code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _lowerCamelCase =logging.get_logger(__name__) def _a ( lowerCamelCase, lowerCamelCase ): try: with open(lowerCamelCase, """rb""" ) as flax_state_f: lowerCamelCase : Optional[Any] = from_bytes(lowerCamelCase, flax_state_f.read() ) except UnpicklingError as e: try: with open(lowerCamelCase ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(lowerCamelCase, lowerCamelCase ) def _a ( lowerCamelCase, lowerCamelCase ): try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights lowerCamelCase : Tuple = flatten_dict(jax.tree_util.tree_map(lambda lowerCamelCase : x.dtype == jnp.bfloataa, lowerCamelCase ) ).values() if any(lowerCamelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) lowerCamelCase : Union[str, Any] = jax.tree_util.tree_map( lambda lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params, lowerCamelCase ) lowerCamelCase : Any = """""" lowerCamelCase : Tuple = flatten_dict(lowerCamelCase, sep=""".""" ) lowerCamelCase : Optional[Any] = pt_model.state_dict() # keep track of unexpected & missing keys lowerCamelCase : List[Any] = [] lowerCamelCase : Any = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCamelCase : List[str] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowerCamelCase : int = flax_key_tuple_array[:-1] + ["""weight"""] lowerCamelCase : Union[str, Any] = jnp.transpose(lowerCamelCase, (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowerCamelCase : Tuple = flax_key_tuple_array[:-1] + ["""weight"""] lowerCamelCase : str = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowerCamelCase : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowerCamelCase ): lowerCamelCase : Union[str, Any] = ( flax_key_tuple_string.replace("""_0""", """.0""" ) .replace("""_1""", """.1""" ) .replace("""_2""", """.2""" ) .replace("""_3""", """.3""" ) .replace("""_4""", """.4""" ) .replace("""_5""", """.5""" ) .replace("""_6""", """.6""" ) .replace("""_7""", """.7""" ) .replace("""_8""", """.8""" ) .replace("""_9""", """.9""" ) ) lowerCamelCase : int = """.""".join(lowerCamelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict lowerCamelCase : int = np.asarray(lowerCamelCase ) if not isinstance(lowerCamelCase, np.ndarray ) else flax_tensor lowerCamelCase : Tuple = torch.from_numpy(lowerCamelCase ) # remove from missing keys missing_keys.remove(lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowerCamelCase ) pt_model.load_state_dict(lowerCamelCase ) # re-transform missing_keys to list lowerCamelCase : Any = list(lowerCamelCase ) if len(lowerCamelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(lowerCamelCase ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' """ use it for predictions and inference.""" ) return pt_model
681
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _a ( lowerCamelCase, lowerCamelCase ): lowerCamelCase : List[str] = k_size // 2 lowerCamelCase , lowerCamelCase : Optional[int] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] lowerCamelCase : Optional[Any] = 1 / (2 * pi * sigma) * exp(-(square(lowerCamelCase ) + square(lowerCamelCase )) / (2 * square(lowerCamelCase )) ) return g def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowerCamelCase , lowerCamelCase : Union[str, Any] = image.shape[0], image.shape[1] # dst image height and width lowerCamelCase : Dict = height - k_size + 1 lowerCamelCase : str = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows lowerCamelCase : Tuple = zeros((dst_height * dst_width, k_size * k_size) ) lowerCamelCase : List[Any] = 0 for i, j in product(range(lowerCamelCase ), range(lowerCamelCase ) ): lowerCamelCase : Dict = ravel(image[i : i + k_size, j : j + k_size] ) lowerCamelCase : Union[str, Any] = window row += 1 # turn the kernel into shape(k*k, 1) lowerCamelCase : Dict = gen_gaussian_kernel(lowerCamelCase, lowerCamelCase ) lowerCamelCase : str = ravel(lowerCamelCase ) # reshape and get the dst image lowerCamelCase : List[str] = dot(lowerCamelCase, lowerCamelCase ).reshape(lowerCamelCase, lowerCamelCase ).astype(lowerCamelCase ) return dst if __name__ == "__main__": # read original image _lowerCamelCase =imread(R"""../image_data/lena.jpg""") # turn image in gray scale value _lowerCamelCase =cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _lowerCamelCase =gaussian_filter(gray, 3, sigma=1) _lowerCamelCase =gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("""gaussian filter with 3x3 mask""", gaussianaxa) imshow("""gaussian filter with 5x5 mask""", gaussianaxa) waitKey()
681
1
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _UpperCAmelCase : List[Any] = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_): def __init__( self: str , *_lowerCAmelCase: Union[str, Any] , **_lowerCAmelCase: str ): warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
708
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def UpperCAmelCase__ ( ): lowercase :List[str] = torch.nn.Linear(2, 4 ) lowercase :List[Any] = torch.optim.AdamW(model.parameters(), lr=1.0 ) lowercase :int = torch.optim.lr_scheduler.OneCycleLR(lowerCamelCase, max_lr=0.01, steps_per_epoch=2, epochs=1 ) lowercase :Optional[int] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) lowercase :List[str] = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def UpperCAmelCase__ ( lowerCamelCase ): return (model.weight.abs().sum() + model.bias.abs().sum()).item() def UpperCAmelCase__ ( lowerCamelCase ): lowercase :Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(lowerCamelCase ) class __lowerCAmelCase ( lowerCAmelCase): @require_cuda def SCREAMING_SNAKE_CASE ( self: str ): lowercase :List[str] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(_lowerCAmelCase ): lowercase :Any = Accelerator(cpu=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :Any = Accelerator() lowercase :Dict = GradientState() assert state.num_steps == 1 lowercase :Tuple = 4 assert state.num_steps == 4 assert state.sync_gradients is True lowercase :List[Any] = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE ( self: int ): lowercase :str = Accelerator() lowercase , lowercase , lowercase , lowercase , lowercase :Any = create_components() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) :Tuple = accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :Dict = Accelerator() lowercase , lowercase , lowercase , lowercase , lowercase :List[str] = create_components() accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def SCREAMING_SNAKE_CASE ( self: int ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*_lowerCAmelCase: List[str] , **_lowerCAmelCase: Optional[int] ): pass with patch("torch.cuda.set_device" , _lowerCAmelCase ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): lowercase :List[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , "cuda:64" ) def SCREAMING_SNAKE_CASE ( self: int ): lowercase :Tuple = Accelerator() lowercase , lowercase , lowercase , lowercase , lowercase :Optional[Any] = create_components() accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase :Tuple = get_signature(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowerCAmelCase ) # make sure random weights don't match load_random_weights(_lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(_lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase ) ) < 1e-3 ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): lowercase :Dict = Accelerator() lowercase , lowercase , lowercase , lowercase , lowercase :int = create_components() accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase :int = get_signature(_lowerCAmelCase ) # saving hook def save_config(_lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: str , _lowerCAmelCase: List[Any] ): lowercase :Dict = {"class_name": models[0].__class__.__name__} with open(os.path.join(_lowerCAmelCase , "data.json" ) , "w" ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # loading hook def load_config(_lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Union[str, Any] ): with open(os.path.join(_lowerCAmelCase , "data.json" ) , "r" ) as f: lowercase :int = json.load(_lowerCAmelCase ) lowercase :Optional[int] = config["class_name"] lowercase :Optional[Any] = accelerator.register_save_state_pre_hook(_lowerCAmelCase ) lowercase :Tuple = accelerator.register_load_state_pre_hook(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowerCAmelCase ) # make sure random weights don't match with hooks load_random_weights(_lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase ) ) > 1e-3 ) # random class name to verify correct one is loaded lowercase :Optional[int] = "random" # make sure loaded weights match with hooks accelerator.load_state(_lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_lowerCAmelCase ) # make sure random weights don't match with hooks removed load_random_weights(_lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase ) ) > 1e-3 ) # random class name to verify correct one is loaded lowercase :str = "random" # make sure loaded weights match with hooks removed accelerator.load_state(_lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(_lowerCAmelCase ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): lowercase :List[str] = Accelerator() lowercase , lowercase , lowercase , lowercase , lowercase :List[Any] = create_components() lowercase :List[str] = None # This should work lowercase , lowercase , lowercase , lowercase , lowercase , lowercase :str = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(dummy_obj is None ) def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Union[str, Any] = Accelerator() lowercase , lowercase , lowercase , lowercase , lowercase :Union[str, Any] = create_components() lowercase :Union[str, Any] = [1, 2, 3] # This should work lowercase , lowercase , lowercase , lowercase , lowercase , lowercase :List[str] = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase ) , _lowerCAmelCase , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase ) , _lowerCAmelCase , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase ) , _lowerCAmelCase , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase ) , _lowerCAmelCase , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase ) , _lowerCAmelCase , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(_lowerCAmelCase , "_is_accelerate_prepared" , _lowerCAmelCase ) , _lowerCAmelCase , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): from transformers import AutoModelForCausalLM lowercase :Any = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=_lowerCAmelCase , device_map={"": 0} , ) lowercase :int = Accelerator() # This should work lowercase :Optional[int] = accelerator.prepare(_lowerCAmelCase ) @slow @require_bnb def SCREAMING_SNAKE_CASE ( self: List[str] ): from transformers import AutoModelForCausalLM lowercase :Optional[Any] = Accelerator() with init_empty_weights(): lowercase :Any = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() lowercase :Dict = infer_auto_device_map(_lowerCAmelCase ) lowercase :int = "cpu" lowercase :str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=_lowerCAmelCase , load_in_abit=_lowerCAmelCase , llm_inta_enable_fpaa_cpu_offload=_lowerCAmelCase ) # This should not work and get value error with self.assertRaises(_lowerCAmelCase ): lowercase :Dict = accelerator.prepare(_lowerCAmelCase ) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE ( self: Any ): from transformers import AutoModelForCausalLM lowercase :List[str] = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): lowercase :str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() lowercase :Optional[Any] = infer_auto_device_map(_lowerCAmelCase ) lowercase :Any = 1 lowercase :str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=_lowerCAmelCase , device_map=_lowerCAmelCase , ) lowercase :List[str] = Accelerator() # This should not work and get value error with self.assertRaises(_lowerCAmelCase ): lowercase :Optional[Any] = accelerator.prepare(_lowerCAmelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE ( self: List[Any] ): from transformers import AutoModelForCausalLM with init_empty_weights(): lowercase :List[str] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) lowercase :List[Any] = infer_auto_device_map(_lowerCAmelCase ) lowercase :Optional[int] = 1 lowercase :Union[str, Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=_lowerCAmelCase , device_map=_lowerCAmelCase , ) lowercase :Union[str, Any] = Accelerator() # This should work lowercase :List[Any] = accelerator.prepare(_lowerCAmelCase ) @require_cuda def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :Optional[int] = torch.nn.Linear(10 , 10 ) lowercase :Optional[int] = torch.optim.SGD(model.parameters() , lr=0.01 ) lowercase :List[Any] = Accelerator(cpu=_lowerCAmelCase ) lowercase :List[str] = accelerator.prepare(_lowerCAmelCase )
453
0
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = 'T5Config' def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ ) -> jnp.ndarray: __UpperCAmelCase =jnp.zeros_like(snake_case__ ) __UpperCAmelCase =shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) __UpperCAmelCase =shifted_input_ids.at[:, 0].set(snake_case__ ) __UpperCAmelCase =jnp.where(shifted_input_ids == -100 , snake_case__ , snake_case__ ) return shifted_input_ids class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : Tuple = '''mt5''' a_ : Dict = MTaConfig class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : Tuple = '''mt5''' a_ : List[Any] = MTaConfig class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : Tuple = '''mt5''' a_ : List[str] = MTaConfig
132
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : int = '''deta''' a_ : Dict = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__(self , UpperCAmelCase=None , UpperCAmelCase=9_0_0 , UpperCAmelCase=2_0_4_8 , UpperCAmelCase=6 , UpperCAmelCase=2_0_4_8 , UpperCAmelCase=8 , UpperCAmelCase=6 , UpperCAmelCase=1_0_2_4 , UpperCAmelCase=8 , UpperCAmelCase=0.0 , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=2_5_6 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=1.0 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase="sine" , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase=True , UpperCAmelCase=3_0_0 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=1 , UpperCAmelCase=5 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=1 , UpperCAmelCase=5 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.25 , **UpperCAmelCase , ): '''simple docstring''' if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') __UpperCAmelCase =CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4''']) else: if isinstance(UpperCAmelCase , UpperCAmelCase): __UpperCAmelCase =backbone_config.pop('''model_type''') __UpperCAmelCase =CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase =config_class.from_dict(UpperCAmelCase) __UpperCAmelCase =backbone_config __UpperCAmelCase =num_queries __UpperCAmelCase =max_position_embeddings __UpperCAmelCase =d_model __UpperCAmelCase =encoder_ffn_dim __UpperCAmelCase =encoder_layers __UpperCAmelCase =encoder_attention_heads __UpperCAmelCase =decoder_ffn_dim __UpperCAmelCase =decoder_layers __UpperCAmelCase =decoder_attention_heads __UpperCAmelCase =dropout __UpperCAmelCase =attention_dropout __UpperCAmelCase =activation_dropout __UpperCAmelCase =activation_function __UpperCAmelCase =init_std __UpperCAmelCase =init_xavier_std __UpperCAmelCase =encoder_layerdrop __UpperCAmelCase =auxiliary_loss __UpperCAmelCase =position_embedding_type # deformable attributes __UpperCAmelCase =num_feature_levels __UpperCAmelCase =encoder_n_points __UpperCAmelCase =decoder_n_points __UpperCAmelCase =two_stage __UpperCAmelCase =two_stage_num_proposals __UpperCAmelCase =with_box_refine __UpperCAmelCase =assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''') # Hungarian matcher __UpperCAmelCase =class_cost __UpperCAmelCase =bbox_cost __UpperCAmelCase =giou_cost # Loss coefficients __UpperCAmelCase =mask_loss_coefficient __UpperCAmelCase =dice_loss_coefficient __UpperCAmelCase =bbox_loss_coefficient __UpperCAmelCase =giou_loss_coefficient __UpperCAmelCase =eos_coefficient __UpperCAmelCase =focal_alpha super().__init__(is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase) @property def A__ (self): '''simple docstring''' return self.encoder_attention_heads @property def A__ (self): '''simple docstring''' return self.d_model def A__ (self): '''simple docstring''' __UpperCAmelCase =copy.deepcopy(self.__dict__) __UpperCAmelCase =self.backbone_config.to_dict() __UpperCAmelCase =self.__class__.model_type return output
132
1
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> str: '''simple docstring''' __UpperCAmelCase : int = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : int = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : Union[str, Any] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
720
from typing import TYPE_CHECKING from ....utils import _LazyModule lowerCAmelCase = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
675
0
