snake_case: Union[str, Any] = './local/path' snake_case: Union[str, Any] = extract_path_from_uri(__A ) assert dataset_path == new_dataset_path def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: List[str] = is_remote_filesystem(__A ) assert is_remote is True snake_case: int = fsspec.filesystem('file' ) snake_case: int = is_remote_filesystem(__A ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , __A ) def lowerCAmelCase_ ( __A : Optional[int] , __A : int , __A : str , __A : Optional[Any] , __A : List[str] , __A : Optional[Any] , __A : Optional[int] ): '''simple docstring''' snake_case: Optional[Any] = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} snake_case: Optional[int] = input_paths[compression_fs_class.protocol] if input_path is None: snake_case: str = f"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) snake_case: List[str] = fsspec.filesystem(compression_fs_class.protocol , fo=__A ) assert isinstance(__A , __A ) snake_case: Any = os.path.basename(__A ) snake_case: int = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(__A , 'r' , encoding='utf-8' ) as f, open(__A , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def lowerCAmelCase_ ( __A : Any , __A : int , __A : int ): '''simple docstring''' snake_case: List[str] = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} snake_case: str = compressed_file_paths[protocol] snake_case: Dict = 'dataset.jsonl' snake_case: Optional[Any] = f"""{protocol}://{member_file_path}::{compressed_file_path}""" snake_case , *snake_case: List[Any] = fsspec.get_fs_token_paths(__A ) assert fs.isfile(__A ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def lowerCAmelCase_ ( __A : Optional[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : List[Any] ): '''simple docstring''' snake_case: Tuple = hf_api.dataset_info(__A , token=__A ) snake_case: List[str] = HfFileSystem(repo_info=__A , token=__A ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(__A ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Union[str, Any] = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__A , __A , clobber=__A ) with pytest.warns(__A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__A ) == 1 assert ( str(warning_info[0].message ) == f"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
692
1
snake_case__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def lowerCamelCase_ ( ): lowercase : Optional[Any] = input('''Enter message: ''' ) lowercase : Optional[Any] = input('''Enter key [alphanumeric]: ''' ) lowercase : Union[str, Any] = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): lowercase : str = '''encrypt''' lowercase : Optional[Any] = encrypt_message(UpperCAmelCase_ , UpperCAmelCase_ ) elif mode.lower().startswith('''d''' ): lowercase : str = '''decrypt''' lowercase : Optional[int] = decrypt_message(UpperCAmelCase_ , UpperCAmelCase_ ) print(f'''\n{mode.title()}ed message:''' ) print(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): return translate_message(UpperCAmelCase_ , UpperCAmelCase_ , '''encrypt''' ) def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): return translate_message(UpperCAmelCase_ , UpperCAmelCase_ , '''decrypt''' ) def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str ): lowercase : Optional[Any] = [] lowercase : Tuple = 0 lowercase : str = key.upper() for symbol in message: lowercase : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(UpperCAmelCase_ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(UpperCAmelCase_ ): lowercase : List[str] = 0 else: translated.append(UpperCAmelCase_ ) return "".join(UpperCAmelCase_ ) if __name__ == "__main__": main()
583
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] ): lowercase : List[str] = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): lowercase : Union[str, Any] = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): lowercase : Optional[int] = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowercase : str = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] lowercase : Tuple = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(UpperCAmelCase_ )-1}''' ) if "norm" in key: lowercase : Dict = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowercase : int = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] lowercase : Optional[Any] = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(UpperCAmelCase_ )-1}''' ) if "layer_norm1" in key: lowercase : List[str] = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: lowercase : List[str] = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 lowercase : Optional[Any] = key[key.find('''block''' ) + len('''block''' )] lowercase : Tuple = key.replace(f'''block{idx}''' , f'''block.{int(UpperCAmelCase_ )-1}''' ) if "attn.q" in key: lowercase : List[Any] = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: lowercase : Any = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: lowercase : List[Any] = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: lowercase : Dict = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: lowercase : Optional[int] = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: lowercase : Union[str, Any] = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: lowercase : Tuple = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) lowercase : List[str] = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowercase : List[Any] = key[key.find('''linear_c''' ) + len('''linear_c''' )] lowercase : str = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(UpperCAmelCase_ )-1}''' ) if "bot_conv" in key: lowercase : Any = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: lowercase : int = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: lowercase : List[str] = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: lowercase : Any = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: lowercase : str = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: lowercase : List[str] = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: lowercase : List[Any] = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): lowercase : List[str] = key.replace('''module.last_layer_depth''' , '''head.head''' ) lowercase : Dict = value return new_state_dict def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : int ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowercase : Dict = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowercase : List[str] = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowercase : Optional[Any] = kv_weight[ : config.hidden_sizes[i], : ] lowercase : Dict = kv_bias[: config.hidden_sizes[i]] lowercase : str = kv_weight[ config.hidden_sizes[i] :, : ] lowercase : Any = kv_bias[config.hidden_sizes[i] :] def lowerCamelCase_ ( ): lowercase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Any = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return image @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[str]=None ): lowercase : Optional[int] = GLPNConfig(hidden_sizes=[64, 1_28, 3_20, 5_12] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowercase : Any = GLPNImageProcessor() # prepare image lowercase : Optional[Any] = prepare_img() lowercase : List[str] = image_processor(images=UpperCAmelCase_ , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict lowercase : Any = torch.load(UpperCAmelCase_ , map_location=torch.device('''cpu''' ) ) # rename keys lowercase : Optional[int] = rename_keys(UpperCAmelCase_ ) # key and value matrices need special treatment read_in_k_v(UpperCAmelCase_ , UpperCAmelCase_ ) # create HuggingFace model and load state dict lowercase : Optional[int] = GLPNForDepthEstimation(UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) model.eval() # forward pass lowercase : int = model(UpperCAmelCase_ ) lowercase : Any = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowercase : List[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: lowercase : List[str] = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowercase : Optional[int] = torch.Size([1, 4_80, 6_40] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase_ , UpperCAmelCase_ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase_ , UpperCAmelCase_ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase_ , ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) snake_case__ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
583
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """roformer""" def __init__( self : List[Any] ,_a : Tuple=50000 ,_a : List[str]=None ,_a : int=768 ,_a : List[str]=12 ,_a : Optional[Any]=12 ,_a : Union[str, Any]=3072 ,_a : Optional[int]="gelu" ,_a : Dict=0.1 ,_a : List[str]=0.1 ,_a : Any=1536 ,_a : Optional[Any]=2 ,_a : List[Any]=0.02 ,_a : Dict=1e-12 ,_a : Union[str, Any]=0 ,_a : List[str]=False ,_a : str=True ,**_a : Optional[Any] ,): '''simple docstring''' super().__init__(pad_token_id=_a ,**_a ) A_ : Optional[int] = vocab_size A_ : str = hidden_size if embedding_size is None else embedding_size A_ : int = hidden_size A_ : Any = num_hidden_layers A_ : Tuple = num_attention_heads A_ : List[str] = hidden_act A_ : str = intermediate_size A_ : Union[str, Any] = hidden_dropout_prob A_ : Any = attention_probs_dropout_prob A_ : Union[str, Any] = max_position_embeddings A_ : List[str] = type_vocab_size A_ : List[str] = initializer_range A_ : List[str] = layer_norm_eps A_ : Optional[Any] = rotary_value A_ : Union[str, Any] = use_cache class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : Any ): '''simple docstring''' if self.task == "multiple-choice": A_ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : int = {0: """batch""", 1: """sequence"""} A_ : Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
716
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __magic_name__ = trt.Logger(trt.Logger.WARNING) __magic_name__ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __magic_name__ = logging.getLogger(__name__) __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) __magic_name__ = parser.parse_args() if args.tokenizer_name: __magic_name__ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) __magic_name__ = args.per_device_eval_batch_size __magic_name__ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __magic_name__ = True __magic_name__ = 'temp_engine/bert-fp32.engine' if args.fpaa: __magic_name__ = 'temp_engine/bert-fp16.engine' if args.inta: __magic_name__ = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') __magic_name__ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __magic_name__ = [network.get_input(i) for i in range(network.num_inputs)] __magic_name__ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __magic_name__ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __magic_name__ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __magic_name__ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : List[str]): A_ : str = np.asarray(inputs["""input_ids"""] , dtype=np.intaa) A_ : int = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa) A_ : Optional[int] = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCamelCase) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCamelCase) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCamelCase) # start time A_ : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCamelCase) for d_inp in d_inputs] + [int(lowerCamelCase), int(lowerCamelCase)] , stream_handle=stream.handle) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase) cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase) # Synchronize the stream and take time stream.synchronize() # end time A_ : str = time.time() A_ : Tuple = end_time - start_time A_ : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __magic_name__ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __magic_name__ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __magic_name__ = raw_datasets['validation'].column_names __magic_name__ = 'question' if 'question' in column_names else column_names[0] __magic_name__ = 'context' if 'context' in column_names else column_names[1] __magic_name__ = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __magic_name__ = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __magic_name__ = min(args.max_seq_length, tokenizer.model_max_length) def lowerCamelCase ( lowerCamelCase : Dict): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace A_ : List[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. A_ : Optional[int] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCamelCase , stride=args.doc_stride , return_overflowing_tokens=lowerCamelCase , return_offsets_mapping=lowerCamelCase , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. A_ : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. A_ : Union[str, Any] = [] for i in range(len(tokenized_examples["""input_ids"""])): # Grab the sequence corresponding to that example (to know what is the context and what is the question). A_ : Any = tokenized_examples.sequence_ids(lowerCamelCase) A_ : Tuple = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. A_ : Union[str, Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. A_ : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i]) ] return tokenized_examples __magic_name__ = raw_datasets['validation'] # Validation Feature Creation __magic_name__ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) __magic_name__ = default_data_collator __magic_name__ = eval_dataset.remove_columns(['example_id', 'offset_mapping']) __magic_name__ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowerCamelCase ( lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any]="eval"): # Post-processing: we match the start logits and end logits to answers in the original context. A_ : Tuple = postprocess_qa_predictions( examples=lowerCamelCase , features=lowerCamelCase , predictions=lowerCamelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCamelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: A_ : Dict = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: A_ : Union[str, Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] A_ : Any = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCamelCase , label_ids=lowerCamelCase) __magic_name__ = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowerCamelCase ( lowerCamelCase : Union[str, Any]): return trt.volume(engine.get_binding_shape(lowerCamelCase)) * engine.get_binding_dtype(lowerCamelCase).itemsize # Allocate device memory for inputs and outputs. __magic_name__ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __magic_name__ = cuda.mem_alloc(h_outputa.nbytes) __magic_name__ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __magic_name__ = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f""" Num examples = {len(eval_dataset)}""") logger.info(f""" Batch size = {args.per_device_eval_batch_size}""") __magic_name__ = 0.0 __magic_name__ = 0 __magic_name__ = timeit.default_timer() __magic_name__ = None for step, batch in enumerate(eval_dataloader): __magic_name__ , __magic_name__ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __magic_name__ , __magic_name__ = outputs __magic_name__ = torch.tensor(start_logits) __magic_name__ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __magic_name__ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __magic_name__ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __magic_name__ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __magic_name__ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __magic_name__ = nested_truncate(all_preds, len(eval_dataset)) __magic_name__ = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000)) logger.info('Total Number of Inference = %d', niter) __magic_name__ = post_processing_function(eval_examples, eval_dataset, all_preds) __magic_name__ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"""Evaluation metrics: {eval_metric}""")
27
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=True , _UpperCAmelCase=1 / 255 , _UpperCAmelCase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __snake_case : Tuple = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333} __snake_case : Dict = parent __snake_case : List[Any] = batch_size __snake_case : int = num_channels __snake_case : Any = min_resolution __snake_case : Tuple = max_resolution __snake_case : List[Any] = do_resize __snake_case : List[Any] = size __snake_case : int = do_normalize __snake_case : Optional[int] = image_mean __snake_case : Any = image_std __snake_case : Optional[int] = do_rescale __snake_case : int = rescale_factor __snake_case : Optional[int] = do_pad def lowercase_ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False ): if not batched: __snake_case : Tuple = image_inputs[0] if isinstance(_UpperCAmelCase , Image.Image ): __snake_case , __snake_case : Tuple = image.size else: __snake_case , __snake_case : Tuple = image.shape[1], image.shape[2] if w < h: __snake_case : Tuple = int(self.size['shortest_edge'] * h / w ) __snake_case : Any = self.size['shortest_edge'] elif w > h: __snake_case : Tuple = self.size['shortest_edge'] __snake_case : Optional[int] = int(self.size['shortest_edge'] * w / h ) else: __snake_case : Optional[Any] = self.size['shortest_edge'] __snake_case : Dict = self.size['shortest_edge'] else: __snake_case : Optional[Any] = [] for image in image_inputs: __snake_case , __snake_case : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __snake_case : List[str] = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[0] )[0] __snake_case : Dict = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = YolosImageProcessor if is_vision_available() else None def lowercase_ ( self ): __snake_case : Optional[Any] = YolosImageProcessingTester(self ) @property def lowercase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self ): __snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) def lowercase_ ( self ): __snake_case : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad , _UpperCAmelCase ) __snake_case : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_UpperCAmelCase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _UpperCAmelCase ) def lowercase_ ( self ): pass def lowercase_ ( self ): # Initialize image_processing __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __snake_case , __snake_case : Optional[Any] = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case , __snake_case : List[Any] = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) __snake_case : Optional[int] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self ): # Initialize image_processing __snake_case : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __snake_case , __snake_case : str = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : Tuple = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values __snake_case , __snake_case : List[Any] = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self ): # Initialize image_processing __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __snake_case : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __snake_case , __snake_case : Dict = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : Optional[Any] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values __snake_case , __snake_case : str = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self ): # Initialize image_processings __snake_case : str = self.image_processing_class(**self.image_processor_dict ) __snake_case : str = self.image_processing_class(do_resize=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_rescale=_UpperCAmelCase ) # create random PyTorch tensors __snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors __snake_case : Optional[Any] = image_processing_a.pad(_UpperCAmelCase , return_tensors='pt' ) __snake_case : Any = image_processing_a(_UpperCAmelCase , return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'] , encoded_images['pixel_values'] , atol=1E-4 ) ) @slow def lowercase_ ( self ): # prepare image and target __snake_case : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __snake_case : Optional[int] = json.loads(f.read() ) __snake_case : str = {'image_id': 39_769, 'annotations': target} # encode them __snake_case : int = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) __snake_case : Optional[Any] = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , return_tensors='pt' ) # verify pixel values __snake_case : List[str] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , _UpperCAmelCase ) __snake_case : Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCAmelCase , atol=1E-4 ) ) # verify area __snake_case : List[str] = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCAmelCase ) ) # verify boxes __snake_case : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCAmelCase ) __snake_case : Union[str, Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCAmelCase , atol=1E-3 ) ) # verify image_id __snake_case : Any = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCAmelCase ) ) # verify is_crowd __snake_case : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCAmelCase ) ) # verify class_labels __snake_case : Optional[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCAmelCase ) ) # verify orig_size __snake_case : Any = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCAmelCase ) ) # verify size __snake_case : Optional[Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCAmelCase ) ) @slow def lowercase_ ( self ): # prepare image, target and masks_path __snake_case : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __snake_case : int = json.loads(f.read() ) __snake_case : Optional[Any] = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target} __snake_case : int = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __snake_case : Dict = YolosImageProcessor(format='coco_panoptic' ) __snake_case : str = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , masks_path=_UpperCAmelCase , return_tensors='pt' ) # verify pixel values __snake_case : Any = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , _UpperCAmelCase ) __snake_case : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCAmelCase , atol=1E-4 ) ) # verify area __snake_case : Tuple = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCAmelCase ) ) # verify boxes __snake_case : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCAmelCase ) __snake_case : Any = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCAmelCase , atol=1E-3 ) ) # verify image_id __snake_case : Optional[int] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCAmelCase ) ) # verify is_crowd __snake_case : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCAmelCase ) ) # verify class_labels __snake_case : int = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCAmelCase ) ) # verify masks __snake_case : str = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _UpperCAmelCase ) # verify orig_size __snake_case : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCAmelCase ) ) # verify size __snake_case : List[str] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCAmelCase ) )
576
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED __magic_name__ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } __magic_name__ = { '''allenai/led-base-16384''': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def UpperCAmelCase__( ): __snake_case : Union[str, Any] = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) __snake_case : Optional[int] = bs[:] __snake_case : Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCAmelCase ) cs.append(2**8 + n ) n += 1 __snake_case : str = [chr(__UpperCAmelCase ) for n in cs] return dict(zip(__UpperCAmelCase , __UpperCAmelCase ) ) def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] ): __snake_case : Optional[int] = set() __snake_case : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __snake_case : Dict = char return pairs class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="replace" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=False , **_UpperCAmelCase , ): __snake_case : Optional[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else bos_token __snake_case : str = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token __snake_case : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else sep_token __snake_case : Tuple = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cls_token __snake_case : List[str] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token __snake_case : List[str] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __snake_case : Tuple = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __snake_case : Dict = json.load(_UpperCAmelCase ) __snake_case : Dict = {v: k for k, v in self.encoder.items()} __snake_case : List[Any] = errors # how to handle errors in decoding __snake_case : Tuple = bytes_to_unicode() __snake_case : Dict = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCAmelCase , encoding='utf-8' ) as merges_handle: __snake_case : int = merges_handle.read().split('\n' )[1:-1] __snake_case : str = [tuple(merge.split() ) for merge in bpe_merges] __snake_case : int = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __snake_case : Optional[int] = {} __snake_case : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __snake_case : List[Any] = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowercase_ ( self ): return len(self.encoder ) def lowercase_ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self , _UpperCAmelCase ): if token in self.cache: return self.cache[token] __snake_case : int = tuple(_UpperCAmelCase ) __snake_case : List[Any] = get_pairs(_UpperCAmelCase ) if not pairs: return token while True: __snake_case : Tuple = min(_UpperCAmelCase , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __snake_case , __snake_case : str = bigram __snake_case : str = [] __snake_case : str = 0 while i < len(_UpperCAmelCase ): try: __snake_case : Optional[int] = word.index(_UpperCAmelCase , _UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __snake_case : Any = j if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __snake_case : str = tuple(_UpperCAmelCase ) __snake_case : List[str] = new_word if len(_UpperCAmelCase ) == 1: break else: __snake_case : List[Any] = get_pairs(_UpperCAmelCase ) __snake_case : Tuple = ' '.join(_UpperCAmelCase ) __snake_case : int = word return word def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Union[str, Any] = [] for token in re.findall(self.pat , _UpperCAmelCase ): __snake_case : int = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCAmelCase ).split(' ' ) ) return bpe_tokens def lowercase_ ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowercase_ ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[str] = ''.join(_UpperCAmelCase ) __snake_case : Any = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __snake_case : int = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + '\n' ) __snake_case : Union[str, Any] = 0 with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) __snake_case : Optional[Any] = token_index writer.write(' '.join(_UpperCAmelCase ) + '\n' ) index += 1 return vocab_file, merge_file def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Optional[int] = [self.cls_token_id] __snake_case : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : str = [self.sep_token_id] __snake_case : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , **_UpperCAmelCase ): __snake_case : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCAmelCase ) > 0 and not text[0].isspace()): __snake_case : Optional[int] = ' ' + text return (text, kwargs) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , _UpperCAmelCase = None , _UpperCAmelCase = None , ): __snake_case : str = super()._pad( encoded_inputs=_UpperCAmelCase , max_length=_UpperCAmelCase , padding_strategy=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: __snake_case : int = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __snake_case : Tuple = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __snake_case : Tuple = len(encoded_inputs['global_attention_mask'] ) != len(_UpperCAmelCase ) if needs_to_be_padded: __snake_case : Dict = len(_UpperCAmelCase ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __snake_case : Optional[int] = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": __snake_case : List[str] = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
576
1
"""simple docstring""" import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __magic_name__ = { 'sample_size': 32, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': 10_00, 'block_out_channels': [32, 64], 'attention_head_dim': 8, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __magic_name__ = { 'sample_size': 64, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 3, 'num_class_embeds': 10_00, 'block_out_channels': [1_92, 1_92 * 2, 1_92 * 3, 1_92 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __magic_name__ = { 'sample_size': 2_56, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': None, 'block_out_channels': [2_56, 2_56, 2_56 * 2, 2_56 * 2, 2_56 * 4, 2_56 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'default', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __magic_name__ = { 'num_train_timesteps': 40, 'sigma_min': 0.002, 'sigma_max': 80.0, } __magic_name__ = { 'num_train_timesteps': 2_01, 'sigma_min': 0.002, 'sigma_max': 80.0, } __magic_name__ = { 'num_train_timesteps': 1_51, 'sigma_min': 0.002, 'sigma_max': 80.0, } def _A ( __lowercase ) -> Optional[int]: """simple docstring""" if isinstance(A_ , A_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def _A ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=False ) -> Any: """simple docstring""" lowerCamelCase__ = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] lowerCamelCase__ = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] lowerCamelCase__ = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] lowerCamelCase__ = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] lowerCamelCase__ = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] lowerCamelCase__ = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] lowerCamelCase__ = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] lowerCamelCase__ = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] lowerCamelCase__ = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] lowerCamelCase__ = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: lowerCamelCase__ = checkpoint[f"""{old_prefix}.skip_connection.weight"""] lowerCamelCase__ = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def _A ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=None ) -> str: """simple docstring""" lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) lowerCamelCase__ = checkpoint[f"""{old_prefix}.norm.weight"""] lowerCamelCase__ = checkpoint[f"""{old_prefix}.norm.bias"""] lowerCamelCase__ = weight_q.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ = bias_q.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ = weight_k.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ = bias_k.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ = weight_v.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ = bias_v.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) lowerCamelCase__ = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def _A ( __lowercase , __lowercase ) -> Any: """simple docstring""" lowerCamelCase__ = torch.load(A_ , map_location="""cpu""" ) lowerCamelCase__ = {} lowerCamelCase__ = checkpoint["""time_embed.0.weight"""] lowerCamelCase__ = checkpoint["""time_embed.0.bias"""] lowerCamelCase__ = checkpoint["""time_embed.2.weight"""] lowerCamelCase__ = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: lowerCamelCase__ = checkpoint["""label_emb.weight"""] lowerCamelCase__ = checkpoint["""input_blocks.0.0.weight"""] lowerCamelCase__ = checkpoint["""input_blocks.0.0.bias"""] lowerCamelCase__ = unet_config["""down_block_types"""] lowerCamelCase__ = unet_config["""layers_per_block"""] lowerCamelCase__ = unet_config["""attention_head_dim"""] lowerCamelCase__ = unet_config["""block_out_channels"""] lowerCamelCase__ = 1 lowerCamelCase__ = channels_list[0] for i, layer_type in enumerate(A_ ): lowerCamelCase__ = channels_list[i] lowerCamelCase__ = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(A_ ): lowerCamelCase__ = f"""down_blocks.{i}.resnets.{j}""" lowerCamelCase__ = f"""input_blocks.{current_layer}.0""" lowerCamelCase__ = True if j == 0 and downsample_block_has_skip else False lowerCamelCase__ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(A_ ): lowerCamelCase__ = f"""down_blocks.{i}.resnets.{j}""" lowerCamelCase__ = f"""input_blocks.{current_layer}.0""" lowerCamelCase__ = True if j == 0 and downsample_block_has_skip else False lowerCamelCase__ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ ) lowerCamelCase__ = f"""down_blocks.{i}.attentions.{j}""" lowerCamelCase__ = f"""input_blocks.{current_layer}.1""" lowerCamelCase__ = convert_attention( A_ , A_ , A_ , A_ , A_ ) current_layer += 1 if i != len(A_ ) - 1: lowerCamelCase__ = f"""down_blocks.{i}.downsamplers.0""" lowerCamelCase__ = f"""input_blocks.{current_layer}.0""" lowerCamelCase__ = convert_resnet(A_ , A_ , A_ , A_ ) current_layer += 1 lowerCamelCase__ = current_channels # hardcoded the mid-block for now lowerCamelCase__ = """mid_block.resnets.0""" lowerCamelCase__ = """middle_block.0""" lowerCamelCase__ = convert_resnet(A_ , A_ , A_ , A_ ) lowerCamelCase__ = """mid_block.attentions.0""" lowerCamelCase__ = """middle_block.1""" lowerCamelCase__ = convert_attention(A_ , A_ , A_ , A_ , A_ ) lowerCamelCase__ = """mid_block.resnets.1""" lowerCamelCase__ = """middle_block.2""" lowerCamelCase__ = convert_resnet(A_ , A_ , A_ , A_ ) lowerCamelCase__ = 0 lowerCamelCase__ = unet_config["""up_block_types"""] for i, layer_type in enumerate(A_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): lowerCamelCase__ = f"""up_blocks.{i}.resnets.{j}""" lowerCamelCase__ = f"""output_blocks.{current_layer}.0""" lowerCamelCase__ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ ) current_layer += 1 if i != len(A_ ) - 1: lowerCamelCase__ = f"""up_blocks.{i}.upsamplers.0""" lowerCamelCase__ = f"""output_blocks.{current_layer-1}.1""" lowerCamelCase__ = convert_resnet(A_ , A_ , A_ , A_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): lowerCamelCase__ = f"""up_blocks.{i}.resnets.{j}""" lowerCamelCase__ = f"""output_blocks.{current_layer}.0""" lowerCamelCase__ = convert_resnet(A_ , A_ , A_ , A_ , has_skip=A_ ) lowerCamelCase__ = f"""up_blocks.{i}.attentions.{j}""" lowerCamelCase__ = f"""output_blocks.{current_layer}.1""" lowerCamelCase__ = convert_attention( A_ , A_ , A_ , A_ , A_ ) current_layer += 1 if i != len(A_ ) - 1: lowerCamelCase__ = f"""up_blocks.{i}.upsamplers.0""" lowerCamelCase__ = f"""output_blocks.{current_layer-1}.2""" lowerCamelCase__ = convert_resnet(A_ , A_ , A_ , A_ ) lowerCamelCase__ = checkpoint["""out.0.weight"""] lowerCamelCase__ = checkpoint["""out.0.bias"""] lowerCamelCase__ = checkpoint["""out.2.weight"""] lowerCamelCase__ = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") __magic_name__ = parser.parse_args() __magic_name__ = strabool(args.class_cond) __magic_name__ = os.path.basename(args.unet_path) print(F'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: __magic_name__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __magic_name__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __magic_name__ = TEST_UNET_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: __magic_name__ = None __magic_name__ = con_pt_to_diffuser(args.unet_path, unet_config) __magic_name__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __magic_name__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __magic_name__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __magic_name__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') __magic_name__ = CMStochasticIterativeScheduler(**scheduler_config) __magic_name__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
710
"""simple docstring""" import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def _A ( __lowercase , __lowercase , __lowercase , __lowercase ): """simple docstring""" lowerCamelCase__ = BigBirdConfig.from_json_file(__lowercase ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: lowerCamelCase__ = BigBirdForQuestionAnswering(__lowercase ) else: lowerCamelCase__ = BigBirdForPreTraining(__lowercase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__lowercase , __lowercase , is_trivia_qa=__lowercase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__lowercase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
258
0
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _A ( lowercase__ ): def is_in_circle(lowercase__ , lowercase__ ) -> bool: lowercase__ = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle lowercase__ = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowercase__ ) ) # The ratio of the area for circle to square is pi/4. lowercase__ = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def _A ( lowercase__ , lowercase__ , lowercase__ = 0.0 , lowercase__ = 1.0 , ): return mean( function_to_integrate(uniform(lowercase__ , lowercase__ ) ) for _ in range(lowercase__ ) ) * (max_value - min_value) def _A ( lowercase__ , lowercase__ = 0.0 , lowercase__ = 1.0 ): def identity_function(lowercase__ ) -> float: return x lowercase__ = area_under_curve_estimator( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) lowercase__ = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def _A ( lowercase__ ): def function_to_integrate(lowercase__ ) -> float: return sqrt(4.0 - x * x ) lowercase__ = area_under_curve_estimator( lowercase__ , lowercase__ , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
325
"""simple docstring""" def A_ ( lowercase = 1000 ) -> int: """simple docstring""" return sum(e for e in range(3 , lowercase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f"""{solution() = }""")
470
0
'''simple docstring''' import os def _lowercase ( ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : Tuple = os.path.join(os.path.dirname(lowerCamelCase__ ) , "num.txt" ) with open(lowerCamelCase__ ) as file_hand: return str(sum(int(lowerCamelCase__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
10
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _a : str = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["ViTFeatureExtractor"] _a : Dict = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def A ( UpperCamelCase_ : Tuple ) -> int: '''simple docstring''' for param in module.parameters(): lowerCAmelCase__ = False def A ( ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCAmelCase__ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def A ( UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def A ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = datetime.now() lowerCAmelCase__ = current_time.strftime("%H:%M:%S" ) return timestamp
48
'''simple docstring''' from math import loga def __lowerCamelCase ( _UpperCamelCase : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
390
0
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None ) ->str: '''simple docstring''' super().__init__() __a = pad_token_id __a = max_length __a = vocab __a = merges __a = BytePairTokenizer(__lowerCamelCase , __lowerCamelCase , sequence_length=__lowerCamelCase ) @classmethod def __UpperCamelCase ( cls , lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' __a = [" ".join(__lowerCamelCase ) for m in tokenizer.bpe_ranks.keys()] __a = tokenizer.get_vocab() return cls(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) @classmethod def __UpperCamelCase ( cls , lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' __a = GPTaTokenizer.from_pretrained(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) return cls.from_tokenizer(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) @classmethod def __UpperCamelCase ( cls , lowerCamelCase ) ->Dict: '''simple docstring''' return cls(**__lowerCamelCase ) def __UpperCamelCase ( self ) ->Dict: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = None ) ->int: '''simple docstring''' __a = self.tf_tokenizer(__lowerCamelCase ) __a = tf.ones_like(__lowerCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length __a = max_length if max_length is not None else self.max_length if max_length is not None: __a = pad_model_inputs( __lowerCamelCase , max_seq_length=__lowerCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
717
'''simple docstring''' import datasets from .evaluate import evaluate __UpperCamelCase : int = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ __UpperCamelCase : int = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ __UpperCamelCase : str = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://www.atticusprojectai.org/cuad'] , reference_urls=['https://www.atticusprojectai.org/cuad'] , ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' __a = {prediction['id']: prediction['prediction_text'] for prediction in predictions} __a = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] __a = evaluate(dataset=lowerCamelCase , predictions=lowerCamelCase ) return score
270
0
'''simple docstring''' import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCamelCase_ ( self : Dict ): _lowerCamelCase , _lowerCamelCase : int = FlaxStableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2",revision="bf16",dtype=jnp.bfloataa,) _lowerCamelCase : Optional[Any] = "A painting of a squirrel eating a burger" _lowerCamelCase : Tuple = jax.device_count() _lowerCamelCase : Dict = num_samples * [prompt] _lowerCamelCase : int = sd_pipe.prepare_inputs(__A ) _lowerCamelCase : Union[str, Any] = replicate(__A ) _lowerCamelCase : Any = shard(__A ) _lowerCamelCase : Dict = jax.random.PRNGKey(0 ) _lowerCamelCase : List[str] = jax.random.split(__A,jax.device_count() ) _lowerCamelCase : List[Any] = sd_pipe(__A,__A,__A,num_inference_steps=2_5,jit=__A )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) _lowerCamelCase : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowerCamelCase : Optional[int] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowerCamelCase : List[str] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowerCamelCase : int = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[Any] = "stabilityai/stable-diffusion-2" _lowerCamelCase , _lowerCamelCase : int = FlaxDPMSolverMultistepScheduler.from_pretrained(__A,subfolder="scheduler" ) _lowerCamelCase , _lowerCamelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( __A,scheduler=__A,revision="bf16",dtype=jnp.bfloataa,) _lowerCamelCase : List[str] = scheduler_params _lowerCamelCase : List[str] = "A painting of a squirrel eating a burger" _lowerCamelCase : List[str] = jax.device_count() _lowerCamelCase : Dict = num_samples * [prompt] _lowerCamelCase : Tuple = sd_pipe.prepare_inputs(__A ) _lowerCamelCase : Any = replicate(__A ) _lowerCamelCase : Any = shard(__A ) _lowerCamelCase : Tuple = jax.random.PRNGKey(0 ) _lowerCamelCase : Optional[Any] = jax.random.split(__A,jax.device_count() ) _lowerCamelCase : Optional[Any] = sd_pipe(__A,__A,__A,num_inference_steps=2_5,jit=__A )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) _lowerCamelCase : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowerCamelCase : int = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowerCamelCase : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowerCamelCase : str = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