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( snake_case__ , unittest.TestCase ): """simple docstring""" a_ :List[str] =None a_ :Tuple =BloomTokenizerFast a_ :List[str] =BloomTokenizerFast a_ :Dict =True a_ :Optional[Any] =False a_ :List[Any] ="""tokenizer_file""" a_ :Optional[Any] ={"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def __a ( self : Tuple ): '''simple docstring''' super().setUp() __a = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self : str , **SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __a ( self : str ): '''simple docstring''' __a = self.get_rust_tokenizer() __a = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] __a = [[2_1_7_5, 2_3_7_1_4, 7_3_1_7_3, 1_4_4_2_5_2, 2], [7_7, 1_3_2_6_1_9, 3_4_7_8, 3_6_8, 1_0_9_5_8_6, 3_5_4_3_3, 2]] __a = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE__ )["""input_ids"""] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str=6 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __a = """This is a simple input""" __a = ["""This is a simple input 1""", """This is a simple input 2"""] __a = ("""This is a simple input""", """This is a pair""") __a = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) tokenizer_r.batch_encode_plus(SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) tokenizer_r.batch_encode_plus(SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) __a = None # Hotfixing padding = None self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding="""max_length""" ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding="""max_length""" ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE__ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding="""max_length""" , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding="""max_length""" ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding="""max_length""" ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE__ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding="""max_length""" , ) def __a ( self : List[Any] ): '''simple docstring''' __a = self.get_rust_tokenizer() __a = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=SCREAMING_SNAKE_CASE__ ) __a = next(iter(SCREAMING_SNAKE_CASE__ ) )["""premise"""] # pick up one data __a = list(sample_data.values() ) __a = list(map(tokenizer.encode , SCREAMING_SNAKE_CASE__ ) ) __a = [tokenizer.decode(SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) for x in output_tokens] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __a ( self : Dict ): '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
582
'''simple docstring''' def __lowercase ( __SCREAMING_SNAKE_CASE = 10**9 ) -> int: """simple docstring""" __a = 1 __a = 2 __a = 0 __a = 0 __a = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __a = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
582
1
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase__ = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): return image elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): __a = [image] __a = [trans(img.convert("""RGB""" ) ) for img in image] __a = torch.stack(_SCREAMING_SNAKE_CASE ) return image class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : List[str] , __lowercase : List[Any] , __lowercase : List[str] ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM __a = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__lowercase , scheduler=__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : int ): '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"The value of strength should in [0.0, 1.0] but is {strength}" ) def UpperCamelCase_ ( self : Tuple , __lowercase : Optional[int] , __lowercase : Any , __lowercase : int ): '''simple docstring''' # get the original timestep using init_timestep __a = min(int(num_inference_steps * strength ) , __lowercase ) __a = max(num_inference_steps - init_timestep , 0 ) __a = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase_ ( self : str , __lowercase : Union[str, Any] , __lowercase : Any , __lowercase : Tuple , __lowercase : List[str] , __lowercase : Tuple , __lowercase : List[str]=None ): '''simple docstring''' if not isinstance(__lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowercase )}" ) __a = image.to(device=__lowercase , dtype=__lowercase ) if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(__lowercase )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) __a = init_latents.shape __a = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) # get latents print("""add noise to latents at timestep""" , __lowercase ) __a = self.scheduler.add_noise(__lowercase , __lowercase , __lowercase ) __a = init_latents return latents @torch.no_grad() def __call__( self : str , __lowercase : Union[torch.FloatTensor, PIL.Image.Image] = None , __lowercase : float = 0.8 , __lowercase : int = 1 , __lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowercase : float = 0.0 , __lowercase : int = 50 , __lowercase : Optional[bool] = None , __lowercase : Optional[str] = "pil" , __lowercase : bool = True , ): '''simple docstring''' self.check_inputs(__lowercase ) # 2. Preprocess image __a = preprocess(__lowercase ) # 3. set timesteps self.scheduler.set_timesteps(__lowercase , device=self.device ) __a , __a = self.get_timesteps(__lowercase , __lowercase , self.device ) __a = timesteps[:1].repeat(__lowercase ) # 4. Prepare latent variables __a = self.prepare_latents(__lowercase , __lowercase , __lowercase , self.unet.dtype , self.device , __lowercase ) __a = latents # 5. Denoising loop for t in self.progress_bar(__lowercase ): # 1. predict noise model_output __a = self.unet(__lowercase , __lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __a = self.scheduler.step( __lowercase , __lowercase , __lowercase , eta=__lowercase , use_clipped_model_output=__lowercase , generator=__lowercase , ).prev_sample __a = (image / 2 + 0.5).clamp(0 , 1 ) __a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(__lowercase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=__lowercase )
547
from __future__ import annotations from collections import Counter from random import random class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ): '''simple docstring''' __a = {} def UpperCamelCase_ ( self : Dict , __lowercase : str ): '''simple docstring''' __a = {} def UpperCamelCase_ ( self : List[str] , __lowercase : str , __lowercase : str , __lowercase : float ): '''simple docstring''' if nodea not in self.connections: self.add_node(__lowercase ) if nodea not in self.connections: self.add_node(__lowercase ) __a = probability def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return list(self.connections ) def UpperCamelCase_ ( self : Tuple , __lowercase : str ): '''simple docstring''' __a = 0 __a = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : list[tuple[str, str, float]] , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __a = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a = Counter(graph.get_nodes() ) __a = start for _ in range(_SCREAMING_SNAKE_CASE ): __a = graph.transition(_SCREAMING_SNAKE_CASE ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
547
1
from graphs.minimum_spanning_tree_kruskal import kruskal def _snake_case () -> List[str]: _lowercase =9 _lowercase =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _lowercase =kruskal(snake_case__ , snake_case__) _lowercase =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(snake_case__) == sorted(snake_case__)
181
"""simple docstring""" from __future__ import annotations A_ = 10 def UpperCAmelCase__ (snake_case__ : list[int] ): """simple docstring""" _snake_case : Any = 1 _snake_case : Dict = max(snake_case__ ) while placement <= max_digit: # declare and initialize empty buckets _snake_case : list[list] = [[] for _ in range(snake_case__ )] # split list_of_ints between the buckets for i in list_of_ints: _snake_case : List[str] = int((i / placement) % RADIX ) buckets[tmp].append(snake_case__ ) # put each buckets' contents into list_of_ints _snake_case : Dict = 0 for b in range(snake_case__ ): for i in buckets[b]: _snake_case : str = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
609
0
from __future__ import annotations from math import pi def UpperCamelCase ( snake_case__ : float ,snake_case__ : float ,snake_case__ : float ): '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
291
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class snake_case__ ( lowercase_): '''simple docstring''' lowerCamelCase : Optional[int] = "visual_bert" def __init__( self , a__=3_05_22 , a__=7_68 , a__=5_12 , a__=12 , a__=12 , a__=30_72 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_12 , a__=2 , a__=0.02 , a__=1e-12 , a__=False , a__=True , a__=1 , a__=0 , a__=2 , **a__ , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) __snake_case :Tuple = vocab_size __snake_case :Any = max_position_embeddings __snake_case :int = hidden_size __snake_case :List[str] = visual_embedding_dim __snake_case :List[str] = num_hidden_layers __snake_case :Tuple = num_attention_heads __snake_case :str = intermediate_size __snake_case :Union[str, Any] = hidden_act __snake_case :Union[str, Any] = hidden_dropout_prob __snake_case :str = attention_probs_dropout_prob __snake_case :Tuple = initializer_range __snake_case :str = type_vocab_size __snake_case :Optional[Any] = layer_norm_eps __snake_case :Union[str, Any] = bypass_transformer __snake_case :Tuple = special_visual_initialize
291
1
from __future__ import annotations import time UpperCAmelCase_ = list[tuple[int, int]] UpperCAmelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCAmelCase_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __magic_name__ : """simple docstring""" def __init__( self : Optional[int] , _lowercase : int , _lowercase : int , _lowercase : int , _lowercase : int , _lowercase : Node | None ): """simple docstring""" _UpperCamelCase: Dict = pos_x _UpperCamelCase: Dict = pos_y _UpperCamelCase: Tuple = (pos_y, pos_x) _UpperCamelCase: Dict = goal_x _UpperCamelCase: Optional[Any] = goal_y _UpperCamelCase: str = parent class __magic_name__ : """simple docstring""" def __init__( self : str , _lowercase : tuple[int, int] , _lowercase : tuple[int, int] ): """simple docstring""" _UpperCamelCase: int = Node(start[1] , start[0] , goal[1] , goal[0] , _lowercase ) _UpperCamelCase: Optional[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , _lowercase ) _UpperCamelCase: Dict = [self.start] _UpperCamelCase: Optional[int] = False def lowerCAmelCase ( self : int ): """simple docstring""" while self.node_queue: _UpperCamelCase: Dict = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _UpperCamelCase: Dict = True return self.retrace_path(_lowercase ) _UpperCamelCase: Optional[Any] = self.get_successors(_lowercase ) for node in successors: self.node_queue.append(_lowercase ) if not self.reached: return [self.start.pos] return None def lowerCAmelCase ( self : List[Any] , _lowercase : Node ): """simple docstring""" _UpperCamelCase: Union[str, Any] = [] for action in delta: _UpperCamelCase: Dict = parent.pos_x + action[1] _UpperCamelCase: List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_lowercase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_lowercase , _lowercase , self.target.pos_y , self.target.pos_x , _lowercase ) ) return successors def lowerCAmelCase ( self : Optional[int] , _lowercase : Node | None ): """simple docstring""" _UpperCamelCase: Optional[Any] = node _UpperCamelCase: List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _UpperCamelCase: Optional[Any] = current_node.parent path.reverse() return path class __magic_name__ : """simple docstring""" def __init__( self : Optional[Any] , _lowercase : Tuple , _lowercase : List[str] ): """simple docstring""" _UpperCamelCase: Any = BreadthFirstSearch(_lowercase , _lowercase ) _UpperCamelCase: Any = BreadthFirstSearch(_lowercase , _lowercase ) _UpperCamelCase: List[str] = False def lowerCAmelCase ( self : Dict ): """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _UpperCamelCase: Optional[Any] = self.fwd_bfs.node_queue.pop(0 ) _UpperCamelCase: Optional[int] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _UpperCamelCase: str = True return self.retrace_bidirectional_path( _lowercase , _lowercase ) _UpperCamelCase: Dict = current_bwd_node _UpperCamelCase: Optional[int] = current_fwd_node _UpperCamelCase: Union[str, Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(_lowercase ), self.bwd_bfs: self.bwd_bfs.get_successors(_lowercase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_lowercase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowerCAmelCase ( self : str , _lowercase : Node , _lowercase : Node ): """simple docstring""" _UpperCamelCase: Any = self.fwd_bfs.retrace_path(_lowercase ) _UpperCamelCase: Any = self.bwd_bfs.retrace_path(_lowercase ) bwd_path.pop() bwd_path.reverse() _UpperCamelCase: List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() UpperCAmelCase_ = (0, 0) UpperCAmelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCAmelCase_ = time.time() UpperCAmelCase_ = BreadthFirstSearch(init, goal) UpperCAmelCase_ = bfs.search() UpperCAmelCase_ = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) UpperCAmelCase_ = time.time() UpperCAmelCase_ = BidirectionalBreadthFirstSearch(init, goal) UpperCAmelCase_ = bd_bfs.search() UpperCAmelCase_ = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
271
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 UpperCAmelCase_ = get_tests_dir('''fixtures/dummy-config.json''') class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: Dict = 0 def lowerCAmelCase ( self : Any ): """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''' ) ) def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCamelCase: List[str] = AutoConfig.from_pretrained('''bert-base-uncased''' ) self.assertIsInstance(_lowercase , _lowercase ) def lowerCAmelCase ( self : int ): """simple docstring""" _UpperCamelCase: int = AutoConfig.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def lowerCAmelCase ( self : List[Any] ): """simple docstring""" _UpperCamelCase: List[Any] = AutoConfig.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" _UpperCamelCase: List[str] = AutoConfig.for_model('''roberta''' ) self.assertIsInstance(_lowercase , _lowercase ) def lowerCAmelCase ( self : List[str] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _UpperCamelCase: Union[str, Any] = os.path.join(_lowercase , '''fake-roberta''' ) os.makedirs(_lowercase , exist_ok=_lowercase ) with open(os.path.join(_lowercase , '''config.json''' ) , '''w''' ) as f: f.write(json.dumps({} ) ) _UpperCamelCase: Union[str, Any] = AutoConfig.from_pretrained(_lowercase ) self.assertEqual(type(_lowercase ) , _lowercase ) def lowerCAmelCase ( self : Dict ): """simple docstring""" try: AutoConfig.register('''custom''' , _lowercase ) # Wrong model type will raise an error with self.assertRaises(_lowercase ): AutoConfig.register('''model''' , _lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase ): AutoConfig.register('''bert''' , _lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API _UpperCamelCase: Union[str, Any] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowercase ) _UpperCamelCase: Any = AutoConfig.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" with self.assertRaisesRegex( _lowercase , '''bert-base is not a local folder and is not a valid model identifier''' ): _UpperCamelCase: Optional[int] = AutoConfig.from_pretrained('''bert-base''' ) def lowerCAmelCase ( self : Tuple ): """simple docstring""" with self.assertRaisesRegex( _lowercase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _UpperCamelCase: str = AutoConfig.from_pretrained(_lowercase , revision='''aaaaaa''' ) def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( _lowercase , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): _UpperCamelCase: int = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''' ) def lowerCAmelCase ( self : Dict ): """simple docstring""" with self.assertRaises(_lowercase ): _UpperCamelCase: List[str] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowercase ): _UpperCamelCase: Optional[int] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_lowercase ) _UpperCamelCase: Union[str, Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_lowercase ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowercase ) _UpperCamelCase: str = AutoConfig.from_pretrained(_lowercase , trust_remote_code=_lowercase ) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''' ) def lowerCAmelCase ( self : Any ): """simple docstring""" class __magic_name__ ( __a ): """simple docstring""" lowerCAmelCase : List[Any] = '''new-model''' try: AutoConfig.register('''new-model''' , _lowercase ) # If remote code is not set, the default is to use local _UpperCamelCase: List[Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote code is disabled, we load the local one. _UpperCamelCase: Union[str, Any] = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_lowercase ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote is enabled, we load from the Hub _UpperCamelCase: Any = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_lowercase ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
271
1
'''simple docstring''' class _a : def __init__( self : Dict , lowercase : Any , lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = name UpperCAmelCase = val def __str__( self : List[str] ): '''simple docstring''' return f"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : Dict , lowercase : Any ): '''simple docstring''' return self.val < other.val class _a : def __init__( self : List[Any] , lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = {} UpperCAmelCase = self.build_heap(lowercase ) def __getitem__( self : Tuple , lowercase : int ): '''simple docstring''' return self.get_value(lowercase ) def A ( self : Optional[Any] , lowercase : List[str] ): '''simple docstring''' return (idx - 1) // 2 def A ( self : int , lowercase : List[str] ): '''simple docstring''' return idx * 2 + 1 def A ( self : Tuple , lowercase : Dict ): '''simple docstring''' return idx * 2 + 2 def A ( self : List[str] , lowercase : Optional[Any] ): '''simple docstring''' return self.heap_dict[key] def A ( self : Union[str, Any] , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = len(lowercase ) - 1 UpperCAmelCase = self.get_parent_idx(lowercase ) for idx, i in enumerate(lowercase ): UpperCAmelCase = idx UpperCAmelCase = i.val for i in range(lowercase , -1 , -1 ): self.sift_down(lowercase , lowercase ) return array def A ( self : int , lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' while True: UpperCAmelCase = self.get_left_child_idx(lowercase ) # noqa: E741 UpperCAmelCase = self.get_right_child_idx(lowercase ) UpperCAmelCase = idx if l < len(lowercase ) and array[l] < array[idx]: UpperCAmelCase = l if r < len(lowercase ) and array[r] < array[smallest]: UpperCAmelCase = r if smallest != idx: UpperCAmelCase , UpperCAmelCase = array[smallest], array[idx] ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) UpperCAmelCase = smallest else: break def A ( self : int , lowercase : int ): '''simple docstring''' UpperCAmelCase = self.get_parent_idx(lowercase ) while p >= 0 and self.heap[p] > self.heap[idx]: UpperCAmelCase , UpperCAmelCase = self.heap[idx], self.heap[p] UpperCAmelCase , UpperCAmelCase = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) UpperCAmelCase = p UpperCAmelCase = self.get_parent_idx(lowercase ) def A ( self : int ): '''simple docstring''' return self.heap[0] def A ( self : int ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.heap[-1], self.heap[0] UpperCAmelCase , UpperCAmelCase = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) UpperCAmelCase = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def A ( self : Optional[int] , lowercase : Dict ): '''simple docstring''' self.heap.append(lowercase ) UpperCAmelCase = len(self.heap ) - 1 UpperCAmelCase = node.val self.sift_up(len(self.heap ) - 1 ) def A ( self : Any ): '''simple docstring''' return len(self.heap ) == 0 def A ( self : Any , lowercase : Tuple , lowercase : str ): '''simple docstring''' assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" UpperCAmelCase = new_value UpperCAmelCase = new_value self.sift_up(self.idx_of_element[node] ) A =Node('R', -1) A =Node('B', 6) A =Node('A', 3) A =Node('X', 1) A =Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array A =MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