44
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __lowerCAmelCase = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 6_5_5_3_6, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 6_5_5_3_6, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 1_3_1_0_7_2, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, } def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: return torch.atana(_lowerCAmelCase , _lowerCAmelCase ) / math.pi * 2 def __lowerCamelCase ( _lowerCAmelCase ) -> Union[str, Any]: _UpperCAmelCase = torch.sin(t * math.pi / 2 ) ** 2 _UpperCAmelCase = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(_lowerCAmelCase , _lowerCAmelCase ) class __SCREAMING_SNAKE_CASE ( lowercase): pass class __SCREAMING_SNAKE_CASE ( nn.Module): def __init__( self : str , __UpperCamelCase : Optional[int] ): super().__init__() _UpperCAmelCase = DiffusionAttnUnetaD(__UpperCamelCase , n_attn_layers=4 ) _UpperCAmelCase = deepcopy(self.diffusion ) _UpperCAmelCase = torch.quasirandom.SobolEngine(1 , scramble=__UpperCamelCase ) def __lowerCamelCase ( _lowerCAmelCase ) -> int: _UpperCAmelCase = MODELS_MAP[model_name]["url"] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' __lowerCAmelCase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } __lowerCAmelCase = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } __lowerCAmelCase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } __lowerCAmelCase = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } __lowerCAmelCase = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } __lowerCAmelCase = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def __lowerCamelCase ( _lowerCAmelCase ) -> List[str]: if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __lowerCamelCase ( _lowerCAmelCase ) -> Optional[Any]: for key, value in ATTN_MAP.items(): if name.startswith(_lowerCAmelCase ) and not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return name.replace(_lowerCAmelCase , _lowerCAmelCase ) elif name.startswith(_lowerCAmelCase ): return [name.replace(_lowerCAmelCase , _lowerCAmelCase ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=13 ) -> List[Any]: _UpperCAmelCase = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) _UpperCAmelCase = 0 if string.startswith("net.3." ): depth += 1 _UpperCAmelCase = string[6:] elif string.startswith("net." ): _UpperCAmelCase = string[4:] while string.startswith("main.7." ): depth += 1 _UpperCAmelCase = string[7:] if string.startswith("main." ): _UpperCAmelCase = string[5:] # mid block if string[:2].isdigit(): _UpperCAmelCase = string[:2] _UpperCAmelCase = string[2:] else: _UpperCAmelCase = string[0] _UpperCAmelCase = string[1:] if depth == max_depth: _UpperCAmelCase = MID_NUM_TO_LAYER[layer_num] _UpperCAmelCase = "mid_block" elif depth > 0 and int(_lowerCAmelCase ) < 7: _UpperCAmelCase = DOWN_NUM_TO_LAYER[layer_num] _UpperCAmelCase = F'''down_blocks.{depth}''' elif depth > 0 and int(_lowerCAmelCase ) > 7: _UpperCAmelCase = UP_NUM_TO_LAYER[layer_num] _UpperCAmelCase = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: _UpperCAmelCase = DEPTH_0_TO_LAYER[layer_num] _UpperCAmelCase = F'''up_blocks.{max_depth - 1}''' if int(_lowerCAmelCase ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) _UpperCAmelCase = string_left[1:] if "resnets" in new_layer: _UpperCAmelCase = convert_resconv_naming(_lowerCAmelCase ) elif "attentions" in new_layer: _UpperCAmelCase = convert_attn_naming(_lowerCAmelCase ) _UpperCAmelCase = new_string_left if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): _UpperCAmelCase = prefix + "." + new_layer + "." + string_left else: _UpperCAmelCase = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def __lowerCamelCase ( _lowerCAmelCase ) -> Optional[int]: _UpperCAmelCase = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue _UpperCAmelCase = rename(_lowerCAmelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _UpperCAmelCase = transform_conv_attns(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _UpperCAmelCase = v return new_state_dict def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: if len(_lowerCAmelCase ) == 1: if len(v.shape ) == 3: # weight _UpperCAmelCase = v[:, :, 0] else: # bias _UpperCAmelCase = v else: # qkv matrices _UpperCAmelCase = v.shape[0] _UpperCAmelCase = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: _UpperCAmelCase = v[i * single_shape : (i + 1) * single_shape, :, 0] else: _UpperCAmelCase = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __lowerCamelCase ( _lowerCAmelCase ) -> Tuple: _UpperCAmelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) _UpperCAmelCase = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' _UpperCAmelCase = download(_lowerCAmelCase ) _UpperCAmelCase = MODELS_MAP[model_name]["sample_rate"] _UpperCAmelCase = MODELS_MAP[model_name]["sample_size"] _UpperCAmelCase = Object() _UpperCAmelCase = sample_size _UpperCAmelCase = sample_rate _UpperCAmelCase = 0 _UpperCAmelCase = UNetaDModel(sample_size=_lowerCAmelCase , sample_rate=_lowerCAmelCase ) _UpperCAmelCase = diffusers_model.state_dict() _UpperCAmelCase = DiffusionUncond(_lowerCAmelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=_lowerCAmelCase )["state_dict"] ) _UpperCAmelCase = orig_model.diffusion_ema.eval() _UpperCAmelCase = orig_model.state_dict() _UpperCAmelCase = rename_orig_weights(_lowerCAmelCase ) _UpperCAmelCase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) _UpperCAmelCase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(_lowerCAmelCase ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith("kernel" ) for k in list(_lowerCAmelCase ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": _UpperCAmelCase = value.squeeze() _UpperCAmelCase = value diffusers_model.load_state_dict(_lowerCAmelCase ) _UpperCAmelCase = 100 _UpperCAmelCase = 33 _UpperCAmelCase = IPNDMScheduler(num_train_timesteps=_lowerCAmelCase ) _UpperCAmelCase = torch.manual_seed(_lowerCAmelCase ) _UpperCAmelCase = torch.randn([1, 2, config.sample_size] , generator=_lowerCAmelCase ).to(_lowerCAmelCase ) _UpperCAmelCase = torch.linspace(1 , 0 , steps + 1 , device=_lowerCAmelCase )[:-1] _UpperCAmelCase = get_crash_schedule(_lowerCAmelCase ) _UpperCAmelCase = DanceDiffusionPipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) _UpperCAmelCase = torch.manual_seed(33 ) _UpperCAmelCase = pipe(num_inference_steps=_lowerCAmelCase , generator=_lowerCAmelCase ).audios _UpperCAmelCase = sampling.iplms_sample(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , {} ) _UpperCAmelCase = generated.clamp(-1 , 1 ) _UpperCAmelCase = (generated - audio).abs().sum() _UpperCAmelCase = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , _lowerCAmelCase ) print("Diff max" , _lowerCAmelCase ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") __lowerCAmelCase = parser.parse_args() main(args)
684
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCAmelCase( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" __lowerCamelCase = StableDiffusionSAGPipeline __lowerCamelCase = TEXT_TO_IMAGE_PARAMS __lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS __lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase = False def UpperCAmelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ : str= UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowercase__ : Dict= DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) lowercase__ : Union[str, Any]= AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ : Tuple= CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__ : List[Any]= CLIPTextModel(UpperCAmelCase_ ) lowercase__ : Any= CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowercase__ : List[Any]= { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase_ ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("mps" ): lowercase__ : Union[str, Any]= torch.manual_seed(UpperCAmelCase_ ) else: lowercase__ : Optional[int]= torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowercase__ : Optional[Any]= { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def UpperCAmelCase_ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : str= StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) lowercase__ : Optional[Any]= sag_pipe.to(UpperCAmelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowercase__ : Dict= '.' lowercase__ : Any= torch.manual_seed(0 ) lowercase__ : Dict= sag_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) lowercase__ : List[str]= output.images lowercase__ : List[Any]= image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ : Optional[Any]= np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[int]= StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowercase__ : List[Any]= sag_pipe.to(UpperCAmelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowercase__ : Any= '.' lowercase__ : List[Any]= torch.manual_seed(0 ) lowercase__ : List[str]= sag_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) lowercase__ : Dict= output.images lowercase__ : List[Any]= image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ : List[Any]= np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Dict= StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowercase__ : List[str]= sag_pipe.to(UpperCAmelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowercase__ : List[str]= '.' lowercase__ : List[str]= torch.manual_seed(0 ) lowercase__ : List[Any]= sag_pipe( [prompt] , width=768 , height=512 , generator=UpperCAmelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" , ) lowercase__ : List[Any]= output.images assert image.shape == (1, 512, 768, 3)
706
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : int = logging.get_logger(__name__) a : str = { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""", """google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""", """google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = "big_bird" def __init__( self , snake_case__=50358 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu_new" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=4096 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=66 , snake_case__="block_sparse" , snake_case__=True , snake_case__=False , snake_case__=64 , snake_case__=3 , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , sep_token_id=snake_case__ , **snake_case__ , ) lowercase__ : Dict= vocab_size lowercase__ : Optional[int]= max_position_embeddings lowercase__ : List[Any]= hidden_size lowercase__ : List[str]= num_hidden_layers lowercase__ : List[str]= num_attention_heads lowercase__ : Optional[int]= intermediate_size lowercase__ : Optional[int]= hidden_act lowercase__ : Tuple= hidden_dropout_prob lowercase__ : int= attention_probs_dropout_prob lowercase__ : int= initializer_range lowercase__ : List[Any]= type_vocab_size lowercase__ : Union[str, Any]= layer_norm_eps lowercase__ : Optional[Any]= use_cache lowercase__ : Union[str, Any]= rescale_embeddings lowercase__ : Union[str, Any]= attention_type lowercase__ : Any= use_bias lowercase__ : List[Any]= block_size lowercase__ : Optional[Any]= num_random_blocks lowercase__ : Optional[int]= classifier_dropout class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCAmelCase_ ( self ): '''simple docstring''' if self.task == "multiple-choice": lowercase__ : List[Any]= {0: "batch", 1: "choice", 2: "sequence"} else: lowercase__ : Tuple= {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
85
0
'''simple docstring''' import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _snake_case ( snake_case ): """simple docstring""" _UpperCamelCase = "microsoft/speecht5_tts" _UpperCamelCase = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _UpperCamelCase = "text_reader" _UpperCamelCase = SpeechTaProcessor _UpperCamelCase = SpeechTaForTextToSpeech _UpperCamelCase = SpeechTaHifiGan _UpperCamelCase = ["text"] _UpperCamelCase = ["audio"] def __SCREAMING_SNAKE_CASE ( self ) -> int: if self.post_processor is None: a_ = 'microsoft/speecht5_hifigan' super().setup() def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ , UpperCAmelCase__=None ) -> int: a_ = self.pre_processor(text=UpperCAmelCase__ , return_tensors='pt' , truncation=UpperCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) a_ = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) a_ = torch.tensor(embeddings_dataset[7305]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> Any: with torch.no_grad(): return self.model.generate_speech(**UpperCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase__ ) -> Any: with torch.no_grad(): return self.post_processor(UpperCAmelCase__ ).cpu().detach()
697
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowercase =logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase =["audio_values", "audio_mask"] def __init__( self , snake_case=2_0_4_8 , snake_case=1 , snake_case=[1_6, 1_6] , snake_case=1_2_8 , snake_case=4_4_1_0_0 , snake_case=8_6 , snake_case=2_0_4_8 , snake_case=0.0 , **snake_case , ) -> Optional[int]: '''simple docstring''' super().__init__( feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case , ) _UpperCAmelCase : Dict =spectrogram_length _UpperCAmelCase : Any =num_channels _UpperCAmelCase : Optional[int] =patch_size _UpperCAmelCase : List[str] =feature_size // self.patch_size[1] _UpperCAmelCase : Optional[int] =n_fft _UpperCAmelCase : int =sampling_rate // hop_length_to_sampling_rate _UpperCAmelCase : int =sampling_rate _UpperCAmelCase : List[Any] =padding_value _UpperCAmelCase : Optional[int] =mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=snake_case , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=snake_case , norm='slaney' , mel_scale='slaney' , ).T def lowerCAmelCase ( self , snake_case) -> np.ndarray: '''simple docstring''' _UpperCAmelCase : Any =spectrogram( snake_case , window_function(self.n_fft , 'hann') , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) _UpperCAmelCase : Any =log_spec[:, :-1] _UpperCAmelCase : List[str] =log_spec - 20.0 _UpperCAmelCase : Union[str, Any] =np.clip(log_spec / 40.0 , -2.0 , 0.0) + 1.0 return log_spec def __call__( self , snake_case , snake_case = None , snake_case = True , snake_case = None , snake_case = False , snake_case = False , **snake_case , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" f" with {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') _UpperCAmelCase : Tuple =isinstance(snake_case , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") _UpperCAmelCase : str =is_batched_numpy or ( isinstance(snake_case , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: _UpperCAmelCase : List[str] =[np.asarray([speech] , dtype=np.floataa).T for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray): _UpperCAmelCase : List[Any] =np.asarray(snake_case , dtype=np.floataa) elif isinstance(snake_case , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): _UpperCAmelCase : List[Any] =raw_speech.astype(np.floataa) # always return batch if not is_batched: _UpperCAmelCase : Dict =[np.asarray([raw_speech]).T] # Convert audio signals to log mel spectrograms, truncate by time axis _UpperCAmelCase : List[Any] =[ self._np_extract_fbank_features(waveform.squeeze()).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , snake_case): _UpperCAmelCase : Dict =[np.asarray(snake_case , dtype=np.floataa) for feature in audio_features] # Create audio attention mask _UpperCAmelCase : Tuple =max( [ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len for feature in audio_features]) # The maximum number of audio patches in a batch if return_attention_mask: _UpperCAmelCase : Any =[ (ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [0] for feature in audio_features ] _UpperCAmelCase : int =np.array(snake_case).astype(np.floataa) # convert into correct format for padding _UpperCAmelCase : List[Any] =max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _UpperCAmelCase : List[str] =np.ones([len(snake_case), 1, max_time_len, self.feature_size]).astype(np.floataa) _UpperCAmelCase : Any =padded_audio_features * self.padding_value for i in range(len(snake_case)): _UpperCAmelCase : List[str] =audio_features[i] _UpperCAmelCase : Dict =feature # return as BatchFeature if return_attention_mask: _UpperCAmelCase : List[str] ={'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: _UpperCAmelCase : Optional[int] ={'audio_values': padded_audio_features} _UpperCAmelCase : Any =BatchFeature(data=snake_case , tensor_type=snake_case) return encoded_inputs
446
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __lowerCAmelCase = HfArgumentParser(InitializationArguments) __lowerCAmelCase = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __lowerCAmelCase = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) __lowerCAmelCase = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __lowerCAmelCase = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
718
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __lowerCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): __lowercase : Union[str, Any] = 'upernet' def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=512 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=[1, 2, 3, 6] , lowerCAmelCase__=True , lowerCAmelCase__=0.4 , lowerCAmelCase__=384 , lowerCAmelCase__=256 , lowerCAmelCase__=1 , lowerCAmelCase__=False , lowerCAmelCase__=255 , **lowerCAmelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowercase__: str = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__: str = backbone_config.get('model_type' ) lowercase__: Union[str, Any] = CONFIG_MAPPING[backbone_model_type] lowercase__: Dict = config_class.from_dict(lowerCAmelCase__ ) lowercase__: List[Any] = backbone_config lowercase__: Union[str, Any] = hidden_size lowercase__: Tuple = initializer_range lowercase__: Optional[int] = pool_scales lowercase__: Union[str, Any] = use_auxiliary_head lowercase__: Any = auxiliary_loss_weight lowercase__: Tuple = auxiliary_in_channels lowercase__: Optional[Any] = auxiliary_channels lowercase__: List[Any] = auxiliary_num_convs lowercase__: List[str] = auxiliary_concat_input lowercase__: Any = loss_ignore_index def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Tuple = copy.deepcopy(self.__dict__ ) lowercase__: List[Any] = self.backbone_config.to_dict() lowercase__: str = self.__class__.model_type return output
335
0
"""simple docstring""" import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers __lowerCamelCase = float('nan') class __A : def __init__( self : Union[str, Any] , __snake_case : Optional[Any] ) -> int: __magic_name__: Optional[int] = sys.stdout __magic_name__: int = open(_a , """a""" ) def __getattr__( self : str , __snake_case : Union[str, Any] ) -> List[Any]: return getattr(self.stdout , _a ) def lowerCamelCase__ ( self : Tuple , __snake_case : Any ) -> Optional[int]: self.stdout.write(_a ) # strip tqdm codes self.file.write(re.sub(R"""^.*\r""" , """""" , _a , 0 , re.M ) ) def a ( __UpperCAmelCase : List[str]=8_0 , __UpperCAmelCase : List[Any]=False ) -> Dict: __magic_name__: str = [] # deal with critical env vars __magic_name__: Tuple = ["""CUDA_VISIBLE_DEVICES"""] for key in env_keys: __magic_name__: Tuple = os.environ.get(__lowerCAmelCase , __lowerCAmelCase ) if val is not None: cmd.append(f'{key}={val}' ) # python executable (not always needed if the script is executable) __magic_name__: int = sys.executable if full_python_path else sys.executable.split("""/""" )[-1] cmd.append(__lowerCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __magic_name__: List[Any] = [] __magic_name__: Dict = """""" while len(__lowerCAmelCase ) > 0: current_line += f'{cmd.pop(0 )} ' if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(__lowerCAmelCase ) __magic_name__: List[str] = """""" return "\\\n".join(__lowerCAmelCase ) def a ( __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] ) -> Optional[int]: # unwrap multi-line input __magic_name__: Union[str, Any] = re.sub(R"""[\\\n]+""" , """ """ , args.base_cmd ) # remove --output_dir if any and set our own __magic_name__: int = re.sub("""--output_dir\s+[^\s]+""" , """""" , args.base_cmd ) args.base_cmd += f' --output_dir {output_dir}' # ensure we have --overwrite_output_dir __magic_name__: str = re.sub("""--overwrite_output_dir\s+""" , """""" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def a ( __UpperCAmelCase : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] ) -> Any: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_0_0 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , ) __magic_name__: List[str] = subprocess.run(__lowerCAmelCase , capture_output=__lowerCAmelCase , text=__lowerCAmelCase ) if verbose: print("""STDOUT""" , result.stdout ) print("""STDERR""" , result.stderr ) # save the streams __magic_name__: Any = variation.replace(""" """ , """-""" ) with open(Path(__lowerCAmelCase ) / f'log.{prefix}.stdout.txt' , """w""" ) as f: f.write(result.stdout ) with open(Path(__lowerCAmelCase ) / f'log.{prefix}.stderr.txt' , """w""" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("""failed""" ) return {target_metric_key: nan} with io.open(f'{output_dir}/all_results.json' , """r""" , encoding="""utf-8""" ) as f: __magic_name__: Optional[Any] = json.load(__lowerCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def a ( __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , ) -> List[str]: __magic_name__: int = [] __magic_name__: int = [] __magic_name__: Optional[Any] = f'{id}: {variation:<{longest_variation_len}}' __magic_name__: Any = f'{preamble}: ' __magic_name__: Optional[Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(__lowerCAmelCase ) , desc=__lowerCAmelCase , leave=__lowerCAmelCase ): __magic_name__: Tuple = process_run_single( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __magic_name__: List[str] = single_run_metrics[target_metric_key] if not math.isnan(__lowerCAmelCase ): metrics.append(__lowerCAmelCase ) results.append(__lowerCAmelCase ) outcome += "✓" else: outcome += "✘" __magic_name__: List[Any] = f'\33[2K\r{outcome}' if len(__lowerCAmelCase ) > 0: __magic_name__: Optional[int] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __magic_name__: Dict = round(mean_metrics[target_metric_key] , 2 ) __magic_name__: Optional[int] = f'{outcome} {mean_target}' if len(__lowerCAmelCase ) > 1: results_str += f' {tuple(round(__lowerCAmelCase , 2 ) for x in results )}' print(__lowerCAmelCase ) __magic_name__: List[str] = variation return mean_metrics else: print(__lowerCAmelCase ) return {variation_key: variation, target_metric_key: nan} def a ( ) -> str: __magic_name__: List[str] = torch.cuda.get_device_properties(torch.device("""cuda""" ) ) return f'\nDatetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**3_0:0.2f}GB\n' def a ( __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str ) -> Union[str, Any]: __magic_name__: Dict = pd.DataFrame(__lowerCAmelCase ) __magic_name__: List[Any] = """variation""" __magic_name__: Dict = """diff_%""" __magic_name__: int = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __magic_name__: Tuple = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(__lowerCAmelCase ): # as a fallback, use the minimal value as the sentinel __magic_name__: Union[str, Any] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(__lowerCAmelCase ): __magic_name__: int = df.apply( lambda __UpperCAmelCase : round(1_0_0 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="""columns""" , ) # re-order columns __magic_name__: Optional[Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys] __magic_name__: Any = df.reindex(__lowerCAmelCase , axis="""columns""" ) # reorder cols # capitalize __magic_name__: Optional[int] = df.rename(str.capitalize , axis="""columns""" ) # make the cols as narrow as possible __magic_name__: List[Any] = df.rename(lambda __UpperCAmelCase : c.replace("""_""" , """<br>""" ) , axis="""columns""" ) __magic_name__: int = df.rename(lambda __UpperCAmelCase : c.replace("""_""" , """\n""" ) , axis="""columns""" ) __magic_name__: int = ["""""", """Copy between the cut-here-lines and paste as is to github or a forum"""] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=__lowerCAmelCase , floatfmt=""".2f""" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=__lowerCAmelCase , floatfmt=""".2f""" )] print("""\n\n""".join(__lowerCAmelCase ) ) def a ( ) -> Any: __magic_name__: List[str] = argparse.ArgumentParser() parser.add_argument( """--base-cmd""" , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""Base cmd""" , ) parser.add_argument( """--variations""" , default=__lowerCAmelCase , type=__lowerCAmelCase , nargs="""+""" , required=__lowerCAmelCase , help="""Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'""" , ) parser.add_argument( """--base-variation""" , default=__lowerCAmelCase , type=__lowerCAmelCase , help="""Baseline variation to compare to. if None the minimal target value will be used to compare against""" , ) parser.add_argument( """--target-metric-key""" , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""Target metric key in output_dir/all_results.json, e.g., train_samples_per_second""" , ) parser.add_argument( """--report-metric-keys""" , default="""""" , type=__lowerCAmelCase , help="""Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples""" , ) parser.add_argument( """--repeat-times""" , default=1 , type=__lowerCAmelCase , help="""How many times to re-run each variation - an average will be reported""" , ) parser.add_argument( """--output_dir""" , default="""output_benchmark""" , type=__lowerCAmelCase , help="""The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked""" , ) parser.add_argument( """--verbose""" , default=__lowerCAmelCase , action="""store_true""" , help="""Whether to show the outputs of each run or just the benchmark progress""" , ) __magic_name__: List[Any] = parser.parse_args() __magic_name__: Tuple = args.output_dir Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) __magic_name__: Optional[int] = get_base_command(__lowerCAmelCase , __lowerCAmelCase ) # split each dimension into its --foo variations __magic_name__: Dict = [list(map(str.strip , re.split(R"""\|""" , __lowerCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __magic_name__: Union[str, Any] = list(map(str.strip , map(""" """.join , itertools.product(*__lowerCAmelCase ) ) ) ) __magic_name__: str = max(len(__lowerCAmelCase ) for x in variations ) # split wanted keys __magic_name__: Union[str, Any] = args.report_metric_keys.split() # capture prints into a log file for convenience __magic_name__: Dict = f'benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt' print(f'\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt' ) print(f'and this script\'s output is also piped into {report_fn}' ) __magic_name__: Optional[Any] = Tee(__lowerCAmelCase ) print(f'\n*** Running {len(__lowerCAmelCase )} benchmarks:' ) print(f'Base command: {" ".join(__lowerCAmelCase )}' ) __magic_name__: Union[str, Any] = """variation""" __magic_name__: Dict = [] for id, variation in enumerate(tqdm(__lowerCAmelCase , desc="""Total completion: """ , leave=__lowerCAmelCase ) ): __magic_name__: Dict = base_cmd + variation.split() results.append( process_run( id + 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , args.target_metric_key , __lowerCAmelCase , args.repeat_times , __lowerCAmelCase , args.verbose , ) ) process_results(__lowerCAmelCase , args.target_metric_key , __lowerCAmelCase , args.base_variation , __lowerCAmelCase ) if __name__ == "__main__": main()
96
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a :str = 637_8137.0 a :Optional[Any] = 635_6752.31_4245 a :List[Any] = 6_378_137 def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float: SCREAMING_SNAKE_CASE__ : Dict = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude SCREAMING_SNAKE_CASE__ : Dict = atan((1 - flattening) * tan(radians(__lowerCAmelCase ) ) ) SCREAMING_SNAKE_CASE__ : Dict = atan((1 - flattening) * tan(radians(__lowerCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius SCREAMING_SNAKE_CASE__ : Tuple = haversine_distance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values SCREAMING_SNAKE_CASE__ : List[str] = (b_lata + b_lata) / 2 SCREAMING_SNAKE_CASE__ : Dict = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) SCREAMING_SNAKE_CASE__ : Tuple = (sin(__lowerCAmelCase ) ** 2) * (cos(__lowerCAmelCase ) ** 2) SCREAMING_SNAKE_CASE__ : str = cos(sigma / 2 ) ** 2 SCREAMING_SNAKE_CASE__ : List[str] = (sigma - sin(__lowerCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) SCREAMING_SNAKE_CASE__ : int = (cos(__lowerCAmelCase ) ** 2) * (sin(__lowerCAmelCase ) ** 2) SCREAMING_SNAKE_CASE__ : int = sin(sigma / 2 ) ** 2 SCREAMING_SNAKE_CASE__ : Optional[Any] = (sigma + sin(__lowerCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
680
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class a ( lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : Union[str, Any] = 'nat' _snake_case : List[str] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[Any] , __lowerCAmelCase : int=4 , __lowerCAmelCase : Union[str, Any]=3 , __lowerCAmelCase : Dict=64 , __lowerCAmelCase : int=[3, 4, 6, 5] , __lowerCAmelCase : List[str]=[2, 4, 8, 16] , __lowerCAmelCase : Tuple=7 , __lowerCAmelCase : List[str]=3.0 , __lowerCAmelCase : int=True , __lowerCAmelCase : int=0.0 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : List[str]="gelu" , __lowerCAmelCase : List[Any]=0.02 , __lowerCAmelCase : Union[str, Any]=1e-5 , __lowerCAmelCase : List[Any]=0.0 , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Optional[int]=None , **__lowerCAmelCase : Optional[Any] , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(__lowerCAmelCase ) _UpperCAmelCase = num_heads _UpperCAmelCase = kernel_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(__lowerCAmelCase ) - 1) ) _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(__lowerCAmelCase ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=__lowerCAmelCase , out_indices=__lowerCAmelCase , stage_names=self.stage_names )
275
"""simple docstring""" import datasets UpperCAmelCase__ = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ UpperCAmelCase__ = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ UpperCAmelCase__ = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCAmelCase_ ( self : Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : Any ): return {"accuracy": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )}
275
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = AltDiffusionPipeline A_ = TEXT_TO_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_BATCH_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS def _UpperCAmelCase ( self ) -> List[str]: torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) UpperCamelCase_ = CLIPTextModel(_UpperCAmelCase ) UpperCamelCase_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) UpperCamelCase_ = 77 UpperCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> Optional[Any]: if str(_UpperCAmelCase ).startswith('mps' ): UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCamelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> Tuple: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _UpperCAmelCase ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(_UpperCAmelCase ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**_UpperCAmelCase ) UpperCamelCase_ = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = self.get_dummy_inputs(_UpperCAmelCase ) UpperCamelCase_ = 'A photo of an astronaut' UpperCamelCase_ = alt_pipe(**_UpperCAmelCase ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.5_7_4_8_1_6_2, 0.6_0_4_4_7_1_4_5, 0.4_8_8_2_1_2_1_7, 0.5_0_1_0_0_6_3_6, 0.5_4_3_1_1_8_5, 0.4_5_7_6_3_6_8_3, 0.4_9_6_5_7_6_9_6, 0.4_8_1_3_2_7_3_3, 0.4_7_5_7_3_0_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) torch.manual_seed(0 ) UpperCamelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCamelCase_ = RobertaSeriesModelWithTransformation(_UpperCAmelCase ) UpperCamelCase_ = text_encoder UpperCamelCase_ = AltDiffusionPipeline(**_UpperCAmelCase ) UpperCamelCase_ = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = self.get_dummy_inputs(_UpperCAmelCase ) UpperCamelCase_ = alt_pipe(**_UpperCAmelCase ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.5_1_6_0_5_0_9_3, 0.5_7_0_7_2_4_1, 0.4_7_3_6_5_5_0_7, 0.5_0_5_7_8_8_8_6, 0.5_6_3_3_8_7_7, 0.4_6_4_2_5_0_3, 0.5_1_8_2_0_8_1, 0.4_8_7_6_3_4_8_4, 0.4_9_0_8_4_2_3_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> List[Any]: # make sure here that pndm scheduler skips prk UpperCamelCase_ = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=_UpperCAmelCase ) UpperCamelCase_ = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = 'A painting of a squirrel eating a burger' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=_UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_0_1_0, 0.0_8_0_0, 0.0_7_9_4, 0.0_8_8_5, 0.0_8_4_3, 0.0_7_6_2, 0.0_7_6_9, 0.0_7_2_9, 0.0_5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' ) UpperCamelCase_ = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) UpperCamelCase_ = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = 'A painting of a squirrel eating a burger' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = alt_pipe([prompt] , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='numpy' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.4_0_1_9, 0.4_0_5_2, 0.3_8_1_0, 0.4_1_1_9, 0.3_9_1_6, 0.3_9_8_2, 0.4_6_5_1, 0.4_1_9_5, 0.5_3_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
23
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _a ( UpperCAmelCase__ ): """simple docstring""" @slow @require_torch def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) UpperCamelCase_ = BertTokenizer.from_pretrained('bert-base-uncased' ) UpperCamelCase_ = bertabert.config.encoder.vocab_size UpperCamelCase_ = tokenizer.sep_token_id UpperCamelCase_ = tokenizer.cls_token_id UpperCamelCase_ = 128 UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) UpperCamelCase_ = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) UpperCamelCase_ = train_dataset.select(range(32 ) ) UpperCamelCase_ = val_dataset.select(range(16 ) ) UpperCamelCase_ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCamelCase_ = tokenizer(batch['article'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=512 ) UpperCamelCase_ = tokenizer(batch['highlights'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=128 ) UpperCamelCase_ = inputs.input_ids UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = outputs.input_ids UpperCamelCase_ = outputs.input_ids.copy() UpperCamelCase_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] UpperCamelCase_ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase ): UpperCamelCase_ = pred.label_ids UpperCamelCase_ = pred.predictions # all unnecessary tokens are removed UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset UpperCamelCase_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset UpperCamelCase_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy='steps' , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCamelCase_ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
23
1
"""simple docstring""" def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->list: UpperCAmelCase__ = [0] * len(_SCREAMING_SNAKE_CASE ) for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): # use last results for better performance - dynamic programming UpperCAmelCase__ = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: UpperCAmelCase__ = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 UpperCAmelCase__ = j return prefix_result def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->int: return max(prefix_function(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod()
422
"""simple docstring""" def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->Tuple: # noqa: E741 UpperCAmelCase__ = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = 0 UpperCAmelCase__ = [0] * n UpperCAmelCase__ = [False] * n UpperCAmelCase__ = [False] * n def dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if parent == root: out_edge_count += 1 UpperCAmelCase__ = True UpperCAmelCase__ = at for to in l[at]: if to == parent: pass elif not visited[to]: UpperCAmelCase__ = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: UpperCAmelCase__ = True # AP found via cycle if at == low[to]: UpperCAmelCase__ = True else: UpperCAmelCase__ = min(low[at] , _SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: UpperCAmelCase__ = 0 UpperCAmelCase__ = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = out_edge_count > 1 for x in range(len(_SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(_SCREAMING_SNAKE_CASE ) # Adjacency list of graph a : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
422
1
"""simple docstring""" from __future__ import annotations from math import gcd def __snake_case ( SCREAMING_SNAKE_CASE: Optional[int] , SCREAMING_SNAKE_CASE: Dict = 2 , SCREAMING_SNAKE_CASE: Union[str, Any] = 1 , SCREAMING_SNAKE_CASE: Optional[Any] = 3 , ): """simple docstring""" if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(SCREAMING_SNAKE_CASE: str , SCREAMING_SNAKE_CASE: Dict , SCREAMING_SNAKE_CASE: List[Any] ) -> int: return (pow(SCREAMING_SNAKE_CASE , 2 ) + step) % modulus for _ in range(SCREAMING_SNAKE_CASE ): # These track the position within the cycle detection logic. _lowerCAmelCase = seed _lowerCAmelCase = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. _lowerCAmelCase = rand_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowerCAmelCase = rand_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowerCAmelCase = rand_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. _lowerCAmelCase = gcd(hare - tortoise , SCREAMING_SNAKE_CASE ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. _lowerCAmelCase = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse _snake_case = argparse.ArgumentParser() parser.add_argument( '''num''', type=int, help='''The value to find a divisor of''', ) parser.add_argument( '''--attempts''', type=int, default=3, help='''The number of attempts before giving up''', ) _snake_case = parser.parse_args() _snake_case = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f'{args.num} is probably prime') else: _snake_case = args.num // divisor print(f'{args.num} = {divisor} * {quotient}')
580
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class _A ( __magic_name__): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
511
0