358
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _a : def __init__( self : Optional[Any] , lowercase : int , lowercase : str=13 , lowercase : int=7 , lowercase : Optional[int]=True , lowercase : Dict=True , lowercase : Union[str, Any]=True , lowercase : Union[str, Any]=99 , lowercase : Optional[Any]=32 , lowercase : List[Any]=5 , lowercase : List[Any]=4 , lowercase : int=37 , lowercase : int="gelu" , lowercase : Tuple=0.1 , lowercase : Dict=0.1 , lowercase : Tuple=512 , lowercase : List[str]=16 , lowercase : Optional[int]=2 , lowercase : int=0.02 , lowercase : str=3 , lowercase : List[Any]=4 , lowercase : List[str]=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope UpperCAmelCase = self.vocab_size - 1 def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def A ( self : Any , lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] , *lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase = OpenAIGPTModel(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , token_type_ids=lowercase , head_mask=lowercase ) UpperCAmelCase = model(lowercase , token_type_ids=lowercase ) UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[str] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : str , lowercase : Optional[int] , *lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = OpenAIGPTLMHeadModel(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Optional[int] , lowercase : Tuple , lowercase : Tuple , lowercase : Optional[int] , lowercase : Optional[int] , *lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase = OpenAIGPTDoubleHeadsModel(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Tuple , lowercase : Dict , lowercase : Any , lowercase : Any , lowercase : Optional[int] , *lowercase : int ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = OpenAIGPTForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _a ( __a , __a , __a , unittest.TestCase ): __a : List[str] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __a : List[Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __a : Dict = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def A ( self : Optional[Any] , lowercase : Union[str, Any] , lowercase : Tuple , lowercase : int , lowercase : List[Any] , lowercase : Optional[Any] ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def A ( self : List[Any] , lowercase : int , lowercase : List[Any] , lowercase : Optional[Any]=False ): '''simple docstring''' UpperCAmelCase = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowercase , ) UpperCAmelCase = inputs_dict['''labels'''] UpperCAmelCase = inputs_dict['''labels'''] UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowercase , ) UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = OpenAIGPTModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase , n_embd=37 ) def A ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowercase ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowercase ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowercase ) @slow def A ( self : List[Any] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = OpenAIGPTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_torch class _a ( unittest.TestCase ): @slow def A ( self : Any ): '''simple docstring''' UpperCAmelCase = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowercase ) UpperCAmelCase = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=lowercase ) # the president is UpperCAmelCase = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the UpperCAmelCase = model.generate(lowercase , do_sample=lowercase ) self.assertListEqual(output_ids[0].tolist() , lowercase )
358
1
'''simple docstring''' lowerCAmelCase = """Alexander Joslin""" import operator as op from .stack import Stack def lowerCamelCase_ ( __UpperCamelCase : str ) -> int: """simple docstring""" _A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A = Stack() _A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__UpperCamelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__UpperCamelCase ) elif i == ")": # RULE 4 _A = operator_stack.peek() operator_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operators[opr](__UpperCamelCase , __UpperCamelCase ) operand_stack.push(__UpperCamelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCAmelCase = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'{equation} = {dijkstras_two_stack_algorithm(equation)}')
292
'''simple docstring''' from __future__ import annotations def lowerCamelCase_ ( __UpperCamelCase : dict , __UpperCamelCase : str ) -> set[str]: """simple docstring""" _A , _A = set(__UpperCamelCase ), [start] while stack: _A = stack.pop() explored.add(__UpperCamelCase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__UpperCamelCase ) return explored lowerCAmelCase = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
292
1
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def SCREAMING_SNAKE_CASE ( snake_case_ : str ): class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Optional[int] , __A : int ): snake_case__ : Any = metric_id class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = [MetricMock(_snake_case ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def _lowercase ( self : List[str] ): return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Any , snake_case_ : Dict ): if "tmp_path" in args: snake_case__ : List[str] = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(__A , match="https://huggingface.co/docs/evaluate" ): func(*__A )
701
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , __A : List[str] , __A : Union[str, Any]=7 , __A : Any=3 , __A : Optional[Any]=3_0 , __A : List[str]=4_0_0 , __A : str=True , __A : Optional[Any]=None , __A : Optional[int]=True , __A : int=[0.5, 0.5, 0.5] , __A : Dict=[0.5, 0.5, 0.5] , __A : Optional[int]=True , __A : int=1 / 2_5_5 , __A : List[str]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ : List[str] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} snake_case__ : Optional[Any] = parent snake_case__ : str = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Optional[Any] = min_resolution snake_case__ : List[str] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : str = size snake_case__ : str = do_normalize snake_case__ : Optional[Any] = image_mean snake_case__ : List[str] = image_std snake_case__ : List[str] = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : Tuple = do_pad def _lowercase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , __A : List[Any] , __A : List[Any]=False ): if not batched: snake_case__ : List[Any] = image_inputs[0] if isinstance(__A , Image.Image ): snake_case__, snake_case__ : str = image.size else: snake_case__, snake_case__ : Dict = image.shape[1], image.shape[2] if w < h: snake_case__ : Any = int(self.size["shortest_edge"] * h / w ) snake_case__ : Any = self.size["shortest_edge"] elif w > h: snake_case__ : Optional[int] = self.size["shortest_edge"] snake_case__ : Any = int(self.size["shortest_edge"] * w / h ) else: snake_case__ : Tuple = self.size["shortest_edge"] snake_case__ : int = self.size["shortest_edge"] else: snake_case__ : Any = [] for image in image_inputs: snake_case__, snake_case__ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ : List[Any] = max(__A , key=lambda __A : item[0] )[0] snake_case__ : int = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self : str ): snake_case__ : Optional[Any] = DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Tuple ): snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "do_rescale" ) ) self.assertTrue(hasattr(__A , "do_pad" ) ) self.assertTrue(hasattr(__A , "size" ) ) def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __A ) snake_case__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__A ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , __A ) def _lowercase ( self : str ): pass def _lowercase ( self : List[str] ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__, snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) snake_case__ : int = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : int ): # Initialize image_processing snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : int = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Union[str, Any] ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input snake_case__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ : Tuple = image_processing(__A , return_tensors="pt" ).pixel_values snake_case__, snake_case__ : Tuple = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[Any] ): # prepare image and target snake_case__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ : Tuple = json.loads(f.read() ) snake_case__ : Union[str, Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them snake_case__ : str = DeformableDetrImageProcessor() snake_case__ : Tuple = image_processing(images=__A , annotations=__A , return_tensors="pt" ) # verify pixel values snake_case__ : Optional[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : str = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : Any = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : int = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify orig_size snake_case__ : List[str] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) ) @slow def _lowercase ( self : Optional[int] ): # prepare image, target and masks_path snake_case__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ : Any = json.loads(f.read() ) snake_case__ : Dict = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} snake_case__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" ) snake_case__ : List[Any] = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="pt" ) # verify pixel values snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __A ) snake_case__ : Optional[int] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area snake_case__ : Tuple = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __A ) ) # verify boxes snake_case__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __A ) snake_case__ : Any = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __A , atol=1e-3 ) ) # verify image_id snake_case__ : List[str] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __A ) ) # verify is_crowd snake_case__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __A ) ) # verify class_labels snake_case__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __A ) ) # verify masks snake_case__ : Union[str, Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __A ) # verify orig_size snake_case__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __A ) ) # verify size snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __A ) )
25
0
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowercase ( lowerCAmelCase_ , unittest.TestCase ): __a = WavaVecaPhonemeCTCTokenizer __a = False def lowercase_ ( self ): """simple docstring""" super().setUp() lowerCAmelCase__ : Optional[Any] = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''' ) lowerCAmelCase__ : Dict = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowerCAmelCase__ : int = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} lowerCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=20 , SCREAMING_SNAKE_CASE__=5 ): """simple docstring""" lowerCAmelCase__ : int = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__lowerCAmelCase )) for i in range(len(__lowerCAmelCase ) )] lowerCAmelCase__ : Optional[Any] = list(filter(lambda SCREAMING_SNAKE_CASE__ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=__lowerCAmelCase ) , __lowerCAmelCase ) ) if max_length is not None and len(__lowerCAmelCase ) > max_length: lowerCAmelCase__ : Union[str, Any] = toks[:max_length] if min_length is not None and len(__lowerCAmelCase ) < min_length and len(__lowerCAmelCase ) > 0: while len(__lowerCAmelCase ) < min_length: lowerCAmelCase__ : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase__ : List[str] = [t[0] for t in toks] # Ensure consistency lowerCAmelCase__ : Any = tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) if " " not in output_txt and len(__lowerCAmelCase ) > 1: lowerCAmelCase__ : Dict = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowerCAmelCase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowerCAmelCase ) ) if with_prefix_space: lowerCAmelCase__ : Any = ''' ''' + output_txt lowerCAmelCase__ : Union[str, Any] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) return output_txt, output_ids def lowercase_ ( self , **SCREAMING_SNAKE_CASE__ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : List[str] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) # check adding a single token tokenizer.add_tokens('''xxx''' ) lowerCAmelCase__ : List[Any] = tokenizer('''m xxx ɪ''' , do_phonemize=__lowerCAmelCase ).input_ids self.assertEqual(__lowerCAmelCase , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] ) lowerCAmelCase__ : Dict = tokenizer('''m aaa ɪ ccc''' , do_phonemize=__lowerCAmelCase ).input_ids self.assertEqual(__lowerCAmelCase , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa lowerCAmelCase__ : List[str] = tokenizer('''maɪ c''' , do_phonemize=__lowerCAmelCase ).input_ids self.assertEqual(__lowerCAmelCase , [3, 200] ) # mai should be <unk> (=3) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : List[str] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCAmelCase__ : Dict = '''Hello how are you''' lowerCAmelCase__ : Optional[Any] = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang='''en-us''' ) self.assertEqual(__lowerCAmelCase , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Dict = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCAmelCase__ : List[Any] = '''Hello how are you''' lowerCAmelCase__ : Tuple = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(__lowerCAmelCase ).input_ids , tokenizer(__lowerCAmelCase , do_phonemize=__lowerCAmelCase ).input_ids ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : int = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCAmelCase__ : List[Any] = '''Hello how are you''' lowerCAmelCase__ : int = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang='''en-us''' ) lowerCAmelCase__ : List[Any] = tokenizer.decode(tokenizer(__lowerCAmelCase ).input_ids ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCAmelCase__ : List[str] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] lowerCAmelCase__ : Any = tokenizer.decode(sample_ids[0] ) lowerCAmelCase__ : Optional[Any] = tokenizer.batch_decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , batch_tokens[0] ) self.assertEqual(__lowerCAmelCase , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) lowerCAmelCase__ : List[str] = '''Hello how are you''' lowerCAmelCase__ : Optional[int] = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang='''en-us''' ) self.assertEqual(__lowerCAmelCase , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : List[str] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) lowerCAmelCase__ : Optional[int] = '''Hello how are you''' lowerCAmelCase__ : List[Any] = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(__lowerCAmelCase ).input_ids , tokenizer(__lowerCAmelCase , do_phonemize=__lowerCAmelCase ).input_ids ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : List[str] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off lowerCAmelCase__ : Optional[Any] = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter lowerCAmelCase__ : Tuple = tokenizer.decode(sample_ids[0] ) lowerCAmelCase__ : Any = tokenizer.batch_decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , batch_tokens[0] ) self.assertEqual(__lowerCAmelCase , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) # decode with no word_del_token filter lowerCAmelCase__ : Any = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__lowerCAmelCase ) lowerCAmelCase__ : str = tokenizer.batch_decode(__lowerCAmelCase , filter_word_delimiter_token=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , batch_tokens[0] ) self.assertEqual(__lowerCAmelCase , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : List[str] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) lowerCAmelCase__ : Optional[int] = '''Hello how are you''' lowerCAmelCase__ : int = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang='''en-us''' ) lowerCAmelCase__ : List[Any] = tokenizer.decode(tokenizer(__lowerCAmelCase ).input_ids , filter_word_delimiter_token=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : List[Any] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) lowerCAmelCase__ : Union[str, Any] = '''Hello how are you''' lowerCAmelCase__ : Dict = tokenizer.phonemize(__lowerCAmelCase , phonemizer_lang='''en-us''' ) lowerCAmelCase__ : Tuple = tokenizer.decode(tokenizer(__lowerCAmelCase ).input_ids , filter_word_delimiter_token=__lowerCAmelCase ) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , __lowerCAmelCase ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=__lowerCAmelCase ) lowerCAmelCase__ : List[Any] = '''Hello how are you''' lowerCAmelCase__ : Optional[Any] = tokenizer(__lowerCAmelCase , phonemizer_lang='''en-us''' ).input_ids lowerCAmelCase__ : List[Any] = tokenizer(__lowerCAmelCase , phonemizer_lang='''fr-fr''' ).input_ids