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __A ( SCREAMING_SNAKE_CASE_ ): def __get__( self : int , __snake_case : Dict , __snake_case : Optional[Any]=None ) -> int: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("""unreadable attribute""" ) __magic_name__: str = """__cached_""" + self.fget.__name__ __magic_name__: Optional[int] = getattr(__snake_case , __snake_case , __snake_case ) if cached is None: __magic_name__: str = self.fget(__snake_case ) setattr(__snake_case , __snake_case , __snake_case ) return cached def a ( __UpperCAmelCase : List[Any] ) -> Any: __magic_name__: Tuple = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'invalid truth value {val!r}' ) def a ( __UpperCAmelCase : Tuple ) -> List[str]: if is_torch_fx_proxy(__UpperCAmelCase ): return True if is_torch_available(): import torch if isinstance(__UpperCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__UpperCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__UpperCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(__UpperCAmelCase , np.ndarray ) def a ( __UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: return isinstance(__UpperCAmelCase , np.ndarray ) def a ( __UpperCAmelCase : Optional[int] ) -> List[Any]: return _is_numpy(__UpperCAmelCase ) def a ( __UpperCAmelCase : List[str] ) -> Any: import torch return isinstance(__UpperCAmelCase , torch.Tensor ) def a ( __UpperCAmelCase : int ) -> Dict: return False if not is_torch_available() else _is_torch(__UpperCAmelCase ) def a ( __UpperCAmelCase : Optional[int] ) -> Optional[int]: import torch return isinstance(__UpperCAmelCase , torch.device ) def a ( __UpperCAmelCase : Any ) -> Tuple: return False if not is_torch_available() else _is_torch_device(__UpperCAmelCase ) def a ( __UpperCAmelCase : Any ) -> Tuple: import torch if isinstance(__UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , __UpperCAmelCase ): __magic_name__: int = getattr(__UpperCAmelCase , __UpperCAmelCase ) else: return False return isinstance(__UpperCAmelCase , torch.dtype ) def a ( __UpperCAmelCase : Dict ) -> Optional[Any]: return False if not is_torch_available() else _is_torch_dtype(__UpperCAmelCase ) def a ( __UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: import tensorflow as tf return isinstance(__UpperCAmelCase , tf.Tensor ) def a ( __UpperCAmelCase : Union[str, Any] ) -> Tuple: return False if not is_tf_available() else _is_tensorflow(__UpperCAmelCase ) def a ( __UpperCAmelCase : int ) -> Tuple: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__UpperCAmelCase , """is_symbolic_tensor""" ): return tf.is_symbolic_tensor(__UpperCAmelCase ) return type(__UpperCAmelCase ) == tf.Tensor def a ( __UpperCAmelCase : int ) -> Dict: return False if not is_tf_available() else _is_tf_symbolic_tensor(__UpperCAmelCase ) def a ( __UpperCAmelCase : Dict ) -> Union[str, Any]: import jax.numpy as jnp # noqa: F811 return isinstance(__UpperCAmelCase , jnp.ndarray ) def a ( __UpperCAmelCase : Any ) -> List[str]: return False if not is_flax_available() else _is_jax(__UpperCAmelCase ) def a ( __UpperCAmelCase : List[Any] ) -> Dict: if isinstance(__UpperCAmelCase , (dict, UserDict) ): return {k: to_py_obj(__UpperCAmelCase ) for k, v in obj.items()} elif isinstance(__UpperCAmelCase , (list, tuple) ): return [to_py_obj(__UpperCAmelCase ) for o in obj] elif is_tf_tensor(__UpperCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(__UpperCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(__UpperCAmelCase ): return np.asarray(__UpperCAmelCase ).tolist() elif isinstance(__UpperCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a ( __UpperCAmelCase : Dict ) -> str: if isinstance(__UpperCAmelCase , (dict, UserDict) ): return {k: to_numpy(__UpperCAmelCase ) for k, v in obj.items()} elif isinstance(__UpperCAmelCase , (list, tuple) ): return np.array(__UpperCAmelCase ) elif is_tf_tensor(__UpperCAmelCase ): return obj.numpy() elif is_torch_tensor(__UpperCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(__UpperCAmelCase ): return np.asarray(__UpperCAmelCase ) else: return obj class __A ( SCREAMING_SNAKE_CASE_ ): def lowerCamelCase__ ( self : List[str] ) -> str: __magic_name__: Union[str, Any] = fields(self ) # Safety and consistency checks if not len(__snake_case ): raise ValueError(F'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'{self.__class__.__name__} should not have more than one required field.' ) __magic_name__: Tuple = getattr(self , class_fields[0].name ) __magic_name__: int = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__snake_case ): if isinstance(__snake_case , __snake_case ): __magic_name__: Optional[Any] = first_field.items() __magic_name__: Union[str, Any] = True else: try: __magic_name__: Tuple = iter(__snake_case ) __magic_name__: int = True except TypeError: __magic_name__: int = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__snake_case ): if ( not isinstance(__snake_case , (list, tuple) ) or not len(__snake_case ) == 2 or not isinstance(element[0] , __snake_case ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute __magic_name__: Optional[Any] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: __magic_name__: Union[str, Any] = element[1] elif first_field is not None: __magic_name__: Optional[Any] = first_field else: for field in class_fields: __magic_name__: List[str] = getattr(self , field.name ) if v is not None: __magic_name__: List[str] = v def __delitem__( self : Optional[Any] , *__snake_case : Union[str, Any] , **__snake_case : List[str] ) -> int: raise Exception(F'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def lowerCamelCase__ ( self : int , *__snake_case : Union[str, Any] , **__snake_case : Optional[Any] ) -> Union[str, Any]: raise Exception(F'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def lowerCamelCase__ ( self : Optional[Any] , *__snake_case : Optional[Any] , **__snake_case : str ) -> List[str]: raise Exception(F'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def lowerCamelCase__ ( self : int , *__snake_case : Dict , **__snake_case : Optional[int] ) -> Tuple: raise Exception(F'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self : Tuple , __snake_case : Optional[Any] ) -> List[str]: if isinstance(__snake_case , __snake_case ): __magic_name__: str = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Union[str, Any] , __snake_case : str , __snake_case : Any ) -> List[str]: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__snake_case , __snake_case ) super().__setattr__(__snake_case , __snake_case ) def __setitem__( self : Any , __snake_case : Optional[int] , __snake_case : Optional[int] ) -> Optional[Any]: # Will raise a KeyException if needed super().__setitem__(__snake_case , __snake_case ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__snake_case , __snake_case ) def lowerCamelCase__ ( self : str ) -> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class __A ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): @classmethod def lowerCamelCase__ ( cls : Optional[int] , __snake_case : int ) -> List[str]: raise ValueError( F'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "longest" UpperCAmelCase__ = "max_length" UpperCAmelCase__ = "do_not_pad" class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "pt" UpperCAmelCase__ = "tf" UpperCAmelCase__ = "np" UpperCAmelCase__ = "jax" class __A : def __init__( self : List[Any] , __snake_case : List[ContextManager] ) -> int: __magic_name__: Dict = context_managers __magic_name__: Union[str, Any] = ExitStack() def __enter__( self : int ) -> Dict: for context_manager in self.context_managers: self.stack.enter_context(__snake_case ) def __exit__( self : Union[str, Any] , *__snake_case : int , **__snake_case : Optional[int] ) -> List[str]: self.stack.__exit__(*__snake_case , **__snake_case ) def a ( __UpperCAmelCase : Union[str, Any] ) -> List[Any]: __magic_name__: str = infer_framework(__UpperCAmelCase ) if framework == "tf": __magic_name__: List[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __magic_name__: Optional[Any] = inspect.signature(model_class.forward ) # PyTorch models else: __magic_name__: List[Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a ( __UpperCAmelCase : Optional[int] ) -> List[Any]: __magic_name__: Optional[Any] = model_class.__name__ __magic_name__: Union[str, Any] = infer_framework(__UpperCAmelCase ) if framework == "tf": __magic_name__: Optional[int] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __magic_name__: Optional[int] = inspect.signature(model_class.forward ) # PyTorch models else: __magic_name__: Any = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a ( __UpperCAmelCase : MutableMapping , __UpperCAmelCase : str = "" , __UpperCAmelCase : str = "." ) -> int: def _flatten_dict(__UpperCAmelCase : List[Any] , __UpperCAmelCase : str="" , __UpperCAmelCase : List[Any]="." ): for k, v in d.items(): __magic_name__: Union[str, Any] = str(__UpperCAmelCase ) + delimiter + str(__UpperCAmelCase ) if parent_key else k if v and isinstance(__UpperCAmelCase , __UpperCAmelCase ): yield from flatten_dict(__UpperCAmelCase , __UpperCAmelCase , delimiter=__UpperCAmelCase ).items() else: yield key, v return dict(_flatten_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ) @contextmanager def a ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : bool = False ) -> Optional[int]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a ( __UpperCAmelCase : Any , __UpperCAmelCase : List[str]=None ) -> List[str]: if is_numpy_array(__UpperCAmelCase ): return np.transpose(__UpperCAmelCase , axes=__UpperCAmelCase ) elif is_torch_tensor(__UpperCAmelCase ): return array.T if axes is None else array.permute(*__UpperCAmelCase ) elif is_tf_tensor(__UpperCAmelCase ): import tensorflow as tf return tf.transpose(__UpperCAmelCase , perm=__UpperCAmelCase ) elif is_jax_tensor(__UpperCAmelCase ): return jnp.transpose(__UpperCAmelCase , axes=__UpperCAmelCase ) else: raise ValueError(f'Type not supported for transpose: {type(__UpperCAmelCase )}.' ) def a ( __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] ) -> Tuple: if is_numpy_array(__UpperCAmelCase ): return np.reshape(__UpperCAmelCase , __UpperCAmelCase ) elif is_torch_tensor(__UpperCAmelCase ): return array.reshape(*__UpperCAmelCase ) elif is_tf_tensor(__UpperCAmelCase ): import tensorflow as tf return tf.reshape(__UpperCAmelCase , __UpperCAmelCase ) elif is_jax_tensor(__UpperCAmelCase ): return jnp.reshape(__UpperCAmelCase , __UpperCAmelCase ) else: raise ValueError(f'Type not supported for reshape: {type(__UpperCAmelCase )}.' ) def a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict=None ) -> Optional[int]: if is_numpy_array(__UpperCAmelCase ): return np.squeeze(__UpperCAmelCase , axis=__UpperCAmelCase ) elif is_torch_tensor(__UpperCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=__UpperCAmelCase ) elif is_tf_tensor(__UpperCAmelCase ): import tensorflow as tf return tf.squeeze(__UpperCAmelCase , axis=__UpperCAmelCase ) elif is_jax_tensor(__UpperCAmelCase ): return jnp.squeeze(__UpperCAmelCase , axis=__UpperCAmelCase ) else: raise ValueError(f'Type not supported for squeeze: {type(__UpperCAmelCase )}.' ) def a ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> Tuple: if is_numpy_array(__UpperCAmelCase ): return np.expand_dims(__UpperCAmelCase , __UpperCAmelCase ) elif is_torch_tensor(__UpperCAmelCase ): return array.unsqueeze(dim=__UpperCAmelCase ) elif is_tf_tensor(__UpperCAmelCase ): import tensorflow as tf return tf.expand_dims(__UpperCAmelCase , axis=__UpperCAmelCase ) elif is_jax_tensor(__UpperCAmelCase ): return jnp.expand_dims(__UpperCAmelCase , axis=__UpperCAmelCase ) else: raise ValueError(f'Type not supported for expand_dims: {type(__UpperCAmelCase )}.' ) def a ( __UpperCAmelCase : Optional[Any] ) -> Tuple: if is_numpy_array(__UpperCAmelCase ): return np.size(__UpperCAmelCase ) elif is_torch_tensor(__UpperCAmelCase ): return array.numel() elif is_tf_tensor(__UpperCAmelCase ): import tensorflow as tf return tf.size(__UpperCAmelCase ) elif is_jax_tensor(__UpperCAmelCase ): return array.size else: raise ValueError(f'Type not supported for expand_dims: {type(__UpperCAmelCase )}.' ) def a ( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ) -> Tuple: for key, value in auto_map.items(): if isinstance(__UpperCAmelCase , (tuple, list) ): __magic_name__: Optional[int] = [f'{repo_id}--{v}' if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: __magic_name__: Any = f'{repo_id}--{value}' return auto_map def a ( __UpperCAmelCase : Optional[int] ) -> List[Any]: for base_class in inspect.getmro(__UpperCAmelCase ): __magic_name__: Dict = base_class.__module__ __magic_name__: Optional[int] = base_class.__name__ if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("""torch""" ) or name == "PreTrainedModel": return "pt" elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'Could not infer framework from class {model_class}.' )
213
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __lowerCamelCase = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int ) -> Union[str, Any]: return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def a ( __UpperCAmelCase : int ) -> Tuple: __magic_name__: int = _TestCommandArgs(dataset=__UpperCAmelCase , all_configs=__UpperCAmelCase , save_infos=__UpperCAmelCase ) __magic_name__: List[str] = TestCommand(*__UpperCAmelCase ) test_command.run() __magic_name__: Union[str, Any] = os.path.join(__UpperCAmelCase , """README.md""" ) assert os.path.exists(__UpperCAmelCase ) __magic_name__: str = DatasetInfosDict.from_directory(__UpperCAmelCase ) __magic_name__: Optional[int] = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 2_3_5_1_5_6_3, """num_examples""": 1_0_0_0_0, }, { """name""": """validation""", """num_bytes""": 2_3_8_4_1_8, """num_examples""": 1_0_0_0, }, ] , download_size=3_9_4_0_6_8_0 , dataset_size=2_5_8_9_9_8_1 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: __magic_name__, __magic_name__: Tuple = getattr(dataset_infos["""default"""] , __UpperCAmelCase ), getattr(expected_dataset_infos["""default"""] , __UpperCAmelCase ) if key == "num_bytes": assert is_apercent_close(__UpperCAmelCase , __UpperCAmelCase ) elif key == "splits": assert list(__UpperCAmelCase ) == list(__UpperCAmelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
213
1
from datetime import datetime import requests def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __UpperCamelCase = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(_lowercase ).content if __name__ == "__main__": __snake_case = input('''Enter Video/IGTV url: ''').strip() __snake_case = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) def a_ ( UpperCamelCase_ ): if isinstance(UpperCamelCase_ , np.ndarray ): return list(tensor.shape ) A_ = tf.shape(UpperCamelCase_ ) if tensor.shape == tf.TensorShape(UpperCamelCase_ ): return dynamic A_ = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCamelCase_ )] def a_ ( UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None ): return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCamelCase_ , name=UpperCamelCase_ ) def a_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=1e-5 , UpperCamelCase_=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized A_ , A_ = tf.nn.moments(UpperCamelCase_ , axes=[axis] , keepdims=UpperCamelCase_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis A_ = [1] * inputs.shape.rank A_ = shape_list(UpperCamelCase_ )[axis] A_ = tf.reshape(UpperCamelCase_ , UpperCamelCase_ ) A_ = tf.reshape(UpperCamelCase_ , UpperCamelCase_ ) # Compute layer normalization using the batch_normalization # function. A_ = tf.nn.batch_normalization( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , offset=UpperCamelCase_ , scale=UpperCamelCase_ , variance_epsilon=UpperCamelCase_ , ) return outputs def a_ ( UpperCamelCase_ , UpperCamelCase_=0 , UpperCamelCase_=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input A_ = tf.shape(UpperCamelCase_ ) A_ = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) A_ = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCamelCase_ , UpperCamelCase_ ) def a_ ( UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , tf.Tensor ): A_ = tf.convert_to_tensor(UpperCamelCase_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: A_ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: A_ = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) A_ = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def a_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = "input_ids" ): tf.debugging.assert_less( UpperCamelCase_ , tf.cast(UpperCamelCase_ , dtype=tensor.dtype ) , message=( f"The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCamelCase_ )}) must be smaller than the embedding " f"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ) , ) def a_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): A_ = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. A_ = [x for x in data if len(UpperCamelCase_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " f"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " f"bytes: {bad_attributes}" ) A_ = np.asarray(UpperCamelCase_ ) A_ = 1 A_ = np.array_split(UpperCamelCase_ , UpperCamelCase_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 A_ = np.array_split(UpperCamelCase_ , UpperCamelCase_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCamelCase_ ): A_ = chunk_data else: A_ = data def a_ ( UpperCamelCase_ , UpperCamelCase_ ): if name in group.attrs: A_ = [n.decode("utf8" ) if hasattr(UpperCamelCase_ , "decode" ) else n for n in group.attrs[name]] else: A_ = [] A_ = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(UpperCamelCase_ , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def a_ ( UpperCamelCase_ ): def _expand_single_ad_tensor(UpperCamelCase_ ): if isinstance(UpperCamelCase_ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCamelCase_ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCamelCase_ )
452
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class __lowerCAmelCase : """simple docstring""" def __init__( self : Any , _snake_case : int , ): """simple docstring""" A__ = parent A__ = 13 A__ = 7 A__ = True A__ = True A__ = False A__ = True A__ = 99 A__ = 32 A__ = 2 A__ = 4 A__ = 37 A__ = """gelu""" A__ = 0.1 A__ = 0.1 A__ = 5_12 A__ = 16 A__ = 2 A__ = 0.02 A__ = 3 A__ = 4 A__ = None def _a ( self : List[Any] ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : str , _snake_case : List[Any] , _snake_case : List[str] , _snake_case : Any , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Dict ): """simple docstring""" A__ = TFDistilBertModel(config=lowercase__ ) A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} A__ = model(lowercase__ ) A__ = [input_ids, input_mask] A__ = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Optional[Any] , _snake_case : Dict , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Optional[Any] ): """simple docstring""" A__ = TFDistilBertForMaskedLM(config=lowercase__ ) A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} A__ = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Any , _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : str , _snake_case : int , _snake_case : Dict , _snake_case : Any ): """simple docstring""" A__ = TFDistilBertForQuestionAnswering(config=lowercase__ ) A__ = { """input_ids""": input_ids, """attention_mask""": input_mask, } A__ = model(lowercase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self : List[Any] , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Any , _snake_case : int , _snake_case : Optional[int] , _snake_case : str ): """simple docstring""" A__ = self.num_labels A__ = TFDistilBertForSequenceClassification(lowercase__ ) A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} A__ = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : int , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int , _snake_case : Optional[Any] , _snake_case : Any , _snake_case : int ): """simple docstring""" A__ = self.num_choices A__ = TFDistilBertForMultipleChoice(lowercase__ ) A__ = tf.tile(tf.expand_dims(lowercase__ , 1 ) , (1, self.num_choices, 1) ) A__ = tf.tile(tf.expand_dims(lowercase__ , 1 ) , (1, self.num_choices, 1) ) A__ = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } A__ = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self : List[str] , _snake_case : List[Any] , _snake_case : Any , _snake_case : Any , _snake_case : int , _snake_case : List[str] , _snake_case : Union[str, Any] ): """simple docstring""" A__ = self.num_labels A__ = TFDistilBertForTokenClassification(lowercase__ ) A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} A__ = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : Any ): """simple docstring""" A__ = self.prepare_config_and_inputs() (A__) = config_and_inputs A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" A__ : List[str] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) A__ : Dict = ( { """feature-extraction""": TFDistilBertModel, """fill-mask""": TFDistilBertForMaskedLM, """question-answering""": TFDistilBertForQuestionAnswering, """text-classification""": TFDistilBertForSequenceClassification, """token-classification""": TFDistilBertForTokenClassification, """zero-shot""": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) A__ : Tuple = False A__ : int = False def _a ( self : Optional[int] ): """simple docstring""" A__ = TFDistilBertModelTester(self ) A__ = ConfigTester(self , config_class=lowercase__ , dim=37 ) def _a ( self : int ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Any ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase__ ) def _a ( self : str ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase__ ) def _a ( self : Any ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase__ ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase__ ) def _a ( self : Optional[int] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase__ ) def _a ( self : Optional[int] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase__ ) @slow def _a ( self : List[str] ): """simple docstring""" for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): A__ = TFDistilBertModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) @require_tf class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _a ( self : Optional[Any] ): """simple docstring""" A__ = TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) A__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A__ = model(lowercase__ )[0] A__ = [1, 6, 7_68] self.assertEqual(output.shape , lowercase__ ) A__ = tf.constant( [ [ [0.1926_1885, -0.1373_2955, 0.411_9799], [0.2215_0156, -0.0742_2661, 0.3903_7204], [0.2275_6018, -0.089_6414, 0.370_1467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase__ , atol=1E-4 )
704
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') SCREAMING_SNAKE_CASE__ = f'https://www.google.com/search?q={query}&num=100' SCREAMING_SNAKE_CASE__ = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: SCREAMING_SNAKE_CASE__ = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: SCREAMING_SNAKE_CASE__ = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
52
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Tuple = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
273
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def _snake_case ( A_ : Any , A_ : Any=False ): """simple docstring""" a_ : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''module.blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''module.blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''module.blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''module.blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''module.blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''module.blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''module.blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''module.blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''module.blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''module.blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a_ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _snake_case ( A_ : Dict , A_ : str , A_ : List[str]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: a_ : Optional[int] = """""" else: a_ : str = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a_ : int = state_dict.pop(f'''module.blocks.{i}.attn.qkv.weight''' ) a_ : Optional[int] = state_dict.pop(f'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a_ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] a_ : Dict = in_proj_bias[: config.hidden_size] a_ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a_ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a_ : str = in_proj_weight[ -config.hidden_size :, : ] a_ : List[str] = in_proj_bias[-config.hidden_size :] def _snake_case ( A_ : List[Any] ): """simple docstring""" a_ : Tuple = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(A_ , A_ ) def _snake_case ( A_ : Optional[int] ): """simple docstring""" a_ : Any = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(A_ , A_ ) def _snake_case ( A_ : Optional[int] , A_ : List[Any] , A_ : Any ): """simple docstring""" a_ : List[str] = dct.pop(A_ ) a_ : Optional[Any] = val def _snake_case ( A_ : Any , A_ : int ): """simple docstring""" a_ : Any = ViTMSNConfig() a_ : Optional[Any] = 1000 a_ : int = """datasets/huggingface/label-files""" a_ : Optional[int] = """imagenet-1k-id2label.json""" a_ : Any = json.load(open(hf_hub_download(A_ , A_ ) , """r""" ) ) a_ : str = {int(A_ ): v for k, v in idalabel.items()} a_ : Optional[int] = idalabel a_ : Optional[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: a_ : Union[str, Any] = 384 a_ : Tuple = 1536 a_ : Dict = 6 elif "l16" in checkpoint_url: a_ : Tuple = 1024 a_ : int = 4096 a_ : Tuple = 24 a_ : Any = 16 a_ : Dict = 0.1 elif "b4" in checkpoint_url: a_ : Optional[Any] = 4 elif "l7" in checkpoint_url: a_ : List[str] = 7 a_ : List[Any] = 1024 a_ : str = 4096 a_ : Tuple = 24 a_ : List[Any] = 16 a_ : List[str] = 0.1 a_ : Optional[Any] = ViTMSNModel(A_ ) a_ : Tuple = torch.hub.load_state_dict_from_url(A_ , map_location="""cpu""" )["""target_encoder"""] a_ : Optional[int] = ViTImageProcessor(size=config.image_size ) remove_projection_head(A_ ) a_ : List[Any] = create_rename_keys(A_ , base_model=A_ ) for src, dest in rename_keys: rename_key(A_ , A_ , A_ ) read_in_q_k_v(A_ , A_ , base_model=A_ ) model.load_state_dict(A_ ) model.eval() a_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" a_ : Optional[Any] = Image.open(requests.get(A_ , stream=A_ ).raw ) a_ : Optional[Any] = ViTImageProcessor( size=config.image_size , image_mean=A_ , image_std=A_ ) a_ : str = image_processor(images=A_ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) a_ : Any = model(**A_ ) a_ : Optional[int] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: a_ : Tuple = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: a_ : List[Any] = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: a_ : List[str] = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: a_ : Tuple = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: a_ : List[Any] = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , A_ , atol=1E-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A_ ) if __name__ == "__main__": __snake_case: int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __snake_case: str = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
577
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black snake_case_ : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. snake_case_ : str = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" UpperCAmelCase_ : Any = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) ) UpperCAmelCase_ : Union[str, Any] = self.transformer_dir shutil.copy( os.path.join(__magic_name__ , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , ) def UpperCAmelCase__ ( self : List[str] ) -> int: """simple docstring""" UpperCAmelCase_ : Tuple = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Union[str, Any]=None ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: UpperCAmelCase_ : Tuple = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result UpperCAmelCase_ : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) UpperCAmelCase_ : Tuple = black.format_str(__magic_name__ , mode=__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = os.path.join(self.transformer_dir , '''new_code.py''' ) with open(__magic_name__ , '''w''' , newline='''\n''' ) as f: f.write(__magic_name__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__magic_name__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__magic_name__ ) with open(__magic_name__ , '''r''' ) as f: self.assertTrue(f.read() , __magic_name__ ) def UpperCAmelCase__ ( self : Any ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(__magic_name__ , __magic_name__ ) def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , __magic_name__ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , __magic_name__ ) , ) # Copy consistency with a really long name UpperCAmelCase_ : Tuple = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , F"""{long_class_name}LMPredictionHead""" , re.sub('''Bert''' , __magic_name__ , __magic_name__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , __magic_name__ , overwrite_result=re.sub('''Bert''' , '''TestModel''' , __magic_name__ ) , ) def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] UpperCAmelCase_ : Dict = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) UpperCAmelCase_ : List[Any] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) UpperCAmelCase_ : Any = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) UpperCAmelCase_ : Optional[int] = check_copies.convert_to_localized_md( __magic_name__ , __magic_name__ , localized_readme['''format_model_list'''] ) self.assertFalse(__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) UpperCAmelCase_ : Tuple = check_copies.convert_to_localized_md( __magic_name__ , __magic_name__ , localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) UpperCAmelCase_ : Union[str, Any] = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) UpperCAmelCase_ : Optional[int] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) UpperCAmelCase_ : Any = check_copies.convert_to_localized_md( __magic_name__ , __magic_name__ , localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(__magic_name__ , __magic_name__ )
721
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str: if number > 0: raise ValueError('''input must be a negative integer''' ) UpperCAmelCase_ : Union[str, Any] = len(bin(SCREAMING_SNAKE_CASE__ )[3:] ) UpperCAmelCase_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase_ : Optional[Any] = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
644
0
"""simple docstring""" from __future__ import annotations def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> tuple: """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
163
"""simple docstring""" def snake_case__ ( _lowerCamelCase ) ->int: """simple docstring""" if not isinstance(_lowerCamelCase, _lowerCamelCase ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
575
0
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = 10 def UpperCamelCase_ ( self ): lowerCamelCase__ = [1, 2, 3, 4] lowerCamelCase__ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowerCAmelCase__ ,self.block_size ,0 ) ,lowerCAmelCase__ ) def UpperCamelCase_ ( self ): lowerCamelCase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] lowerCamelCase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCAmelCase__ ,self.block_size ,0 ) ,lowerCAmelCase__ ) def UpperCamelCase_ ( self ): lowerCamelCase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] lowerCamelCase__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCAmelCase__ ,self.block_size ,0 ) ,lowerCAmelCase__ ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.""" lowerCamelCase__ , lowerCamelCase__ = process_story(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,[] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = """""" lowerCamelCase__ , lowerCamelCase__ = process_story(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,[] ) self.assertEqual(lowerCAmelCase__ ,[] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) lowerCamelCase__ , lowerCamelCase__ = process_story(lowerCAmelCase__ ) lowerCamelCase__ = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase__ = ["""It was the best of times."""] self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCamelCase_ ( self ): lowerCamelCase__ = torch.tensor([1, 2, 3, 4] ) lowerCamelCase__ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase__ ,0 ).numpy() ,expected.numpy() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) lowerCamelCase__ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase__ ,23 ).numpy() ,expected.numpy() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) lowerCamelCase__ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase__ ,1 ).numpy() ,expected.numpy() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 1_01 lowerCamelCase__ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_01, 5, 6], [1, 1_01, 3, 4, 1_01, 6]] ) lowerCamelCase__ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) lowerCamelCase__ = compute_token_type_ids(lowerCAmelCase__ ,lowerCAmelCase__ ) np.testing.assert_array_equal(lowerCAmelCase__ ,lowerCAmelCase__ )
701
'''simple docstring''' from __future__ import annotations import math def A__ ( __lowerCAmelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True UpperCamelCase : str = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def A__ ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) lowerCamelCase__ = [] for num in range(len(__lowerCAmelCase ) ): lowerCamelCase__ = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ = odd_composites[num] - 2 * i * i if is_prime(__lowerCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__lowerCAmelCase ) == n: return list_nums return [] def A__ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
9
0
from __future__ import annotations def a__ ( _UpperCamelCase : str ): return [ord(A__ ) - 96 for elem in plain] def a__ ( _UpperCamelCase : list[int] ): return "".join(chr(elem + 96 ) for elem in encoded ) def a__ ( ): __lowerCamelCase = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' ,A__ ) print('''Decoded:''' ,decode(A__ ) ) if __name__ == "__main__": main()
175
import pytest __A : Optional[Any] = '__dummy_dataset1__' __A : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __a ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __a ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __a ( A__ : Optional[Any] , A__ : List[str] , A__ : Optional[int] ): SCREAMING_SNAKE_CASE = dataset_loading_script_name SCREAMING_SNAKE_CASE = tmp_path / "datasets" / script_name script_dir.mkdir(parents=A__ ) SCREAMING_SNAKE_CASE = script_dir / F"{script_name}.py" with open(A__ , "w" ) as f: f.write(A__ ) return str(A__ )
16
0
from ..utils import DummyObject, requires_backends class A ( metaclass=_UpperCAmelCase ): """simple docstring""" lowerCamelCase = ['transformers', 'torch', 'note_seq'] def __init__( self : Tuple,*lowercase_ : Any,**lowercase_ : Dict )-> Union[str, Any]: '''simple docstring''' requires_backends(self,['transformers', 'torch', 'note_seq'] ) @classmethod def snake_case__ ( cls : List[str],*lowercase_ : int,**lowercase_ : Optional[int] )-> Any: '''simple docstring''' requires_backends(cls,['transformers', 'torch', 'note_seq'] ) @classmethod def snake_case__ ( cls : Dict,*lowercase_ : Tuple,**lowercase_ : List[str] )-> Dict: '''simple docstring''' requires_backends(cls,['transformers', 'torch', 'note_seq'] )
586
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: '''simple docstring''' A__ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: A__ = 128 elif "12-12" in model_name: A__ = 12 A__ = 12 elif "14-14" in model_name: A__ = 14 A__ = 14 elif "16-16" in model_name: A__ = 16 A__ = 16 else: raise ValueError('Model not supported' ) A__ = 'huggingface/label-files' if "speech-commands" in model_name: A__ = 35 A__ = 'speech-commands-v2-id2label.json' else: A__ = 527 A__ = 'audioset-id2label.json' A__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) A__ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} return config def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: '''simple docstring''' if "module.v" in name: A__ = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: A__ = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: A__ = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: A__ = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: A__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: A__ = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: A__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: A__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A__ = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: A__ = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: A__ = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: A__ = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def _snake_case( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: '''simple docstring''' for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: A__ = key.split('.' ) A__ = int(key_split[3] ) A__ = config.hidden_size if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = val return orig_state_dict def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: '''simple docstring''' A__ = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> int: '''simple docstring''' A__ = get_audio_spectrogram_transformer_config(SCREAMING_SNAKE_CASE__ ) A__ = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict A__ = model_name_to_url[model_name] A__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='cpu' ) # remove some keys remove_keys(SCREAMING_SNAKE_CASE__ ) # rename some keys A__ = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # load 🤗 model A__ = ASTForAudioClassification(SCREAMING_SNAKE_CASE__ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 A__ = -4.267_7393 if 'speech-commands' not in model_name else -6.84_5978 A__ = 4.568_9974 if 'speech-commands' not in model_name else 5.565_4526 A__ = 1024 if 'speech-commands' not in model_name else 128 A__ = ASTFeatureExtractor(mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) if "speech-commands" in model_name: A__ = load_dataset('speech_commands' , 'v0.02' , split='validation' ) A__ = dataset[0]['audio']['array'] else: A__ = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) A__ , A__ = torchaudio.load(SCREAMING_SNAKE_CASE__ ) A__ = waveform.squeeze().numpy() A__ = feature_extractor(SCREAMING_SNAKE_CASE__ , sampling_rate=16000 , return_tensors='pt' ) # forward pass A__ = model(**SCREAMING_SNAKE_CASE__ ) A__ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": A__ = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": A__ = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": A__ = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": A__ = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": A__ = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": A__ = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": A__ = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": A__ = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(f'MIT/{model_name}' ) feature_extractor.push_to_hub(f'MIT/{model_name}' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowercase_ = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
586
1
"""simple docstring""" from math import sqrt def A ( _A ): """simple docstring""" assert isinstance(__lowerCamelCase, __lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" snake_case_ :Optional[Any] = True # 0 and 1 are none primes. if number <= 1: snake_case_ :int = False for divisor in range(2, int(round(sqrt(__lowerCamelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: snake_case_ :Union[str, Any] = False break # precondition assert isinstance(__lowerCamelCase, __lowerCamelCase ), "'status' must been from type bool" return status def A ( _A ): """simple docstring""" assert isinstance(__lowerCamelCase, __lowerCamelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N snake_case_ :Tuple = list(range(2, n + 1 ) ) snake_case_ :Tuple = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(__lowerCamelCase ) ): for j in range(i + 1, len(__lowerCamelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): snake_case_ :List[str] = 0 # filters actual prime numbers. snake_case_ :List[str] = [x for x in begin_list if x != 0] # precondition assert isinstance(__lowerCamelCase, __lowerCamelCase ), "'ans' must been from type list" return ans def A ( _A ): """simple docstring""" assert isinstance(__lowerCamelCase, __lowerCamelCase ) and (n > 2), "'N' must been an int and > 2" snake_case_ :List[str] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1 ): if is_prime(__lowerCamelCase ): ans.append(__lowerCamelCase ) # precondition assert isinstance(__lowerCamelCase, __lowerCamelCase ), "'ans' must been from type list" return ans def A ( _A ): """simple docstring""" assert isinstance(__lowerCamelCase, __lowerCamelCase ) and number >= 0, "'number' must been an int and >= 0" snake_case_ :Tuple = [] # this list will be returns of the function. # potential prime number factors. snake_case_ :Tuple = 2 snake_case_ :Dict = number if number == 0 or number == 1: ans.append(__lowerCamelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__lowerCamelCase ): while quotient != 1: if is_prime(__lowerCamelCase ) and (quotient % factor == 0): ans.append(__lowerCamelCase ) quotient /= factor else: factor += 1 else: ans.append(__lowerCamelCase ) # precondition assert isinstance(__lowerCamelCase, __lowerCamelCase ), "'ans' must been from type list" return ans def A ( _A ): """simple docstring""" assert isinstance(__lowerCamelCase, __lowerCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" snake_case_ :int = 0 # prime factorization of 'number' snake_case_ :Union[str, Any] = prime_factorization(__lowerCamelCase ) snake_case_ :Union[str, Any] = max(__lowerCamelCase ) # precondition assert isinstance(__lowerCamelCase, __lowerCamelCase ), "'ans' must been from type int" return ans def A ( _A ): """simple docstring""" assert isinstance(__lowerCamelCase, __lowerCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" snake_case_ :List[Any] = 0 # prime factorization of 'number' snake_case_ :int = prime_factorization(__lowerCamelCase ) snake_case_ :Union[str, Any] = min(__lowerCamelCase ) # precondition assert isinstance(__lowerCamelCase, __lowerCamelCase ), "'ans' must been from type int" return ans def A ( _A ): """simple docstring""" assert isinstance(__lowerCamelCase, __lowerCamelCase ), "'number' must been an int" assert isinstance(number % 2 == 0, __lowerCamelCase ), "compare bust been from type bool" return number % 2 == 0 def A ( _A ): """simple docstring""" assert isinstance(__lowerCamelCase, __lowerCamelCase ), "'number' must been an int" assert isinstance(number % 2 != 0, __lowerCamelCase ), "compare bust been from type bool" return number % 2 != 0 def A ( _A ): """simple docstring""" assert ( isinstance(__lowerCamelCase, __lowerCamelCase ) and (number > 2) and is_even(__lowerCamelCase ) ), "'number' must been an int, even and > 2" snake_case_ :int = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' snake_case_ :Dict = get_prime_numbers(__lowerCamelCase ) snake_case_ :Optional[int] = len(__lowerCamelCase ) # run variable for while-loops. snake_case_ :List[str] = 0 snake_case_ :str = None # exit variable. for break up the loops snake_case_ :Optional[Any] = True while i < len_pn and loop: snake_case_ :Optional[Any] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: snake_case_ :Optional[int] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__lowerCamelCase, __lowerCamelCase ) and (len(__lowerCamelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def A ( _A, _A ): """simple docstring""" assert ( isinstance(__lowerCamelCase, __lowerCamelCase ) and isinstance(__lowerCamelCase, __lowerCamelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." snake_case_ :Any = 0 while numbera != 0: snake_case_ :Optional[Any] = numbera % numbera snake_case_ :Tuple = numbera snake_case_ :str = rest # precondition assert isinstance(__lowerCamelCase, __lowerCamelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def A ( _A, _A ): """simple docstring""" assert ( isinstance(__lowerCamelCase, __lowerCamelCase ) and isinstance(__lowerCamelCase, __lowerCamelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." snake_case_ :Any = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' snake_case_ :Any = prime_factorization(__lowerCamelCase ) snake_case_ :Optional[Any] = prime_factorization(__lowerCamelCase ) elif numbera == 1 or numbera == 1: snake_case_ :List[str] = [] snake_case_ :Optional[Any] = [] snake_case_ :str = max(__lowerCamelCase, __lowerCamelCase ) snake_case_ :Union[str, Any] = 0 snake_case_ :Tuple = 0 snake_case_ :Any = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: snake_case_ :Dict = prime_fac_a.count(__lowerCamelCase ) snake_case_ :int = prime_fac_a.count(__lowerCamelCase ) for _ in range(max(__lowerCamelCase, __lowerCamelCase ) ): ans *= n else: snake_case_ :int = prime_fac_a.count(__lowerCamelCase ) for _ in range(__lowerCamelCase ): ans *= n done.append(__lowerCamelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: snake_case_ :Union[str, Any] = prime_fac_a.count(__lowerCamelCase ) for _ in range(__lowerCamelCase ): ans *= n done.append(__lowerCamelCase ) # precondition assert isinstance(__lowerCamelCase, __lowerCamelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def A ( _A ): """simple docstring""" assert isinstance(__lowerCamelCase, __lowerCamelCase ) and (n >= 0), "'number' must been a positive int" snake_case_ :Optional[int] = 0 snake_case_ :Optional[int] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__lowerCamelCase ): ans += 1 # precondition assert isinstance(__lowerCamelCase, __lowerCamelCase ) and is_prime( __lowerCamelCase ), "'ans' must been a prime number and from type int" return ans def A ( _A, _A ): """simple docstring""" assert ( is_prime(__lowerCamelCase ) and is_prime(__lowerCamelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" snake_case_ :Optional[int] = p_number_a + 1 # jump to the next number snake_case_ :Tuple = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__lowerCamelCase ): number += 1 while number < p_number_a: ans.append(__lowerCamelCase ) number += 1 # fetch the next prime number. while not is_prime(__lowerCamelCase ): number += 1 # precondition assert ( isinstance(__lowerCamelCase, __lowerCamelCase ) and ans[0] != p_number_a and ans[len(__lowerCamelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def A ( _A ): """simple docstring""" assert isinstance(__lowerCamelCase, __lowerCamelCase ) and (n >= 1), "'n' must been int and >= 1" snake_case_ :Any = [] # will be returned. for divisor in range(1, n + 1 ): if n % divisor == 0: ans.append(__lowerCamelCase ) # precondition assert ans[0] == 1 and ans[len(__lowerCamelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def A ( _A ): """simple docstring""" assert isinstance(__lowerCamelCase, __lowerCamelCase ) and ( number > 1 ), "'number' must been an int and >= 1" snake_case_ :str = get_divisors(__lowerCamelCase ) # precondition assert ( isinstance(__lowerCamelCase, __lowerCamelCase ) and (divisors[0] == 1) and (divisors[len(__lowerCamelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def A ( _A, _A ): """simple docstring""" assert ( isinstance(__lowerCamelCase, __lowerCamelCase ) and isinstance(__lowerCamelCase, __lowerCamelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. snake_case_ :Any = gcd(abs(__lowerCamelCase ), abs(__lowerCamelCase ) ) # precondition assert ( isinstance(__lowerCamelCase, __lowerCamelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def A ( _A ): """simple docstring""" assert isinstance(__lowerCamelCase, __lowerCamelCase ) and (n >= 0), "'n' must been a int and >= 0" snake_case_ :List[Any] = 1 # this will be return. for factor in range(1, n + 1 ): ans *= factor return ans def A ( _A ): """simple docstring""" assert isinstance(__lowerCamelCase, __lowerCamelCase ) and (n >= 0), "'n' must been an int and >= 0" snake_case_ :Optional[Any] = 0 snake_case_ :Tuple = 1 snake_case_ :str = 1 # this will be return for _ in range(n - 1 ): snake_case_ :int = ans ans += fiba snake_case_ :Dict = tmp return ans
584
from __future__ import annotations def lowerCAmelCase( __lowerCamelCase ): if len(__lowerCamelCase ) == 0: return array __a , __a = min(__lowerCamelCase ), max(__lowerCamelCase ) # Compute the variables __a = _max - _min + 1 __a , __a = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: __a = i - _min __a = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. __a = 0 for i in range(__lowerCamelCase ): while holes_repeat[i] > 0: __a = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : str = input("""Enter numbers separated by comma:\n""") lowerCamelCase_ : Tuple = [int(x) for x in user_input.split(""",""")] print(pigeon_sort(unsorted))
559
0
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __UpperCAmelCase = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 48_000, "sample_size": 65_536, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 48_000, "sample_size": 65_536, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 48_000, "sample_size": 131_072, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 16_000, "sample_size": 65_536, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 16_000, "sample_size": 65_536, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 16_000, "sample_size": 65_536, }, } def _snake_case ( A , A ) -> int: return torch.atana(a_ , a_ ) / math.pi * 2 def _snake_case ( A ) -> List[Any]: lowerCAmelCase__ = torch.sin(t * math.pi / 2 ) ** 2 lowerCAmelCase__ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(a_ , a_ ) class a__ ( _UpperCAmelCase ): '''simple docstring''' pass class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> Optional[Any]: super().__init__() lowerCAmelCase__ = DiffusionAttnUnetaD(lowerCamelCase_ , n_attn_layers=4 ) lowerCAmelCase__ = deepcopy(self.diffusion ) lowerCAmelCase__ = torch.quasirandom.SobolEngine(1 , scramble=lowerCamelCase_ ) def _snake_case ( A ) -> Optional[int]: lowerCAmelCase__ = MODELS_MAP[model_name]['''url'''] os.system(F"""wget {url} ./""" ) return F"""./{model_name}.ckpt""" __UpperCAmelCase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } __UpperCAmelCase = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } __UpperCAmelCase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } __UpperCAmelCase = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } __UpperCAmelCase = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } __UpperCAmelCase = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def _snake_case ( A ) -> Union[str, Any]: if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def _snake_case ( A ) -> Optional[Any]: for key, value in ATTN_MAP.items(): if name.startswith(a_ ) and not isinstance(a_ , a_ ): return name.replace(a_ , a_ ) elif name.startswith(a_ ): return [name.replace(a_ , a_ ) for v in value] raise ValueError(F"""Attn error with {name}""" ) def _snake_case ( A , A=13 ) -> Tuple: lowerCAmelCase__ = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) lowerCAmelCase__ = 0 if string.startswith('''net.3.''' ): depth += 1 lowerCAmelCase__ = string[6:] elif string.startswith('''net.''' ): lowerCAmelCase__ = string[4:] while string.startswith('''main.7.''' ): depth += 1 lowerCAmelCase__ = string[7:] if string.startswith('''main.''' ): lowerCAmelCase__ = string[5:] # mid block if string[:2].isdigit(): lowerCAmelCase__ = string[:2] lowerCAmelCase__ = string[2:] else: lowerCAmelCase__ = string[0] lowerCAmelCase__ = string[1:] if depth == max_depth: lowerCAmelCase__ = MID_NUM_TO_LAYER[layer_num] lowerCAmelCase__ = '''mid_block''' elif depth > 0 and int(a_ ) < 7: lowerCAmelCase__ = DOWN_NUM_TO_LAYER[layer_num] lowerCAmelCase__ = F"""down_blocks.{depth}""" elif depth > 0 and int(a_ ) > 7: lowerCAmelCase__ = UP_NUM_TO_LAYER[layer_num] lowerCAmelCase__ = F"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: lowerCAmelCase__ = DEPTH_0_TO_LAYER[layer_num] lowerCAmelCase__ = F"""up_blocks.{max_depth - 1}""" if int(a_ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F"""Naming error with {input_string} and string_left: {string_left}.""" ) lowerCAmelCase__ = string_left[1:] if "resnets" in new_layer: lowerCAmelCase__ = convert_resconv_naming(a_ ) elif "attentions" in new_layer: lowerCAmelCase__ = convert_attn_naming(a_ ) lowerCAmelCase__ = new_string_left if not isinstance(a_ , a_ ): lowerCAmelCase__ = prefix + '''.''' + new_layer + '''.''' + string_left else: lowerCAmelCase__ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def _snake_case ( A ) -> Optional[Any]: lowerCAmelCase__ = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue lowerCAmelCase__ = rename(a_ ) # check if we need to transform from Conv => Linear for attention if isinstance(a_ , a_ ): lowerCAmelCase__ = transform_conv_attns(a_ , a_ , a_ ) else: lowerCAmelCase__ = v return new_state_dict def _snake_case ( A , A , A ) -> Union[str, Any]: if len(a_ ) == 1: if len(v.shape ) == 3: # weight lowerCAmelCase__ = v[:, :, 0] else: # bias lowerCAmelCase__ = v else: # qkv matrices lowerCAmelCase__ = v.shape[0] lowerCAmelCase__ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: lowerCAmelCase__ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: lowerCAmelCase__ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def _snake_case ( A ) -> int: lowerCAmelCase__ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) lowerCAmelCase__ = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" lowerCAmelCase__ = download(a_ ) lowerCAmelCase__ = MODELS_MAP[model_name]['''sample_rate'''] lowerCAmelCase__ = MODELS_MAP[model_name]['''sample_size'''] lowerCAmelCase__ = Object() lowerCAmelCase__ = sample_size lowerCAmelCase__ = sample_rate lowerCAmelCase__ = 0 lowerCAmelCase__ = UNetaDModel(sample_size=a_ , sample_rate=a_ ) lowerCAmelCase__ = diffusers_model.state_dict() lowerCAmelCase__ = DiffusionUncond(a_ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=a_ )['''state_dict'''] ) lowerCAmelCase__ = orig_model.diffusion_ema.eval() lowerCAmelCase__ = orig_model.state_dict() lowerCAmelCase__ = rename_orig_weights(a_ ) lowerCAmelCase__ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) lowerCAmelCase__ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(a_ ) == 0, F"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith('''kernel''' ) for k in list(a_ ) ), F"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": lowerCAmelCase__ = value.squeeze() lowerCAmelCase__ = value diffusers_model.load_state_dict(a_ ) lowerCAmelCase__ = 100 lowerCAmelCase__ = 33 lowerCAmelCase__ = IPNDMScheduler(num_train_timesteps=a_ ) lowerCAmelCase__ = torch.manual_seed(a_ ) lowerCAmelCase__ = torch.randn([1, 2, config.sample_size] , generator=a_ ).to(a_ ) lowerCAmelCase__ = torch.linspace(1 , 0 , steps + 1 , device=a_ )[:-1] lowerCAmelCase__ = get_crash_schedule(a_ ) lowerCAmelCase__ = DanceDiffusionPipeline(unet=a_ , scheduler=a_ ) lowerCAmelCase__ = torch.manual_seed(33 ) lowerCAmelCase__ = pipe(num_inference_steps=a_ , generator=a_ ).audios lowerCAmelCase__ = sampling.iplms_sample(a_ , a_ , a_ , {} ) lowerCAmelCase__ = generated.clamp(-1 , 1 ) lowerCAmelCase__ = (generated - audio).abs().sum() lowerCAmelCase__ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , a_ ) print('''Diff max''' , a_ ) assert diff_max < 1E-3, F"""Diff max: {diff_max} is too much :-/""" print(F"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') __UpperCAmelCase = parser.parse_args() main(args)
718
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __UpperCAmelCase = False class a__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( image=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images lowerCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
98
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase : Union[str, Any] = { 'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'], 'tokenization_canine': ['CanineTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ 'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST', 'CanineForMultipleChoice', 'CanineForQuestionAnswering', 'CanineForSequenceClassification', 'CanineForTokenClassification', 'CanineLayer', 'CanineModel', 'CaninePreTrainedModel', 'load_tf_weights_in_canine', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'gpt_bigcode' _UpperCamelCase = ['past_key_values'] _UpperCamelCase = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self ,_lowerCAmelCase=5_02_57 ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=None ,_lowerCAmelCase="gelu_pytorch_tanh" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=5_02_56 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,**_lowerCAmelCase ,): lowerCamelCase__ = vocab_size lowerCamelCase__ = n_positions lowerCamelCase__ = n_embd lowerCamelCase__ = n_layer lowerCamelCase__ = n_head lowerCamelCase__ = n_inner lowerCamelCase__ = activation_function lowerCamelCase__ = resid_pdrop lowerCamelCase__ = embd_pdrop lowerCamelCase__ = attn_pdrop lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = initializer_range lowerCamelCase__ = scale_attn_weights lowerCamelCase__ = use_cache lowerCamelCase__ = attention_softmax_in_fpaa lowerCamelCase__ = scale_attention_softmax_in_fpaa lowerCamelCase__ = multi_query lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase )
50
1
from statistics import mean, stdev def UpperCamelCase__( UpperCamelCase__ : list , UpperCamelCase__ : int = 3 )->list: A__ = min(SCREAMING_SNAKE_CASE_ ) A__ = max(SCREAMING_SNAKE_CASE_ ) # normalize data return [round((x - x_min) / (x_max - x_min) , SCREAMING_SNAKE_CASE_ ) for x in data] def UpperCamelCase__( UpperCamelCase__ : list , UpperCamelCase__ : int = 3 )->list: A__ = mean(SCREAMING_SNAKE_CASE_ ) A__ = stdev(SCREAMING_SNAKE_CASE_ ) # standardize data return [round((x - mu) / (sigma) , SCREAMING_SNAKE_CASE_ ) for x in data]
702
from ...configuration_utils import PretrainedConfig from ...utils import logging a__: Any = logging.get_logger(__name__) a__: List[str] = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''trocr''' __SCREAMING_SNAKE_CASE = ['''past_key_values'''] __SCREAMING_SNAKE_CASE = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self,__lowerCamelCase=5_0265,__lowerCamelCase=1024,__lowerCamelCase=12,__lowerCamelCase=16,__lowerCamelCase=4096,__lowerCamelCase="gelu",__lowerCamelCase=512,__lowerCamelCase=0.1,__lowerCamelCase=0.0,__lowerCamelCase=0.0,__lowerCamelCase=2,__lowerCamelCase=0.02,__lowerCamelCase=0.0,__lowerCamelCase=True,__lowerCamelCase=False,__lowerCamelCase=True,__lowerCamelCase=True,__lowerCamelCase=1,__lowerCamelCase=0,__lowerCamelCase=2,**__lowerCamelCase,): A__ = vocab_size A__ = d_model A__ = decoder_layers A__ = decoder_attention_heads A__ = decoder_ffn_dim A__ = activation_function A__ = max_position_embeddings A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = init_std A__ = decoder_layerdrop A__ = use_cache A__ = scale_embedding A__ = use_learned_position_embeddings A__ = layernorm_embedding super().__init__( pad_token_id=__lowerCamelCase,bos_token_id=__lowerCamelCase,eos_token_id=__lowerCamelCase,decoder_start_token_id=__lowerCamelCase,**__lowerCamelCase,)
212
0
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: # Initialise PyTorch model _a : int = BigBirdConfig.from_json_file(lowerCAmelCase_ ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: _a : Union[str, Any] = BigBirdForQuestionAnswering(lowerCAmelCase_ ) else: _a : Any = BigBirdForPreTraining(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(lowerCAmelCase_ , lowerCAmelCase_ , is_trivia_qa=lowerCAmelCase_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--big_bird_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_trivia_qa''', action='''store_true''', help='''Whether to convert a model with a trivia_qa head.''' ) __lowerCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
358
'''simple docstring''' def __lowerCamelCase ( ) -> Union[str, Any]: _a : Optional[Any] = [] _a : List[str] = 1 while len(lowerCAmelCase_ ) < 1E6: constant.append(str(lowerCAmelCase_ ) ) i += 1 _a : Optional[Any] = ''.join(lowerCAmelCase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
358
1
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=0.2 , __UpperCamelCase=0.2 )-> str: '''simple docstring''' UpperCAmelCase__ : List[str] = bp_numa UpperCAmelCase__ : str = bp_numa UpperCAmelCase__ : List[Any] = bp_numa UpperCAmelCase__ : Union[str, Any] = conva_get[:2] UpperCAmelCase__ : Dict = conva_get[2] UpperCAmelCase__ : List[Any] = size_pa UpperCAmelCase__ : Optional[int] = rate_w UpperCAmelCase__ : Any = rate_t UpperCAmelCase__ : List[str] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] UpperCAmelCase__ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCAmelCase__ : Optional[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCAmelCase__ : Dict = -2 * np.random.rand(self.conva[1] ) + 1 UpperCAmelCase__ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 UpperCAmelCase__ : Optional[Any] = -2 * np.random.rand(self.num_bpa ) + 1 def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(__UpperCamelCase , "wb" ) as f: pickle.dump(__UpperCamelCase , __UpperCamelCase ) print(F"Model saved: {save_path}" ) @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase )-> Dict: '''simple docstring''' with open(__UpperCamelCase , "rb" ) as f: UpperCAmelCase__ : Union[str, Any] = pickle.load(__UpperCamelCase ) # noqa: S301 UpperCAmelCase__ : Optional[Any] = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) UpperCAmelCase__ : str = model_dic.get("size_pooling1" ) UpperCAmelCase__ : List[str] = model_dic.get("num_bp1" ) UpperCAmelCase__ : Union[str, Any] = model_dic.get("num_bp2" ) UpperCAmelCase__ : Dict = model_dic.get("num_bp3" ) UpperCAmelCase__ : int = model_dic.get("rate_weight" ) UpperCAmelCase__ : str = model_dic.get("rate_thre" ) # create model instance UpperCAmelCase__ : int = CNN(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # modify model parameter UpperCAmelCase__ : List[Any] = model_dic.get("w_conv1" ) UpperCAmelCase__ : int = model_dic.get("wkj" ) UpperCAmelCase__ : Any = model_dic.get("vji" ) UpperCAmelCase__ : int = model_dic.get("thre_conv1" ) UpperCAmelCase__ : Optional[int] = model_dic.get("thre_bp2" ) UpperCAmelCase__ : Dict = model_dic.get("thre_bp3" ) return conv_ins def lowerCAmelCase__ ( self , __UpperCamelCase )-> Dict: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Tuple: '''simple docstring''' return round(__UpperCamelCase , 3 ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Tuple: '''simple docstring''' UpperCAmelCase__ : Optional[int] = convs[0] UpperCAmelCase__ : Union[str, Any] = convs[1] UpperCAmelCase__ : Tuple = np.shape(__UpperCamelCase )[0] # get the data slice of original image data, data_focus UpperCAmelCase__ : Optional[int] = [] for i_focus in range(0 , size_data - size_conv + 1 , __UpperCamelCase ): for j_focus in range(0 , size_data - size_conv + 1 , __UpperCamelCase ): UpperCAmelCase__ : int = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__UpperCamelCase ) # calculate the feature map of every single kernel, and saved as list of matrix UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Union[str, Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__UpperCamelCase ): UpperCAmelCase__ : str = [] for i_focus in range(len(__UpperCamelCase ) ): UpperCAmelCase__ : Dict = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__UpperCamelCase ) ) UpperCAmelCase__ : int = np.asmatrix(__UpperCamelCase ).reshape( __UpperCamelCase , __UpperCamelCase ) data_featuremap.append(__UpperCamelCase ) # expanding the data slice to One dimenssion UpperCAmelCase__ : Any = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) ) UpperCAmelCase__ : List[str] = np.asarray(__UpperCamelCase ) return focus_list, data_featuremap def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="average_pool" )-> Tuple: '''simple docstring''' UpperCAmelCase__ : List[Any] = len(featuremaps[0] ) UpperCAmelCase__ : Dict = int(size_map / size_pooling ) UpperCAmelCase__ : Dict = [] for i_map in range(len(__UpperCamelCase ) ): UpperCAmelCase__ : Optional[Any] = featuremaps[i_map] UpperCAmelCase__ : List[str] = [] for i_focus in range(0 , __UpperCamelCase , __UpperCamelCase ): for j_focus in range(0 , __UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : List[str] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__UpperCamelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__UpperCamelCase ) ) UpperCAmelCase__ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase , __UpperCamelCase ) featuremap_pooled.append(__UpperCamelCase ) return featuremap_pooled def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: '''simple docstring''' UpperCAmelCase__ : List[str] = [] for i in range(len(__UpperCamelCase ) ): UpperCAmelCase__ : Optional[Any] = np.shape(data[i] ) UpperCAmelCase__ : Tuple = data[i].reshape(1 , shapes[0] * shapes[1] ) UpperCAmelCase__ : Optional[Any] = data_listed.getA().tolist()[0] data_expanded.extend(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = np.asarray(__UpperCamelCase ) return data_expanded def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: '''simple docstring''' UpperCAmelCase__ : Tuple = np.asarray(__UpperCamelCase ) UpperCAmelCase__ : Any = np.shape(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Tuple = 0 for i_map in range(__UpperCamelCase ): UpperCAmelCase__ : str = np.ones((size_map, size_map) ) for i in range(0 , __UpperCamelCase , __UpperCamelCase ): for j in range(0 , __UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : List[Any] = pd_pool[ i_pool ] UpperCAmelCase__ : str = i_pool + 1 UpperCAmelCase__ : Optional[Any] = np.multiply( __UpperCamelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(__UpperCamelCase ) return pd_all def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=bool )-> Optional[int]: '''simple docstring''' print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(__UpperCamelCase )) ) print((" - - Shape: Teach_Data ", np.shape(__UpperCamelCase )) ) UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : Any = 1_00_00 while rp < n_repeat and mse >= error_accuracy: UpperCAmelCase__ : str = 0 print(F"-------------Learning Time {rp}--------------" ) for p in range(len(__UpperCamelCase ) ): # print('------------Learning Image: %d--------------'%p) UpperCAmelCase__ : Union[str, Any] = np.asmatrix(datas_train[p] ) UpperCAmelCase__ : int = np.asarray(datas_teach[p] ) UpperCAmelCase__ : Any = self.convolute( __UpperCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCAmelCase__ : Dict = self.pooling(__UpperCamelCase , self.size_poolinga ) UpperCAmelCase__ : List[str] = np.shape(__UpperCamelCase ) UpperCAmelCase__ : str = self._expand(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = data_bp_input UpperCAmelCase__ : str = np.dot(__UpperCamelCase , self.vji.T ) - self.thre_bpa UpperCAmelCase__ : Dict = self.sig(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = np.dot(__UpperCamelCase , self.wkj.T ) - self.thre_bpa UpperCAmelCase__ : Optional[int] = self.sig(__UpperCamelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- UpperCAmelCase__ : List[str] = np.multiply( (data_teach - bp_outa) , np.multiply(__UpperCamelCase , (1 - bp_outa) ) ) UpperCAmelCase__ : Tuple = np.multiply( np.dot(__UpperCamelCase , self.wkj ) , np.multiply(__UpperCamelCase , (1 - bp_outa) ) ) UpperCAmelCase__ : int = np.dot(__UpperCamelCase , self.vji ) UpperCAmelCase__ : str = pd_i_all / (self.size_poolinga * self.size_poolinga) UpperCAmelCase__ : List[Any] = pd_conva_pooled.T.getA().tolist() UpperCAmelCase__ : str = self._calculate_gradient_from_pool( __UpperCamelCase , __UpperCamelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): UpperCAmelCase__ : Any = self._expand_mat(pd_conva_all[k_conv] ) UpperCAmelCase__ : Optional[int] = self.rate_weight * np.dot(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Tuple = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) UpperCAmelCase__ : int = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer UpperCAmelCase__ : str = self.wkj + pd_k_all.T * bp_outa * self.rate_weight UpperCAmelCase__ : Tuple = self.vji + pd_j_all.T * bp_outa * self.rate_weight UpperCAmelCase__ : Optional[int] = self.thre_bpa - pd_k_all * self.rate_thre UpperCAmelCase__ : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image UpperCAmelCase__ : Optional[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) UpperCAmelCase__ : int = rp + 1 UpperCAmelCase__ : Union[str, Any] = error_count / patterns all_mse.append(__UpperCamelCase ) def draw_error(): UpperCAmelCase__ : Optional[int] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__UpperCamelCase , "+-" ) plt.plot(__UpperCamelCase , "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(__UpperCamelCase , alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, F" - - Mse: {mse:.6f}") ) if draw_e: draw_error() return mse def lowerCAmelCase__ ( self , __UpperCamelCase )-> Dict: '''simple docstring''' UpperCAmelCase__ : List[str] = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(__UpperCamelCase )) ) for p in range(len(__UpperCamelCase ) ): UpperCAmelCase__ : Tuple = np.asmatrix(datas_test[p] ) UpperCAmelCase__ : Optional[Any] = self.convolute( __UpperCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCAmelCase__ : Any = self.pooling(__UpperCamelCase , self.size_poolinga ) UpperCAmelCase__ : Tuple = self._expand(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = data_bp_input UpperCAmelCase__ : Optional[int] = bp_outa * self.vji.T - self.thre_bpa UpperCAmelCase__ : Any = self.sig(__UpperCamelCase ) UpperCAmelCase__ : List[str] = bp_outa * self.wkj.T - self.thre_bpa UpperCAmelCase__ : Any = self.sig(__UpperCamelCase ) produce_out.extend(bp_outa.getA().tolist() ) UpperCAmelCase__ : Tuple = [list(map(self.do_round , __UpperCamelCase ) ) for each in produce_out] return np.asarray(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: '''simple docstring''' UpperCAmelCase__ : Any = np.asmatrix(__UpperCamelCase ) UpperCAmelCase__ : str = self.convolute( __UpperCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCAmelCase__ : Dict = self.pooling(__UpperCamelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
711
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self , __UpperCamelCase = 7_68 , )-> Union[str, Any]: super().__init__() UpperCAmelCase__ : str = nn.Parameter(torch.zeros(1 , __UpperCamelCase ) ) UpperCAmelCase__ : Optional[int] = nn.Parameter(torch.ones(1 , __UpperCamelCase ) ) def lowerCAmelCase__ ( self , __UpperCamelCase = None , __UpperCamelCase = None , )-> Any: UpperCAmelCase__ : Dict = nn.Parameter(self.mean.to(__UpperCamelCase ).to(__UpperCamelCase ) ) UpperCAmelCase__ : Any = nn.Parameter(self.std.to(__UpperCamelCase ).to(__UpperCamelCase ) ) return self def lowerCAmelCase__ ( self , __UpperCamelCase )-> Union[str, Any]: UpperCAmelCase__ : Dict = (embeds - self.mean) * 1.0 / self.std return embeds def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[Any]: UpperCAmelCase__ : Any = (embeds * self.std) + self.mean return embeds
660
0
from argparse import ArgumentParser from . import BaseTransformersCLICommand def __snake_case ( _lowerCAmelCase : Optional[int] ) -> Optional[int]: return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __magic_name__ ( __lowercase ): """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE ( snake_case :ArgumentParser ): '''simple docstring''' A_ : Optional[Any] = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=UpperCamelCase__ , default=UpperCamelCase__ , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=UpperCamelCase__ , help="Name of the model to download" ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self :Union[str, Any] , snake_case :str , snake_case :str , snake_case :bool , snake_case :bool ): '''simple docstring''' A_ : int = model A_ : Optional[int] = cache A_ : List[str] = force A_ : Any = trust_remote_code def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
454
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''biogpt''' def __init__( self : Optional[Any] , UpperCamelCase__ : str=42384 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : Dict=24 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Dict=1e-1_2 , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : Optional[Any]=2 , **UpperCamelCase__ : List[Any] , ): A = vocab_size A = max_position_embeddings A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = scale_embedding A = use_cache A = layerdrop A = activation_dropout super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
699
0
from __future__ import annotations def _lowerCamelCase ( _a , _a ): """simple docstring""" _lowerCamelCase , _lowerCamelCase = set(_a ), [start] while stack: _lowerCamelCase = stack.pop() explored.add(_a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_a ) return explored _UpperCAmelCase = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
297
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class __magic_name__ ( lowercase_ ): """simple docstring""" _UpperCamelCase = "xlm-prophetnet" _UpperCamelCase = ["past_key_values"] _UpperCamelCase = { "num_attention_heads": "num_encoder_attention_heads", } def __init__( self , a__ = 0.1 , a__ = "gelu" , a__ = 3_05_22 , a__ = 10_24 , a__ = 40_96 , a__ = 12 , a__ = 16 , a__ = 40_96 , a__ = 12 , a__ = 16 , a__ = 0.1 , a__ = 0.1 , a__ = 5_12 , a__ = 0.02 , a__ = True , a__ = True , a__ = 0 , a__ = 2 , a__ = 32 , a__ = 1_28 , a__ = False , a__ = 0.0 , a__ = True , a__ = 0 , a__ = 1 , a__ = 2 , **a__ , ): _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = encoder_ffn_dim _lowerCamelCase = num_encoder_layers _lowerCamelCase = num_encoder_attention_heads _lowerCamelCase = decoder_ffn_dim _lowerCamelCase = num_decoder_layers _lowerCamelCase = num_decoder_attention_heads _lowerCamelCase = max_position_embeddings _lowerCamelCase = init_std # Normal(0, this parameter) _lowerCamelCase = activation_function # parameters for xlmprophetnet _lowerCamelCase = ngram _lowerCamelCase = num_buckets _lowerCamelCase = relative_max_distance _lowerCamelCase = disable_ngram_loss _lowerCamelCase = eps # 3 Types of Dropout _lowerCamelCase = attention_dropout _lowerCamelCase = activation_dropout _lowerCamelCase = dropout _lowerCamelCase = use_cache super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , add_cross_attention=a__ , decoder_start_token_id=a__ , **a__ , ) @property def _UpperCAmelCase ( self ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def _UpperCAmelCase ( self , a__ ): raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
297
1
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel a__ : List[Any] = logging.getLogger(__name__) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if os.path.exists(lowerCAmelCase_ ): if os.path.exists(os.path.join(lowerCAmelCase_ , "config.json" ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , "config.json" ) ): os.remove(os.path.join(lowerCAmelCase_ , "config.json" ) ) if os.path.exists(os.path.join(lowerCAmelCase_ , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(lowerCAmelCase_ , "pytorch_model.bin" ) ): os.remove(os.path.join(lowerCAmelCase_ , "pytorch_model.bin" ) ) else: os.makedirs(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_=False ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 2 if unlogit: __SCREAMING_SNAKE_CASE = torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = p * torch.log(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = 0 return -plogp.sum(dim=-1 ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' logger.info("lv, h >\t" + "\t".join(f"""{x + 1}""" for x in range(len(lowerCAmelCase_ ) ) ) ) for row in range(len(lowerCAmelCase_ ) ): if tensor.dtype != torch.long: logger.info(f"""layer {row + 1}:\t""" + "\t".join(f"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(f"""layer {row + 1}:\t""" + "\t".join(f"""{x:d}""" for x in tensor[row].cpu().data ) ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=False ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = model.config.num_hidden_layers, model.config.num_attention_heads __SCREAMING_SNAKE_CASE = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) __SCREAMING_SNAKE_CASE = torch.zeros(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) if head_mask is None: __SCREAMING_SNAKE_CASE = torch.ones(lowerCAmelCase_ , lowerCAmelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCAmelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 0.0 __SCREAMING_SNAKE_CASE = 0.0 for step, inputs in enumerate(tqdm(lowerCAmelCase_ , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): __SCREAMING_SNAKE_CASE = tuple(t.to(args.device ) for t in inputs ) ((__SCREAMING_SNAKE_CASE) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = entropy(attn.detach() , lowerCAmelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCAmelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = torch.pow(torch.pow(lowerCAmelCase_ , lowerCAmelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: __SCREAMING_SNAKE_CASE = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(lowerCAmelCase_ ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(lowerCAmelCase_ ) logger.info("Head ranked by importance scores" ) __SCREAMING_SNAKE_CASE = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __SCREAMING_SNAKE_CASE = torch.arange( head_importance.numel() , device=args.device ) __SCREAMING_SNAKE_CASE = head_ranks.view_as(lowerCAmelCase_ ) print_ad_tensor(lowerCAmelCase_ ) return attn_entropy, head_importance, total_loss def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , lowerCAmelCase_ , original_score * args.masking_threshold ) __SCREAMING_SNAKE_CASE = torch.ones_like(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __SCREAMING_SNAKE_CASE = original_score while current_score >= original_score * args.masking_threshold: __SCREAMING_SNAKE_CASE = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __SCREAMING_SNAKE_CASE = float("Inf" ) __SCREAMING_SNAKE_CASE = head_importance.view(-1 ).sort()[1] if len(lowerCAmelCase_ ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads __SCREAMING_SNAKE_CASE = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) __SCREAMING_SNAKE_CASE = new_head_mask.view(-1 ) __SCREAMING_SNAKE_CASE = 0.0 __SCREAMING_SNAKE_CASE = new_head_mask.view_as(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = new_head_mask.clone().detach() print_ad_tensor(lowerCAmelCase_ ) # Compute metric and head importance again __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , lowerCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("Final head mask" ) print_ad_tensor(lowerCAmelCase_ ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = datetime.now() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = 1 / loss __SCREAMING_SNAKE_CASE = datetime.now() - before_time __SCREAMING_SNAKE_CASE = sum(p.numel() for p in model.parameters() ) __SCREAMING_SNAKE_CASE = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = [ v, ] assert sum(len(lowerCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = sum(p.numel() for p in model.parameters() ) __SCREAMING_SNAKE_CASE = datetime.now() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = compute_heads_importance( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , compute_entropy=lowerCAmelCase_ , compute_importance=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , actually_pruned=lowerCAmelCase_ , ) __SCREAMING_SNAKE_CASE = 1 / loss __SCREAMING_SNAKE_CASE = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , lowerCAmelCase_ , lowerCAmelCase_ , pruned_num_params / original_num_params * 100 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , lowerCAmelCase_ , lowerCAmelCase_ ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 100 ) save_model(lowerCAmelCase_ , args.output_dir ) def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=lowerCAmelCase_ , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=lowerCAmelCase_ , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=lowerCAmelCase_ , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=lowerCAmelCase_ , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=lowerCAmelCase_ , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=lowerCAmelCase_ , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=128 , type=lowerCAmelCase_ , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=lowerCAmelCase_ , help="Batch size." ) parser.add_argument("--seed" , type=lowerCAmelCase_ , default=42 ) parser.add_argument("--local_rank" , type=lowerCAmelCase_ , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=lowerCAmelCase_ , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=lowerCAmelCase_ , default="" , help="Can be used for distant debugging." ) __SCREAMING_SNAKE_CASE = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __SCREAMING_SNAKE_CASE = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) __SCREAMING_SNAKE_CASE = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __SCREAMING_SNAKE_CASE = torch.device("cuda" , args.local_rank ) __SCREAMING_SNAKE_CASE = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __SCREAMING_SNAKE_CASE = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __SCREAMING_SNAKE_CASE = nn.parallel.DistributedDataParallel( lowerCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase_ ) elif args.n_gpu > 1: __SCREAMING_SNAKE_CASE = nn.DataParallel(lowerCAmelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCAmelCase_ ) torch.save(lowerCAmelCase_ , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , lowerCAmelCase_ ) # Prepare dataset __SCREAMING_SNAKE_CASE = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __SCREAMING_SNAKE_CASE = (torch.from_numpy(lowerCAmelCase_ ),) __SCREAMING_SNAKE_CASE = TensorDataset(*lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = RandomSampler(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __SCREAMING_SNAKE_CASE = mask_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) prune_heads(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
682
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a__ : Optional[Any] = 1_6 a__ : str = 3_2 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ = 16 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("bert-base-cased" ) __SCREAMING_SNAKE_CASE = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) __SCREAMING_SNAKE_CASE = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __SCREAMING_SNAKE_CASE = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. __SCREAMING_SNAKE_CASE = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __SCREAMING_SNAKE_CASE = 16 elif accelerator.mixed_precision != "no": __SCREAMING_SNAKE_CASE = 8 else: __SCREAMING_SNAKE_CASE = None return tokenizer.pad( lowerCAmelCase_ , padding="longest" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="pt" , ) # Instantiate dataloaders. __SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["train"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a__ : List[Any] = mocked_dataloaders # noqa: F811 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCAmelCase_ ) == "1": __SCREAMING_SNAKE_CASE = 2 # Initialize accelerator __SCREAMING_SNAKE_CASE = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __SCREAMING_SNAKE_CASE = config["lr"] __SCREAMING_SNAKE_CASE = int(config["num_epochs"] ) __SCREAMING_SNAKE_CASE = int(config["seed"] ) __SCREAMING_SNAKE_CASE = int(config["batch_size"] ) __SCREAMING_SNAKE_CASE = evaluate.load("glue" , "mrpc" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase_ ) def inner_training_loop(lowerCAmelCase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __SCREAMING_SNAKE_CASE = model.to(accelerator.device ) # Instantiate optimizer __SCREAMING_SNAKE_CASE = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate scheduler __SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = outputs.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) __SCREAMING_SNAKE_CASE = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowerCAmelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
682
1
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING a = logging.get_logger(__name__) @add_end_docstrings(snake_case ) class a_ ( snake_case ): def __init__( self : Any , *a_ : Union[str, Any] , **a_ : str ) -> Tuple: super().__init__(*a_ , **a_ ) self.check_model_type(a_ ) def UpperCamelCase ( self : List[Any] , a_ : Tuple=None , a_ : List[Any]=None , a_ : Dict=None , **a_ : int ) -> int: snake_case , snake_case: Optional[Any] ={}, {} if padding is not None: snake_case: Optional[int] =padding if truncation is not None: snake_case: Any =truncation if top_k is not None: snake_case: Any =top_k return preprocess_params, {}, postprocess_params def __call__( self : Optional[Any] , a_ : Union["Image.Image", str] , a_ : str = None , **a_ : str ) -> List[Any]: if isinstance(a_ , (Image.Image, str) ) and isinstance(a_ , a_ ): snake_case: Union[str, Any] ={'image': image, 'question': question} else: snake_case: int =image snake_case: Optional[Any] =super().__call__(a_ , **a_ ) return results def UpperCamelCase ( self : Any , a_ : List[str] , a_ : List[str]=False , a_ : int=False ) -> List[Any]: snake_case: List[str] =load_image(inputs['image'] ) snake_case: Union[str, Any] =self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=a_ , truncation=a_ ) snake_case: Optional[Any] =self.image_processor(images=a_ , return_tensors=self.framework ) model_inputs.update(a_ ) return model_inputs def UpperCamelCase ( self : Optional[Any] , a_ : List[Any] ) -> int: snake_case: str =self.model(**a_ ) return model_outputs def UpperCamelCase ( self : Optional[Any] , a_ : Optional[int] , a_ : Optional[int]=5 ) -> Optional[Any]: if top_k > self.model.config.num_labels: snake_case: Dict =self.model.config.num_labels if self.framework == "pt": snake_case: Union[str, Any] =model_outputs.logits.sigmoid()[0] snake_case , snake_case: List[str] =probs.topk(a_ ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) snake_case: List[Any] =scores.tolist() snake_case: Optional[int] =ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(a_ , a_ )]
347
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class a_ ( snake_case ): UpperCAmelCase : Dict = """time_series_transformer""" UpperCAmelCase : Optional[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Any , a_ : Optional[int] = None , a_ : Optional[int] = None , a_ : str = "student_t" , a_ : str = "nll" , a_ : int = 1 , a_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , a_ : Optional[Union[str, bool]] = "mean" , a_ : int = 0 , a_ : int = 0 , a_ : int = 0 , a_ : int = 0 , a_ : Optional[List[int]] = None , a_ : Optional[List[int]] = None , a_ : int = 3_2 , a_ : int = 3_2 , a_ : int = 2 , a_ : int = 2 , a_ : int = 2 , a_ : int = 2 , a_ : bool = True , a_ : str = "gelu" , a_ : int = 6_4 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : int = 1_0_0 , a_ : float = 0.0_2 , a_ : Optional[int]=True , **a_ : Tuple , ) -> Optional[int]: # time series specific configuration snake_case: Dict =prediction_length snake_case: Any =context_length or prediction_length snake_case: str =distribution_output snake_case: List[str] =loss snake_case: Optional[Any] =input_size snake_case: Optional[Any] =num_time_features snake_case: List[str] =lags_sequence snake_case: Union[str, Any] =scaling snake_case: List[str] =num_dynamic_real_features snake_case: Any =num_static_real_features snake_case: Dict =num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(a_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) snake_case: Dict =cardinality else: snake_case: Dict =[0] if embedding_dimension and num_static_categorical_features > 0: if len(a_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) snake_case: List[Any] =embedding_dimension else: snake_case: str =[min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case: Any =num_parallel_samples # Transformer architecture configuration snake_case: Union[str, Any] =input_size * len(a_ ) + self._number_of_features snake_case: List[Any] =d_model snake_case: int =encoder_attention_heads snake_case: Optional[int] =decoder_attention_heads snake_case: str =encoder_ffn_dim snake_case: List[Any] =decoder_ffn_dim snake_case: str =encoder_layers snake_case: List[str] =decoder_layers snake_case: List[Any] =dropout snake_case: Union[str, Any] =attention_dropout snake_case: Optional[int] =activation_dropout snake_case: str =encoder_layerdrop snake_case: Optional[int] =decoder_layerdrop snake_case: Tuple =activation_function snake_case: List[Any] =init_std snake_case: Union[str, Any] =use_cache super().__init__(is_encoder_decoder=a_ , **a_ ) @property def UpperCamelCase ( self : Tuple ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
347
1
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING lowerCAmelCase: Union[str, Any] =logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class lowerCamelCase__ ( __UpperCamelCase ): def __init__( self , *snake_case , **snake_case ) -> Any: """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) requires_backends(self , """vision""" ) self.check_model_type(snake_case__ ) def __call__( self , snake_case , **snake_case ) -> Optional[int]: """simple docstring""" return super().__call__(snake_case__ , **snake_case__ ) def _UpperCAmelCase ( self , **snake_case ) -> Dict: """simple docstring""" return {}, {}, {} def _UpperCAmelCase ( self , snake_case ) -> Tuple: """simple docstring""" lowercase : Dict = load_image(snake_case__ ) lowercase : Optional[Any] = image.size lowercase : List[str] = self.image_processor(images=snake_case__ , return_tensors=self.framework ) return model_inputs def _UpperCAmelCase ( self , snake_case ) -> List[str]: """simple docstring""" lowercase : Any = self.model(**snake_case__ ) return model_outputs def _UpperCAmelCase ( self , snake_case ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[int] = model_outputs.predicted_depth lowercase : List[str] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=snake_case__ ) lowercase : Optional[int] = prediction.squeeze().cpu().numpy() lowercase : Dict = (output * 2_5_5 / np.max(snake_case__ )).astype("""uint8""" ) lowercase : Any = Image.fromarray(snake_case__ ) lowercase : List[Any] = {} lowercase : Union[str, Any] = predicted_depth lowercase : List[Any] = depth return output_dict
607