self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase__ : Dict = tokenizer.decode(__lowerCAmelCase ) lowerCAmelCase__ : Dict = tokenizer.decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) self.assertEqual(__lowerCAmelCase , '''ɛ l o h aʊ a ʁ j u''' ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : List[str] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCAmelCase__ : List[Any] = '''Hello how Are you''' lowerCAmelCase__ : Dict = '''hello how are you''' lowerCAmelCase__ : Tuple = tokenizer(__lowerCAmelCase ).input_ids lowerCAmelCase__ : Optional[int] = tokenizer(__lowerCAmelCase ).input_ids self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : List[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) tokenizer.add_tokens(['''!''', '''?'''] ) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} ) # fmt: off lowerCAmelCase__ : Optional[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on lowerCAmelCase__ : int = tokenizer.batch_decode(__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] ) @staticmethod def lowercase_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : Dict = [d[key] for d in offsets] return retrieved_list def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Tuple = self.get_tokenizer(word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" lowerCAmelCase__ : List[str] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on lowerCAmelCase__ : Any = tokenizer.decode(__lowerCAmelCase , output_char_offsets=__lowerCAmelCase , filter_word_delimiter_token=__lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''char_offsets''' in outputs ) self.assertTrue(isinstance(__lowerCAmelCase , __lowerCAmelCase ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : List[Any] = self.get_tokenizer(word_delimiter_token='''|''' ) def check_list_tuples_equal(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertTrue(isinstance(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertTrue(isinstance(outputs_list[0] , __lowerCAmelCase ) ) # transform list to ModelOutput lowerCAmelCase__ : str = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] ) def recursive_check(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): [recursive_check(__lowerCAmelCase , __lowerCAmelCase ) for la, la in zip(__lowerCAmelCase , __lowerCAmelCase )] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] ) # fmt: off lowerCAmelCase__ : Any = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char lowerCAmelCase__ : str = tokenizer.batch_decode(__lowerCAmelCase , output_char_offsets=__lowerCAmelCase ) lowerCAmelCase__ : Any = [tokenizer.decode(__lowerCAmelCase , output_char_offsets=__lowerCAmelCase ) for ids in sample_ids] check_list_tuples_equal(__lowerCAmelCase , __lowerCAmelCase ) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' ) def lowercase_ ( self ): """simple docstring""" pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' ) def lowercase_ ( self ): """simple docstring""" pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' ) def lowercase_ ( self ): """simple docstring""" pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' ) def lowercase_ ( self ): """simple docstring""" pass def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : str = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase__ : Optional[Any] = tokenizer.vocab_size lowerCAmelCase__ : str = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowerCAmelCase__ : Tuple = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] lowerCAmelCase__ : Any = tokenizer.add_tokens(__lowerCAmelCase ) lowerCAmelCase__ : Optional[int] = tokenizer.vocab_size lowerCAmelCase__ : Union[str, Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , 0 ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase , all_size + len(__lowerCAmelCase ) ) lowerCAmelCase__ : Any = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowerCAmelCase__ : str = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} lowerCAmelCase__ : int = tokenizer.add_special_tokens(__lowerCAmelCase ) lowerCAmelCase__ : Union[str, Any] = tokenizer.vocab_size lowerCAmelCase__ : Tuple = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase , 0 ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase , all_size_a + len(__lowerCAmelCase ) ) lowerCAmelCase__ : List[str] = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def lowercase_ ( self ): """simple docstring""" pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def lowercase_ ( self ): """simple docstring""" pass def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.get_tokenizers(fast=__lowerCAmelCase , do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase__ : Tuple = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] lowerCAmelCase__ : int = tokenizer.convert_tokens_to_string(__lowerCAmelCase ) self.assertIsInstance(output['''text'''] , __lowerCAmelCase )
233
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = len(lowercase ) for i in range(n - 1 ): for j in range(i + 1 ,lowercase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def __UpperCAmelCase ( lowercase ): """simple docstring""" if len(lowercase ) <= 1: return arr, 0 _UpperCAmelCase = len(lowercase ) // 2 _UpperCAmelCase = arr[0:mid] _UpperCAmelCase = arr[mid:] _UpperCAmelCase , _UpperCAmelCase = count_inversions_recursive(lowercase ) _UpperCAmelCase , _UpperCAmelCase = count_inversions_recursive(lowercase ) _UpperCAmelCase , _UpperCAmelCase = _count_cross_inversions(lowercase ,lowercase ) _UpperCAmelCase = inversion_p + inversions_q + cross_inversions return c, num_inversions def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = _UpperCAmelCase = _UpperCAmelCase = 0 while i < len(lowercase ) and j < len(lowercase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(lowercase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(lowercase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _UpperCAmelCase = count_inversions_bf(lowercase ) _UpperCAmelCase , _UpperCAmelCase = count_inversions_recursive(lowercase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ ,lowercase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _UpperCAmelCase = count_inversions_bf(lowercase ) _UpperCAmelCase , _UpperCAmelCase = count_inversions_recursive(lowercase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ ,lowercase ) # an empty list should also have zero inversions _UpperCAmelCase = [] _UpperCAmelCase = count_inversions_bf(lowercase ) _UpperCAmelCase , _UpperCAmelCase = count_inversions_recursive(lowercase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ ,lowercase ) if __name__ == "__main__": main()
277
0
'''simple docstring''' def snake_case_ ( a__ : Union[str, Any] = 10 ,a__ : List[str] = 22 ): """simple docstring""" __lowercase = range(1 ,_snake_case ) __lowercase = range(1 ,_snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
708
'''simple docstring''' import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Tuple = """▁""" A : List[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class SCREAMING_SNAKE_CASE( __A , unittest.TestCase ): snake_case_ : Optional[int] = BertGenerationTokenizer snake_case_ : List[str] = False snake_case_ : Optional[int] = True def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" super().setUp() __lowercase = BertGenerationTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self ) -> List[str]: """simple docstring""" __lowercase = """<s>""" __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def snake_case__ ( self ) -> List[Any]: """simple docstring""" __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowerCamelCase__ ) , 1002 ) def snake_case__ ( self ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" __lowercase = BertGenerationTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) __lowercase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [285, 46, 10, 170, 382] , ) __lowercase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __lowercase = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __lowercase = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def snake_case__ ( self ) -> Any: """simple docstring""" return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def snake_case__ ( self ) -> Tuple: """simple docstring""" __lowercase = """Hello World!""" __lowercase = [1_8536, 2260, 101] self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def snake_case__ ( self ) -> Any: """simple docstring""" __lowercase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __lowercase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @require_torch @slow def snake_case__ ( self ) -> List[Any]: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __lowercase = list(self.big_tokenizer.get_vocab().keys() )[:10] __lowercase = """ """.join(lowerCamelCase__ ) __lowercase = self.big_tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" , return_token_type_ids=lowerCamelCase__ ) __lowercase = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=lowerCamelCase__ ) __lowercase = BertGenerationConfig() __lowercase = BertGenerationEncoder(lowerCamelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase__ ) model(**lowerCamelCase__ ) @slow def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" __lowercase = {"""input_ids""": [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
163
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : int = logging.get_logger(__name__) a_ : int = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "bert" def __init__( self , UpperCamelCase=3_0522 , UpperCamelCase=768 , UpperCamelCase=12 , UpperCamelCase=12 , UpperCamelCase=3072 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=512 , UpperCamelCase=2 , UpperCamelCase=0.02 , UpperCamelCase=1e-12 , UpperCamelCase=0 , UpperCamelCase="absolute" , UpperCamelCase=True , UpperCamelCase=None , **UpperCamelCase , ): """simple docstring""" super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = position_embedding_type lowerCamelCase_ = use_cache lowerCamelCase_ = classifier_dropout class snake_case ( lowercase ): """simple docstring""" @property def snake_case ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCamelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
675
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ : Optional[Any] = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys a_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
675
1
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class UpperCAmelCase_ ( __lowercase , __lowercase ): lowerCamelCase : Dict = 1 @register_to_config def __init__( self : Optional[Any] , UpperCAmelCase__ : int = 1_0_0_0 , UpperCAmelCase__ : Optional[Union[np.ndarray, List[float]]] = None ) -> str: # set `betas`, `alphas`, `timesteps` self.set_timesteps(UpperCAmelCase__ ) # standard deviation of the initial noise distribution lowerCAmelCase = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowerCAmelCase = 4 # running values lowerCAmelCase = [] def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, torch.device] = None ) -> int: lowerCAmelCase = num_inference_steps lowerCAmelCase = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowerCAmelCase = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowerCAmelCase = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowerCAmelCase = torch.sin(steps * math.pi / 2 ) ** 2 lowerCAmelCase = (1.0 - self.betas**2) ** 0.5 lowerCAmelCase = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowerCAmelCase = timesteps.to(UpperCAmelCase__ ) lowerCAmelCase = [] def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : torch.FloatTensor , UpperCAmelCase__ : int , UpperCAmelCase__ : torch.FloatTensor , UpperCAmelCase__ : bool = True , ) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) lowerCAmelCase = (self.timesteps == timestep).nonzero().item() lowerCAmelCase = timestep_index + 1 lowerCAmelCase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCAmelCase__ ) if len(self.ets ) == 1: lowerCAmelCase = self.ets[-1] elif len(self.ets ) == 2: lowerCAmelCase = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowerCAmelCase = (2_3 * self.ets[-1] - 1_6 * self.ets[-2] + 5 * self.ets[-3]) / 1_2 else: lowerCAmelCase = (1 / 2_4) * (5_5 * self.ets[-1] - 5_9 * self.ets[-2] + 3_7 * self.ets[-3] - 9 * self.ets[-4]) lowerCAmelCase = self._get_prev_sample(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : torch.FloatTensor , *UpperCAmelCase__ : str , **UpperCAmelCase__ : List[Any] ) -> torch.FloatTensor: return sample def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : int ) -> List[str]: lowerCAmelCase = self.alphas[timestep_index] lowerCAmelCase = self.betas[timestep_index] lowerCAmelCase = self.alphas[prev_timestep_index] lowerCAmelCase = self.betas[prev_timestep_index] lowerCAmelCase = (sample - sigma * ets) / max(UpperCAmelCase__ , 1E-8 ) lowerCAmelCase = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : int ) -> List[Any]: return self.config.num_train_timesteps
513
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case ={ """configuration_chinese_clip""": [ """CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ChineseCLIPConfig""", """ChineseCLIPOnnxConfig""", """ChineseCLIPTextConfig""", """ChineseCLIPVisionConfig""", ], """processing_chinese_clip""": ["""ChineseCLIPProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =["""ChineseCLIPFeatureExtractor"""] __snake_case =["""ChineseCLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =[ """CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ChineseCLIPModel""", """ChineseCLIPPreTrainedModel""", """ChineseCLIPTextModel""", """ChineseCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
513
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _a: Dict = r""" [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `\" / \"`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `\" // \"`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `\"train\"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `\"compressed\"`) The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and `\"compressed\"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a \"dummy\" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. """ @add_start_docstrings(lowercase ) class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = 'rag' SCREAMING_SNAKE_CASE__ = True def __init__( self : str , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=" / " , lowerCAmelCase : Any=" // " , lowerCAmelCase : str=5 , lowerCAmelCase : Optional[int]=300 , lowerCAmelCase : List[Any]=768 , lowerCAmelCase : Optional[int]=8 , lowerCAmelCase : str="wiki_dpr" , lowerCAmelCase : Optional[Any]="train" , lowerCAmelCase : str="compressed" , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : str=0.0 , lowerCAmelCase : int=True , lowerCAmelCase : Tuple=False , lowerCAmelCase : int=False , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[Any] , ): '''simple docstring''' super().__init__( bos_token_id=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , forced_eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , prefix=lowerCAmelCase , vocab_size=lowerCAmelCase , **lowerCAmelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ = kwargs.pop("question_encoder" ) UpperCAmelCase_ = question_encoder_config.pop("model_type" ) UpperCAmelCase_ = kwargs.pop("generator" ) UpperCAmelCase_ = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ = AutoConfig.for_model(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = AutoConfig.for_model(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = reduce_loss UpperCAmelCase_ = label_smoothing UpperCAmelCase_ = exclude_bos_score UpperCAmelCase_ = do_marginalize UpperCAmelCase_ = title_sep UpperCAmelCase_ = doc_sep UpperCAmelCase_ = n_docs UpperCAmelCase_ = max_combined_length UpperCAmelCase_ = dataset UpperCAmelCase_ = dataset_split UpperCAmelCase_ = index_name UpperCAmelCase_ = retrieval_vector_size UpperCAmelCase_ = retrieval_batch_size UpperCAmelCase_ = passages_path UpperCAmelCase_ = index_path UpperCAmelCase_ = use_dummy_dataset UpperCAmelCase_ = output_retrieved UpperCAmelCase_ = do_deduplication UpperCAmelCase_ = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ = getattr(self.generator , "forced_eos_token_id" , lowerCAmelCase ) @classmethod def __A ( cls : Any , lowerCAmelCase : PretrainedConfig , lowerCAmelCase : PretrainedConfig , **lowerCAmelCase : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowerCAmelCase ) def __A ( self : Any ): '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.question_encoder.to_dict() UpperCAmelCase_ = self.generator.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
162
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _a: Union[str, Any] = logging.get_logger(__name__) _a: Dict = {"""tokenizer_file""": """tokenizer.json"""} _a: Dict = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE__ = None def __init__( self : Tuple , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : int=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="<unk>" , lowerCAmelCase : int="<s>" , lowerCAmelCase : Dict="</s>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : int=False , lowerCAmelCase : Optional[int]=False , **lowerCAmelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCAmelCase ) != add_prefix_space: UpperCAmelCase_ = getattr(lowerCAmelCase , pre_tok_state.pop("type" ) ) UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = pre_tok_class(**lowerCAmelCase ) UpperCAmelCase_ = add_prefix_space def __A ( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase_ = kwargs.get("is_split_into_words" , lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" " pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def __A ( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any] ): '''simple docstring''' UpperCAmelCase_ = kwargs.get("is_split_into_words" , lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" " pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def __A ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ): '''simple docstring''' UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def __A ( self : str , lowerCAmelCase : "Conversation" ): '''simple docstring''' UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) + [self.eos_token_id] ) if len(lowerCAmelCase ) > self.model_max_length: UpperCAmelCase_ = input_ids[-self.model_max_length :] return input_ids