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __lowerCAmelCase ( _UpperCamelCase : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = args.pruning_method SCREAMING_SNAKE_CASE = args.threshold SCREAMING_SNAKE_CASE = args.model_name_or_path.rstrip('/' ) SCREAMING_SNAKE_CASE = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) SCREAMING_SNAKE_CASE = torch.load(os.path.join(_UpperCamelCase , 'pytorch_model.bin' ) ) SCREAMING_SNAKE_CASE = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: SCREAMING_SNAKE_CASE = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: SCREAMING_SNAKE_CASE = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: SCREAMING_SNAKE_CASE = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": SCREAMING_SNAKE_CASE = MagnitudeBinarizer.apply(inputs=_UpperCamelCase , threshold=_UpperCamelCase ) SCREAMING_SNAKE_CASE = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue SCREAMING_SNAKE_CASE = name[:-6] SCREAMING_SNAKE_CASE = model[f"""{prefix_}mask_scores"""] SCREAMING_SNAKE_CASE = TopKBinarizer.apply(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue SCREAMING_SNAKE_CASE = name[:-6] SCREAMING_SNAKE_CASE = model[f"""{prefix_}mask_scores"""] SCREAMING_SNAKE_CASE = ThresholdBinarizer.apply(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue SCREAMING_SNAKE_CASE = name[:-6] SCREAMING_SNAKE_CASE = model[f"""{prefix_}mask_scores"""] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -0.1, 1.1 SCREAMING_SNAKE_CASE = torch.sigmoid(_UpperCamelCase ) SCREAMING_SNAKE_CASE = s * (r - l) + l SCREAMING_SNAKE_CASE = s_bar.clamp(min=0.0 , max=1.0 ) SCREAMING_SNAKE_CASE = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: SCREAMING_SNAKE_CASE = os.path.join( os.path.dirname(_UpperCamelCase ) , f"""bertarized_{os.path.basename(_UpperCamelCase )}""" ) if not os.path.isdir(_UpperCamelCase ): shutil.copytree(_UpperCamelCase , _UpperCamelCase ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(_UpperCamelCase , os.path.join(_UpperCamelCase , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) a_ : Dict = parser.parse_args() main(args)
439
0
from __future__ import annotations def lowerCAmelCase (__UpperCamelCase : list , __UpperCamelCase : int | None = None , __UpperCamelCase : int | None = None ): """simple docstring""" if start is None: __UpperCamelCase =0 if end is None: __UpperCamelCase =len(__UpperCamelCase ) - 1 if start >= end: return __UpperCamelCase =(start + end) // 2 slowsort(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) slowsort(__UpperCamelCase , mid + 1 , __UpperCamelCase ) if sequence[end] < sequence[mid]: __UpperCamelCase , __UpperCamelCase =sequence[mid], sequence[end] slowsort(__UpperCamelCase , __UpperCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
707
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowercase ( __a ): """simple docstring""" lowercase__ = ['''image_processor''', '''tokenizer'''] lowercase__ = '''ChineseCLIPImageProcessor''' lowercase__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : int , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[Any]=None , **UpperCamelCase__ : int ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCamelCase__ , ) __UpperCamelCase =kwargs.pop('''feature_extractor''' ) __UpperCamelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =self.image_processor def __call__( self : List[str] , UpperCamelCase__ : str=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : int=None , **UpperCamelCase__ : Dict ) -> Dict: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __UpperCamelCase =self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if images is not None: __UpperCamelCase =self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and images is not None: __UpperCamelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def UpperCAmelCase_ ( self : Any , *UpperCamelCase__ : Dict , **UpperCamelCase__ : str ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : int , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : List[str] ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def UpperCAmelCase_ ( self : Any ) -> str: '''simple docstring''' __UpperCamelCase =self.tokenizer.model_input_names __UpperCamelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase_ ( self : Any ) -> int: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCamelCase__ , ) return self.image_processor_class
296
0
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : int , lowerCamelCase : Any , lowerCamelCase : Tuple ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(unet=lowerCamelCase , scheduler=lowerCamelCase ) @torch.no_grad() def __call__( self : Dict , lowerCamelCase : int = 1 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : int = 50 , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , **lowerCamelCase : List[Any] , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" _UpperCAmelCase = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=lowerCamelCase , ) _UpperCAmelCase = image.to(self.device ) # set step values self.scheduler.set_timesteps(lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _UpperCAmelCase = self.unet(lowerCamelCase , lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample _UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=lowerCamelCase ), "This is a local test"
108
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
108
1
"""simple docstring""" import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class _lowercase ( lowerCAmelCase , unittest.TestCase ): _a : Optional[int] = ProphetNetTokenizer _a : Dict = False def _UpperCamelCase ( self : Dict ): """simple docstring""" super().setUp() __snake_case : Any =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __snake_case : Tuple =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _UpperCamelCase ( self : Tuple , a : List[str] ): """simple docstring""" __snake_case : Any ='''UNwant\u00E9d,running''' __snake_case : Optional[int] ='''unwanted, running''' return input_text, output_text def _UpperCamelCase ( self : Optional[int] ): """simple docstring""" __snake_case : Optional[Any] =self.tokenizer_class(self.vocab_file ) __snake_case : Dict =tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def _UpperCamelCase ( self : List[str] ): """simple docstring""" __snake_case : Union[str, Any] =BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" __snake_case : Optional[int] =BasicTokenizer(do_lower_case=a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _UpperCamelCase ( self : List[Any] ): """simple docstring""" __snake_case : str =BasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def _UpperCamelCase ( self : Tuple ): """simple docstring""" __snake_case : str =BasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _UpperCamelCase ( self : Optional[int] ): """simple docstring""" __snake_case : Any =BasicTokenizer(do_lower_case=a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _UpperCamelCase ( self : str ): """simple docstring""" __snake_case : List[Any] =BasicTokenizer(do_lower_case=a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _UpperCamelCase ( self : Tuple ): """simple docstring""" __snake_case : Union[str, Any] =BasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _UpperCamelCase ( self : Dict ): """simple docstring""" __snake_case : str =BasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" __snake_case : Tuple =BasicTokenizer(do_lower_case=a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def _UpperCamelCase ( self : Optional[Any] ): """simple docstring""" __snake_case : Optional[Any] =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __snake_case : Tuple ={} for i, token in enumerate(a ): __snake_case : Optional[int] =i __snake_case : str =WordpieceTokenizer(vocab=a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) @require_torch def _UpperCamelCase ( self : str ): """simple docstring""" __snake_case : Optional[Any] =self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) __snake_case : int =['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __snake_case : Dict =[1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] __snake_case : List[Any] =tokenizer(a , padding=a , return_tensors='''pt''' ) self.assertIsInstance(a , a ) __snake_case : Optional[Any] =list(batch.input_ids.numpy()[0] ) self.assertListEqual(a , a ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def _UpperCamelCase ( self : str ): """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def _UpperCamelCase ( self : int ): """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def _UpperCamelCase ( self : int ): """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) @slow def _UpperCamelCase ( self : int ): """simple docstring""" __snake_case : Union[str, Any] =self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) __snake_case : Any =tokenizer.encode('''sequence builders''' , add_special_tokens=a ) __snake_case : Union[str, Any] =tokenizer.encode('''multi-sequence build''' , add_special_tokens=a ) __snake_case : List[str] =tokenizer.build_inputs_with_special_tokens(a ) __snake_case : List[Any] =tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
497
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ : Optional[int] = logging.get_logger(__name__) UpperCamelCase_ : Union[str, Any] = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class _lowercase ( lowerCAmelCase ): _a : str = '''ctrl''' _a : Optional[int] = ['''past_key_values'''] _a : List[Any] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : str , a : Optional[int]=2_4_6_5_3_4 , a : Optional[int]=2_5_6 , a : Optional[int]=1_2_8_0 , a : Any=8_1_9_2 , a : int=4_8 , a : Optional[Any]=1_6 , a : str=0.1 , a : str=0.1 , a : Any=1e-6 , a : Optional[int]=0.0_2 , a : int=True , **a : str , ): """simple docstring""" __snake_case : Tuple =vocab_size __snake_case : Optional[Any] =n_positions __snake_case : List[Any] =n_embd __snake_case : Any =n_layer __snake_case : Any =n_head __snake_case : str =dff __snake_case : List[str] =resid_pdrop __snake_case : str =embd_pdrop __snake_case : Union[str, Any] =layer_norm_epsilon __snake_case : List[Any] =initializer_range __snake_case : Any =use_cache super().__init__(**a )
497
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a = logging.get_logger(__name__) a = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } a = {'''facebook/blenderbot-3B''': 128} class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = VOCAB_FILES_NAMES UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] UpperCAmelCase : Any = BlenderbotTokenizer def __init__( self : Optional[Any] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Optional[int]="replace" , _UpperCAmelCase : int="<s>" , _UpperCAmelCase : str="</s>" , _UpperCAmelCase : List[Any]="</s>" , _UpperCAmelCase : int="<s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : List[str]="<pad>" , _UpperCAmelCase : Optional[int]="<mask>" , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : str=True , **_UpperCAmelCase : str , ): super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase , **_UpperCAmelCase , ) _A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _UpperCAmelCase ) != add_prefix_space: _A = getattr(_UpperCAmelCase , pre_tok_state.pop('type' ) ) _A = add_prefix_space _A = pre_tok_class(**_UpperCAmelCase ) _A = add_prefix_space _A = 'post_processor' _A = getattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) if tokenizer_component_instance: _A = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _A = tuple(state['sep'] ) if "cls" in state: _A = tuple(state['cls'] ) _A = False if state.get('add_prefix_space' , _UpperCAmelCase ) != add_prefix_space: _A = add_prefix_space _A = True if state.get('trim_offsets' , _UpperCAmelCase ) != trim_offsets: _A = trim_offsets _A = True if changes_to_apply: _A = getattr(_UpperCAmelCase , state.pop('type' ) ) _A = component_class(**_UpperCAmelCase ) setattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCAmelCase_ ( self : Optional[Any] ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Union[str, Any] ): _A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else value _A = value def lowerCAmelCase_ ( self : int , *_UpperCAmelCase : int , **_UpperCAmelCase : Optional[int] ): _A = kwargs.get('is_split_into_words' , _UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Union[str, Any] ): _A = kwargs.get('is_split_into_words' , _UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): _A = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase_ ( self : int , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCAmelCase_ ( self : int , _UpperCAmelCase : "Conversation" ): _A = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(_UpperCAmelCase ) _A = ' '.join(_UpperCAmelCase ) _A = self.encode(_UpperCAmelCase ) if len(_UpperCAmelCase ) > self.model_max_length: _A = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
7
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase = { """configuration_blenderbot_small""": [ """BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotSmallConfig""", """BlenderbotSmallOnnxConfig""", ], """tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""BlenderbotSmallTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotSmallForCausalLM""", """BlenderbotSmallForConditionalGeneration""", """BlenderbotSmallModel""", """BlenderbotSmallPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """TFBlenderbotSmallForConditionalGeneration""", """TFBlenderbotSmallModel""", """TFBlenderbotSmallPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """FlaxBlenderbotSmallForConditionalGeneration""", """FlaxBlenderbotSmallModel""", """FlaxBlenderbotSmallPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
474
0
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCAmelCase__ ( a__ ): A = 42 class lowerCAmelCase__ ( a__ ,a__ ): @register_to_config def __init__( self : int , UpperCamelCase_ : List[str] = 32 , UpperCamelCase_ : int = 64 , UpperCamelCase_ : Dict = 20 , UpperCamelCase_ : str = 768 , UpperCamelCase_ : Optional[Any]=77 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : Dict = 0.0 , UpperCamelCase_ : Optional[int] = "silu" , UpperCamelCase_ : List[Any] = None , UpperCamelCase_ : Dict = None , UpperCamelCase_ : Optional[int] = "linear" , UpperCamelCase_ : str = "prd" , UpperCamelCase_ : Dict = None , UpperCamelCase_ : Any = None , UpperCamelCase_ : Optional[int] = None , ) -> Dict: """simple docstring""" super().__init__() lowerCamelCase_ : Any = num_attention_heads lowerCamelCase_ : Optional[int] = attention_head_dim lowerCamelCase_ : Tuple = num_attention_heads * attention_head_dim lowerCamelCase_ : Optional[Any] = additional_embeddings lowerCamelCase_ : Union[str, Any] = time_embed_dim or inner_dim lowerCamelCase_ : Union[str, Any] = embedding_proj_dim or embedding_dim lowerCamelCase_ : Optional[int] = clip_embed_dim or embedding_dim lowerCamelCase_ : int = Timesteps(_A , _A , 0 ) lowerCamelCase_ : int = TimestepEmbedding(_A , _A , out_dim=_A , act_fn=_A ) lowerCamelCase_ : List[Any] = nn.Linear(_A , _A ) if embedding_proj_norm_type is None: lowerCamelCase_ : Optional[Any] = None elif embedding_proj_norm_type == "layer": lowerCamelCase_ : List[Any] = nn.LayerNorm(_A ) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) lowerCamelCase_ : Tuple = nn.Linear(_A , _A ) if encoder_hid_proj_type is None: lowerCamelCase_ : int = None elif encoder_hid_proj_type == "linear": lowerCamelCase_ : List[Any] = nn.Linear(_A , _A ) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) lowerCamelCase_ : Dict = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _A ) ) if added_emb_type == "prd": lowerCamelCase_ : Dict = nn.Parameter(torch.zeros(1 , 1 , _A ) ) elif added_emb_type is None: lowerCamelCase_ : List[Any] = None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) lowerCamelCase_ : List[Any] = nn.ModuleList( [ BasicTransformerBlock( _A , _A , _A , dropout=_A , activation_fn='''gelu''' , attention_bias=_A , ) for d in range(_A ) ] ) if norm_in_type == "layer": lowerCamelCase_ : Any = nn.LayerNorm(_A ) elif norm_in_type is None: lowerCamelCase_ : Any = None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" ) lowerCamelCase_ : Union[str, Any] = nn.LayerNorm(_A ) lowerCamelCase_ : int = nn.Linear(_A , _A ) lowerCamelCase_ : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10_000.0 ) causal_attention_mask.triu_(1 ) lowerCamelCase_ : Tuple = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , _A , persistent=_A ) lowerCamelCase_ : Tuple = nn.Parameter(torch.zeros(1 , _A ) ) lowerCamelCase_ : Dict = nn.Parameter(torch.zeros(1 , _A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" lowerCamelCase_ : List[Any] = {} def fn_recursive_add_processors(UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict ): if hasattr(_A , '''set_processor''' ): lowerCamelCase_ : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , _A , _A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_A , _A , _A ) return processors def __UpperCamelCase ( self : Tuple , UpperCamelCase_ : Any ) -> Dict: """simple docstring""" lowerCamelCase_ : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_A , _A ) and len(_A ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] ): if hasattr(_A , '''set_processor''' ): if not isinstance(_A , _A ): module.set_processor(_A ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , _A , _A ) for name, module in self.named_children(): fn_recursive_attn_processor(_A , _A , _A ) def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" self.set_attn_processor(AttnProcessor() ) def __UpperCamelCase ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : str = True , ) -> List[Any]: """simple docstring""" lowerCamelCase_ : str = hidden_states.shape[0] lowerCamelCase_ : int = timestep if not torch.is_tensor(_A ): lowerCamelCase_ : str = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: lowerCamelCase_ : Dict = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCamelCase_ : Optional[int] = timesteps * torch.ones(_A , dtype=timesteps.dtype , device=timesteps.device ) lowerCamelCase_ : Dict = self.time_proj(_A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowerCamelCase_ : Any = timesteps_projected.to(dtype=self.dtype ) lowerCamelCase_ : Optional[Any] = self.time_embedding(_A ) if self.embedding_proj_norm is not None: lowerCamelCase_ : int = self.embedding_proj_norm(_A ) lowerCamelCase_ : str = self.embedding_proj(_A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowerCamelCase_ : str = self.encoder_hidden_states_proj(_A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) lowerCamelCase_ : Any = self.proj_in(_A ) lowerCamelCase_ : Dict = self.positional_embedding.to(hidden_states.dtype ) lowerCamelCase_ : List[Any] = [] lowerCamelCase_ : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowerCamelCase_ : int = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowerCamelCase_ : Any = hidden_states[:, None, :] lowerCamelCase_ : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowerCamelCase_ : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(_A , -1 , -1 ) additional_embeds.append(_A ) lowerCamelCase_ : List[str] = torch.cat( _A , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowerCamelCase_ : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowerCamelCase_ : Any = F.pad( _A , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) lowerCamelCase_ : int = hidden_states + positional_embeddings if attention_mask is not None: lowerCamelCase_ : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10_000.0 lowerCamelCase_ : Union[str, Any] = F.pad(_A , (0, self.additional_embeddings) , value=0.0 ) lowerCamelCase_ : Tuple = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowerCamelCase_ : Optional[Any] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: lowerCamelCase_ : Any = self.norm_in(_A ) for block in self.transformer_blocks: lowerCamelCase_ : int = block(_A , attention_mask=_A ) lowerCamelCase_ : Union[str, Any] = self.norm_out(_A ) if self.prd_embedding is not None: lowerCamelCase_ : Optional[int] = hidden_states[:, -1] else: lowerCamelCase_ : Any = hidden_states[:, additional_embeddings_len:] lowerCamelCase_ : Optional[int] = self.proj_to_clip_embeddings(_A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_A ) def __UpperCamelCase ( self : List[Any] , UpperCamelCase_ : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase_ : Optional[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
716
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Tuple = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = ["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = ["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = [ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
418
0
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __UpperCamelCase : Dict = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None ): # Recurse if needed if "." in tensor_name: lowerCAmelCase = tensor_name.split('.' ) for split in splits[:-1]: lowerCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) lowerCAmelCase = new_module lowerCAmelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'{module} does not have a parameter or a buffer named {tensor_name}.' ) lowerCAmelCase = tensor_name in module._buffers lowerCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(F'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) lowerCAmelCase = False lowerCAmelCase = False if is_buffer or not is_bitsandbytes_available(): lowerCAmelCase = False lowerCAmelCase = False else: lowerCAmelCase = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) lowerCAmelCase = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: lowerCAmelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: lowerCAmelCase = old_value.to(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , torch.Tensor ): lowerCAmelCase = value.to('cpu' ) if value.dtype == torch.inta: lowerCAmelCase = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: lowerCAmelCase = torch.tensor(_UpperCAmelCase , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , _UpperCAmelCase ) and fpaa_statistics is None: lowerCAmelCase = new_value.T lowerCAmelCase = old_value.__dict__ if is_abit: lowerCAmelCase = bnb.nn.IntaParams(_UpperCAmelCase , requires_grad=_UpperCAmelCase , **_UpperCAmelCase ).to(_UpperCAmelCase ) elif is_abit: lowerCAmelCase = bnb.nn.Paramsabit(_UpperCAmelCase , requires_grad=_UpperCAmelCase , **_UpperCAmelCase ).to(_UpperCAmelCase ) lowerCAmelCase = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(_UpperCAmelCase ) ) else: if value is None: lowerCAmelCase = old_value.to(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , torch.Tensor ): lowerCAmelCase = value.to(_UpperCAmelCase ) else: lowerCAmelCase = torch.tensor(_UpperCAmelCase , device=_UpperCAmelCase ) if is_buffer: lowerCAmelCase = new_value else: lowerCAmelCase = nn.Parameter(_UpperCAmelCase , requires_grad=old_value.requires_grad ) lowerCAmelCase = new_value def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=False ): for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase = [] current_key_name.append(_UpperCAmelCase ) if (isinstance(_UpperCAmelCase , nn.Linear ) or isinstance(_UpperCAmelCase , _UpperCAmelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(_UpperCAmelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCAmelCase ,lowerCAmelCase = module.weight.shape else: lowerCAmelCase = module.in_features lowerCAmelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": lowerCAmelCase = bnb.nn.LinearabitLt( _UpperCAmelCase , _UpperCAmelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) lowerCAmelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: lowerCAmelCase = bnb.nn.Linearabit( _UpperCAmelCase , _UpperCAmelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) lowerCAmelCase = True # Store the module class in case we need to transpose the weight later lowerCAmelCase = type(_UpperCAmelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_UpperCAmelCase ) if len(list(module.children() ) ) > 0: lowerCAmelCase ,lowerCAmelCase = _replace_with_bnb_linear( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , has_been_replaced=_UpperCAmelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None ): lowerCAmelCase = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert lowerCAmelCase ,lowerCAmelCase = _replace_with_bnb_linear( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def _SCREAMING_SNAKE_CASE (*_UpperCAmelCase : List[Any] , **_UpperCAmelCase : str ): warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , _UpperCAmelCase , ) return replace_with_bnb_linear(*_UpperCAmelCase , **_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (*_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Optional[int] ): warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , _UpperCAmelCase , ) return set_module_quantized_tensor_to_device(*_UpperCAmelCase , **_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): lowerCAmelCase = deepcopy(_UpperCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() lowerCAmelCase = find_tied_parameters(_UpperCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCAmelCase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCAmelCase = sum(_UpperCAmelCase , [] ) lowerCAmelCase = len(_UpperCAmelCase ) > 0 # Check if it is a base model lowerCAmelCase = not hasattr(_UpperCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase = list(model.named_children() ) lowerCAmelCase = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase = set(_UpperCAmelCase ) - set(_UpperCAmelCase ) lowerCAmelCase = list(set(_UpperCAmelCase ) ) + list(_UpperCAmelCase ) # remove ".weight" from the keys lowerCAmelCase = ['.weight', '.bias'] lowerCAmelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase = name.replace(_UpperCAmelCase , '' ) filtered_module_names.append(_UpperCAmelCase ) return filtered_module_names
4
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) SCREAMING_SNAKE_CASE: str = _symbol_database.Default() SCREAMING_SNAKE_CASE: Dict = _descriptor_pool.Default().AddSerializedFile( b'''\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03''' ) SCREAMING_SNAKE_CASE: Optional[Any] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, '''sentencepiece_model_pb2''', _globals) if _descriptor._USE_C_DESCRIPTORS is False: SCREAMING_SNAKE_CASE: List[Any] = None SCREAMING_SNAKE_CASE: str = b'''H\003''' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" SCREAMING_SNAKE_CASE: List[Any] = 4_5 SCREAMING_SNAKE_CASE: List[Any] = 1_5_8_1 SCREAMING_SNAKE_CASE: Union[str, Any] = 1_5_1_7 SCREAMING_SNAKE_CASE: Any = 1_5_7_0 SCREAMING_SNAKE_CASE: Union[str, Any] = 1_5_8_4 SCREAMING_SNAKE_CASE: str = 1_7_9_3 SCREAMING_SNAKE_CASE: List[Any] = 1_7_9_5 SCREAMING_SNAKE_CASE: Any = 1_9_1_6 SCREAMING_SNAKE_CASE: Optional[Any] = 1_8_6_4 SCREAMING_SNAKE_CASE: Union[str, Any] = 1_9_0_5 SCREAMING_SNAKE_CASE: str = 1_9_1_9 SCREAMING_SNAKE_CASE: Any = 2_4_2_9 SCREAMING_SNAKE_CASE: Dict = 2_2_0_8 SCREAMING_SNAKE_CASE: Optional[Any] = 2_4_1_8 SCREAMING_SNAKE_CASE: Optional[Any] = 2_3_2_3 SCREAMING_SNAKE_CASE: Tuple = 2_4_0_7 # @@protoc_insertion_point(module_scope)
360
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : Optional[int] = "https://openaipublic.azureedge.net/jukebox/models/" _lowercase : List[Any] = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def _lowerCAmelCase ( UpperCamelCase__: Optional[int] ) -> Union[str, Any]: """simple docstring""" if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: A = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: A = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: A = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: A = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: A = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: A = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: A = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: A = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def _lowerCAmelCase ( UpperCamelCase__: Tuple , UpperCamelCase__: Optional[int] , UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] ) -> Optional[int]: """simple docstring""" A = {} import re A = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) A = re.compile( r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) A = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) A = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) A = re.compile( r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) A = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) A = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) A = re.compile( r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) A = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(UpperCamelCase__ ): A = re_encoder_block_conv_in.match(UpperCamelCase__ ) A = regex_match.groups() A = int(groups[2] ) * 2 + int(groups[3] ) A = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' A = re_encoder_block_conv_in.sub(UpperCamelCase__ , UpperCamelCase__ ) elif re_encoder_block_resnet.fullmatch(UpperCamelCase__ ): A = re_encoder_block_resnet.match(UpperCamelCase__ ) A = regex_match.groups() A = int(groups[2] ) * 2 + int(groups[3] ) A = {"""1""": 1, """3""": 2}[groups[-2]] A = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' A = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' A = prefix + resnet_block A = re_encoder_block_resnet.sub(UpperCamelCase__ , UpperCamelCase__ ) elif re_encoder_block_proj_out.fullmatch(UpperCamelCase__ ): A = re_encoder_block_proj_out.match(UpperCamelCase__ ) A = regex_match.groups() A = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' A = re_encoder_block_proj_out.sub(UpperCamelCase__ , UpperCamelCase__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(UpperCamelCase__ ): A = re_decoder_block_conv_out.match(UpperCamelCase__ ) A = regex_match.groups() A = int(groups[2] ) * 2 + int(groups[3] ) - 2 A = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' A = re_decoder_block_conv_out.sub(UpperCamelCase__ , UpperCamelCase__ ) elif re_decoder_block_resnet.fullmatch(UpperCamelCase__ ): A = re_decoder_block_resnet.match(UpperCamelCase__ ) A = regex_match.groups() A = int(groups[2] ) * 2 + int(groups[3] ) - 2 A = {"""1""": 1, """3""": 2}[groups[-2]] A = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' A = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' A = prefix + resnet_block A = re_decoder_block_resnet.sub(UpperCamelCase__ , UpperCamelCase__ ) elif re_decoder_block_proj_in.fullmatch(UpperCamelCase__ ): A = re_decoder_block_proj_in.match(UpperCamelCase__ ) A = regex_match.groups() A = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' A = re_decoder_block_proj_in.sub(UpperCamelCase__ , UpperCamelCase__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(UpperCamelCase__ ): A = re_prior_cond_conv_out.match(UpperCamelCase__ ) A = regex_match.groups() A = int(groups[1] ) * 2 + int(groups[2] ) - 2 A = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' A = re_prior_cond_conv_out.sub(UpperCamelCase__ , UpperCamelCase__ ) elif re_prior_cond_resnet.fullmatch(UpperCamelCase__ ): A = re_prior_cond_resnet.match(UpperCamelCase__ ) A = regex_match.groups() A = int(groups[1] ) * 2 + int(groups[2] ) - 2 A = {"""1""": 1, """3""": 2}[groups[-2]] A = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' A = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' A = prefix + resnet_block A = re_prior_cond_resnet.sub(UpperCamelCase__ , UpperCamelCase__ ) elif re_prior_cond_proj_in.fullmatch(UpperCamelCase__ ): A = re_prior_cond_proj_in.match(UpperCamelCase__ ) A = regex_match.groups() A = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' A = re_prior_cond_proj_in.sub(UpperCamelCase__ , UpperCamelCase__ ) # keep original key else: A = original_key A = replace_key(UpperCamelCase__ ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: A = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) A = original_key A = original_key A = value return new_dict @torch.no_grad() def _lowerCAmelCase ( UpperCamelCase__: Union[str, Any]=None , UpperCamelCase__: Union[str, Any]=None ) -> Any: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): A = requests.get(f'{PREFIX}{file}' , allow_redirects=UpperCamelCase__ ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=UpperCamelCase__ ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , """wb""" ).write(r.content ) A = MODEL_MAPPING[model_name.split("""/""" )[-1]] A = JukeboxConfig.from_pretrained(UpperCamelCase__ ) A = JukeboxModel(UpperCamelCase__ ) A = [] A = {} for i, dict_name in enumerate(UpperCamelCase__ ): A = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["""model"""] A = {} for k in old_dic.keys(): if k.endswith(""".b""" ): A = old_dic[k] elif k.endswith(""".w""" ): A = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: A = old_dic[k] else: A = old_dic[k] A = """vqvae""" if i == 0 else f'priors.{3 - i}' A = fix_jukebox_keys(UpperCamelCase__ , model.state_dict() , UpperCamelCase__ , UpperCamelCase__ ) weight_dict.append(UpperCamelCase__ ) A = weight_dict.pop(0 ) model.vqvae.load_state_dict(UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) with open(f'{pytorch_dump_folder_path}/mapping.json' , """w""" ) as txtfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase__ ) return weight_dict if __name__ == "__main__": _lowercase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) _lowercase : Optional[Any] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
546
from __future__ import annotations import requests def _lowerCAmelCase ( UpperCamelCase__: str ) -> dict: """simple docstring""" A = f'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(UpperCamelCase__ ).json() def _lowerCAmelCase ( UpperCamelCase__: int = 10 ) -> list[dict]: """simple docstring""" A = """https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty""" A = requests.get(UpperCamelCase__ ).json()[:max_stories] return [get_hackernews_story(UpperCamelCase__ ) for story_id in story_ids] def _lowerCAmelCase ( UpperCamelCase__: int = 10 ) -> str: """simple docstring""" A = hackernews_top_stories(UpperCamelCase__ ) return "\n".join("""* [{title}]({url})""".format(**UpperCamelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
546
1
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class UpperCAmelCase ( __lowerCamelCase ): __lowercase = "M-CLIP" def __init__( self :Dict , lowercase_ :Any=10_24 , lowercase_ :Union[str, Any]=7_68 , **lowercase_ :List[Any] )-> Union[str, Any]: A__ = transformerDimSize A__ = imageDimSize super().__init__(**lowercase_ ) class UpperCAmelCase ( __lowerCamelCase ): __lowercase = MCLIPConfig def __init__( self :Union[str, Any] , lowercase_ :List[str] , *lowercase_ :List[str] , **lowercase_ :List[Any] )-> Optional[int]: super().__init__(lowercase_ , *lowercase_ , **lowercase_ ) A__ = XLMRobertaModel(lowercase_ ) A__ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :str , lowercase_ :Optional[Any] )-> List[str]: A__ = self.transformer(input_ids=lowercase_ , attention_mask=lowercase_ )[0] A__ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(lowercase_ ), embs
440
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : Union[List[PIL.Image.Image], np.ndarray] a : Optional[List[bool]] a : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
253
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) while cur > 1: # Find the maximum number in arr __UpperCamelCase =arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __UpperCamelCase =arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE__ )] # Reverse whole list __UpperCamelCase =arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE__ )] cur -= 1 return arr if __name__ == "__main__": _A = input('Enter numbers separated by a comma:\n').strip() _A = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
682
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : LevitConfig , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : bool = True ): print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": __UpperCamelCase =timm.create_model('levit_128s' , pretrained=SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =timm.create_model('levit_128' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 1_92: __UpperCamelCase =timm.create_model('levit_192' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 2_56: __UpperCamelCase =timm.create_model('levit_256' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 3_84: __UpperCamelCase =timm.create_model('levit_384' , pretrained=SCREAMING_SNAKE_CASE__ ) from_model.eval() __UpperCamelCase =LevitForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE__ ).eval() __UpperCamelCase =OrderedDict() __UpperCamelCase =from_model.state_dict() __UpperCamelCase =list(from_model.state_dict().keys() ) __UpperCamelCase =list(our_model.state_dict().keys() ) print(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =weights[og_keys[i]] our_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch.randn((2, 3, 2_24, 2_24) ) __UpperCamelCase =from_model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =our_model(SCREAMING_SNAKE_CASE__ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "The model logits don't match the original one." __UpperCamelCase =name print(SCREAMING_SNAKE_CASE__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __UpperCamelCase =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : bool = True ): __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =10_00 __UpperCamelCase =(1, num_labels) __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =num_labels __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =partial(SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={ 'levit-128S': 1_28, 'levit-128': 1_28, 'levit-192': 1_92, 'levit-256': 2_56, 'levit-384': 3_84, } __UpperCamelCase ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , names_to_config[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, expected_shape if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _A = parser.parse_args() _A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
682
1
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) __a :Any = logging.getLogger(__name__) @dataclass(frozen=snake_case_ ) class _a : """simple docstring""" _lowerCamelCase : str _lowerCamelCase : str _lowerCamelCase : Optional[str] = None _lowerCamelCase : Optional[str] = None _lowerCamelCase : Optional[str] = None @dataclass(frozen=snake_case_ ) class _a : """simple docstring""" _lowerCamelCase : List[int] _lowerCamelCase : Optional[List[int]] = None _lowerCamelCase : Optional[List[int]] = None _lowerCamelCase : Optional[Union[int, float]] = None _lowerCamelCase : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[InputFeatures] def __init__( self : str , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : str=False , UpperCAmelCase : bool = False , ): A_ = hans_processors[task]() A_ = os.path.join( UpperCAmelCase , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(UpperCAmelCase ) , UpperCAmelCase , ) , ) A_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ , A_ = label_list[2], label_list[1] A_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ = cached_features_file + ".lock" with FileLock(UpperCAmelCase ): if os.path.exists(UpperCAmelCase ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) A_ = torch.load(UpperCAmelCase ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) A_ = ( processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) ) logger.info("Training examples: %s" , len(UpperCAmelCase ) ) A_ = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) logger.info("Saving features into cached file %s" , UpperCAmelCase ) torch.save(self.features , UpperCAmelCase ) def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : int , UpperCAmelCase : Optional[Any] ): return self.features[i] def __A ( self : int ): return self.label_list if is_tf_available(): import tensorflow as tf class _a : """simple docstring""" _lowerCamelCase : List[InputFeatures] def __init__( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = 128 , UpperCAmelCase : int=False , UpperCAmelCase : bool = False , ): A_ = hans_processors[task]() A_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ , A_ = label_list[2], label_list[1] A_ = label_list A_ = processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) A_ = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) A_ = tf.data.Dataset.from_generator( UpperCAmelCase , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def __A ( self : List[Any] ): return self.dataset def __len__( self : List[Any] ): return len(self.features ) def __getitem__( self : Any , UpperCAmelCase : str ): return self.features[i] def __A ( self : str ): return self.label_list class _a ( snake_case_ ): """simple docstring""" def __A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] ): return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , "heuristics_train_set.txt" ) ) , "train" ) def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] ): return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , "heuristics_evaluation_set.txt" ) ) , "dev" ) def __A ( self : Union[str, Any] ): return ["contradiction", "entailment", "neutral"] def __A ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : str ): A_ = [] for i, line in enumerate(UpperCAmelCase ): if i == 0: continue A_ = "%s-%s" % (set_type, line[0]) A_ = line[5] A_ = line[6] A_ = line[7][2:] if line[7].startswith("ex" ) else line[7] A_ = line[0] examples.append(InputExample(guid=UpperCAmelCase , text_a=UpperCAmelCase , text_b=UpperCAmelCase , label=UpperCAmelCase , pairID=UpperCAmelCase ) ) return examples def __snake_case ( __UpperCamelCase : List[InputExample] ,__UpperCamelCase : List[str] ,__UpperCamelCase : int ,__UpperCamelCase : PreTrainedTokenizer ,): """simple docstring""" A_ = {label: i for i, label in enumerate(__UpperCamelCase )} A_ = [] for ex_index, example in tqdm.tqdm(enumerate(__UpperCamelCase ) ,desc="convert examples to features" ): if ex_index % 1_0000 == 0: logger.info("Writing example %d" % (ex_index) ) A_ = tokenizer( example.text_a ,example.text_b ,add_special_tokens=__UpperCamelCase ,max_length=__UpperCamelCase ,padding="max_length" ,truncation=__UpperCamelCase ,return_overflowing_tokens=__UpperCamelCase ,) A_ = label_map[example.label] if example.label in label_map else 0 A_ = int(example.pairID ) features.append(InputFeatures(**__UpperCamelCase ,label=__UpperCamelCase ,pairID=__UpperCamelCase ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(f'''guid: {example}''' ) logger.info(f'''features: {features[i]}''' ) return features __a :Union[str, Any] = { 'hans': 3, } __a :Any = { 'hans': HansProcessor, }
86