162
1
import unittest import numpy as np def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case = None , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ : Dict = np.shape(__snake_case ) UpperCAmelCase_ : List[Any] = np.shape(__snake_case ) UpperCAmelCase_ : Tuple = np.shape(__snake_case ) if shape_a[0] != shape_b[0]: UpperCAmelCase_ : Union[str, Any] = ( "Expected the same number of rows for A and B. " F"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(__snake_case ) if shape_b[1] != shape_c[1]: UpperCAmelCase_ : Optional[int] = ( "Expected the same number of columns for B and C. " F"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(__snake_case ) UpperCAmelCase_ : Any = pseudo_inv if a_inv is None: try: UpperCAmelCase_ : Optional[Any] = np.linalg.inv(__snake_case ) except np.linalg.LinAlgError: raise ValueError( "Input matrix A is not invertible. Cannot compute Schur complement." ) return mat_c - mat_b.T @ a_inv @ mat_b class snake_case_ (unittest.TestCase ): """simple docstring""" def A_ ( self): """simple docstring""" UpperCAmelCase_ : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) UpperCAmelCase_ : Union[str, Any] = np.array([[0, 3], [3, 0], [2, 3]]) UpperCAmelCase_ : Dict = np.array([[2, 1], [6, 3]]) UpperCAmelCase_ : Any = schur_complement(__a ,__a ,__a) UpperCAmelCase_ : Dict = np.block([[a, b], [b.T, c]]) UpperCAmelCase_ : Union[str, Any] = np.linalg.det(__a) UpperCAmelCase_ : Dict = np.linalg.det(__a) UpperCAmelCase_ : Any = np.linalg.det(__a) self.assertAlmostEqual(__a ,det_a * det_s) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Tuple = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) UpperCAmelCase_ : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]]) UpperCAmelCase_ : List[Any] = np.array([[2, 1], [6, 3]]) with self.assertRaises(__a): schur_complement(__a ,__a ,__a) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Tuple = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) UpperCAmelCase_ : Tuple = np.array([[0, 3], [3, 0], [2, 3]]) UpperCAmelCase_ : Optional[Any] = np.array([[2, 1, 3], [6, 3, 5]]) with self.assertRaises(__a): schur_complement(__a ,__a ,__a) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
712
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class snake_case_ (lowercase__ , lowercase__ ): """simple docstring""" _lowerCamelCase = """focalnet""" def __init__( self ,lowercase=224 ,lowercase=4 ,lowercase=3 ,lowercase=96 ,lowercase=False ,lowercase=[192, 384, 768, 768] ,lowercase=[2, 2, 6, 2] ,lowercase=[2, 2, 2, 2] ,lowercase=[3, 3, 3, 3] ,lowercase="gelu" ,lowercase=4.0 ,lowercase=0.0 ,lowercase=0.1 ,lowercase=False ,lowercase=1E-4 ,lowercase=False ,lowercase=False ,lowercase=False ,lowercase=0.02 ,lowercase=1E-5 ,lowercase=32 ,lowercase=None ,lowercase=None ,**lowercase ,): """simple docstring""" super().__init__(**lowercase) UpperCAmelCase_ : int = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : Dict = embed_dim UpperCAmelCase_ : Optional[int] = use_conv_embed UpperCAmelCase_ : int = hidden_sizes UpperCAmelCase_ : Optional[int] = depths UpperCAmelCase_ : Optional[Any] = focal_levels UpperCAmelCase_ : Tuple = focal_windows UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : Any = mlp_ratio UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : Tuple = drop_path_rate UpperCAmelCase_ : List[str] = use_layerscale UpperCAmelCase_ : List[str] = layerscale_value UpperCAmelCase_ : List[str] = use_post_layernorm UpperCAmelCase_ : Dict = use_post_layernorm_in_modulation UpperCAmelCase_ : int = normalize_modulator UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : str = layer_norm_eps UpperCAmelCase_ : Union[str, Any] = encoder_stride UpperCAmelCase_ : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 ,len(self.depths) + 1)] UpperCAmelCase_ , UpperCAmelCase_ : Any = get_aligned_output_features_output_indices( out_features=lowercase ,out_indices=lowercase ,stage_names=self.stage_names)
455
0
from collections import defaultdict def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Dict = True for v in tree[start]: if v not in visited: ret += dfs(_lowerCamelCase ) if ret % 2 == 0: cuts.append(_lowerCamelCase ) return ret def A ( ): '''simple docstring''' dfs(1 ) if __name__ == "__main__": _snake_case, _snake_case = 10, 9 _snake_case = defaultdict(list) _snake_case = {} _snake_case = [] _snake_case = 0 _snake_case = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
500
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = [False] * len(_lowerCamelCase ) _lowerCAmelCase : str = [] queue.append(_lowerCamelCase ) _lowerCAmelCase : List[str] = True while queue: _lowerCAmelCase : Any = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) _lowerCAmelCase : List[str] = True _lowerCAmelCase : List[str] = u return visited[t] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = [-1] * (len(_lowerCamelCase )) _lowerCAmelCase : Tuple = 0 while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = float("Inf" ) _lowerCAmelCase : Optional[Any] = sink while s != source: # Find the minimum value in select path _lowerCAmelCase : Optional[int] = min(_lowerCamelCase , graph[parent[s]][s] ) _lowerCAmelCase : List[Any] = parent[s] max_flow += path_flow _lowerCAmelCase : Optional[Any] = sink while v != source: _lowerCAmelCase : Tuple = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCAmelCase : Optional[Any] = parent[v] return max_flow _snake_case = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _snake_case, _snake_case = 0, 5 print(ford_fulkerson(graph, source, sink))
500
1
"""simple docstring""" from string import ascii_uppercase _A : Dict = {char: i for i, char in enumerate(ascii_uppercase)} _A : Dict = dict(enumerate(ascii_uppercase)) def __magic_name__ ( __snake_case : str , __snake_case : str ) -> str: lowercase : Union[str, Any] = len(__snake_case ) lowercase : Union[str, Any] = 0 while True: if x == i: lowercase : Tuple = 0 if len(__snake_case ) == len(__snake_case ): break key += key[i] i += 1 return key def __magic_name__ ( __snake_case : str , __snake_case : str ) -> str: lowercase : Optional[Any] = "" lowercase : Dict = 0 for letter in message: if letter == " ": cipher_text += " " else: lowercase : Optional[Any] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __magic_name__ ( __snake_case : str , __snake_case : str ) -> str: lowercase : Dict = "" lowercase : int = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowercase : Any = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __magic_name__ ( ) -> None: lowercase : Any = "THE GERMAN ATTACK" lowercase : Any = "SECRET" lowercase : Dict = generate_key(__snake_case , __snake_case ) lowercase : int = cipher_text(__snake_case , __snake_case ) print(f"""Encrypted Text = {s}""" ) print(f"""Original Text = {original_text(__snake_case , __snake_case )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
706
"""simple docstring""" import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _A : int = logging.get_logger(__name__) class a__ ( a_ ): def __init__( self , *_a , **_a ): warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _a , ) super().__init__(*_a , **_a )
518
0
'''simple docstring''' import random def __lowercase ( __lowercase , __lowercase , __lowercase ) -> Union[str, Any]: '''simple docstring''' _A = a[left_index] _A = left_index + 1 for j in range(left_index + 1 , __lowercase ): if a[j] < pivot: _A , _A = a[i], a[j] i += 1 _A , _A = a[i - 1], a[left_index] return i - 1 def __lowercase ( __lowercase , __lowercase , __lowercase ) -> Optional[int]: '''simple docstring''' if left < right: _A = random.randint(__lowercase , right - 1 ) _A , _A = ( a[left], a[pivot], ) # switches the pivot with the left most bound _A = partition(__lowercase , __lowercase , __lowercase ) quick_sort_random( __lowercase , __lowercase , __lowercase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowercase , pivot_index + 1 , __lowercase ) # recursive quicksort to the right of the pivot point def __lowercase ( ) -> List[str]: '''simple docstring''' _A = input("Enter numbers separated by a comma:\n" ).strip() _A = [int(__lowercase ) for item in user_input.split("," )] quick_sort_random(__lowercase , 0 , len(__lowercase ) ) print(__lowercase ) if __name__ == "__main__": main()
330
"""simple docstring""" import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer SCREAMING_SNAKE_CASE__:List[str] = logging.getLogger(__name__) def _lowerCamelCase( ): __a = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" , type=a , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , ) parser.add_argument( "--dataset_config" , type=a , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" , type=a , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , ) parser.add_argument( "--shard_size" , type=a , default=1_0_0_0 , help="Number of entries to go in a single shard." , ) parser.add_argument("--split" , type=a , default="train" , choices=["train", "test", "validation"] ) parser.add_argument( "--limit" , default=a , type=a , help="Limit the number of shards (used for debugging)." , ) parser.add_argument( "--max_length" , type=a , default=5_1_2 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." , ) parser.add_argument( "--output_dir" , default="tf-tpu" , type=a , help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." , ) __a = parser.parse_args() return args def _lowerCamelCase( a ): def fn(a ): return tokenizer(examples["text"] ) return fn def _lowerCamelCase( a ): __a = [] for i in range(len(tokenized_data["input_ids"] ) ): __a = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } __a = tf.train.Features(feature=a ) __a = tf.train.Example(features=a ) __a = example.SerializeToString() records.append(a ) return records def _lowerCamelCase( a ): __a = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: __a = min(len(a ) , args.limit ) __a = dataset.select(range(a ) ) print(F"Limiting the dataset to {args.limit} entries." ) __a = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) __a = os.path.join(args.output_dir , args.split ) if not os.path.exists(a ): os.makedirs(a ) else: __a = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. __a = tokenize_function(a ) __a = dataset.map(a , batched=a , num_proc=4 , remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(a ): # Concatenate all texts. __a = {k: sum(examples[k] , [] ) for k in examples.keys()} __a = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 __a = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. __a = { k: [t[i : i + args.max_length] for i in range(0 , a , args.max_length )] for k, t in concatenated_examples.items() } return result __a = dataset_tokenized.map(a , batched=a , batch_size=1_0_0_0 , num_proc=4 ) __a = 0 __a = 0 for shard in range(0 , len(a ) , args.shard_size ): __a = grouped_dataset[shard : shard + args.shard_size] __a = len(dataset_snapshot["input_ids"] ) __a = os.path.join(a , F"dataset-{shard_count}-{records_containing}.tfrecord" ) __a = get_serialized_examples(a ) with tf.io.TFRecordWriter(a ) as out_file: for i in range(len(a ) ): __a = serialized_examples[i] out_file.write(a ) print("Wrote file {} containing {} records".format(a , a ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , "w" ) as f: print(F"Total {args.split} records: {total_records}" , file=a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:List[Any] = parse_args() main(args)
528
0
"""simple docstring""" from math import pow def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count A = int(pow(UpperCamelCase , UpperCamelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n A, A = backtrack( UpperCamelCase , UpperCamelCase , current_number + 1 , UpperCamelCase , UpperCamelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. A, A = backtrack( UpperCamelCase , UpperCamelCase , current_number + 1 , UpperCamelCase , UpperCamelCase ) return current_sum, solutions_count def A__ ( UpperCamelCase , UpperCamelCase ): if not (1 <= needed_sum <= 1_000 and 2 <= power <= 10): raise ValueError( "Invalid input\n" "needed_sum must be between 1 and 1000, power between 2 and 10." ) return backtrack(UpperCamelCase , UpperCamelCase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
524
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self :List[Any] ): A = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) A = AutoTokenizer.from_pretrained("google/mt5-small" ) A = tokenizer("Hello there" , return_tensors="np" ).input_ids A = tokenizer("Hi I am" , return_tensors="np" ).input_ids A = shift_tokens_right(__UpperCamelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) A = model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase ).logits A = optax.softmax_cross_entropy(__UpperCamelCase , onehot(__UpperCamelCase , logits.shape[-1] ) ).mean() A = -(labels.shape[-1] * loss.item()) A = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
524
1
"""simple docstring""" from __future__ import annotations def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if len(__UpperCamelCase ) <= 1 or n <= 1: return insert_next(__UpperCamelCase , n - 1 ) rec_insertion_sort(__UpperCamelCase , n - 1 ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if index >= len(__UpperCamelCase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order UpperCAmelCase__ , UpperCAmelCase__ : Any = ( collection[index], collection[index - 1], ) insert_next(__UpperCamelCase , index + 1 ) if __name__ == "__main__": __UpperCAmelCase = input('Enter integers separated by spaces: ') __UpperCAmelCase = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
65
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _UpperCamelCase = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def _A( lowerCAmelCase ): A__ : Any = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) _UpperCamelCase = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def _A( lowerCAmelCase ): A__ : str = list(s_dict.keys() ) for key in keys: A__ : Optional[Any] = key for k, v in WHISPER_MAPPING.items(): if k in key: A__ : Optional[Any] = new_key.replace(lowerCAmelCase , lowerCAmelCase ) print(F'''{key} -> {new_key}''' ) A__ : Any = s_dict.pop(lowerCAmelCase ) return s_dict def _A( lowerCAmelCase ): A__ , A__ : Union[str, Any] = emb.weight.shape A__ : Optional[Any] = nn.Linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase ) A__ : int = emb.weight.data return lin_layer def _A( lowerCAmelCase , lowerCAmelCase ): os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) A__ : Union[str, Any] = os.path.basename(lowerCAmelCase ) A__ : str = url.split("""/""" )[-2] A__ : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) if os.path.exists(lowerCAmelCase ) and not os.path.isfile(lowerCAmelCase ): raise RuntimeError(F'''{download_target} exists and is not a regular file''' ) if os.path.isfile(lowerCAmelCase ): A__ : Tuple = open(lowerCAmelCase , """rb""" ).read() if hashlib.shaaaa(lowerCAmelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(lowerCAmelCase ) as source, open(lowerCAmelCase , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=80 , unit="""iB""" , unit_scale=lowerCAmelCase , unit_divisor=1024 ) as loop: while True: A__ : Dict = source.read(8192 ) if not buffer: break output.write(lowerCAmelCase ) loop.update(len(lowerCAmelCase ) ) A__ : List[str] = open(lowerCAmelCase , """rb""" ).read() if hashlib.shaaaa(lowerCAmelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def _A( lowerCAmelCase , lowerCAmelCase ): if ".pt" not in checkpoint_path: A__ : str = _download(_MODELS[checkpoint_path] ) else: A__ : Optional[int] = torch.load(lowerCAmelCase , map_location="""cpu""" ) A__ : List[str] = original_checkpoint["""dims"""] A__ : List[Any] = original_checkpoint["""model_state_dict"""] A__ : Dict = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(lowerCAmelCase ) rename_keys(lowerCAmelCase ) A__ : Any = True A__ : List[str] = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] A__ : str = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=lowerCAmelCase , decoder_ffn_dim=lowerCAmelCase , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) A__ : int = WhisperForConditionalGeneration(lowerCAmelCase ) A__ , A__ : List[Any] = model.model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) if len(lowerCAmelCase ) > 0 and not set(lowerCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F''' but all the following weights are missing {missing}''' ) if tie_embeds: A__ : Tuple = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A__ : Any = proj_out_weights model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") _UpperCamelCase = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
363
0
'''simple docstring''' def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Tuple = len(__a ) for i in range(length - 1 ): _a : List[Any] = i for k in range(i + 1 , __a ): if collection[k] < collection[least]: _a : Union[str, Any] = k if least != i: _a, _a : Tuple = (collection[i], collection[least]) return collection if __name__ == "__main__": __lowerCAmelCase = input("""Enter numbers separated by a comma:\n""").strip() __lowerCAmelCase = [int(item) for item in user_input.split(""",""")] print(selection_sort(unsorted))
319
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] ,_a : Union[str, Any] ,_a : Union[str, Any]=13 ,_a : Any=32 ,_a : Optional[Any]=2 ,_a : Any=3 ,_a : str=16 ,_a : Tuple=[1, 2, 1] ,_a : Tuple=[2, 2, 4] ,_a : Any=2 ,_a : Optional[int]=2.0 ,_a : List[Any]=True ,_a : str=0.0 ,_a : Tuple=0.0 ,_a : Optional[Any]=0.1 ,_a : Dict="gelu" ,_a : Union[str, Any]=False ,_a : Any=True ,_a : Any=0.02 ,_a : List[Any]=1E-5 ,_a : Any=True ,_a : List[str]=None ,_a : str=True ,_a : Optional[int]=10 ,_a : List[str]=8 ,): '''simple docstring''' _a : Dict = parent _a : str = batch_size _a : Optional[int] = image_size _a : str = patch_size _a : Optional[int] = num_channels _a : List[Any] = embed_dim _a : Optional[Any] = depths _a : Optional[int] = num_heads _a : str = window_size _a : Any = mlp_ratio _a : Optional[Any] = qkv_bias _a : Optional[Any] = hidden_dropout_prob _a : Union[str, Any] = attention_probs_dropout_prob _a : Union[str, Any] = drop_path_rate _a : Union[str, Any] = hidden_act _a : Union[str, Any] = use_absolute_embeddings _a : str = patch_norm _a : Tuple = layer_norm_eps _a : List[Any] = initializer_range _a : Optional[int] = is_training _a : str = scope _a : List[str] = use_labels _a : int = type_sequence_label_size _a : List[str] = encoder_stride def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : List[Any] = None if self.use_labels: _a : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : Optional[Any] = self.get_config() return config, pixel_values, labels def __lowercase ( self : str ): '''simple docstring''' return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def __lowercase ( self : str ,_a : Tuple ,_a : Tuple ,_a : Any ): '''simple docstring''' _a : List[Any] = SwinvaModel(config=_a ) model.to(_a ) model.eval() _a : Optional[Any] = model(_a ) _a : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _a : Any = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def __lowercase ( self : Union[str, Any] ,_a : List[str] ,_a : Tuple ,_a : List[Any] ): '''simple docstring''' _a : int = SwinvaForMaskedImageModeling(config=_a ) model.to(_a ) model.eval() _a : List[str] = model(_a ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _a : List[Any] = 1 _a : str = SwinvaForMaskedImageModeling(_a ) model.to(_a ) model.eval() _a : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : Optional[Any] = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def __lowercase ( self : Any ,_a : List[Any] ,_a : Optional[int] ,_a : List[Any] ): '''simple docstring''' _a : Optional[Any] = self.type_sequence_label_size _a : str = SwinvaForImageClassification(_a ) model.to(_a ) model.eval() _a : List[str] = model(_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Any = self.prepare_config_and_inputs() _a, _a, _a : int = config_and_inputs _a : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __UpperCAmelCase : Any = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : Dict = False __UpperCAmelCase : Any = False __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Any = False def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = SwinvaModelTester(self ) _a : Any = ConfigTester(self ,config_class=_a ,embed_dim=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : Dict ): '''simple docstring''' _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def __lowercase ( self : int ): '''simple docstring''' pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def __lowercase ( self : Tuple ): '''simple docstring''' pass def __lowercase ( self : Tuple ): '''simple docstring''' _a, _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a ,nn.Linear ) ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a, _a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_a ) _a : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : int = True for model_class in self.all_model_classes: _a : Optional[Any] = True _a : List[str] = False _a : Tuple = True _a : Dict = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Tuple = model(**self._prepare_for_class(_a ,_a ) ) _a : Any = outputs.attentions _a : Optional[int] = len(self.model_tester.depths ) self.assertEqual(len(_a ) ,_a ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a : Optional[int] = True _a : Dict = config.window_size**2 _a : Optional[int] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a ,_a ) ) _a : Union[str, Any] = outputs.attentions self.assertEqual(len(_a ) ,_a ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) _a : str = len(_a ) # Check attention is always last and order is fine _a : int = True _a : int = True _a : Union[str, Any] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Optional[int] = model(**self._prepare_for_class(_a ,_a ) ) if hasattr(self.model_tester ,'num_hidden_states_types' ): _a : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _a : Optional[Any] = 2 self.assertEqual(out_len + added_hidden_states ,len(_a ) ) _a : str = outputs.attentions self.assertEqual(len(_a ) ,_a ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def __lowercase ( self : Optional[int] ,_a : str ,_a : Union[str, Any] ,_a : Any ,_a : Union[str, Any] ): '''simple docstring''' _a : int = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Optional[int] = model(**self._prepare_for_class(_a ,_a ) ) _a : Any = outputs.hidden_states _a : str = getattr( self.model_tester ,'expected_num_hidden_layers' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_a ) ,_a ) # Swinv2 has a different seq_length _a : List[str] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) _a : Optional[int] = outputs.reshaped_hidden_states self.assertEqual(len(_a ) ,_a ) _a, _a, _a, _a : Optional[int] = reshaped_hidden_states[0].shape _a : str = ( reshaped_hidden_states[0].view(_a ,_a ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def __lowercase ( self : Dict ): '''simple docstring''' _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _a : List[Any] = True self.check_hidden_states_output(_a ,_a ,_a ,_a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Any = True self.check_hidden_states_output(_a ,_a ,_a ,_a ) def __lowercase ( self : Dict ): '''simple docstring''' _a, _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _a : List[Any] = 3 _a : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _a : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _a : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _a : int = True self.check_hidden_states_output(_a ,_a ,_a ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Optional[Any] = True self.check_hidden_states_output(_a ,_a ,_a ,(padded_height, padded_width) ) def __lowercase ( self : str ): '''simple docstring''' _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_a ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : str = SwinvaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a, _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : int = _config_zero_init(_a ) for model_class in self.all_model_classes: _a : int = model_class(config=_a ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Tuple ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def __lowercase ( self : int ): '''simple docstring''' _a : Optional[Any] = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( _a ) _a : Union[str, Any] = self.default_image_processor _a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _a : Dict = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : Dict = model(**_a ) # verify the logits _a : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_a ) _a : int = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) )
319
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase__ : Dict = 25_00_04 lowercase__ : List[Any] = 25_00_20 @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Dict = MBartTokenizer _snake_case : Tuple = MBartTokenizerFast _snake_case : Union[str, Any] = True _snake_case : Tuple = True def snake_case__ ( self : List[Any] ) -> Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : Any ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def snake_case__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _UpperCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) _UpperCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=True _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=False _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _snake_case : Tuple = 'facebook/mbart-large-en-ro' _snake_case : List[Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] _snake_case : Any = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] _snake_case : Any = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def snake_case__ ( cls : str ) -> int: '''simple docstring''' _UpperCamelCase = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) _UpperCamelCase = 1 return cls def snake_case__ ( self : Any ) -> str: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 ) def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] ) -> int: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) _UpperCamelCase = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] _UpperCamelCase = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def snake_case__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCAmelCase__ ) _UpperCamelCase = 10 _UpperCamelCase = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : Dict ) -> List[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250026, 250001] ) def snake_case__ ( self : int ) -> List[Any]: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = MBartTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ ) @require_torch def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' ) _UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def snake_case__ ( self : Tuple ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) _UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def snake_case__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' ) _UpperCamelCase = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' ) _UpperCamelCase = targets['''input_ids'''] _UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def snake_case__ ( self : str ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 3034, 2, 250004]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250001, } , )
98
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) UpperCAmelCase__ : str = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase__ : Tuple = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase__ : Optional[int] = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase__ : int = model(snake_case__ )["last_hidden_state"].detach() self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , snake_case__ , atol=1e-3 ) ) @slow def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) UpperCAmelCase__ : Tuple = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase__ : Union[str, Any] = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase__ : Optional[Any] = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = model(snake_case__ )["last_hidden_state"].detach() self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , snake_case__ , atol=1e-3 ) )
438
0
def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] SCREAMING_SNAKE_CASE__ = 6 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 19_01 SCREAMING_SNAKE_CASE__ = 0 while year < 20_01: day += 7 if (year % 4 == 0 and year % 1_00 != 0) or (year % 4_00 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 SCREAMING_SNAKE_CASE__ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 SCREAMING_SNAKE_CASE__ = day - 29 else: if day > days_per_month[month - 1]: month += 1 SCREAMING_SNAKE_CASE__ = day - days_per_month[month - 2] if month > 12: year += 1 SCREAMING_SNAKE_CASE__ = 1 if year < 20_01 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
718
import random def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = a[left_index] SCREAMING_SNAKE_CASE__ = left_index + 1 for j in range(left_index + 1 , _A ): if a[j] < pivot: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = a[i], a[j] i += 1 SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = a[i - 1], a[left_index] return i - 1 def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' if left < right: SCREAMING_SNAKE_CASE__ = random.randint(_A , right - 1 ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = ( a[left], a[pivot], ) # switches the pivot with the left most bound SCREAMING_SNAKE_CASE__ = partition(_A , _A , _A ) quick_sort_random( _A , _A , _A ) # recursive quicksort to the left of the pivot point quick_sort_random( _A , pivot_index + 1 , _A ) # recursive quicksort to the right of the pivot point def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = input('''Enter numbers separated by a comma:\n''' ).strip() SCREAMING_SNAKE_CASE__ = [int(_A ) for item in user_input.split(''',''' )] quick_sort_random(_A , 0 , len(_A ) ) print(_A ) if __name__ == "__main__": main()
472
0
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = LEDTokenizer SCREAMING_SNAKE_CASE_ : Any = LEDTokenizerFast SCREAMING_SNAKE_CASE_ : Union[str, Any] = True def __A ( self ) -> Dict: super().setUp() SCREAMING_SNAKE_CASE = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) SCREAMING_SNAKE_CASE = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase__ ) ) def __A ( self , **lowerCAmelCase__ ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __A ( self , **lowerCAmelCase__ ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ ) -> Optional[int]: return "lower newer", "lower newer" @cached_property def __A ( self ) -> Any: return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def __A ( self ) -> List[str]: return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] SCREAMING_SNAKE_CASE = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @require_torch def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='pt' ) self.assertIn('input_ids' , lowerCAmelCase__ ) self.assertIn('attention_mask' , lowerCAmelCase__ ) self.assertNotIn('labels' , lowerCAmelCase__ ) self.assertNotIn('decoder_attention_mask' , lowerCAmelCase__ ) @require_torch def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE = tokenizer(text_target=lowerCAmelCase__ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def __A ( self ) -> Tuple: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE = tokenizer( ['I am a small frog' * 1_024, 'I am a small frog'] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.'] SCREAMING_SNAKE_CASE = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE = tokenizer(text_target=lowerCAmelCase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE = inputs['input_ids'] SCREAMING_SNAKE_CASE = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __A ( self ) -> str: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE = ['Summary of the text.', 'Another summary.'] SCREAMING_SNAKE_CASE = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [[0] * len(lowerCAmelCase__ ) for x in encoded_output['input_ids']] SCREAMING_SNAKE_CASE = tokenizer.pad(lowerCAmelCase__ ) self.assertSequenceEqual(outputs['global_attention_mask'] , lowerCAmelCase__ ) def __A ( self ) -> int: pass def __A ( self ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'A, <mask> AllenNLP sentence.' SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCAmelCase__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
247
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __UpperCamelCase = logging.getLogger(__name__) def lowercase (SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : Optional[int]=3 , SCREAMING_SNAKE_CASE_ : Optional[Any]=16 , SCREAMING_SNAKE_CASE_ : int = 10 , SCREAMING_SNAKE_CASE_ : int = 2 ) -> List[str]: def get_dataset(SCREAMING_SNAKE_CASE_ : int ): SCREAMING_SNAKE_CASE = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(SCREAMING_SNAKE_CASE_ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) SCREAMING_SNAKE_CASE = get_dataset(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = get_dataset(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , num_workers=4 ) SCREAMING_SNAKE_CASE = DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowercase (SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any]=None ) -> Any: SCREAMING_SNAKE_CASE = [] for epoch in range(SCREAMING_SNAKE_CASE_ ): # Train quickly model.train() for batch in dataloader: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = batch SCREAMING_SNAKE_CASE = model(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = torch.nn.functional.mse_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.backward(SCREAMING_SNAKE_CASE_ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self ) -> Dict: super().