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[Any]: _A = tempfile.mkdtemp() _A = BlipImageProcessor() _A = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) _A = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) _A = InstructBlipProcessor(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).tokenizer def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Optional[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).image_processor def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).qformer_tokenizer def UpperCAmelCase ( self ) -> str: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self ) -> List[Any]: _A = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _A = self.get_image_processor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) _A = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) self.assertIsInstance(processor.qformer_tokenizer , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Optional[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = self.prepare_image_inputs() _A = image_processor(lowerCAmelCase_ , return_tensors="""np""" ) _A = processor(images=lowerCAmelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self ) -> List[str]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = """lower newer""" _A = processor(text=lowerCAmelCase_ ) _A = tokenizer(lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _A = qformer_tokenizer(lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def UpperCAmelCase ( self ) -> Any: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = """lower newer""" _A = self.prepare_image_inputs() _A = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def UpperCAmelCase ( self ) -> Dict: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(lowerCAmelCase_ ) _A = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Dict: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = """lower newer""" _A = self.prepare_image_inputs() _A = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
401
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class _lowercase ( unittest.TestCase ): def lowerCAmelCase__ ( self ): __magic_name__ = tempfile.mkdtemp() __magic_name__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __magic_name__ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __magic_name__ = os.path.join(self.tmpdirname , UpperCamelCase_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self ): __magic_name__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __magic_name__ = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self ): __magic_name__ = self.get_tokenizer() __magic_name__ = self.get_rust_tokenizer() __magic_name__ = self.get_image_processor() __magic_name__ = AlignProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) __magic_name__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase_ ) __magic_name__ = AlignProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) __magic_name__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): __magic_name__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __magic_name__ = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0 ) __magic_name__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __magic_name__ = self.prepare_image_inputs() __magic_name__ = image_processor(UpperCamelCase_ , return_tensors='''np''' ) __magic_name__ = processor(images=UpperCamelCase_ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase__ ( self ): __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __magic_name__ = '''lower newer''' __magic_name__ = processor(text=UpperCamelCase_ ) __magic_name__ = tokenizer(UpperCamelCase_ , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self ): __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __magic_name__ = '''lower newer''' __magic_name__ = self.prepare_image_inputs() __magic_name__ = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self ): __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __magic_name__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ = processor.batch_decode(UpperCamelCase_ ) __magic_name__ = tokenizer.batch_decode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): __magic_name__ = self.get_image_processor() __magic_name__ = self.get_tokenizer() __magic_name__ = AlignProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __magic_name__ = '''lower newer''' __magic_name__ = self.prepare_image_inputs() __magic_name__ = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
190
"""simple docstring""" from pathlib import Path import fire def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: __magic_name__ = Path(__UpperCamelCase ) __magic_name__ = Path(__UpperCamelCase ) dest_dir.mkdir(exist_ok=__UpperCamelCase ) for path in src_dir.iterdir(): __magic_name__ = [x.rstrip() for x in list(path.open().readlines() )][:n] __magic_name__ = dest_dir.joinpath(path.name ) print(__UpperCamelCase ) dest_path.open('''w''' ).write('''\n'''.join(__UpperCamelCase ) ) if __name__ == "__main__": fire.Fire(minify)
190
1
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.02 , ): _A = parent _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = type_sequence_label_size _A = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A = (image_size // patch_size) ** 2 _A = num_patches + 1 def lowerCAmelCase__ ( self ): _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, pixel_values def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = FlaxViTModel(config=snake_case_ ) _A = model(snake_case_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _A = (self.image_size, self.image_size) _A = (self.patch_size, self.patch_size) _A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = self.type_sequence_label_size _A = FlaxViTForImageClassification(config=snake_case_ ) _A = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A = 1 _A = FlaxViTForImageClassification(snake_case_ ) _A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A = model(snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.prepare_config_and_inputs() ( ( _A ), ( _A ), ) = config_and_inputs _A = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCAmelCase__ ( self ): _A = FlaxViTModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) _A = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A = self._prepare_for_class(snake_case_ , snake_case_ ) _A = model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ , **snake_case_ ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest('JIT Enabled' ): _A = model_jitted(**snake_case_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _A = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase__ ( self ): for model_class_name in self.all_model_classes: _A = model_class_name.from_pretrained('google/vit-base-patch16-224' ) _A = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case_ )
27
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
457
0
"""simple docstring""" from math import loga def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
714
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = original_name.split('''.''' )[0] __A = key.split('''.''' ) __A = int(key_list[key_list.index(__UpperCamelCase ) - 2] ) __A = int(key_list[key_list.index(__UpperCamelCase ) - 1] ) __A = orig_block_num - offset __A = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' ) return key def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = OrderedDict() __A , __A = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): __A = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 __A = key[: key.find('''proj''' )] __A = key.replace(__UpperCamelCase , f'patch_embeddings.{total_embed_found}.' ) __A = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: __A = '''poolformer.encoder.''' + key if "mlp.fc1" in key: __A = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: __A = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: __A = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , '''norm1''' , '''before_norm''' ) if "norm2" in key: __A = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: __A = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: __A = replace_key_with_offset(__UpperCamelCase , __UpperCamelCase , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: __A = key.replace('''head''' , '''classifier''' ) __A = value return new_state_dict def lowerCAmelCase ( ): """simple docstring""" __A = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __A = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return image @torch.no_grad() def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = PoolFormerConfig() # set attributes based on model_name __A = '''huggingface/label-files''' __A = model_name[-3:] __A = 1_0_0_0 __A = '''imagenet-1k-id2label.json''' __A = (1, 1_0_0_0) # set config attributes __A = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __A = {int(__UpperCamelCase ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} if size == "s12": __A = [2, 2, 6, 2] __A = [6_4, 1_2_8, 3_2_0, 5_1_2] __A = 4.0 __A = 0.9 elif size == "s24": __A = [4, 4, 1_2, 4] __A = [6_4, 1_2_8, 3_2_0, 5_1_2] __A = 4.0 __A = 0.9 elif size == "s36": __A = [6, 6, 1_8, 6] __A = [6_4, 1_2_8, 3_2_0, 5_1_2] __A = 4.0 __A = 1e-6 __A = 0.9 elif size == "m36": __A = [6, 6, 1_8, 6] __A = [9_6, 1_9_2, 3_8_4, 7_6_8] __A = 4.0 __A = 1e-6 __A = 0.95 elif size == "m48": __A = [8, 8, 2_4, 8] __A = [9_6, 1_9_2, 3_8_4, 7_6_8] __A = 4.0 __A = 1e-6 __A = 0.95 else: raise ValueError(f'Size {size} not supported' ) # load image processor __A = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) # Prepare image __A = prepare_img() __A = image_processor(images=__UpperCamelCase , return_tensors='''pt''' ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict __A = torch.load(__UpperCamelCase , map_location=torch.device('''cpu''' ) ) # rename keys __A = rename_keys(__UpperCamelCase ) # create HuggingFace model and load state dict __A = PoolFormerForImageClassification(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # Define image processor __A = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) __A = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass __A = model(__UpperCamelCase ) __A = outputs.logits # define expected logit slices for different models if size == "s12": __A = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __A = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __A = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __A = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __A = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowercase_ = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
215
0
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class __A : def __init__( self , UpperCamelCase_ = "cpu" , UpperCamelCase_ = "openai/clip-vit-large-patch14" ): __UpperCAmelCase : Union[str, Any] = device __UpperCAmelCase : List[Any] = CLIPTokenizerFast.from_pretrained(UpperCamelCase_ ) __UpperCAmelCase : int = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] __UpperCAmelCase : Any = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] __UpperCAmelCase : Tuple = torchvision.transforms.Normalize(self.image_mean , self.image_std ) __UpperCAmelCase : Optional[int] = torchvision.transforms.Resize(2_24 ) __UpperCAmelCase : Dict = torchvision.transforms.CenterCrop(2_24 ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[int] = self.resize(UpperCamelCase_ ) __UpperCAmelCase : int = self.center_crop(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self.normalize(UpperCamelCase_ ) return images def __call__( self , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ ): __UpperCAmelCase : Tuple = self.tokenizer(text=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : int = self.preprocess_img(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class __A (nn.Module ): def __init__( self , UpperCamelCase_=10 , UpperCamelCase_=0.0_1 , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_="image" , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=False , ): super().__init__() __UpperCAmelCase : Dict = None __UpperCAmelCase : Optional[Any] = device if device else get_device() if vqgan: __UpperCAmelCase : Optional[int] = vqgan else: __UpperCAmelCase : Any = load_vqgan(self.device , conf_path=UpperCamelCase_ , ckpt_path=UpperCamelCase_ ) self.vqgan.eval() if clip: __UpperCAmelCase : List[str] = clip else: __UpperCAmelCase : Dict = CLIPModel.from_pretrained("openai/clip-vit-base-patch32" ) self.clip.to(self.device ) __UpperCAmelCase : Optional[int] = ProcessorGradientFlow(device=self.device ) __UpperCAmelCase : int = iterations __UpperCAmelCase : Dict = lr __UpperCAmelCase : Tuple = log __UpperCAmelCase : Tuple = make_grid __UpperCAmelCase : Tuple = return_val __UpperCAmelCase : Dict = quantize __UpperCAmelCase : int = self.vqgan.decoder.z_shape def _snake_case ( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=5 , UpperCamelCase_=True ): __UpperCAmelCase : Dict = [] if output_path is None: __UpperCAmelCase : List[Any] = "./animation.gif" if input_path is None: __UpperCAmelCase : str = self.save_path __UpperCAmelCase : Any = sorted(glob(input_path + "/*" ) ) if not len(UpperCamelCase_ ): raise ValueError( "No images found in save path, aborting (did you pass save_intermediate=True to the generate" " function?)" ) if len(UpperCamelCase_ ) == 1: print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)" ) __UpperCAmelCase : Optional[int] = total_duration / len(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = [frame_duration] * len(UpperCamelCase_ ) if extend_frames: __UpperCAmelCase : int = 1.5 __UpperCAmelCase : int = 3 for file_name in paths: if file_name.endswith(".png" ): images.append(imageio.imread(UpperCamelCase_ ) ) imageio.mimsave(UpperCamelCase_ , UpperCamelCase_ , duration=UpperCamelCase_ ) print(f"""gif saved to {output_path}""" ) def _snake_case ( self , UpperCamelCase_=None , UpperCamelCase_=None ): if not (path or img): raise ValueError("Input either path or tensor" ) if img is not None: raise NotImplementedError __UpperCAmelCase : Union[str, Any] = preprocess(Image.open(UpperCamelCase_ ) , target_image_size=2_56 ).to(self.device ) __UpperCAmelCase : int = preprocess_vqgan(UpperCamelCase_ ) __UpperCAmelCase , *__UpperCAmelCase : Dict = self.vqgan.encode(UpperCamelCase_ ) return z def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : str = self.latent.detach().requires_grad_() __UpperCAmelCase : List[Any] = base_latent + transform_vector if self.quantize: __UpperCAmelCase , *__UpperCAmelCase : Tuple = self.vqgan.quantize(UpperCamelCase_ ) else: __UpperCAmelCase : Tuple = trans_latent return self.vqgan.decode(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ): __UpperCAmelCase : Optional[int] = self.clip_preprocessor(text=UpperCamelCase_ , images=UpperCamelCase_ , return_tensors="pt" , padding=UpperCamelCase_ ) __UpperCAmelCase : Tuple = self.clip(**UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = clip_outputs.logits_per_image if weights is not None: __UpperCAmelCase : List[str] = similarity_logits * weights return similarity_logits.sum() def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self._get_clip_similarity(pos_prompts["prompts"] , UpperCamelCase_ , weights=(1 / pos_prompts["weights"]) ) if neg_prompts: __UpperCAmelCase : Tuple = self._get_clip_similarity(neg_prompts["prompts"] , UpperCamelCase_ , weights=neg_prompts["weights"] ) else: __UpperCAmelCase : Dict = torch.tensor([1] , device=self.device ) __UpperCAmelCase : Union[str, Any] = -torch.log(UpperCamelCase_ ) + torch.log(UpperCamelCase_ ) return loss def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : str = torch.randn_like(self.latent , requires_grad=UpperCamelCase_ , device=self.device ) __UpperCAmelCase : List[str] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __UpperCAmelCase : List[str] = self._add_vector(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = loop_post_process(UpperCamelCase_ ) __UpperCAmelCase : Dict = self._get_CLIP_loss(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) print("CLIP loss" , UpperCamelCase_ ) if self.log: wandb.log({"CLIP Loss": clip_loss} ) clip_loss.backward(retain_graph=UpperCamelCase_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): wandb.init(reinit=UpperCamelCase_ , project="face-editor" ) wandb.config.update({"Positive Prompts": positive_prompts} ) wandb.config.update({"Negative Prompts": negative_prompts} ) wandb.config.update({"lr": self.lr, "iterations": self.iterations} ) if image_path: __UpperCAmelCase : Dict = Image.open(UpperCamelCase_ ) __UpperCAmelCase : List[str] = image.resize((2_56, 2_56) ) wandb.log("Original Image" , wandb.Image(UpperCamelCase_ ) ) def _snake_case ( self , UpperCamelCase_ ): if not prompts: return [] __UpperCAmelCase : str = [] __UpperCAmelCase : List[str] = [] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[str] = [prompt.strip() for prompt in prompts.split("|" )] for prompt in prompts: if isinstance(UpperCamelCase_ , (tuple, list) ): __UpperCAmelCase : Optional[int] = prompt[0] __UpperCAmelCase : Optional[Any] = float(prompt[1] ) elif ":" in prompt: __UpperCAmelCase , __UpperCAmelCase : Any = prompt.split(":" ) __UpperCAmelCase : Optional[int] = float(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[Any] = prompt __UpperCAmelCase : Dict = 1.0 processed_prompts.append(UpperCamelCase_ ) weights.append(UpperCamelCase_ ) return { "prompts": processed_prompts, "weights": torch.tensor(UpperCamelCase_ , device=self.device ), } def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=None , ): if image_path: __UpperCAmelCase : List[str] = self._get_latent(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) assert pos_prompts, "You must provide at least one positive prompt." __UpperCAmelCase : str = self.process_prompts(UpperCamelCase_ ) __UpperCAmelCase : Any = self.process_prompts(UpperCamelCase_ ) if save_final and save_path is None: __UpperCAmelCase : List[Any] = os.path.join("./outputs/" , "_".join(pos_prompts["prompts"] ) ) if not os.path.exists(UpperCamelCase_ ): os.makedirs(UpperCamelCase_ ) else: __UpperCAmelCase : Optional[int] = save_path + "_" + get_timestamp() os.makedirs(UpperCamelCase_ ) __UpperCAmelCase : Tuple = save_path __UpperCAmelCase : Union[str, Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("Original Image" ) show_pil(custom_to_pil(UpperCamelCase_ ) ) __UpperCAmelCase : Dict = loop_post_process(UpperCamelCase_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ): if show_intermediate: show_pil(UpperCamelCase_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}.png""" ) ) if self.log: wandb.log({"Image": wandb.Image(UpperCamelCase_ )} ) if show_final: show_pil(UpperCamelCase_ ) if save_final: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}_final.png""" ) )
168
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def _lowercase ( lowerCamelCase__ ) -> int: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __A (__magic_name__ ): @staticmethod def _snake_case ( UpperCamelCase_ ): __UpperCAmelCase : Dict = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=UpperCamelCase_ , default=UpperCamelCase_ , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=UpperCamelCase_ , help="Name of the model to download" ) download_parser.set_defaults(func=UpperCamelCase_ ) def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = model __UpperCAmelCase : int = cache __UpperCAmelCase : Union[str, Any] = force __UpperCAmelCase : Optional[int] = trust_remote_code def _snake_case ( self ): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
168
1
"""simple docstring""" def __A ( a_ : int )-> list[int]: '''simple docstring''' if num <= 0: raise ValueError('''Input must be a positive integer''' ) SCREAMING_SNAKE_CASE : Optional[int] = [True] * (num + 1) SCREAMING_SNAKE_CASE : Optional[Any] = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , a_ ): SCREAMING_SNAKE_CASE : Any = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ : str = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
18
"""simple docstring""" from __future__ import annotations from fractions import Fraction def __A ( a_ : int , a_ : int )-> bool: '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def __A ( a_ : int )-> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : List[str] = 11 SCREAMING_SNAKE_CASE : Union[str, Any] = int('''1''' + '''0''' * digit_len ) for num in range(a_ , a_ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(a_ , a_ ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 SCREAMING_SNAKE_CASE : Optional[Any] = 10 return solutions def __A ( a_ : int = 2 )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 1.0 for fraction in fraction_list(a_ ): SCREAMING_SNAKE_CASE : List[str] = Fraction(a_ ) result *= frac.denominator / frac.numerator return int(a_ ) if __name__ == "__main__": print(solution())
18
1
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run UpperCAmelCase_ = True except (ImportError, AttributeError): UpperCAmelCase_ = object def lowerCAmelCase_ ( *lowercase: Optional[Any] , **lowercase: Any ) -> List[str]: '''simple docstring''' pass UpperCAmelCase_ = False UpperCAmelCase_ = logging.get_logger('''transformers-cli/serving''') def lowerCAmelCase_ ( lowercase: Namespace ) -> Tuple: '''simple docstring''' _UpperCamelCase: Optional[int] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(lowercase , args.host , args.port , args.workers ) class __magic_name__ ( __a ): """simple docstring""" lowerCAmelCase : dict class __magic_name__ ( __a ): """simple docstring""" lowerCAmelCase : List[str] lowerCAmelCase : Optional[List[int]] class __magic_name__ ( __a ): """simple docstring""" lowerCAmelCase : str class __magic_name__ ( __a ): """simple docstring""" lowerCAmelCase : Any class __magic_name__ ( __a ): """simple docstring""" @staticmethod def lowerCAmelCase ( _lowercase : ArgumentParser ): """simple docstring""" _UpperCamelCase: Dict = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=_lowercase , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=_lowercase , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=_lowercase , default=8_888 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=_lowercase , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=_lowercase , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=_lowercase , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=_lowercase , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=_lowercase , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=_lowercase ) def __init__( self : Tuple , _lowercase : Pipeline , _lowercase : str , _lowercase : int , _lowercase : int ): """simple docstring""" _UpperCamelCase: Optional[int] = pipeline _UpperCamelCase: str = host _UpperCamelCase: List[str] = port _UpperCamelCase: Tuple = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(f"""Serving model over {host}:{port}""" ) _UpperCamelCase: List[str] = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=_lowercase , response_class=_lowercase , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=_lowercase , response_class=_lowercase , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=_lowercase , response_class=_lowercase , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=_lowercase , response_class=_lowercase , methods=['''POST'''] , ), ] , timeout=600 , ) def lowerCAmelCase ( self : List[str] ): """simple docstring""" run(self._app , host=self.host , port=self.port , workers=self.workers ) def lowerCAmelCase ( self : int ): """simple docstring""" return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def lowerCAmelCase ( self : Dict , _lowercase : str = Body(_lowercase , embed=_lowercase ) , _lowercase : bool = Body(_lowercase , embed=_lowercase ) ): """simple docstring""" try: _UpperCamelCase: List[str] = self._pipeline.tokenizer.tokenize(_lowercase ) if return_ids: _UpperCamelCase: Any = self._pipeline.tokenizer.convert_tokens_to_ids(_lowercase ) return ServeTokenizeResult(tokens=_lowercase , tokens_ids=_lowercase ) else: return ServeTokenizeResult(tokens=_lowercase ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(_lowercase )} ) def lowerCAmelCase ( self : List[Any] , _lowercase : List[int] = Body(_lowercase , embed=_lowercase ) , _lowercase : bool = Body(_lowercase , embed=_lowercase ) , _lowercase : bool = Body(_lowercase , embed=_lowercase ) , ): """simple docstring""" try: _UpperCamelCase: List[str] = self._pipeline.tokenizer.decode(_lowercase , _lowercase , _lowercase ) return ServeDeTokenizeResult(model='''''' , text=_lowercase ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(_lowercase )} ) async def lowerCAmelCase ( self : str , _lowercase : int=Body(_lowercase , embed=_lowercase ) ): """simple docstring""" if len(_lowercase ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model _UpperCamelCase: Dict = self._pipeline(_lowercase ) return ServeForwardResult(output=_lowercase ) except Exception as e: raise HTTPException(500 , {'''error''': str(_lowercase )} )
271
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCAmelCase_ ( lowercase: Dict ) -> Any: '''simple docstring''' _UpperCamelCase: Optional[Any] = fname.split(os.path.sep )[-1] return re.search(R'''^(.*)_\d+\.jpg$''' , lowercase ).groups()[0] class __magic_name__ ( __a ): """simple docstring""" def __init__( self : Dict , _lowercase : Any , _lowercase : Any=None , _lowercase : List[str]=None ): """simple docstring""" _UpperCamelCase: str = file_names _UpperCamelCase: List[Any] = image_transform _UpperCamelCase: Tuple = label_to_id def __len__( self : List[str] ): """simple docstring""" return len(self.file_names ) def __getitem__( self : List[str] , _lowercase : Optional[Any] ): """simple docstring""" _UpperCamelCase: Optional[int] = self.file_names[idx] _UpperCamelCase: Optional[int] = PIL.Image.open(_lowercase ) _UpperCamelCase: List[str] = raw_image.convert('''RGB''' ) if self.image_transform is not None: _UpperCamelCase: Optional[Any] = self.image_transform(_lowercase ) _UpperCamelCase: Tuple = extract_label(_lowercase ) if self.label_to_id is not None: _UpperCamelCase: Any = self.label_to_id[label] return {"image": image, "label": label} def lowerCAmelCase_ ( lowercase: Optional[Any] , lowercase: Any ) -> str: '''simple docstring''' # Initialize accelerator if args.with_tracking: _UpperCamelCase: Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: _UpperCamelCase: Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase: List[str] = config['''lr'''] _UpperCamelCase: int = int(config['''num_epochs'''] ) _UpperCamelCase: Optional[Any] = int(config['''seed'''] ) _UpperCamelCase: Optional[Any] = int(config['''batch_size'''] ) _UpperCamelCase: List[str] = config['''image_size'''] if not isinstance(lowercase , (list, tuple) ): _UpperCamelCase: Optional[int] = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , '''isdigit''' ): if args.checkpointing_steps == "epoch": _UpperCamelCase: Any = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): _UpperCamelCase: List[str] = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: _UpperCamelCase: Any = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: _UpperCamelCase: Union[str, Any] = os.path.split(lowercase )[-1].split('''.''' )[0] accelerator.init_trackers(lowercase , lowercase ) # Grab all the image filenames _UpperCamelCase: List[str] = [os.path.join(args.data_dir , lowercase ) for fname in os.listdir(args.data_dir ) if fname.endswith('''.jpg''' )] # Build the label correspondences _UpperCamelCase: Optional[Any] = [extract_label(lowercase ) for fname in file_names] _UpperCamelCase: int = list(set(lowercase ) ) id_to_label.sort() _UpperCamelCase: Tuple = {lbl: i for i, lbl in enumerate(lowercase )} # Set the seed before splitting the data. np.random.seed(lowercase ) torch.manual_seed(lowercase ) torch.cuda.manual_seed_all(lowercase ) # Split our filenames between train and validation _UpperCamelCase: List[str] = np.random.permutation(len(lowercase ) ) _UpperCamelCase: Dict = int(0.8 * len(lowercase ) ) _UpperCamelCase: Optional[int] = random_perm[:cut] _UpperCamelCase: Optional[int] = random_perm[cut:] # For training we use a simple RandomResizedCrop _UpperCamelCase: List[Any] = Compose([RandomResizedCrop(lowercase , scale=(0.5, 1.0) ), ToTensor()] ) _UpperCamelCase: int = PetsDataset( [file_names[i] for i in train_split] , image_transform=lowercase , label_to_id=lowercase ) # For evaluation, we use a deterministic Resize _UpperCamelCase: Dict = Compose([Resize(lowercase ), ToTensor()] ) _UpperCamelCase: str = PetsDataset([file_names[i] for i in eval_split] , image_transform=lowercase , label_to_id=lowercase ) # Instantiate dataloaders. _UpperCamelCase: str = DataLoader(lowercase , shuffle=lowercase , batch_size=lowercase , num_workers=4 ) _UpperCamelCase: str = DataLoader(lowercase , shuffle=lowercase , batch_size=lowercase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase: str = create_model('''resnet50d''' , pretrained=lowercase , num_classes=len(lowercase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCamelCase: Optional[int] = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): _UpperCamelCase: Optional[Any] = False for param in model.get_classifier().parameters(): _UpperCamelCase: Optional[int] = True # We normalize the batches of images to be a bit faster. _UpperCamelCase: Union[str, Any] = torch.tensor(model.default_cfg['''mean'''] )[None, :, None, None].to(accelerator.device ) _UpperCamelCase: List[Any] = torch.tensor(model.default_cfg['''std'''] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer _UpperCamelCase: List[str] = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler _UpperCamelCase: Any = OneCycleLR(optimizer=lowercase , max_lr=lowercase , epochs=lowercase , steps_per_epoch=len(lowercase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase: List[str] = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # We need to keep track of how many total steps we have iterated over _UpperCamelCase: Tuple = 0 # We also need to keep track of the starting epoch so files are named properly _UpperCamelCase: List[str] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) _UpperCamelCase: Union[str, Any] = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint _UpperCamelCase: Union[str, Any] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) _UpperCamelCase: Union[str, Any] = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` _UpperCamelCase: List[Any] = os.path.splitext(lowercase )[0] if "epoch" in training_difference: _UpperCamelCase: Any = int(training_difference.replace('''epoch_''' , '''''' ) ) + 1 _UpperCamelCase: List[str] = None else: _UpperCamelCase: int = int(training_difference.replace('''step_''' , '''''' ) ) _UpperCamelCase: List[Any] = resume_step // len(lowercase ) resume_step -= starting_epoch * len(lowercase ) # Now we train the model for epoch in range(lowercase , lowercase ): model.train() if args.with_tracking: _UpperCamelCase: Optional[int] = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step _UpperCamelCase: Union[str, Any] = accelerator.skip_first_batches(lowercase , lowercase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader _UpperCamelCase: Optional[int] = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. _UpperCamelCase: Optional[Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} _UpperCamelCase: int = (batch['''image'''] - mean) / std _UpperCamelCase: List[str] = model(lowercase ) _UpperCamelCase: Dict = torch.nn.functional.cross_entropy(lowercase , batch['''label'''] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(lowercase , lowercase ): _UpperCamelCase: Any = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: _UpperCamelCase: List[Any] = os.path.join(args.output_dir , lowercase ) accelerator.save_state(lowercase ) model.eval() _UpperCamelCase: List[str] = 0 _UpperCamelCase: Union[str, Any] = 0 for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. _UpperCamelCase: Optional[Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} _UpperCamelCase: Union[str, Any] = (batch['''image'''] - mean) / std with torch.no_grad(): _UpperCamelCase: List[Any] = model(lowercase ) _UpperCamelCase: Optional[Any] = outputs.argmax(dim=-1 ) _UpperCamelCase , _UpperCamelCase: Optional[int] = accelerator.gather_for_metrics((predictions, batch['''label''']) ) _UpperCamelCase: List[str] = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() _UpperCamelCase: Optional[int] = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { '''accuracy''': 100 * eval_metric, '''train_loss''': total_loss.item() / len(lowercase ), '''epoch''': epoch, } , step=lowercase , ) if checkpointing_steps == "epoch": _UpperCamelCase: Tuple = F"""epoch_{epoch}""" if args.output_dir is not None: _UpperCamelCase: Any = os.path.join(args.output_dir , lowercase ) accelerator.save_state(lowercase ) if args.with_tracking: accelerator.end_training() def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase: str = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument('''--data_dir''' , required=lowercase , help='''The data folder on disk.''' ) parser.add_argument('''--fp16''' , action='''store_true''' , help='''If passed, will use FP16 training.''' ) parser.add_argument( '''--mixed_precision''' , type=lowercase , default=lowercase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--checkpointing_steps''' , type=lowercase , default=lowercase , help='''Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.''' , ) parser.add_argument( '''--output_dir''' , type=lowercase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=lowercase , default=lowercase , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=lowercase , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) _UpperCamelCase: Any = parser.parse_args() _UpperCamelCase: Optional[int] = {'''lr''': 3E-2, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 64, '''image_size''': 224} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
271
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _lowerCamelCase : Dict = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCAmelCase : List[Any] = get_sagemaker_input() else: _lowerCAmelCase : Optional[int] = get_cluster_input() return config def _UpperCAmelCase (UpperCamelCase_ : Tuple=None ): '''simple docstring''' if subparsers is not None: _lowerCAmelCase : List[str] = subparsers.add_parser("""config""" , description=UpperCamelCase_ ) else: _lowerCAmelCase : List[str] = argparse.ArgumentParser("""Accelerate config command""" , description=UpperCamelCase_ ) parser.add_argument( """--config_file""" , default=UpperCamelCase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase_ ) return parser def _UpperCAmelCase (UpperCamelCase_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase : Tuple = get_user_input() if args.config_file is not None: _lowerCAmelCase : int = args.config_file else: if not os.path.isdir(UpperCamelCase_ ): os.makedirs(UpperCamelCase_ ) _lowerCAmelCase : List[str] = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(UpperCamelCase_ ) else: config.to_yaml_file(UpperCamelCase_ ) print(F"accelerate configuration saved at {config_file}" ) def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : str = config_command_parser() _lowerCAmelCase : Optional[int] = parser.parse_args() config_command(UpperCamelCase_ ) if __name__ == "__main__": main()
196
import logging from transformers.configuration_utils import PretrainedConfig _lowerCamelCase : Union[str, Any] = logging.getLogger(__name__) class __snake_case (_a ): lowerCAmelCase__ = "masked_bert" def __init__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Optional[Any]=768 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : List[str]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[Any]=512 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : str=1E-12 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Dict="topK" , _UpperCAmelCase : List[str]="constant" , _UpperCAmelCase : Optional[Any]=0.0 , **_UpperCAmelCase : str , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase : str = vocab_size _lowerCAmelCase : List[str] = hidden_size _lowerCAmelCase : Any = num_hidden_layers _lowerCAmelCase : Optional[Any] = num_attention_heads _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : str = max_position_embeddings _lowerCAmelCase : int = type_vocab_size _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : Optional[Any] = layer_norm_eps _lowerCAmelCase : Tuple = pruning_method _lowerCAmelCase : str = mask_init _lowerCAmelCase : List[str] = mask_scale
196
1
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') __snake_case : Any = parser.parse_args() if args.model_type == "bert": __snake_case : Union[str, Any] = BertForMaskedLM.from_pretrained(args.model_name) __snake_case : List[str] = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') __snake_case : Dict = model.state_dict() __snake_case : Optional[int] = {} for w in ["word_embeddings", "position_embeddings"]: __snake_case : Any = state_dict[F'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: __snake_case : Optional[Any] = state_dict[F'''{prefix}.embeddings.LayerNorm.{w}'''] __snake_case : Optional[int] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: __snake_case : List[Any] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] __snake_case : str = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] __snake_case : int = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] __snake_case : Union[str, Any] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] __snake_case : List[str] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] __snake_case : Tuple = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] __snake_case : List[str] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] __snake_case : Optional[int] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 __snake_case : List[Any] = state_dict['''cls.predictions.decoder.weight'''] __snake_case : str = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: __snake_case : List[Any] = state_dict[F'''cls.predictions.transform.dense.{w}'''] __snake_case : List[Any] = state_dict[F'''cls.predictions.transform.LayerNorm.{w}'''] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
660
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case : Dict = logging.get_logger(__name__) __snake_case : Tuple = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} __snake_case : Tuple = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } __snake_case : Dict = { '''abeja/gpt-neox-japanese-2.7b''': 20_48, } def lowerCamelCase__ ( A_ , A_ ): with open(A_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = json.loads(f.read() ) UpperCAmelCase_ = collections.OrderedDict() UpperCAmelCase_ = collections.OrderedDict() UpperCAmelCase_ = collections.OrderedDict() with open(A_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(A_ ): UpperCAmelCase_ = b UpperCAmelCase_ = idx for wd in b: UpperCAmelCase_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowercase_ ( _A ): a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|startoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ) -> int: """simple docstring""" super().__init__( unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , do_clean_text=UpperCamelCase__ , **UpperCamelCase__ , ) if not os.path.isfile(UpperCamelCase__ ): raise ValueError( F"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(UpperCamelCase__ ): raise ValueError( F"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) UpperCAmelCase_ = do_clean_text UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = load_vocab_and_emoji(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def lowerCamelCase_ ( self ) -> Dict: """simple docstring""" return len(self.raw_vocab ) def lowerCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> Union[str, Any]: """simple docstring""" return self.subword_tokenizer.tokenize(UpperCamelCase__ , clean=self.do_clean_text ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> int: """simple docstring""" return self.vocab.get(UpperCamelCase__ , self.vocab.get(self.unk_token ) ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> List[Any]: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(UpperCamelCase__ ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = "".join(UpperCamelCase__ ).strip() return out_string def lowerCamelCase_ ( self , UpperCamelCase__ ) -> List[int]: """simple docstring""" UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: UpperCAmelCase_ = input_ids[-self.model_max_length :] return input_ids def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase_ = 0 if os.path.isdir(UpperCamelCase__ ): UpperCAmelCase_ = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: UpperCAmelCase_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) UpperCAmelCase_ = token_index writer.write(",".join(UpperCamelCase__ ) + "\n" ) index += 1 with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , UpperCamelCase__ ) return vocab_file, emoji_file class lowercase_ ( _A ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = vocab # same as swe UpperCAmelCase_ = ids_to_tokens # same as bpe UpperCAmelCase_ = emoji UpperCAmelCase_ = np.max([len(UpperCamelCase__ ) for w in self.vocab.keys()] ) UpperCAmelCase_ = re.compile(R"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) UpperCAmelCase_ = re.compile(R"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) UpperCAmelCase_ = re.compile(R"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) UpperCAmelCase_ = re.compile( R"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase_ = re.compile( R"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase_ = re.compile( R"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) UpperCAmelCase_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" UpperCAmelCase_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" UpperCAmelCase_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self ) -> int: """simple docstring""" return len(self.ids_to_tokens ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = self.content_repattera.sub("<URL>" , UpperCamelCase__ ) UpperCAmelCase_ = self.content_repattera.sub("<EMAIL>" , UpperCamelCase__ ) UpperCAmelCase_ = self.content_repattera.sub("<TEL>" , UpperCamelCase__ ) UpperCAmelCase_ = self.content_repattera.sub("<DATE>" , UpperCamelCase__ ) UpperCAmelCase_ = self.content_repattera.sub("<DATE>" , UpperCamelCase__ ) UpperCAmelCase_ = self.content_repattera.sub("<PRICE>" , UpperCamelCase__ ) UpperCAmelCase_ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCAmelCase_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__=False ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = text.replace(" " , "<SP>" ) UpperCAmelCase_ = text.replace(" " , "<SP>" ) UpperCAmelCase_ = text.replace("\r\n" , "<BR>" ) UpperCAmelCase_ = text.replace("\n" , "<BR>" ) UpperCAmelCase_ = text.replace("\r" , "<BR>" ) UpperCAmelCase_ = text.replace("\t" , "<TAB>" ) UpperCAmelCase_ = text.replace("—" , "ー" ) UpperCAmelCase_ = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCAmelCase_ = text.replace(UpperCamelCase__ , UpperCamelCase__ ) if clean: UpperCAmelCase_ = self.clean_text(UpperCamelCase__ ) def check_simbol(UpperCamelCase__ ): UpperCAmelCase_ = x.encode() if len(UpperCamelCase__ ) == 1 and len(UpperCamelCase__ ) == 2: UpperCAmelCase_ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc_2_a_1 and c <= 0Xc_2_b_f) or (c >= 0Xc_7_8_0 and c <= 0Xc_7_8_3) or (c >= 0Xc_a_b_9 and c <= 0Xc_b_b_f) or (c >= 0Xc_c_8_0 and c <= 0Xc_d_a_2) ): return True return False def checkuae(UpperCamelCase__ ): UpperCAmelCase_ = x.encode() if len(UpperCamelCase__ ) == 1 and len(UpperCamelCase__ ) == 3: UpperCAmelCase_ = (int(e[0] ) << 1_6) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe_2_8_0_8_0 and c <= 0Xe_2_b_0_7_f: return True return False UpperCAmelCase_ = 0 UpperCAmelCase_ = [] while pos < len(UpperCamelCase__ ): UpperCAmelCase_ = min(len(UpperCamelCase__ ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 UpperCAmelCase_ = [] # (token_id, token, pos) for e in range(UpperCamelCase__ , UpperCamelCase__ , -1 ): UpperCAmelCase_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(UpperCamelCase__ ) > 2: UpperCAmelCase_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(UpperCamelCase__ ) > 0: # the smallest token_id is adopted UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : x[0] )[0] result.append(UpperCamelCase__ ) UpperCAmelCase_ = e else: UpperCAmelCase_ = pos + 1 UpperCAmelCase_ = text[pos:end] if check_simbol(UpperCamelCase__ ): result.append("<KIGOU>" ) elif checkuae(UpperCamelCase__ ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) UpperCAmelCase_ = end return result def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__="\n" ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(UpperCamelCase__ ) > 0: words.append(bytearray(UpperCamelCase__ ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(UpperCamelCase__ ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: words.append(bytearray(UpperCamelCase__ ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase_ = "".join(UpperCamelCase__ ) return text