__init__() SCREAMING_SNAKE_CASE = nn.Parameter(torch.randn(1 ) ) SCREAMING_SNAKE_CASE = nn.Parameter(torch.randn(1 ) ) def __A ( self , lowerCAmelCase__ ) -> Dict: return x * self.a + self.b class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) SCREAMING_SNAKE_CASE = DummyModel() SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dummy_dataloaders() SCREAMING_SNAKE_CASE = ProjectConfiguration(total_limit=1 , project_dir=lowerCAmelCase__ , automatic_checkpoint_naming=lowerCAmelCase__ ) # Train baseline SCREAMING_SNAKE_CASE = Accelerator(project_config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __A ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) SCREAMING_SNAKE_CASE = DummyModel() SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dummy_dataloaders() # Train baseline SCREAMING_SNAKE_CASE = Accelerator() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save initial SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , 'initial' ) accelerator.save_state(lowerCAmelCase__ ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE = optimizer.state_dict() SCREAMING_SNAKE_CASE = train(3 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE = optimizer.state_dict() # Train partially set_seed(42 ) SCREAMING_SNAKE_CASE = DummyModel() SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dummy_dataloaders() SCREAMING_SNAKE_CASE = Accelerator() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) accelerator.load_state(lowerCAmelCase__ ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE = optimizer.state_dict() self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = train(2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save everything SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , 'checkpoint' ) accelerator.save_state(lowerCAmelCase__ ) # Load everything back in and make sure all states work accelerator.load_state(lowerCAmelCase__ ) test_rands += train(1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE = optimizer.state_dict() self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __A ( self ) -> str: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) SCREAMING_SNAKE_CASE = DummyModel() SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dummy_dataloaders() SCREAMING_SNAKE_CASE = ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase__ ) # Train baseline SCREAMING_SNAKE_CASE = Accelerator(project_dir=lowerCAmelCase__ , project_config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save initial accelerator.save_state() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE = optimizer.state_dict() SCREAMING_SNAKE_CASE = train(3 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE = optimizer.state_dict() # Train partially set_seed(42 ) SCREAMING_SNAKE_CASE = DummyModel() SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dummy_dataloaders() SCREAMING_SNAKE_CASE = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = Accelerator(project_dir=lowerCAmelCase__ , project_config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) accelerator.load_state(os.path.join(lowerCAmelCase__ , 'checkpoints' , 'checkpoint_0' ) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE = optimizer.state_dict() self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = train(2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCAmelCase__ , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = model.a.item(), model.b.item() SCREAMING_SNAKE_CASE = optimizer.state_dict() self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = torch.tensor([1, 2, 3] ) SCREAMING_SNAKE_CASE = torch.tensor([2, 3, 4] ) SCREAMING_SNAKE_CASE = DummyModel() SCREAMING_SNAKE_CASE = torch.optim.Adam(net.parameters() ) SCREAMING_SNAKE_CASE = Accelerator() with self.assertRaises(lowerCAmelCase__ ) as ve: accelerator.register_for_checkpointing(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def __A ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) SCREAMING_SNAKE_CASE = DummyModel() SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE = torch.optim.lr_scheduler.StepLR(lowerCAmelCase__ , step_size=1 , gamma=0.99 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = dummy_dataloaders() SCREAMING_SNAKE_CASE = ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase__ ) # Train baseline SCREAMING_SNAKE_CASE = Accelerator(project_dir=lowerCAmelCase__ , project_config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save initial accelerator.save_state() SCREAMING_SNAKE_CASE = scheduler.state_dict() train(3 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotEqual(lowerCAmelCase__ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCAmelCase__ , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(lowerCAmelCase__ , scheduler.state_dict() ) def __A ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) SCREAMING_SNAKE_CASE = DummyModel() SCREAMING_SNAKE_CASE = ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase__ , total_limit=2 ) # Train baseline SCREAMING_SNAKE_CASE = Accelerator(project_dir=lowerCAmelCase__ , project_config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = accelerator.prepare(lowerCAmelCase__ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(lowerCAmelCase__ , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) if __name__ == "__main__": __UpperCamelCase = '''/tmp/accelerate/state_checkpointing''' __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters(), lr=1E-3) __UpperCamelCase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) __UpperCamelCase,__UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __UpperCamelCase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='''no''') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __UpperCamelCase,__UpperCamelCase,__UpperCamelCase,__UpperCamelCase,__UpperCamelCase = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __UpperCamelCase,__UpperCamelCase = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __UpperCamelCase = group['''params'''][0].device break assert param_device.type == accelerator.device.type __UpperCamelCase = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''cpu''') for group in optimizer.param_groups: __UpperCamelCase = group['''params'''][0].device break assert ( param_device.type == torch.device('''cpu''').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''on_device''') for group in optimizer.param_groups: __UpperCamelCase = group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='''Unsupported optimizer map location passed'''): accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''invalid''') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
247
1
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> int: if len(SCREAMING_SNAKE_CASE__) < k or k < 0: raise ValueError("""Invalid Input""") __snake_case: int = sum(array[:k]) for i in range(len(SCREAMING_SNAKE_CASE__) - k): __snake_case: Optional[int] = current_sum - array[i] + array[i + k] __snake_case: int = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __UpperCAmelCase : Dict = [randint(-1_000, 1_000) for i in range(100)] __UpperCAmelCase : Tuple = randint(0, 110) print(f'The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}')
155
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_50, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_00, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_00, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ] ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Optional[Any] ): if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=A , ) assert hasattr(self , """env""" ) def UpperCAmelCase__ ( self : int , A : List[Any] ): __snake_case: Optional[int] = f'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}''' # distributed data settings __snake_case: Optional[int] = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=A , instance_count=A , instance_type=self.instance_type , debugger_hook_config=A , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=A , py_version="""py36""" , ) def UpperCAmelCase__ ( self : List[Any] , A : int ): TrainingJobAnalytics(A ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def UpperCAmelCase__ ( self : str , A : Any ): # create estimator __snake_case: str = self.create_estimator(A ) # run training estimator.fit() # result dataframe __snake_case: Optional[int] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __snake_case: Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) __snake_case: List[str] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __snake_case: Tuple = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , A )
155
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowercase : List[Any] =Lock() def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowercase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase_ =rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase_ =min(lowercase__ , lowercase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowercase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase_ =lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase_ =max(lowercase__ , lowercase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowercase__ ) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =[] UpperCAmelCase_ =[] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase_ =Pipe() UpperCAmelCase_ =Pipe() process_array_.append( Process( target=lowercase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase_ =temp_rs UpperCAmelCase_ =temp_rr for i in range(1 , len(lowercase__ ) - 1 ): UpperCAmelCase_ =Pipe() UpperCAmelCase_ =Pipe() process_array_.append( Process( target=lowercase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase_ =temp_rs UpperCAmelCase_ =temp_rr process_array_.append( Process( target=lowercase__ , args=( len(lowercase__ ) - 1, arr[len(lowercase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowercase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowercase__ ) ): UpperCAmelCase_ =result_pipe[p][0].recv() process_array_[p].join() return arr def a__ ( ): '''simple docstring''' UpperCAmelCase_ =list(range(1_0 , 0 , -1 ) ) print("Initial List" ) print(*lowercase__ ) UpperCAmelCase_ =odd_even_transposition(lowercase__ ) print("Sorted List\n" ) print(*lowercase__ ) if __name__ == "__main__": main()
54
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __magic_name__ = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" def __init__( self , *a_ , **a_ ): warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , a_ , ) super().__init__(*a_ , **a_ )
250
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys SCREAMING_SNAKE_CASE__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
721
'''simple docstring''' from math import sqrt def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE = 100_0000 ): SCREAMING_SNAKE_CASE_ :int = 0 SCREAMING_SNAKE_CASE_ :int = 0 SCREAMING_SNAKE_CASE_ :int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(SCREAMING_SNAKE_CASE , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
233
0
def lowercase__ ( A_: int = 1000 ) -> int: """simple docstring""" __UpperCAmelCase =3 __UpperCAmelCase =0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"""{solution() = }""")
68
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase_ : def __init__( self : Optional[int] , _A : Optional[Any] , _A : Tuple=2 , _A : Tuple=3 , _A : Optional[Any]=4 , _A : List[Any]=2 , _A : List[Any]=7 , _A : int=True , _A : Dict=True , _A : int=True , _A : Dict=True , _A : Tuple=99 , _A : Union[str, Any]=36 , _A : int=2 , _A : List[str]=4 , _A : int=37 , _A : List[Any]="gelu" , _A : str=0.1 , _A : str=0.1 , _A : Tuple=512 , _A : Dict=16 , _A : Tuple=2 , _A : Union[str, Any]=0.0_2 , _A : Any=6 , _A : Union[str, Any]=6 , _A : str=3 , _A : str=4 , _A : Tuple=None , _A : int=1_000 , ): '''simple docstring''' UpperCAmelCase__ : int = parent UpperCAmelCase__ : Optional[int] = batch_size UpperCAmelCase__ : str = num_channels UpperCAmelCase__ : str = image_size UpperCAmelCase__ : List[str] = patch_size UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : List[str] = use_input_mask UpperCAmelCase__ : Tuple = use_token_type_ids UpperCAmelCase__ : str = use_labels UpperCAmelCase__ : int = vocab_size UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Optional[int] = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : int = hidden_dropout_prob UpperCAmelCase__ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase__ : List[str] = max_position_embeddings UpperCAmelCase__ : Tuple = type_vocab_size UpperCAmelCase__ : Any = type_sequence_label_size UpperCAmelCase__ : List[str] = initializer_range UpperCAmelCase__ : List[str] = coordinate_size UpperCAmelCase__ : Tuple = shape_size UpperCAmelCase__ : Optional[int] = num_labels UpperCAmelCase__ : Optional[Any] = num_choices UpperCAmelCase__ : Union[str, Any] = scope UpperCAmelCase__ : Optional[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCAmelCase__ : str = text_seq_length UpperCAmelCase__ : Tuple = (image_size // patch_size) ** 2 + 1 UpperCAmelCase__ : Tuple = self.text_seq_length + self.image_seq_length def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCAmelCase__ : int = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase__ : str = bbox[i, j, 3] UpperCAmelCase__ : Dict = bbox[i, j, 1] UpperCAmelCase__ : str = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase__ : Optional[int] = bbox[i, j, 2] UpperCAmelCase__ : Any = bbox[i, j, 0] UpperCAmelCase__ : List[Any] = tmp_coordinate UpperCAmelCase__ : str = tf.constant(_A ) UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Any = None if self.use_input_mask: UpperCAmelCase__ : Any = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCAmelCase__ : Any = None if self.use_token_type_ids: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : List[str] = None if self.use_labels: UpperCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCAmelCase__ : Optional[int] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase_ ( self : Union[str, Any] , _A : int , _A : str , _A : Optional[int] , _A : Optional[int] , _A : List[str] , _A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : int = TFLayoutLMvaModel(config=_A ) # text + image UpperCAmelCase__ : Tuple = model(_A , pixel_values=_A , training=_A ) UpperCAmelCase__ : Tuple = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , training=_A , ) UpperCAmelCase__ : Optional[Any] = model(_A , bbox=_A , pixel_values=_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCAmelCase__ : Any = model(_A , training=_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCAmelCase__ : str = model({'''pixel_values''': pixel_values} , training=_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase_ ( self : Union[str, Any] , _A : Optional[int] , _A : Optional[Any] , _A : Dict , _A : List[Any] , _A : List[Any] , _A : Any , _A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.num_labels UpperCAmelCase__ : int = TFLayoutLMvaForSequenceClassification(config=_A ) UpperCAmelCase__ : Union[str, Any] = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , training=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : Dict , _A : List[Any] , _A : Any , _A : Dict , _A : str , _A : Optional[int] , _A : str , _A : str ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.num_labels UpperCAmelCase__ : Union[str, Any] = TFLayoutLMvaForTokenClassification(config=_A ) UpperCAmelCase__ : Optional[int] = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , training=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase_ ( self : Dict , _A : Dict , _A : List[str] , _A : Union[str, Any] , _A : int , _A : Tuple , _A : Dict , _A : str ): '''simple docstring''' UpperCAmelCase__ : str = 2 UpperCAmelCase__ : Dict = TFLayoutLMvaForQuestionAnswering(config=_A ) UpperCAmelCase__ : str = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , training=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : int = self.prepare_config_and_inputs() ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) : List[str] = config_and_inputs UpperCAmelCase__ : List[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase__ = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : List[Any] , _A : Union[str, Any] , _A : str , _A : List[Any] , _A : Dict , _A : List[str] ): '''simple docstring''' return True def lowercase_ ( self : Optional[Any] , _A : Tuple , _A : Any , _A : Dict=False ): '''simple docstring''' UpperCAmelCase__ : List[Any] = copy.deepcopy(_A ) if model_class in get_values(_A ): UpperCAmelCase__ : Tuple = { k: tf.tile(tf.expand_dims(_A , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(_A , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_A ): UpperCAmelCase__ : Dict = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_A ): UpperCAmelCase__ : Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCAmelCase__ : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_A ): UpperCAmelCase__ : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_A ): UpperCAmelCase__ : int = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = TFLayoutLMvaModelTester(self ) UpperCAmelCase__ : Tuple = ConfigTester(self , config_class=_A , hidden_size=37 ) def lowercase_ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = model_class(_A ) if getattr(_A , '''hf_compute_loss''' , _A ): # The number of elements in the loss should be the same as the number of elements in the label UpperCAmelCase__ : Tuple = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) UpperCAmelCase__ : List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=_A )[0] ] UpperCAmelCase__ : Optional[Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCAmelCase__ : Any = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) UpperCAmelCase__ : Tuple = prepared_for_class.pop('''input_ids''' ) UpperCAmelCase__ : List[Any] = model(_A , **_A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCAmelCase__ : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) UpperCAmelCase__ : Tuple = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: UpperCAmelCase__ : Optional[Any] = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCAmelCase__ : Any = -100 UpperCAmelCase__ : Union[str, Any] = tf.convert_to_tensor(_A ) UpperCAmelCase__ : int = model(_A , **_A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCAmelCase__ : Optional[int] = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) UpperCAmelCase__ : Dict = model(_A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCAmelCase__ : Dict = self._prepare_for_class(inputs_dict.copy() , _A , return_labels=_A ) # Get keys that were added with the _prepare_for_class function UpperCAmelCase__ : Optional[int] = prepared_for_class.keys() - inputs_dict.keys() UpperCAmelCase__ : int = inspect.signature(model.call ).parameters UpperCAmelCase__ : Union[str, Any] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCAmelCase__ : Dict = {0: '''input_ids'''} for label_key in label_keys: UpperCAmelCase__ : str = signature_names.index(_A ) UpperCAmelCase__ : List[Any] = label_key UpperCAmelCase__ : Dict = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCAmelCase__ : Tuple = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCAmelCase__ : Any = prepared_for_class[value] UpperCAmelCase__ : Tuple = tuple(_A ) # Send to model UpperCAmelCase__ : Optional[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowercase_ ( self : int ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_A , _A , _A , _A , _A , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ : Union[str, Any] = type self.model_tester.create_and_check_model(_A , _A , _A , _A , _A , _A ) def lowercase_ ( self : List[str] ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( _A , _A , _A , _A , _A , _A , _A ) def lowercase_ ( self : Any ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( _A , _A , _A , _A , _A , _A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( _A , _A , _A , _A , _A , _A , _A ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[str] = TFLayoutLMvaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def a__ ( ) -> List[str]: UpperCAmelCase__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowercase_ ( self : Dict ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=_A ) if is_vision_available() else None @slow def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) UpperCAmelCase__ : Dict = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : int = image_processor(images=_A , return_tensors='''tf''' ).pixel_values UpperCAmelCase__ : str = tf.constant([[1, 2]] ) UpperCAmelCase__ : Optional[Any] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCAmelCase__ : int = model(input_ids=_A , bbox=_A , pixel_values=_A , training=_A ) # verify the logits UpperCAmelCase__ : Optional[int] = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , _A ) UpperCAmelCase__ : Dict = tf.constant( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _A , atol=1e-4 ) )