660
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : List[str] ={ '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } UpperCAmelCase__ : Dict =logging.get_logger(__name__) class __A ( a ): __A = """mask2former""" __A = ["""swin"""] __A = {"""hidden_size""": """hidden_dim"""} def __init__( self , UpperCAmelCase_ = None , UpperCAmelCase_ = 256 , UpperCAmelCase_ = 256 , UpperCAmelCase_ = 256 , UpperCAmelCase_ = 1024 , UpperCAmelCase_ = "relu" , UpperCAmelCase_ = 6 , UpperCAmelCase_ = 10 , UpperCAmelCase_ = 8 , UpperCAmelCase_ = 0.0 , UpperCAmelCase_ = 2048 , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = 4 , UpperCAmelCase_ = 255 , UpperCAmelCase_ = 100 , UpperCAmelCase_ = 0.1 , UpperCAmelCase_ = 2.0 , UpperCAmelCase_ = 5.0 , UpperCAmelCase_ = 5.0 , UpperCAmelCase_ = 12544 , UpperCAmelCase_ = 3.0 , UpperCAmelCase_ = 0.7_5 , UpperCAmelCase_ = 0.0_2 , UpperCAmelCase_ = 1.0 , UpperCAmelCase_ = True , UpperCAmelCase_ = [4, 8, 16, 32] , UpperCAmelCase_ = None , **UpperCAmelCase_ , ): if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowerCamelCase =CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=UpperCAmelCase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =backbone_config.pop("""model_type""" ) lowerCamelCase =CONFIG_MAPPING[backbone_model_type] lowerCamelCase =config_class.from_dict(UpperCAmelCase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) lowerCamelCase =backbone_config lowerCamelCase =feature_size lowerCamelCase =mask_feature_size lowerCamelCase =hidden_dim lowerCamelCase =encoder_feedforward_dim lowerCamelCase =activation_function lowerCamelCase =encoder_layers lowerCamelCase =decoder_layers lowerCamelCase =num_attention_heads lowerCamelCase =dropout lowerCamelCase =dim_feedforward lowerCamelCase =pre_norm lowerCamelCase =enforce_input_projection lowerCamelCase =common_stride lowerCamelCase =ignore_value lowerCamelCase =num_queries lowerCamelCase =no_object_weight lowerCamelCase =class_weight lowerCamelCase =mask_weight lowerCamelCase =dice_weight lowerCamelCase =train_num_points lowerCamelCase =oversample_ratio lowerCamelCase =importance_sample_ratio lowerCamelCase =init_std lowerCamelCase =init_xavier_std lowerCamelCase =use_auxiliary_loss lowerCamelCase =feature_strides lowerCamelCase =output_auxiliary_logits lowerCamelCase =decoder_layers super().__init__(**UpperCAmelCase_ ) @classmethod def _snake_case ( cls , UpperCAmelCase_ , **UpperCAmelCase_ ): return cls( backbone_config=UpperCAmelCase_ , **UpperCAmelCase_ , ) def _snake_case ( self ): lowerCamelCase =copy.deepcopy(self.__dict__ ) lowerCamelCase =self.backbone_config.to_dict() lowerCamelCase =self.__class__.model_type return output
714
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer UpperCAmelCase__ : Optional[Any] =logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] ={'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase__ : str ={ '''vocab_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json''', }, '''merges_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''Salesforce/codegen-350M-mono''': ( '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json''' ), }, } UpperCAmelCase__ : Union[str, Any] ={ '''Salesforce/codegen-350M-mono''': 20_48, } class __A ( a ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ["""input_ids""", """attention_mask"""] __A = CodeGenTokenizer def __init__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_="<|endoftext|>" , UpperCAmelCase_="<|endoftext|>" , UpperCAmelCase_="<|endoftext|>" , UpperCAmelCase_=False , **UpperCAmelCase_ , ): super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) if kwargs.pop("""add_bos_token""" , UpperCAmelCase_ ): lowerCamelCase =kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) lowerCamelCase =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase_ ) != add_prefix_space: lowerCamelCase =getattr(UpperCAmelCase_ , pre_tok_state.pop("""type""" ) ) lowerCamelCase =add_prefix_space lowerCamelCase =pre_tok_class(**UpperCAmelCase_ ) lowerCamelCase =add_prefix_space def _snake_case ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): lowerCamelCase =kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _snake_case ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): lowerCamelCase =kwargs.get("""is_split_into_words""" , UpperCAmelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): lowerCamelCase =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = None , **UpperCAmelCase_ , ): lowerCamelCase =super().decode( token_ids=UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) if truncate_before_pattern is not None and len(UpperCAmelCase_ ) > 0: lowerCamelCase =self.truncate(UpperCAmelCase_ , UpperCAmelCase_ ) return decoded_text def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ): def find_re(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =pattern.search(UpperCAmelCase_ , UpperCAmelCase_ ) return m.start() if m else -1 lowerCamelCase =[re.compile(UpperCAmelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] lowerCamelCase =list(re.finditer("""^print""" , UpperCAmelCase_ , re.MULTILINE ) ) if len(UpperCAmelCase_ ) > 1: lowerCamelCase =completion[: prints[1].start()] lowerCamelCase =list(re.finditer("""^def""" , UpperCAmelCase_ , re.MULTILINE ) ) if len(UpperCAmelCase_ ) > 1: lowerCamelCase =completion[: defs[1].start()] lowerCamelCase =0 lowerCamelCase =[ pos for pos in [find_re(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCAmelCase_ ) > 0: return completion[: min(UpperCAmelCase_ )] else: return completion
269
0
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _UpperCamelCase ( ): import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join UpperCAmelCase__ : str = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , UpperCamelCase_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _UpperCamelCase ( ): assert _test_patching.open is open UpperCAmelCase__ : Union[str, Any] = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , UpperCamelCase_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _UpperCamelCase ( ): UpperCAmelCase__ : int = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , UpperCamelCase_ ): pass def _UpperCamelCase ( ): UpperCAmelCase__ : str = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , UpperCamelCase_ ) is None with patch_submodule(_test_patching , """len""" , UpperCamelCase_ ): assert _test_patching.len is mock assert _test_patching.len is len def _UpperCamelCase ( ): UpperCAmelCase__ : Optional[Any] = """__test_patch_submodule_start_and_stop_mock__""" UpperCAmelCase__ : Dict = patch_submodule(_test_patching , """open""" , UpperCamelCase_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _UpperCamelCase ( ): from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join UpperCAmelCase__ : Dict = """__test_patch_submodule_successive_join__""" UpperCAmelCase__ : Optional[Any] = """__test_patch_submodule_successive_dirname__""" UpperCAmelCase__ : List[Any] = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , UpperCamelCase_ ): with patch_submodule(_test_patching , """os.rename""" , UpperCamelCase_ ): with patch_submodule(_test_patching , """os.path.dirname""" , UpperCamelCase_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , UpperCamelCase_ ): with patch_submodule(_test_patching , """os.path.join""" , UpperCamelCase_ ): with patch_submodule(_test_patching , """os.path.dirname""" , UpperCamelCase_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _UpperCamelCase ( ): UpperCAmelCase__ : Union[str, Any] = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , UpperCamelCase_ ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , UpperCamelCase_ ): pass
407
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent a_ = {'''UserAgent''': UserAgent().random} def _a ( UpperCamelCase_ : Any ) -> dict: """simple docstring""" lowerCAmelCase__ = script.contents[0] lowerCAmelCase__ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowercase__ : def __init__( self , __UpperCAmelCase )-> Any: '''simple docstring''' lowerCAmelCase__ = F"https://www.instagram.com/{username}/" lowerCAmelCase__ = self.get_json() def UpperCAmelCase ( self )-> dict: '''simple docstring''' lowerCAmelCase__ = requests.get(self.url , headers=__UpperCAmelCase ).text lowerCAmelCase__ = BeautifulSoup(__UpperCAmelCase , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self )-> str: '''simple docstring''' return F"{self.__class__.__name__}('{self.username}')" def __str__( self )-> str: '''simple docstring''' return F"{self.fullname} ({self.username}) is {self.biography}" @property def UpperCAmelCase ( self )-> str: '''simple docstring''' return self.user_data["username"] @property def UpperCAmelCase ( self )-> str: '''simple docstring''' return self.user_data["full_name"] @property def UpperCAmelCase ( self )-> str: '''simple docstring''' return self.user_data["biography"] @property def UpperCAmelCase ( self )-> str: '''simple docstring''' return self.user_data["business_email"] @property def UpperCAmelCase ( self )-> str: '''simple docstring''' return self.user_data["external_url"] @property def UpperCAmelCase ( self )-> int: '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def UpperCAmelCase ( self )-> int: '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def UpperCAmelCase ( self )-> int: '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def UpperCAmelCase ( self )-> str: '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def UpperCAmelCase ( self )-> bool: '''simple docstring''' return self.user_data["is_verified"] @property def UpperCAmelCase ( self )-> bool: '''simple docstring''' return self.user_data["is_private"] def _a ( UpperCamelCase_ : str = "github" ) -> None: """simple docstring""" import os if os.environ.get("CI" ): return # test failing on GitHub Actions lowerCAmelCase__ = InstagramUser(UpperCamelCase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCamelCase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() a_ = InstagramUser('''github''') print(instagram_user) print(F"{instagram_user.number_of_posts = }") print(F"{instagram_user.number_of_followers = }") print(F"{instagram_user.number_of_followings = }") print(F"{instagram_user.email = }") print(F"{instagram_user.website = }") print(F"{instagram_user.profile_picture_url = }") print(F"{instagram_user.is_verified = }") print(F"{instagram_user.is_private = }")
339
0
'''simple docstring''' import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): @property def A_ ( self ) -> str: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = ort.SessionOptions() _UpperCamelCase = False return options def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default _UpperCamelCase = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) _UpperCamelCase = """A red cat sitting on a park bench""" _UpperCamelCase = np.random.RandomState(0 ) _UpperCamelCase = pipe( prompt=a , image=a , mask_image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=a , output_type="""np""" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-2
708
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __A(lowerCAmelCase ) -> Optional[int]: """simple docstring""" return EnvironmentCommand() class lowerCAmelCase__ ( __lowercase ): @staticmethod def A_ ( a ) -> List[str]: '''simple docstring''' _UpperCamelCase = parser.add_parser("""env""" ) download_parser.set_defaults(func=a ) def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = huggingface_hub.__version__ _UpperCamelCase = """not installed""" _UpperCamelCase = """NA""" if is_torch_available(): import torch _UpperCamelCase = torch.__version__ _UpperCamelCase = torch.cuda.is_available() _UpperCamelCase = """not installed""" if is_transformers_available(): import transformers _UpperCamelCase = transformers.__version__ _UpperCamelCase = """not installed""" if is_accelerate_available(): import accelerate _UpperCamelCase = accelerate.__version__ _UpperCamelCase = """not installed""" if is_xformers_available(): import xformers _UpperCamelCase = xformers.__version__ _UpperCamelCase = { """`diffusers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """PyTorch version (GPU?)""": F'{pt_version} ({pt_cuda_available})', """Huggingface_hub version""": hub_version, """Transformers version""": transformers_version, """Accelerate version""": accelerate_version, """xFormers version""": xformers_version, """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(a ) ) return info @staticmethod def A_ ( a ) -> Dict: '''simple docstring''' return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
202
0
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _SCREAMING_SNAKE_CASE = imread(r"digital_image_processing/image_data/lena_small.jpg") _SCREAMING_SNAKE_CASE = cvtColor(img, COLOR_BGR2GRAY) def __a(): '''simple docstring''' _lowerCAmelCase = cn.convert_to_negative(SCREAMING_SNAKE_CASE_ ) # assert negative_img array for at least one True assert negative_img.any() def __a(): '''simple docstring''' with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(SCREAMING_SNAKE_CASE_ , 110 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def __a(): '''simple docstring''' _lowerCAmelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __a(): '''simple docstring''' _lowerCAmelCase = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() _lowerCAmelCase = canny.canny(SCREAMING_SNAKE_CASE_ ) # assert canny array for at least one True assert canny_array.any() def __a(): '''simple docstring''' assert gg.gaussian_filter(SCREAMING_SNAKE_CASE_ , 5 , sigma=0.9 ).all() def __a(): '''simple docstring''' _lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _lowerCAmelCase = conv.img_convolve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) assert res.any() def __a(): '''simple docstring''' assert med.median_filter(SCREAMING_SNAKE_CASE_ , 3 ).any() def __a(): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = sob.sobel_filter(SCREAMING_SNAKE_CASE_ ) assert grad.any() and theta.any() def __a(): '''simple docstring''' _lowerCAmelCase = sp.make_sepia(SCREAMING_SNAKE_CASE_ , 20 ) assert sepia.all() def __a(SCREAMING_SNAKE_CASE_ : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' _lowerCAmelCase = bs.Burkes(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __a(SCREAMING_SNAKE_CASE_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' _lowerCAmelCase = rs.NearestNeighbour(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __a(): '''simple docstring''' _lowerCAmelCase = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. _lowerCAmelCase = imread(SCREAMING_SNAKE_CASE_ , 0 ) # Test for get_neighbors_pixel function() return not None _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = image[x_coordinate][y_coordinate] _lowerCAmelCase = lbp.get_neighbors_pixel( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _lowerCAmelCase = lbp.local_binary_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert lbp_image.any()
18
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = ["image_processor", "tokenizer"] __A = "FlavaImageProcessor" __A = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Dict , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : int ): """simple docstring""" _lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __lowerCAmelCase , ) _lowerCAmelCase = kwargs.pop('feature_extractor' ) _lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = self.image_processor def __call__( self : Union[str, Any] , __lowerCAmelCase : Optional[ImageInput] = None , __lowerCAmelCase : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , __lowerCAmelCase : Union[bool, str, TruncationStrategy] = False , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : int = 0 , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = False , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , **__lowerCAmelCase : Union[str, Any] , ): """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowerCAmelCase = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) if images is not None: _lowerCAmelCase = self.image_processor( __lowerCAmelCase , return_image_mask=__lowerCAmelCase , return_codebook_pixels=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) if text is not None and images is not None: encoding.update(__lowerCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def a ( self : Any , *__lowerCAmelCase : str , **__lowerCAmelCase : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def a ( self : List[str] , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def a ( self : List[str] ): """simple docstring""" _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def a ( self : Optional[int] ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __lowerCAmelCase , ) return self.image_processor_class @property def a ( self : Any ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __lowerCAmelCase , ) return self.image_processor
309
0
import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' snake_case_ = botoa.client('''iam''' ) snake_case_ = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=__UpperCAmelCase, AssumeRolePolicyDocument=json.dumps(__UpperCAmelCase, indent=2 ) ) snake_case_ = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=__UpperCAmelCase, PolicyName=F"{role_name}_policy_permission", PolicyDocument=json.dumps(__UpperCAmelCase, indent=2 ), ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"role {role_name} already exists. Using existing one" ) def __magic_name__ ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' snake_case_ = botoa.client('''iam''' ) return iam_client.get_role(RoleName=__UpperCAmelCase )["Role"]["Arn"] def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' snake_case_ = _ask_options( '''How do you want to authorize?''', ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''], __UpperCAmelCase, ) snake_case_ = None if credentials_configuration == 0: snake_case_ = _ask_field('''Enter your AWS Profile name: [default] ''', default='''default''' ) snake_case_ = aws_profile else: print( '''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,''' '''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' ) snake_case_ = _ask_field('''AWS Access Key ID: ''' ) snake_case_ = aws_access_key_id snake_case_ = _ask_field('''AWS Secret Access Key: ''' ) snake_case_ = aws_secret_access_key snake_case_ = _ask_field('''Enter your AWS Region: [us-east-1]''', default='''us-east-1''' ) snake_case_ = aws_region snake_case_ = _ask_options( '''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''', ['''Provide IAM Role name''', '''Create new IAM role using credentials'''], __UpperCAmelCase, ) if role_management == 0: snake_case_ = _ask_field('''Enter your IAM role name: ''' ) else: snake_case_ = '''accelerate_sagemaker_execution_role''' print(F"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" ) _create_iam_role_for_sagemaker(__UpperCAmelCase ) snake_case_ = _ask_field( '''Do you want to use custom Docker image? [yes/NO]: ''', _convert_yes_no_to_bool, default=__UpperCAmelCase, error_message='''Please enter yes or no.''', ) snake_case_ = None if is_custom_docker_image: snake_case_ = _ask_field('''Enter your Docker image: ''', lambda __UpperCAmelCase : str(__UpperCAmelCase ).lower() ) snake_case_ = _ask_field( '''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''', _convert_yes_no_to_bool, default=__UpperCAmelCase, error_message='''Please enter yes or no.''', ) snake_case_ = None if is_sagemaker_inputs_enabled: snake_case_ = _ask_field( '''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''', lambda __UpperCAmelCase : str(__UpperCAmelCase ).lower(), ) snake_case_ = _ask_field( '''Do you want to enable SageMaker metrics? [yes/NO]: ''', _convert_yes_no_to_bool, default=__UpperCAmelCase, error_message='''Please enter yes or no.''', ) snake_case_ = None if is_sagemaker_metrics_enabled: snake_case_ = _ask_field( '''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''', lambda __UpperCAmelCase : str(__UpperCAmelCase ).lower(), ) snake_case_ = _ask_options( '''What is the distributed mode?''', ['''No distributed training''', '''Data parallelism'''], _convert_sagemaker_distributed_mode, ) snake_case_ = {} snake_case_ = _ask_field( '''Do you wish to optimize your script with torch dynamo?[yes/NO]:''', _convert_yes_no_to_bool, default=__UpperCAmelCase, error_message='''Please enter yes or no.''', ) if use_dynamo: snake_case_ = '''dynamo_''' snake_case_ = _ask_options( '''Which dynamo backend would you like to use?''', [x.lower() for x in DYNAMO_BACKENDS], _convert_dynamo_backend, default=2, ) snake_case_ = _ask_field( '''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''', _convert_yes_no_to_bool, default=__UpperCAmelCase, error_message='''Please enter yes or no.''', ) if use_custom_options: snake_case_ = _ask_options( '''Which mode do you want to use?''', __UpperCAmelCase, lambda __UpperCAmelCase : TORCH_DYNAMO_MODES[int(__UpperCAmelCase )], default='''default''', ) snake_case_ = _ask_field( '''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''', _convert_yes_no_to_bool, default=__UpperCAmelCase, error_message='''Please enter yes or no.''', ) snake_case_ = _ask_field( '''Do you want to enable dynamic shape tracing? [yes/NO]: ''', _convert_yes_no_to_bool, default=__UpperCAmelCase, error_message='''Please enter yes or no.''', ) snake_case_ = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: snake_case_ = _ask_options( __UpperCAmelCase, __UpperCAmelCase, lambda __UpperCAmelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__UpperCAmelCase )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" snake_case_ = _ask_field(__UpperCAmelCase, lambda __UpperCAmelCase : str(__UpperCAmelCase ).lower(), default='''ml.p3.2xlarge''' ) snake_case_ = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): snake_case_ = _ask_field( '''How many machines do you want use? [1]: ''', __UpperCAmelCase, default=1, ) snake_case_ = _ask_options( '''Do you wish to use FP16 or BF16 (mixed precision)?''', ['''no''', '''fp16''', '''bf16''', '''fp8'''], _convert_mixed_precision, ) if use_dynamo and mixed_precision == "no": print( '''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' ) return SageMakerConfig( image_uri=__UpperCAmelCase, compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER, distributed_type=__UpperCAmelCase, use_cpu=__UpperCAmelCase, dynamo_config=__UpperCAmelCase, eca_instance_type=__UpperCAmelCase, profile=__UpperCAmelCase, region=__UpperCAmelCase, iam_role_name=__UpperCAmelCase, mixed_precision=__UpperCAmelCase, num_machines=__UpperCAmelCase, sagemaker_inputs_file=__UpperCAmelCase, sagemaker_metrics_file=__UpperCAmelCase, )
720
'''simple docstring''' import random def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> tuple: '''simple docstring''' snake_case_ ,snake_case_ ,snake_case_ = [], [], [] for element in data: if element < pivot: less.append(__UpperCAmelCase ) elif element > pivot: greater.append(__UpperCAmelCase ) else: equal.append(__UpperCAmelCase ) return less, equal, greater def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> str: '''simple docstring''' if index >= len(__UpperCAmelCase ) or index < 0: return None snake_case_ = items[random.randint(0, len(__UpperCAmelCase ) - 1 )] snake_case_ = 0 snake_case_ ,snake_case_ ,snake_case_ = _partition(__UpperCAmelCase, __UpperCAmelCase ) snake_case_ = len(__UpperCAmelCase ) snake_case_ = len(__UpperCAmelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__UpperCAmelCase, __UpperCAmelCase ) # must be in larger else: return quick_select(__UpperCAmelCase, index - (m + count) )
593
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : List[str] , a__ : List[Any] , a__ : int=13 , a__ : Union[str, Any]=7 , a__ : Optional[int]=True , a__ : Optional[Any]=True , a__ : Optional[Any]=True , a__ : Union[str, Any]=True , a__ : List[str]=99 , a__ : Union[str, Any]=64 , a__ : List[Any]=5 , a__ : Dict=4 , a__ : str=37 , a__ : Any="gelu" , a__ : List[str]=0.1 , a__ : Tuple=0.1 , a__ : Union[str, Any]=512 , a__ : Any=16 , a__ : Optional[int]=2 , a__ : Tuple=0.02 , a__ : Any=3 , a__ : Tuple=4 , a__ : Any=None , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope UpperCAmelCase = vocab_size - 1 def __snake_case ( self : List[str] ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = self.get_config() return config, input_ids, input_mask, token_labels def __snake_case ( self : Optional[int] ): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def __snake_case ( self : List[str] ): UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase = True return config, input_ids, input_mask, token_labels def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Optional[int] , a__ : Optional[Any] ): UpperCAmelCase = GPTNeoXModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase = model(_A , attention_mask=_A ) UpperCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self : List[str] , a__ : List[Any] , a__ : str , a__ : Optional[Any] ): UpperCAmelCase = True UpperCAmelCase = GPTNeoXModel(_A ) model.to(_A ) model.eval() UpperCAmelCase = model(_A , attention_mask=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self : List[Any] , a__ : int , a__ : List[str] , a__ : Any , a__ : int ): UpperCAmelCase = GPTNeoXForCausalLM(config=_A ) model.to(_A ) model.eval() UpperCAmelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self : List[str] , a__ : Optional[int] , a__ : Union[str, Any] , a__ : List[Any] , a__ : Dict ): UpperCAmelCase = self.num_labels UpperCAmelCase = GPTNeoXForQuestionAnswering(_A ) model.to(_A ) model.eval() UpperCAmelCase = model(_A , attention_mask=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self : List[Any] , a__ : Union[str, Any] , a__ : Tuple , a__ : Tuple , a__ : Optional[Any] ): UpperCAmelCase = self.num_labels UpperCAmelCase = GPTNeoXForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : Tuple , a__ : Any , a__ : Tuple , a__ : List[str] , a__ : Any ): UpperCAmelCase = self.num_labels UpperCAmelCase = GPTNeoXForTokenClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self : Dict , a__ : str , a__ : Dict , a__ : List[Any] ): UpperCAmelCase = True UpperCAmelCase = GPTNeoXForCausalLM(config=_A ) model.to(_A ) model.eval() # first forward pass UpperCAmelCase = model(_A , attention_mask=_A , use_cache=_A ) UpperCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase = model(_A , attention_mask=_A , output_hidden_states=_A ) UpperCAmelCase = output_from_no_past['''hidden_states'''][0] UpperCAmelCase = model( _A , attention_mask=_A , past_key_values=_A , output_hidden_states=_A , )['''hidden_states'''][0] # select random slice UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1e-3 ) ) def __snake_case ( self : int ): UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase =(GPTNeoXForCausalLM,) if is_torch_available() else () _lowerCamelCase =( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : Tuple ): UpperCAmelCase = GPTNeoXModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=_A , hidden_size=64 , num_attention_heads=8 ) def __snake_case ( self : Tuple ): self.config_tester.run_common_tests() def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_A , _A , _A ) def __snake_case ( self : List[str] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_A , _A , _A ) def __snake_case ( self : str ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase = None self.model_tester.create_and_check_model_as_decoder(_A , _A , _A ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_A , _A , _A ) def __snake_case ( self : int ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_A ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __snake_case ( self : int ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __snake_case ( self : List[Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def __snake_case ( self : Any ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __snake_case ( self : Any , a__ : Optional[Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase = GPTNeoXModel(_A ) original_model.to(_A ) original_model.eval() UpperCAmelCase = original_model(_A ).last_hidden_state UpperCAmelCase = original_model(_A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase = {'''type''': scaling_type, '''factor''': 10.0} UpperCAmelCase = GPTNeoXModel(_A ) scaled_model.to(_A ) scaled_model.eval() UpperCAmelCase = scaled_model(_A ).last_hidden_state UpperCAmelCase = scaled_model(_A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_A , _A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_A , _A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_A , _A , atol=1e-5 ) ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self : int ): UpperCAmelCase = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: UpperCAmelCase = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(_A ) UpperCAmelCase = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(_A ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 UpperCAmelCase = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' UpperCAmelCase = model.generate(**_A , do_sample=_A , max_new_tokens=20 ) UpperCAmelCase = tokenizer.batch_decode(_A )[0] self.assertEqual(_A , _A )
51
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class _A ( _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = XLMRobertaTokenizer _UpperCamelCase : Dict = XLMRobertaTokenizerFast _UpperCamelCase : Optional[int] = True _UpperCamelCase : Tuple = True def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase : int = XLMRobertaTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self : str ) -> int: """simple docstring""" lowercase : Tuple = '''<pad>''' lowercase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def __a ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_A ) , 1_002 ) def __a ( self : Any ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_002 ) def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase : Any = XLMRobertaTokenizer(_A , keep_accents=_A ) lowercase : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase : Any = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase : List[str] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowercase : List[Any] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowercase : Optional[Any] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) lowercase : List[str] = self.tokenizer_class.from_pretrained(_A , **_A ) lowercase : str = tempfile.mkdtemp() lowercase : Optional[int] = tokenizer_r.save_pretrained(_A ) lowercase : Any = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowercase : List[Any] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way lowercase : Any = tokenizer_r.from_pretrained(_A ) lowercase : List[Any] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True lowercase : List[Any] = tempfile.mkdtemp() lowercase : List[str] = tokenizer_r.save_pretrained(_A , legacy_format=_A ) lowercase : Optional[Any] = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way lowercase : str = tokenizer_r.from_pretrained(_A ) lowercase : List[str] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False lowercase : Union[str, Any] = tempfile.mkdtemp() lowercase : int = tokenizer_r.save_pretrained(_A , legacy_format=_A ) lowercase : str = tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowercase : Dict = tokenizer_r.from_pretrained(_A ) lowercase : List[Any] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) @cached_property def __a ( self : Any ) -> Any: """simple docstring""" return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def __a ( self : Optional[Any] ) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_A , f.name ) lowercase : List[str] = XLMRobertaTokenizer(f.name , keep_accents=_A ) lowercase : List[str] = pickle.dumps(_A ) pickle.loads(_A ) def __a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" if not self.test_rust_tokenizer: return lowercase : Optional[Any] = self.get_tokenizer() lowercase : str = self.get_rust_tokenizer() lowercase : List[str] = '''I was born in 92000, and this is falsé.''' lowercase : Tuple = tokenizer.tokenize(_A ) lowercase : Tuple = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) lowercase : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) lowercase : Optional[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) lowercase : int = self.get_rust_tokenizer() lowercase : Tuple = tokenizer.encode(_A ) lowercase : Optional[Any] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) @slow def __a ( self : str ) -> str: """simple docstring""" lowercase : int = '''Hello World!''' lowercase : Union[str, Any] = [0, 35_378, 6_661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def __a ( self : Dict ) -> Tuple: """simple docstring""" lowercase : Tuple = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) lowercase : str = [ 0, 3_293, 83, 10, 4_552, 4_989, 7_986, 678, 10, 5_915, 111, 179_459, 124_850, 4, 6_044, 237, 12, 6, 5, 6, 4, 6_780, 705, 15, 1_388, 44, 378, 10_114, 711, 152, 20, 6, 5, 22_376, 642, 1_221, 15_190, 34_153, 450, 5_608, 959, 1_119, 57_702, 136, 186, 47, 1_098, 29_367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_044, 237, 6_284, 50_901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def __a ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowercase : Optional[Any] = {'''input_ids''': [[0, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [0, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
217
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCamelCase = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } UpperCamelCase = {"""facebook/blenderbot-3B""": 1_28} class _a ( lowercase_ ): '''simple docstring''' UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ["""input_ids""", """attention_mask"""] UpperCamelCase__ = BlenderbotTokenizer def __init__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_="replace" , UpperCAmelCase_="<s>" , UpperCAmelCase_="</s>" , UpperCAmelCase_="</s>" , UpperCAmelCase_="<s>" , UpperCAmelCase_="<unk>" , UpperCAmelCase_="<pad>" , UpperCAmelCase_="<mask>" , UpperCAmelCase_=False , UpperCAmelCase_=True , **UpperCAmelCase_ , ) -> Any: '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowercase__: Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase_) != add_prefix_space: lowercase__: Optional[int] = getattr(UpperCAmelCase_ , pre_tok_state.pop("type")) lowercase__: Optional[int] = add_prefix_space lowercase__: Tuple = pre_tok_class(**UpperCAmelCase_) lowercase__: int = add_prefix_space lowercase__: Union[str, Any] = "post_processor" lowercase__: Dict = getattr(self.backend_tokenizer , UpperCAmelCase_ , UpperCAmelCase_) if tokenizer_component_instance: lowercase__: Tuple = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__: List[Any] = tuple(state["sep"]) if "cls" in state: lowercase__: str = tuple(state["cls"]) lowercase__: Union[str, Any] = False if state.get("add_prefix_space" , UpperCAmelCase_) != add_prefix_space: lowercase__: Tuple = add_prefix_space lowercase__: Dict = True if state.get("trim_offsets" , UpperCAmelCase_) != trim_offsets: lowercase__: str = trim_offsets lowercase__: List[str] = True if changes_to_apply: lowercase__: List[str] = getattr(UpperCAmelCase_ , state.pop("type")) lowercase__: Optional[int] = component_class(**UpperCAmelCase_) setattr(self.backend_tokenizer , UpperCAmelCase_ , UpperCAmelCase_) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __lowercase ( self) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def __lowercase ( self , UpperCAmelCase_) -> List[Any]: '''simple docstring''' lowercase__: int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else value lowercase__: str = value def __lowercase ( self , *UpperCAmelCase_ , **UpperCAmelCase_) -> BatchEncoding: '''simple docstring''' lowercase__: Union[str, Any] = kwargs.get("is_split_into_words" , UpperCAmelCase_) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_) def __lowercase ( self , *UpperCAmelCase_ , **UpperCAmelCase_) -> BatchEncoding: '''simple docstring''' lowercase__: Tuple = kwargs.get("is_split_into_words" , UpperCAmelCase_) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_) def __lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None) -> Tuple[str]: '''simple docstring''' lowercase__: Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_) def __lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None) -> List[int]: '''simple docstring''' lowercase__: str = [self.sep_token_id] lowercase__: Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None) -> str: '''simple docstring''' return token_ids_a + [self.eos_token_id] def __lowercase ( self , UpperCAmelCase_) -> List[int]: '''simple docstring''' lowercase__: Any = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) lowercase__: List[str] = " ".join(UpperCAmelCase_) lowercase__: Any = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: lowercase__: Union[str, Any] = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""") return input_ids
120
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { """configuration_blenderbot_small""": [ """BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotSmallConfig""", """BlenderbotSmallOnnxConfig""", ], """tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""BlenderbotSmallTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotSmallForCausalLM""", """BlenderbotSmallForConditionalGeneration""", """BlenderbotSmallModel""", """BlenderbotSmallPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """TFBlenderbotSmallForConditionalGeneration""", """TFBlenderbotSmallModel""", """TFBlenderbotSmallPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """FlaxBlenderbotSmallForConditionalGeneration""", """FlaxBlenderbotSmallModel""", """FlaxBlenderbotSmallPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
120
1
__UpperCamelCase = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def UpperCamelCase_( _A :dict , _A :List[str] , _A :Optional[int] )-> list[str]: UpperCamelCase__ = set() # keep track of all the paths to be checked UpperCamelCase__ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCamelCase__ = queue.pop(0 ) # get the last node from the path UpperCamelCase__ = path[-1] if node not in explored: UpperCamelCase__ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCamelCase__ = list(_A ) new_path.append(_A ) queue.append(_A ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_A ) # in case there's no path between the 2 nodes return [] def UpperCamelCase_( _A :dict , _A :Any , _A :Dict )-> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCamelCase__ = [start] UpperCamelCase__ = set(_A ) # Keep tab on distances from `start` node. UpperCamelCase__ = {start: 0, target: -1} while queue: UpperCamelCase__ = queue.pop(0 ) if node == target: UpperCamelCase__ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_A ) queue.append(_A ) UpperCamelCase__ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
551
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__, UpperCamelCase__ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=snake_case , dtype=jnp.bfloataa ) UpperCamelCase__, UpperCamelCase__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=snake_case , from_pt=snake_case , dtype=jnp.bfloataa ) UpperCamelCase__ = controlnet_params UpperCamelCase__ = "bird" UpperCamelCase__ = jax.device_count() UpperCamelCase__ = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) UpperCamelCase__ = pipe.prepare_image_inputs([canny_image] * num_samples ) UpperCamelCase__ = jax.random.PRNGKey(0 ) UpperCamelCase__ = jax.random.split(snake_case , jax.device_count() ) UpperCamelCase__ = replicate(snake_case ) UpperCamelCase__ = shard(snake_case ) UpperCamelCase__ = shard(snake_case ) UpperCamelCase__ = pipe( prompt_ids=snake_case , image=snake_case , params=snake_case , prng_seed=snake_case , num_inference_steps=50 , jit=snake_case , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) UpperCamelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase__ = images[0, 253:256, 253:256, -1] UpperCamelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase__ = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__, UpperCamelCase__ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=snake_case , dtype=jnp.bfloataa ) UpperCamelCase__, UpperCamelCase__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=snake_case , from_pt=snake_case , dtype=jnp.bfloataa ) UpperCamelCase__ = controlnet_params UpperCamelCase__ = "Chef in the kitchen" UpperCamelCase__ = jax.device_count() UpperCamelCase__ = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) UpperCamelCase__ = pipe.prepare_image_inputs([pose_image] * num_samples ) UpperCamelCase__ = jax.random.PRNGKey(0 ) UpperCamelCase__ = jax.random.split(snake_case , jax.device_count() ) UpperCamelCase__ = replicate(snake_case ) UpperCamelCase__ = shard(snake_case ) UpperCamelCase__ = shard(snake_case ) UpperCamelCase__ = pipe( prompt_ids=snake_case , image=snake_case , params=snake_case , prng_seed=snake_case , num_inference_steps=50 , jit=snake_case , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) UpperCamelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase__ = images[0, 253:256, 253:256, -1] UpperCamelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase__ = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
551
1
def a__ ( snake_case ): """simple docstring""" if not isinstance(snake_case , snake_case ): raise TypeError('''only integers accepted as input''' ) else: __SCREAMING_SNAKE_CASE : Dict = str(abs(snake_case ) ) __SCREAMING_SNAKE_CASE : List[Any] = [list(snake_case ) for char in range(len(snake_case ) )] for index in range(len(snake_case ) ): num_transpositions[index].pop(snake_case ) return max( int(''''''.join(list(snake_case ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
711
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowercase_ = logging.get_logger(__name__) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = R'''\w+[.]\d+''' __SCREAMING_SNAKE_CASE : Optional[int] = re.findall(snake_case , snake_case ) for pat in pats: __SCREAMING_SNAKE_CASE : Optional[Any] = key.replace(snake_case , '''_'''.join(pat.split('''.''' ) ) ) return key def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): __SCREAMING_SNAKE_CASE : str = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: __SCREAMING_SNAKE_CASE : Any = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: __SCREAMING_SNAKE_CASE : List[str] = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer __SCREAMING_SNAKE_CASE : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: __SCREAMING_SNAKE_CASE : Optional[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __SCREAMING_SNAKE_CASE : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": __SCREAMING_SNAKE_CASE : Dict = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __SCREAMING_SNAKE_CASE : int = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __SCREAMING_SNAKE_CASE : str = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a__ ( snake_case , snake_case , snake_case=42 ): """simple docstring""" # Step 1: Convert pytorch tensor to numpy __SCREAMING_SNAKE_CASE : Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params __SCREAMING_SNAKE_CASE : Dict = flax_model.init_weights(PRNGKey(snake_case ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = flatten_dict(snake_case ) __SCREAMING_SNAKE_CASE : Dict = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __SCREAMING_SNAKE_CASE : int = rename_key(snake_case ) __SCREAMING_SNAKE_CASE : Dict = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = rename_key_and_reshape_tensor(snake_case , snake_case , snake_case ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown __SCREAMING_SNAKE_CASE : Any = jnp.asarray(snake_case ) return unflatten_dict(snake_case )
131
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class A ( __lowercase ): _snake_case ='''microsoft/speecht5_tts''' _snake_case =( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) _snake_case ='''text_reader''' _snake_case =SpeechTaProcessor _snake_case =SpeechTaForTextToSpeech _snake_case =SpeechTaHifiGan _snake_case =['''text'''] _snake_case =['''audio'''] def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' if self.post_processor is None: UpperCAmelCase_ ="microsoft/speecht5_hifigan" super().setup() def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: List[str] , _lowerCAmelCase: Any=None ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.pre_processor(text=_lowerCAmelCase , return_tensors="pt" , truncation=_lowerCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) UpperCAmelCase_ =load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation" ) UpperCAmelCase_ =torch.tensor(embeddings_dataset[7305]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: Dict ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: Optional[Any] ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): return self.post_processor(_lowerCAmelCase ).cpu().detach()
54
"""simple docstring""" def __lowercase ( snake_case_ : int ,snake_case_ : int ) ->int: '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def __lowercase ( ) ->None: '''simple docstring''' assert and_gate(0 ,0 ) == 0 assert and_gate(0 ,1 ) == 0 assert and_gate(1 ,0 ) == 0 assert and_gate(1 ,1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
177
0
"""simple docstring""" from __future__ import annotations class _UpperCAmelCase : def __init__( self , lowercase_ ) -> List[Any]: UpperCAmelCase = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(lowercase_ ) != 0: UpperCAmelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowercase_ ) != cols: raise error for value in row: if not isinstance(lowercase_ , (int, float) ): raise error UpperCAmelCase = rows else: UpperCAmelCase = [] def a_ ( self ) -> list[list[int]]: return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def a_ ( self ) -> int: return len(self.rows ) @property def a_ ( self ) -> int: return len(self.rows[0] ) @property def a_ ( self ) -> tuple[int, int]: return (self.num_rows, self.num_columns) @property def a_ ( self ) -> bool: return self.order[0] == self.order[1] def a_ ( self ) -> Matrix: UpperCAmelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowercase_ ) def a_ ( self ) -> int: if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def a_ ( self ) -> bool: return bool(self.determinant() ) def a_ ( self , lowercase_ , lowercase_ ) -> int: UpperCAmelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowercase_ ).determinant() def a_ ( self , lowercase_ , lowercase_ ) -> int: if (row + column) % 2 == 0: return self.get_minor(lowercase_ , lowercase_ ) return -1 * self.get_minor(lowercase_ , lowercase_ ) def a_ ( self ) -> Matrix: return Matrix( [ [self.get_minor(lowercase_ , lowercase_ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def a_ ( self ) -> Matrix: return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def a_ ( self ) -> Matrix: UpperCAmelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowercase_ ) def a_ ( self ) -> Matrix: UpperCAmelCase = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self ) -> str: return str(self.rows ) def __str__( self ) -> str: if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(lowercase_ ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def a_ ( self , lowercase_ , lowercase_ = None ) -> None: UpperCAmelCase = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(lowercase_ , lowercase_ ): raise type_error for value in row: if not isinstance(lowercase_ , (int, float) ): raise type_error if len(lowercase_ ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(lowercase_ ) else: UpperCAmelCase = self.rows[0:position] + [row] + self.rows[position:] def a_ ( self , lowercase_ , lowercase_ = None ) -> None: UpperCAmelCase = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(lowercase_ , lowercase_ ): raise type_error for value in column: if not isinstance(lowercase_ , (int, float) ): raise type_error if len(lowercase_ ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: UpperCAmelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: UpperCAmelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , lowercase_ ) -> bool: if not isinstance(lowercase_ , lowercase_ ): return NotImplemented return self.rows == other.rows def __ne__( self , lowercase_ ) -> bool: return not self == other def __neg__( self ) -> Matrix: return self * -1 def __add__( self , lowercase_ ) -> Matrix: if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , lowercase_ ) -> Matrix: if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , lowercase_ ) -> Matrix: if isinstance(lowercase_ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowercase_ , lowercase_ ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(lowercase_ , lowercase_ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self , lowercase_ ) -> Matrix: if not isinstance(lowercase_ , lowercase_ ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) UpperCAmelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def a_ ( cls , lowercase_ , lowercase_ ) -> int: return sum(row[i] * column[i] for i in range(len(lowercase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
712
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : str = (DDPMScheduler,) def a_ ( self , **lowercase_ ) -> Union[str, Any]: UpperCAmelCase = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**lowercase_ ) return config def a_ ( self ) -> int: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase_ ) def a_ ( self ) -> Optional[int]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def a_ ( self ) -> Dict: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def a_ ( self ) -> Union[str, Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowercase_ ) def a_ ( self ) -> Optional[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase_ ) def a_ ( self ) -> Tuple: self.check_over_configs(thresholding=lowercase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , ) def a_ ( self ) -> Any: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def a_ ( self ) -> Union[str, Any]: for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowercase_ ) def a_ ( self ) -> Optional[Any]: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.0_2 ) ) < 1E-5 def a_ ( self ) -> str: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = len(lowercase_ ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(lowercase_ ) ): # 1. predict noise residual UpperCAmelCase = model(lowercase_ , lowercase_ ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCAmelCase = pred_prev_sample UpperCAmelCase = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def a_ ( self ) -> Union[str, Any]: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(prediction_type='v_prediction' ) UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = len(lowercase_ ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(lowercase_ ) ): # 1. predict noise residual UpperCAmelCase = model(lowercase_ , lowercase_ ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCAmelCase = pred_prev_sample UpperCAmelCase = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def a_ ( self ) -> Optional[Any]: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowercase_ ) UpperCAmelCase = scheduler.timesteps for i, timestep in enumerate(lowercase_ ): if i == len(lowercase_ ) - 1: UpperCAmelCase = -1 else: UpperCAmelCase = timesteps[i + 1] UpperCAmelCase = scheduler.previous_timestep(lowercase_ ) UpperCAmelCase = prev_t.item() self.assertEqual(lowercase_ , lowercase_ ) def a_ ( self ) -> Optional[Any]: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowercase_ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=lowercase_ ) def a_ ( self ) -> List[Any]: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = [1_0_0, 8_7, 5_0, 1, 0] UpperCAmelCase = len(lowercase_ ) with self.assertRaises(lowercase_ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=lowercase_ , timesteps=lowercase_ ) def a_ ( self ) -> str: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( lowercase_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=lowercase_ )
183
0
'''simple docstring''' from math import isqrt def lowercase__ ( __UpperCamelCase )-> list[int]: UpperCamelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __UpperCamelCase , __UpperCamelCase ): UpperCamelCase = False return [i for i in range(2 , __UpperCamelCase ) if is_prime[i]] def lowercase__ ( __UpperCamelCase = 10**8 )-> int: UpperCamelCase = calculate_prime_numbers(max_number // 2 ) UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = len(__UpperCamelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'{solution() = }')
301
'''simple docstring''' import requests from bsa import BeautifulSoup def lowercase__ ( __UpperCamelCase = "AAPL" )-> str: UpperCamelCase = F"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" UpperCamelCase = BeautifulSoup(requests.get(__UpperCamelCase ).text , """html.parser""" ) UpperCamelCase = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'Current {symbol:<4} stock price is {stock_price(symbol):>8}')
301
1
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] ,*_a : List[Any] ,_a : Optional[Any]=None ,_a : int=None ,**_a : Tuple ): '''simple docstring''' super().__init__(*_a ,**_a ) A_ : Tuple = eval_examples A_ : Optional[int] = post_process_function def _a ( self : Tuple ,_a : Tuple=None ,_a : Union[str, Any]=None ,_a : List[Any]=None ,_a : str = "eval" ): '''simple docstring''' A_ : str = self.eval_dataset if eval_dataset is None else eval_dataset A_ : Optional[Any] = self.get_eval_dataloader(_a ) A_ : Union[str, Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. A_ : List[str] = self.compute_metrics A_ : Tuple = None A_ : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop A_ : List[str] = time.time() try: A_ : Dict = eval_loop( _a ,description="""Evaluation""" ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=_a ,metric_key_prefix=_a ,) finally: A_ : Optional[Any] = compute_metrics A_ : Tuple = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( _a ,_a ,num_samples=output.num_samples ,num_steps=math.ceil(output.num_samples / total_batch_size ) ,) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default A_ : int = self.post_process_function(_a ,_a ,output.predictions ) A_ : str = self.compute_metrics(_a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): A_ : List[Any] = metrics.pop(_a ) metrics.update(output.metrics ) else: A_ : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) A_ : List[Any] = self.callback_handler.on_evaluate(self.args ,self.state ,self.control ,_a ) return metrics def _a ( self : Optional[Any] ,_a : Dict ,_a : List[Any] ,_a : List[Any]=None ,_a : str = "test" ): '''simple docstring''' A_ : str = self.get_test_dataloader(_a ) # Temporarily disable metric computation, we will do it in the loop here. A_ : Any = self.compute_metrics A_ : List[Any] = None A_ : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop A_ : int = time.time() try: A_ : str = eval_loop( _a ,description="""Prediction""" ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=_a ,metric_key_prefix=_a ,) finally: A_ : Tuple = compute_metrics A_ : Optional[Any] = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( _a ,_a ,num_samples=output.num_samples ,num_steps=math.ceil(output.num_samples / total_batch_size ) ,) ) if self.post_process_function is None or self.compute_metrics is None: return output A_ : Any = self.post_process_function(_a ,_a ,output.predictions ,"""predict""" ) A_ : Union[str, Any] = self.compute_metrics(_a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): A_ : str = metrics.pop(_a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions ,label_ids=predictions.label_ids ,metrics=_a )
706
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """deberta-v2""" def __init__( self : Optional[Any] ,_a : Union[str, Any]=128100 ,_a : Optional[int]=1536 ,_a : Dict=24 ,_a : int=24 ,_a : Tuple=6144 ,_a : Union[str, Any]="gelu" ,_a : List[Any]=0.1 ,_a : Dict=0.1 ,_a : int=512 ,_a : int=0 ,_a : int=0.02 ,_a : int=1e-7 ,_a : List[str]=False ,_a : Union[str, Any]=-1 ,_a : List[Any]=0 ,_a : Optional[Any]=True ,_a : Tuple=None ,_a : Any=0 ,_a : int="gelu" ,**_a : Any ,): '''simple docstring''' super().__init__(**_a ) A_ : Union[str, Any] = hidden_size A_ : Dict = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : List[Any] = intermediate_size A_ : List[Any] = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : int = max_position_embeddings A_ : Any = type_vocab_size A_ : List[Any] = initializer_range A_ : int = relative_attention A_ : Tuple = max_relative_positions A_ : int = pad_token_id A_ : Tuple = position_biased_input # Backwards compatibility if type(_a ) == str: A_ : str = [x.strip() for x in pos_att_type.lower().split("""|""" )] A_ : Any = pos_att_type A_ : Optional[int] = vocab_size A_ : Tuple = layer_norm_eps A_ : Any = kwargs.get("""pooler_hidden_size""" ,_a ) A_ : Union[str, Any] = pooler_dropout A_ : List[Any] = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _a ( self : Any ): '''simple docstring''' if self.task == "multiple-choice": A_ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : Any = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def _a ( self : Optional[int] ): '''simple docstring''' return 12 def _a ( self : int ,_a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,_a : int = -1 ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional["TensorType"] = None ,_a : int = 3 ,_a : int = 40 ,_a : int = 40 ,_a : "PreTrainedTokenizerBase" = None ,): '''simple docstring''' A_ : Any = super().generate_dummy_inputs(preprocessor=_a ,framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
27
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __UpperCamelCase : Dict = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : bool , _lowerCAmelCase : str = None , _lowerCAmelCase : list = None ) -> int: """simple docstring""" __lowercase = None __lowercase = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) __lowercase = os.path.abspath("""examples""" ) for item in os.listdir(_lowerCAmelCase ): if item not in EXCLUDE_EXAMPLES: __lowercase = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) if os.path.isfile(_lowerCAmelCase ) and ".py" in item_path: with self.subTest( tested_script=_lowerCAmelCase , feature_script=_lowerCAmelCase , tested_section="""main()""" if parser_only else """training_function()""" , ): __lowercase = compare_against_test( os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase = """\n""".join(_lowerCAmelCase ) if special_strings is not None: for string in special_strings: __lowercase = diff.replace(_lowerCAmelCase , """""" ) self.assertEqual(_lowerCAmelCase , """""" ) def _a ( self : str ) -> List[Any]: """simple docstring""" self.one_complete_example("""complete_nlp_example.py""" , _lowerCAmelCase ) self.one_complete_example("""complete_nlp_example.py""" , _lowerCAmelCase ) def _a ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) __lowercase = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.one_complete_example("""complete_cv_example.py""" , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :List[Any] = False @classmethod def _a ( cls : Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().setUpClass() __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) __lowercase = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def _a ( cls : Dict ) -> Tuple: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _a ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def _a ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() __lowercase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def _a ( self : int ) -> Dict: """simple docstring""" __lowercase = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() __lowercase = run_command(self._launch_args + testargs , return_stdout=_lowerCAmelCase ) self.assertNotIn("""epoch 0:""" , _lowerCAmelCase ) self.assertIn("""epoch 1:""" , _lowerCAmelCase ) def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() __lowercase = run_command(self._launch_args + testargs , return_stdout=_lowerCAmelCase ) if torch.cuda.is_available(): __lowercase = torch.cuda.device_count() else: __lowercase = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , _lowerCAmelCase ) self.assertIn("""epoch 1:""" , _lowerCAmelCase ) else: self.assertIn("""epoch 0:""" , _lowerCAmelCase ) self.assertIn("""epoch 1:""" , _lowerCAmelCase ) @slow def _a ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): __lowercase = run_command(self._launch_args + testargs , return_stdout=_lowerCAmelCase ) __lowercase = re.findall("""({.+})""" , _lowerCAmelCase ) __lowercase = [r for r in results if """accuracy""" in r][-1] __lowercase = ast.literal_eval(_lowerCAmelCase ) self.assertGreaterEqual(results["""accuracy"""] , 0.75 ) def _a ( self : List[Any] ) -> int: """simple docstring""" __lowercase = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _a ( self : Optional[int] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: __lowercase = F'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_lowerCAmelCase , """tracking""" ) ) ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def _a ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
80
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def snake_case_ ( A_ : Dict, A_ : bool = True, A_ : float = math.inf, A_ : float = -math.inf, A_ : float = math.inf, A_ : float = -math.inf, A_ : bool = False, A_ : float = 1_00, A_ : float = 0.01, A_ : float = 1, ): '''simple docstring''' _lowerCamelCase : Optional[int] = False _lowerCamelCase : str = search_prob _lowerCamelCase : str = start_temperate _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : int = 0 _lowerCamelCase : Any = None while not search_end: _lowerCamelCase : Dict = current_state.score() if best_state is None or current_score > best_state.score(): _lowerCamelCase : Tuple = current_state scores.append(A_ ) iterations += 1 _lowerCamelCase : List[Any] = None _lowerCamelCase : Optional[int] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _lowerCamelCase : List[Any] = random.randint(0, len(A_ ) - 1 ) # picking a random neighbor _lowerCamelCase : Dict = neighbors.pop(A_ ) _lowerCamelCase : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _lowerCamelCase : str = change * -1 # in case we are finding minimum if change > 0: # improves the solution _lowerCamelCase : Optional[Any] = picked_neighbor else: _lowerCamelCase : Optional[int] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _lowerCamelCase : Union[str, Any] = picked_neighbor _lowerCamelCase : List[str] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _lowerCamelCase : Tuple = True else: _lowerCamelCase : Optional[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(A_ ), A_ ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def snake_case_ ( A_ : int, A_ : Tuple ): '''simple docstring''' return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def snake_case_ ( A_ : Optional[int], A_ : List[Any] ): '''simple docstring''' return (3 * x**2) - (6 * y) lowerCAmelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F"""{local_min.score()}""" ) lowerCAmelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F"""{local_min.score()}""" )
83
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowerCAmelCase__ = logging.getLogger(__name__) def _lowerCAmelCase( __A=2 , __A=3 , __A=16 , __A = 10 , __A = 2 ): def get_dataset(__A ): UpperCAmelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__A , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCAmelCase = get_dataset(__A ) UpperCAmelCase = get_dataset(__A ) UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) UpperCAmelCase = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) return (train_dataloader, valid_dataloader) def _lowerCAmelCase( __A , __A , __A , __A , __A , __A=None ): UpperCAmelCase = [] for epoch in range(__A ): # Train quickly model.train() for batch in dataloader: UpperCAmelCase , UpperCAmelCase = batch UpperCAmelCase = model(__A ) UpperCAmelCase = torch.nn.functional.mse_loss(__A , __A ) accelerator.backward(__A ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __magic_name__ ( nn.Module ): def __init__( self : Union[str, Any] ) -> List[Any]: super().__init__() UpperCAmelCase = nn.Parameter(torch.randn(1 ) ) UpperCAmelCase = nn.Parameter(torch.randn(1 ) ) def _UpperCamelCase ( self : int , lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]: return x * self.a + self.b class __magic_name__ ( unittest.TestCase ): def _UpperCamelCase ( self : Any ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase = DummyModel() UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCAmelCase , UpperCAmelCase = dummy_dataloaders() UpperCAmelCase = ProjectConfiguration(total_limit=1 , project_dir=lowerCAmelCase__ , automatic_checkpoint_naming=lowerCAmelCase__ ) # Train baseline UpperCAmelCase = Accelerator(project_config=lowerCAmelCase__ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def _UpperCamelCase ( self : Optional[Any] ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase = DummyModel() UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCAmelCase , UpperCAmelCase = dummy_dataloaders() # Train baseline UpperCAmelCase = Accelerator() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save initial UpperCAmelCase = os.path.join(lowerCAmelCase__ , "initial" ) accelerator.save_state(lowerCAmelCase__ ) ((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item() UpperCAmelCase = optimizer.state_dict() UpperCAmelCase = train(3 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item() UpperCAmelCase = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase = DummyModel() UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCAmelCase , UpperCAmelCase = dummy_dataloaders() UpperCAmelCase = Accelerator() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) accelerator.load_state(lowerCAmelCase__ ) ((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item() UpperCAmelCase = optimizer.state_dict() self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = train(2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save everything UpperCAmelCase = os.path.join(lowerCAmelCase__ , "checkpoint" ) accelerator.save_state(lowerCAmelCase__ ) # Load everything back in and make sure all states work accelerator.load_state(lowerCAmelCase__ ) test_rands += train(1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item() UpperCAmelCase = optimizer.state_dict() self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCamelCase ( self : List[Any] ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase = DummyModel() UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCAmelCase , UpperCAmelCase = dummy_dataloaders() UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase__ ) # Train baseline UpperCAmelCase = Accelerator(project_dir=lowerCAmelCase__ , project_config=lowerCAmelCase__ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save initial accelerator.save_state() ((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item() UpperCAmelCase = optimizer.state_dict() UpperCAmelCase = train(3 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item() UpperCAmelCase = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase = DummyModel() UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCAmelCase , UpperCAmelCase = dummy_dataloaders() UpperCAmelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=lowerCAmelCase__ ) UpperCAmelCase = Accelerator(project_dir=lowerCAmelCase__ , project_config=lowerCAmelCase__ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) accelerator.load_state(os.path.join(lowerCAmelCase__ , "checkpoints" , "checkpoint_0" ) ) ((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item() UpperCAmelCase = optimizer.state_dict() self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = train(2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCAmelCase__ , "checkpoints" , "checkpoint_1" ) ) test_rands += train(1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ((UpperCAmelCase) , (UpperCAmelCase)) = model.a.item(), model.b.item() UpperCAmelCase = optimizer.state_dict() self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCamelCase ( self : Tuple ) -> List[Any]: UpperCAmelCase = torch.tensor([1, 2, 3] ) UpperCAmelCase = torch.tensor([2, 3, 4] ) UpperCAmelCase = DummyModel() UpperCAmelCase = torch.optim.Adam(net.parameters() ) UpperCAmelCase = Accelerator() with self.assertRaises(lowerCAmelCase__ ) as ve: accelerator.register_for_checkpointing(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = str(ve.exception ) self.assertTrue("Item at index 0" in message ) self.assertTrue("Item at index 1" in message ) self.assertFalse("Item at index 2" in message ) self.assertFalse("Item at index 3" in message ) def _UpperCamelCase ( self : Tuple ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase = DummyModel() UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCAmelCase = torch.optim.lr_scheduler.StepLR(lowerCAmelCase__ , step_size=1 , gamma=0.99 ) UpperCAmelCase , UpperCAmelCase = dummy_dataloaders() UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase__ ) # Train baseline UpperCAmelCase = Accelerator(project_dir=lowerCAmelCase__ , project_config=lowerCAmelCase__ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save initial accelerator.save_state() UpperCAmelCase = scheduler.state_dict() train(3 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotEqual(lowerCAmelCase__ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCAmelCase__ , "checkpoints" , "checkpoint_0" ) ) self.assertEqual(lowerCAmelCase__ , scheduler.state_dict() ) def _UpperCamelCase ( self : List[str] ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase = DummyModel() UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase__ , total_limit=2 ) # Train baseline UpperCAmelCase = Accelerator(project_dir=lowerCAmelCase__ , project_config=lowerCAmelCase__ ) UpperCAmelCase = accelerator.prepare(lowerCAmelCase__ ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(lowerCAmelCase__ , "checkpoints" , "checkpoint_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "checkpoints" , "checkpoint_9" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "checkpoints" , "checkpoint_10" ) ) ) @require_cuda def _UpperCamelCase ( self : List[Any] ) -> Optional[int]: UpperCAmelCase = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase__ = "/tmp/accelerate/state_checkpointing" lowerCAmelCase__ = DummyModel() lowerCAmelCase__ = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowerCAmelCase__ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) lowerCAmelCase__, lowerCAmelCase__ = dummy_dataloaders() lowerCAmelCase__ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowerCAmelCase__ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowerCAmelCase__, lowerCAmelCase__ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowerCAmelCase__ = group["params"][0].device break assert param_device.type == accelerator.device.type lowerCAmelCase__ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: lowerCAmelCase__ = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: lowerCAmelCase__ = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class __magic_name__ ( _snake_case , _snake_case ): UpperCAmelCase = """convnextv2""" def __init__( self : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Dict=1e-1_2 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : str=2_2_4 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[Any] , ) -> List[Any]: super().__init__(**lowerCAmelCase__ ) UpperCAmelCase = num_channels UpperCAmelCase = patch_size UpperCAmelCase = num_stages UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes UpperCAmelCase = [3, 3, 9, 3] if depths is None else depths UpperCAmelCase = hidden_act UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = drop_path_rate UpperCAmelCase = image_size UpperCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
1
1
def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
54
_lowercase : Dict = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
641
0
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self , _snake_case , _snake_case=13 , _snake_case=[30, 30] , _snake_case=2 , _snake_case=3 , _snake_case=True , _snake_case=True , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=10 , _snake_case=0.02 , _snake_case=3 , _snake_case=None , _snake_case=8 , _snake_case=10 , ) -> Optional[Any]: UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : Union[str, Any] = batch_size UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : int = patch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Union[str, Any] = intermediate_size UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : Optional[Any] = num_labels UpperCAmelCase_ : Union[str, Any] = scope UpperCAmelCase_ : Tuple = n_targets UpperCAmelCase_ : List[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens UpperCAmelCase_ : Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) UpperCAmelCase_ : Optional[int] = num_patches + 1 + self.num_detection_tokens def _snake_case ( self) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) UpperCAmelCase_ : List[Any] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) UpperCAmelCase_ : int = [] for i in range(self.batch_size): UpperCAmelCase_ : Optional[Any] = {} UpperCAmelCase_ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_snake_case) UpperCAmelCase_ : List[str] = torch.rand(self.n_targets , 4 , device=_snake_case) labels.append(_snake_case) UpperCAmelCase_ : List[Any] = self.get_config() return config, pixel_values, labels def _snake_case ( self) -> Optional[Any]: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_snake_case , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _snake_case ( self , _snake_case , _snake_case , _snake_case) -> List[Any]: UpperCAmelCase_ : int = YolosModel(config=_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ : List[str] = model(_snake_case) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def _snake_case ( self , _snake_case , _snake_case , _snake_case) -> Any: UpperCAmelCase_ : Any = YolosForObjectDetection(_snake_case) model.to(_snake_case) model.eval() UpperCAmelCase_ : List[str] = model(pixel_values=_snake_case) UpperCAmelCase_ : List[str] = model(_snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) UpperCAmelCase_ : Tuple = model(pixel_values=_snake_case , labels=_snake_case) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def _snake_case ( self) -> str: UpperCAmelCase_ : Any = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = config_and_inputs UpperCAmelCase_ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( a_, a_, unittest.TestCase ): _lowerCamelCase : Union[str, Any]= (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCamelCase : Dict= ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCamelCase : str= False _lowerCamelCase : Optional[Any]= False _lowerCamelCase : Tuple= False _lowerCamelCase : str= False def _snake_case ( self , _snake_case , _snake_case , _snake_case=False) -> str: UpperCAmelCase_ : Optional[int] = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case) if return_labels: if model_class.__name__ == "YolosForObjectDetection": UpperCAmelCase_ : Optional[int] = [] for i in range(self.model_tester.batch_size): UpperCAmelCase_ : List[str] = {} UpperCAmelCase_ : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=_snake_case , dtype=torch.long) UpperCAmelCase_ : str = torch.ones( self.model_tester.n_targets , 4 , device=_snake_case , dtype=torch.float) labels.append(_snake_case) UpperCAmelCase_ : Union[str, Any] = labels return inputs_dict def _snake_case ( self) -> Any: UpperCAmelCase_ : Dict = YolosModelTester(self) UpperCAmelCase_ : Optional[int] = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37) def _snake_case ( self) -> str: self.config_tester.run_common_tests() def _snake_case ( self) -> List[str]: # YOLOS does not use inputs_embeds pass def _snake_case ( self) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = model_class(_snake_case) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCAmelCase_ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , nn.Linear)) def _snake_case ( self) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_snake_case) UpperCAmelCase_ : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Dict = [*signature.parameters.keys()] UpperCAmelCase_ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case) def _snake_case ( self) -> Tuple: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case) def _snake_case ( self) -> Any: UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Tuple = True # in YOLOS, the seq_len is different UpperCAmelCase_ : str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = False UpperCAmelCase_ : str = True UpperCAmelCase_ : Union[str, Any] = model_class(_snake_case) model.to(_snake_case) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ : Tuple = outputs.attentions self.assertEqual(len(_snake_case) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Any = model_class(_snake_case) model.to(_snake_case) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ : List[str] = outputs.attentions self.assertEqual(len(_snake_case) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) UpperCAmelCase_ : Union[str, Any] = len(_snake_case) # Check attention is always last and order is fine UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : int = model_class(_snake_case) model.to(_snake_case) model.eval() with torch.no_grad(): UpperCAmelCase_ : List[str] = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ : Dict = 1 self.assertEqual(out_len + added_hidden_states , len(_snake_case)) UpperCAmelCase_ : Union[str, Any] = outputs.attentions self.assertEqual(len(_snake_case) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _snake_case ( self) -> Optional[int]: def check_hidden_states_output(_snake_case , _snake_case , _snake_case): UpperCAmelCase_ : int = model_class(_snake_case) model.to(_snake_case) model.eval() with torch.no_grad(): UpperCAmelCase_ : Any = model(**self._prepare_for_class(_snake_case , _snake_case)) UpperCAmelCase_ : Tuple = outputs.hidden_states UpperCAmelCase_ : Dict = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_snake_case) , _snake_case) # YOLOS has a different seq_length UpperCAmelCase_ : Any = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Tuple = True check_hidden_states_output(_snake_case , _snake_case , _snake_case) def _snake_case ( self) -> List[Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_snake_case) @slow def _snake_case ( self) -> Optional[int]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[int] = YolosModel.from_pretrained(_snake_case) self.assertIsNotNone(_snake_case) def SCREAMING_SNAKE_CASE( ) -> int: UpperCAmelCase_ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def _snake_case ( self) -> List[str]: return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None @slow def _snake_case ( self) -> Tuple: UpperCAmelCase_ : Optional[int] = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_snake_case) UpperCAmelCase_ : Any = self.default_image_processor UpperCAmelCase_ : Optional[int] = prepare_img() UpperCAmelCase_ : Dict = image_processor(images=_snake_case , return_tensors='pt').to(_snake_case) # forward pass with torch.no_grad(): UpperCAmelCase_ : str = model(inputs.pixel_values) # verify outputs UpperCAmelCase_ : Optional[Any] = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , _snake_case) UpperCAmelCase_ : Tuple = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=_snake_case , ) UpperCAmelCase_ : Optional[Any] = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=_snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _snake_case , atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _snake_case , atol=1e-4)) # verify postprocessing UpperCAmelCase_ : Union[str, Any] = image_processor.post_process_object_detection( _snake_case , threshold=0.3 , target_sizes=[image.size[::-1]])[0] UpperCAmelCase_ : Tuple = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861]).to(_snake_case) UpperCAmelCase_ : Dict = [75, 75, 17, 63, 17] UpperCAmelCase_ : List[str] = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495]).to(_snake_case) self.assertEqual(len(results['scores']) , 5) self.assertTrue(torch.allclose(results['scores'] , _snake_case , atol=1e-4)) self.assertSequenceEqual(results['labels'].tolist() , _snake_case) self.assertTrue(torch.allclose(results['boxes'][0, :] , _snake_case))
471
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowercase ( a_ ): _lowerCamelCase : torch.FloatTensor class lowercase ( a_, a_ ): @register_to_config def __init__( self , _snake_case = 6_5536 , _snake_case = None , _snake_case = 2 , _snake_case = 2 , _snake_case = 0 , _snake_case = "fourier" , _snake_case = True , _snake_case = False , _snake_case = 0.0 , _snake_case = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _snake_case = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _snake_case = "UNetMidBlock1D" , _snake_case = None , _snake_case = (32, 32, 64) , _snake_case = None , _snake_case = 8 , _snake_case = 1 , _snake_case = False , ) -> List[str]: super().__init__() UpperCAmelCase_ : Optional[Any] = sample_size # time if time_embedding_type == "fourier": UpperCAmelCase_ : Tuple = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_snake_case , log=_snake_case , flip_sin_to_cos=_snake_case) UpperCAmelCase_ : int = 2 * block_out_channels[0] elif time_embedding_type == "positional": UpperCAmelCase_ : Optional[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_snake_case , downscale_freq_shift=_snake_case) UpperCAmelCase_ : List[Any] = block_out_channels[0] if use_timestep_embedding: UpperCAmelCase_ : Dict = block_out_channels[0] * 4 UpperCAmelCase_ : List[Any] = TimestepEmbedding( in_channels=_snake_case , time_embed_dim=_snake_case , act_fn=_snake_case , out_dim=block_out_channels[0] , ) UpperCAmelCase_ : int = nn.ModuleList([]) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Optional[int] = nn.ModuleList([]) UpperCAmelCase_ : Any = None # down UpperCAmelCase_ : Dict = in_channels for i, down_block_type in enumerate(_snake_case): UpperCAmelCase_ : int = output_channel UpperCAmelCase_ : Optional[int] = block_out_channels[i] if i == 0: input_channel += extra_in_channels UpperCAmelCase_ : int = i == len(_snake_case) - 1 UpperCAmelCase_ : Any = get_down_block( _snake_case , num_layers=_snake_case , in_channels=_snake_case , out_channels=_snake_case , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_snake_case) # mid UpperCAmelCase_ : Optional[int] = get_mid_block( _snake_case , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_snake_case , add_downsample=_snake_case , ) # up UpperCAmelCase_ : Union[str, Any] = list(reversed(_snake_case)) UpperCAmelCase_ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: UpperCAmelCase_ : Tuple = out_channels else: UpperCAmelCase_ : int = block_out_channels[0] for i, up_block_type in enumerate(_snake_case): UpperCAmelCase_ : Dict = output_channel UpperCAmelCase_ : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_snake_case) - 1 else final_upsample_channels ) UpperCAmelCase_ : str = i == len(_snake_case) - 1 UpperCAmelCase_ : Union[str, Any] = get_up_block( _snake_case , num_layers=_snake_case , in_channels=_snake_case , out_channels=_snake_case , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_snake_case) UpperCAmelCase_ : Dict = output_channel # out UpperCAmelCase_ : Union[str, Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) UpperCAmelCase_ : Any = get_out_block( out_block_type=_snake_case , num_groups_out=_snake_case , embed_dim=block_out_channels[0] , out_channels=_snake_case , act_fn=_snake_case , fc_dim=block_out_channels[-1] // 4 , ) def _snake_case ( self , _snake_case , _snake_case , _snake_case = True , ) -> Union[UNetaDOutput, Tuple]: UpperCAmelCase_ : Union[str, Any] = timestep if not torch.is_tensor(_snake_case): UpperCAmelCase_ : Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_snake_case) and len(timesteps.shape) == 0: UpperCAmelCase_ : Tuple = timesteps[None].to(sample.device) UpperCAmelCase_ : Any = self.time_proj(_snake_case) if self.config.use_timestep_embedding: UpperCAmelCase_ : int = self.time_mlp(_snake_case) else: UpperCAmelCase_ : int = timestep_embed[..., None] UpperCAmelCase_ : List[Any] = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) UpperCAmelCase_ : int = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down UpperCAmelCase_ : Optional[Any] = () for downsample_block in self.down_blocks: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = downsample_block(hidden_states=_snake_case , temb=_snake_case) down_block_res_samples += res_samples # 3. mid if self.mid_block: UpperCAmelCase_ : List[Any] = self.mid_block(_snake_case , _snake_case) # 4. up for i, upsample_block in enumerate(self.up_blocks): UpperCAmelCase_ : int = down_block_res_samples[-1:] UpperCAmelCase_ : Tuple = down_block_res_samples[:-1] UpperCAmelCase_ : List[Any] = upsample_block(_snake_case , res_hidden_states_tuple=_snake_case , temb=_snake_case) # 5. post-process if self.out_block: UpperCAmelCase_ : Optional[Any] = self.out_block(_snake_case , _snake_case) if not return_dict: return (sample,) return UNetaDOutput(sample=_snake_case)
471
1