75
0
from math import factorial, radians def A ( _UpperCAmelCase : float , _UpperCAmelCase : int = 18 , _UpperCAmelCase : int = 10 ) -> float: '''simple docstring''' _UpperCAmelCase = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians _UpperCAmelCase = radians(_UpperCAmelCase ) _UpperCAmelCase = angle_in_radians _UpperCAmelCase = 3 _UpperCAmelCase = -1 for _ in range(_UpperCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(_UpperCAmelCase ) _UpperCAmelCase = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": __import__("doctest").testmod()
639
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
639
1
'''simple docstring''' import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def A_ ( snake_case , snake_case , snake_case , snake_case , snake_case ): # Load configuration defined in the metadata file with open(snake_case ) as metadata_file: SCREAMING_SNAKE_CASE:str = json.load(snake_case ) SCREAMING_SNAKE_CASE:List[str] = LukeConfig(use_entity_aware_attention=snake_case , **metadata["model_config"] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE:Tuple = torch.load(snake_case , map_location="cpu" ) # Load the entity vocab file SCREAMING_SNAKE_CASE:Dict = load_entity_vocab(snake_case ) SCREAMING_SNAKE_CASE:Optional[int] = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE:Dict = AddedToken("<ent>" , lstrip=snake_case , rstrip=snake_case ) SCREAMING_SNAKE_CASE:List[Any] = AddedToken("<ent2>" , lstrip=snake_case , rstrip=snake_case ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(snake_case ) with open(os.path.join(snake_case , LukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(snake_case , snake_case ) SCREAMING_SNAKE_CASE:str = LukeTokenizer.from_pretrained(snake_case ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE:Optional[Any] = state_dict["embeddings.word_embeddings.weight"] SCREAMING_SNAKE_CASE:Union[str, Any] = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) SCREAMING_SNAKE_CASE:Union[str, Any] = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) SCREAMING_SNAKE_CASE:Tuple = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE:Union[str, Any] = F'''encoder.layer.{layer_index}.attention.self.''' SCREAMING_SNAKE_CASE:List[Any] = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE:List[Any] = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE:List[str] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE:str = state_dict["entity_embeddings.entity_embeddings.weight"] SCREAMING_SNAKE_CASE:int = entity_emb[entity_vocab["[MASK]"]] SCREAMING_SNAKE_CASE:str = LukeModel(config=snake_case ).eval() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:int = model.load_state_dict(snake_case , strict=snake_case ) if not (len(snake_case ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'''Missing keys {", ".join(snake_case )}. Expected only missing embeddings.position_ids''' ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" F''' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}''' ) # Check outputs SCREAMING_SNAKE_CASE:Optional[Any] = LukeTokenizer.from_pretrained(snake_case , task="entity_classification" ) SCREAMING_SNAKE_CASE:Tuple = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) SCREAMING_SNAKE_CASE:List[str] = (39, 42) SCREAMING_SNAKE_CASE:int = tokenizer(snake_case , entity_spans=[span] , add_prefix_space=snake_case , return_tensors="pt" ) SCREAMING_SNAKE_CASE:Any = model(**snake_case ) # Verify word hidden states if model_size == "large": SCREAMING_SNAKE_CASE:List[str] = torch.Size((1, 42, 1024) ) SCREAMING_SNAKE_CASE:Optional[int] = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base SCREAMING_SNAKE_CASE:List[str] = torch.Size((1, 42, 768) ) SCREAMING_SNAKE_CASE:int = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": SCREAMING_SNAKE_CASE:Union[str, Any] = torch.Size((1, 1, 1024) ) SCREAMING_SNAKE_CASE:Optional[int] = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base SCREAMING_SNAKE_CASE:List[str] = torch.Size((1, 1, 768) ) SCREAMING_SNAKE_CASE:Any = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , snake_case , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(snake_case ) ) model.save_pretrained(snake_case ) def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Any = {} with open(snake_case , "r" , encoding="utf-8" ) as f: for index, line in enumerate(snake_case ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Optional[Any] = line.rstrip().split("\t" ) SCREAMING_SNAKE_CASE:str = index return entity_vocab if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) A_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
143
'''simple docstring''' def A_ ( snake_case = 600851475143 ): try: SCREAMING_SNAKE_CASE:str = int(snake_case ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) SCREAMING_SNAKE_CASE:Optional[Any] = 1 SCREAMING_SNAKE_CASE:Optional[Any] = 2 while i * i <= n: while n % i == 0: SCREAMING_SNAKE_CASE:List[Any] = i n //= i i += 1 if n > 1: SCREAMING_SNAKE_CASE:List[str] = n return int(snake_case ) if __name__ == "__main__": print(f'''{solution() = }''')
143
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __A = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __A = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" __A = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def lowercase_ ( _lowerCamelCase: Any ) -> Dict: '''simple docstring''' def remove_articles(_lowerCamelCase: Union[str, Any] ): __lowerCamelCase : Tuple = re.compile(r"\b(a|an|the)\b" , re.UNICODE ) return re.sub(_lowerCamelCase , " " , _lowerCamelCase ) def white_space_fix(_lowerCamelCase: Tuple ): return " ".join(text.split() ) def remove_punc(_lowerCamelCase: Union[str, Any] ): __lowerCamelCase : Optional[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCamelCase: Optional[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCamelCase ) ) ) ) def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: List[Any] ) -> Tuple: '''simple docstring''' return int(normalize_answer(_lowerCamelCase ) == normalize_answer(_lowerCamelCase ) ) def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: Tuple ) -> List[Any]: '''simple docstring''' __lowerCamelCase : List[Any] = [any(compute_exact(_lowerCamelCase , _lowerCamelCase ) for ref in refs ) for pred, refs in zip(_lowerCamelCase , _lowerCamelCase )] return (sum(_lowerCamelCase ) / len(_lowerCamelCase )) * 100 def lowercase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: Optional[Any] , _lowerCamelCase: Any , _lowerCamelCase: List[Any] ) -> int: '''simple docstring''' __lowerCamelCase : int = [rgram for rgrams in rgramslist for rgram in rgrams] __lowerCamelCase : int = Counter(_lowerCamelCase ) __lowerCamelCase : str = Counter(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = Counter() for sgram, scount in sgramcounter.items(): __lowerCamelCase : List[str] = scount * numref __lowerCamelCase : Tuple = Counter(_lowerCamelCase ) __lowerCamelCase : int = Counter() for cgram, ccount in cgramcounter.items(): __lowerCamelCase : List[str] = ccount * numref # KEEP __lowerCamelCase : Tuple = sgramcounter_rep & cgramcounter_rep __lowerCamelCase : Any = keepgramcounter_rep & rgramcounter __lowerCamelCase : Union[str, Any] = sgramcounter_rep & rgramcounter __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : List[Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __lowerCamelCase : int = 1 __lowerCamelCase : List[Any] = 1 if len(_lowerCamelCase ) > 0: __lowerCamelCase : str = keeptmpscorea / len(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) __lowerCamelCase : List[str] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) __lowerCamelCase : str = 0 if keepscore_precision > 0 or keepscore_recall > 0: __lowerCamelCase : Any = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION __lowerCamelCase : List[Any] = sgramcounter_rep - cgramcounter_rep __lowerCamelCase : Tuple = delgramcounter_rep - rgramcounter __lowerCamelCase : int = sgramcounter_rep - rgramcounter __lowerCamelCase : Any = 0 __lowerCamelCase : List[Any] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __lowerCamelCase : Union[str, Any] = 1 if len(_lowerCamelCase ) > 0: __lowerCamelCase : Dict = deltmpscorea / len(_lowerCamelCase ) # ADDITION __lowerCamelCase : List[Any] = set(_lowerCamelCase ) - set(_lowerCamelCase ) __lowerCamelCase : List[Any] = set(_lowerCamelCase ) & set(_lowerCamelCase ) __lowerCamelCase : Tuple = set(_lowerCamelCase ) - set(_lowerCamelCase ) __lowerCamelCase : List[str] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __lowerCamelCase : Optional[Any] = 1 __lowerCamelCase : int = 1 if len(_lowerCamelCase ) > 0: __lowerCamelCase : Tuple = addtmpscore / len(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: __lowerCamelCase : str = addtmpscore / len(_lowerCamelCase ) __lowerCamelCase : Tuple = 0 if addscore_precision > 0 or addscore_recall > 0: __lowerCamelCase : Tuple = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowercase_ ( _lowerCamelCase: List[Any] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Optional[Any] ) -> str: '''simple docstring''' __lowerCamelCase : Optional[Any] = len(_lowerCamelCase ) __lowerCamelCase : List[str] = ssent.split(" " ) __lowerCamelCase : List[Any] = csent.split(" " ) __lowerCamelCase : int = [] __lowerCamelCase : Optional[int] = [] __lowerCamelCase : str = [] __lowerCamelCase : Dict = [] __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : List[str] = [] __lowerCamelCase : int = [] __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : Optional[Any] = [] for rsent in rsents: __lowerCamelCase : List[Any] = rsent.split(" " ) __lowerCamelCase : List[str] = [] __lowerCamelCase : Optional[int] = [] __lowerCamelCase : Dict = [] ragramslist.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: __lowerCamelCase : int = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: __lowerCamelCase : str = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: __lowerCamelCase : List[Any] = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: __lowerCamelCase : List[Any] = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: __lowerCamelCase : Optional[int] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: __lowerCamelCase : Any = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: __lowerCamelCase : Dict = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: __lowerCamelCase : str = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: __lowerCamelCase : str = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_lowerCamelCase ) (__lowerCamelCase) : Union[str, Any] = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) (__lowerCamelCase) : Optional[Any] = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) (__lowerCamelCase) : Dict = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) (__lowerCamelCase) : Tuple = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : Union[str, Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 __lowerCamelCase : int = sum([delascore, delascore, delascore, delascore] ) / 4 __lowerCamelCase : Optional[int] = sum([addascore, addascore, addascore, addascore] ) / 4 __lowerCamelCase : List[Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowercase_ ( _lowerCamelCase: Dict , _lowerCamelCase: bool = True , _lowerCamelCase: str = "13a" , _lowerCamelCase: bool = True ) -> Optional[int]: '''simple docstring''' if lowercase: __lowerCamelCase : Optional[Any] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: __lowerCamelCase : List[str] = sacrebleu.metrics.bleu._get_tokenizer(_lowerCamelCase )()(_lowerCamelCase ) else: __lowerCamelCase : Optional[Any] = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCamelCase ) elif tokenizer == "moses": __lowerCamelCase : Tuple = sacremoses.MosesTokenizer().tokenize(_lowerCamelCase , return_str=_lowerCamelCase , escape=_lowerCamelCase ) elif tokenizer == "penn": __lowerCamelCase : Dict = sacremoses.MosesTokenizer().penn_tokenize(_lowerCamelCase , return_str=_lowerCamelCase ) else: __lowerCamelCase : List[Any] = sentence if not return_str: __lowerCamelCase : str = normalized_sent.split() return normalized_sent def lowercase_ ( _lowerCamelCase: Optional[Any] , _lowerCamelCase: str , _lowerCamelCase: List[Any] ) -> Any: '''simple docstring''' if not (len(_lowerCamelCase ) == len(_lowerCamelCase ) == len(_lowerCamelCase )): raise ValueError("Sources length must match predictions and references lengths." ) __lowerCamelCase : List[Any] = 0 for src, pred, refs in zip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): sari_score += SARIsent(normalize(_lowerCamelCase ) , normalize(_lowerCamelCase ) , [normalize(_lowerCamelCase ) for sent in refs] ) __lowerCamelCase : List[Any] = sari_score / len(_lowerCamelCase ) return 100 * sari_score def lowercase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Tuple="exp" , _lowerCamelCase: int=None , _lowerCamelCase: Dict=False , _lowerCamelCase: str=False , _lowerCamelCase: int=False , ) -> List[Any]: '''simple docstring''' __lowerCamelCase : List[Any] = len(references[0] ) if any(len(_lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) __lowerCamelCase : str = [[refs[i] for refs in references] for i in range(_lowerCamelCase )] __lowerCamelCase : Any = sacrebleu.corpus_bleu( _lowerCamelCase , _lowerCamelCase , smooth_method=_lowerCamelCase , smooth_value=_lowerCamelCase , force=_lowerCamelCase , lowercase=_lowerCamelCase , use_effective_order=_lowerCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def lowerCamelCase__ ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ] , reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def lowerCamelCase__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] ): __lowerCamelCase : List[Any] = {} result.update({"sari": compute_sari(sources=lowerCamelCase__ , predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) result.update({"sacrebleu": compute_sacrebleu(predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) result.update({"exact": compute_em(predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) return result
718
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _snake_case ( a__ , a__ ): @register_to_config def __init__( self : Optional[Any] , UpperCAmelCase : int = 128 , UpperCAmelCase : int = 256 , UpperCAmelCase : float = 2_0_0_0.0 , UpperCAmelCase : int = 768 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 64 , UpperCAmelCase : int = 2048 , UpperCAmelCase : float = 0.1 , ): super().__init__() __lowerCamelCase : List[Any] = nn.Sequential( nn.Linear(UpperCAmelCase , d_model * 4 , bias=UpperCAmelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCAmelCase ) , nn.SiLU() , ) __lowerCamelCase : str = nn.Embedding(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Optional[int] = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : Optional[Any] = nn.Dropout(p=UpperCAmelCase ) __lowerCamelCase : str = nn.ModuleList() for lyr_num in range(UpperCAmelCase ): # FiLM conditional T5 decoder __lowerCamelCase : List[str] = DecoderLayer(d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase ) self.decoders.append(UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = TaLayerNorm(UpperCAmelCase ) __lowerCamelCase : List[Any] = nn.Dropout(p=UpperCAmelCase ) __lowerCamelCase : Any = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : int ): __lowerCamelCase : List[Any] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : str ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __lowerCamelCase : str = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) __lowerCamelCase : Optional[int] = self.conditioning_emb(UpperCAmelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __lowerCamelCase : Tuple = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __lowerCamelCase : int = torch.broadcast_to( torch.arange(UpperCAmelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) __lowerCamelCase : Optional[Any] = self.position_encoding(UpperCAmelCase ) __lowerCamelCase : List[str] = self.continuous_inputs_projection(UpperCAmelCase ) inputs += position_encodings __lowerCamelCase : List[Any] = self.dropout(UpperCAmelCase ) # decoder: No padding present. __lowerCamelCase : Tuple = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. __lowerCamelCase : Optional[Any] = [(x, self.encoder_decoder_mask(UpperCAmelCase , UpperCAmelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings __lowerCamelCase : Union[str, Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) __lowerCamelCase : Union[str, Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: __lowerCamelCase : List[Any] = lyr( UpperCAmelCase , conditioning_emb=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , )[0] __lowerCamelCase : Dict = self.decoder_norm(UpperCAmelCase ) __lowerCamelCase : Optional[int] = self.post_dropout(UpperCAmelCase ) __lowerCamelCase : str = self.spec_out(UpperCAmelCase ) return spec_out class _snake_case ( nn.Module ): def __init__( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str]=1E-6 ): super().__init__() __lowerCamelCase : Union[str, Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , dropout_rate=UpperCAmelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , dropout_rate=UpperCAmelCase , layer_norm_epsilon=UpperCAmelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase , layer_norm_epsilon=UpperCAmelCase ) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Dict=None , ): __lowerCamelCase : Union[str, Any] = self.layer[0]( UpperCAmelCase , conditioning_emb=UpperCAmelCase , attention_mask=UpperCAmelCase , ) if encoder_hidden_states is not None: __lowerCamelCase : Tuple = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) __lowerCamelCase : Dict = self.layer[1]( UpperCAmelCase , key_value_states=UpperCAmelCase , attention_mask=UpperCAmelCase , ) # Apply Film Conditional Feed Forward layer __lowerCamelCase : List[Any] = self.layer[-1](UpperCAmelCase , UpperCAmelCase ) return (hidden_states,) class _snake_case ( nn.Module ): def __init__( self : str , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict ): super().__init__() __lowerCamelCase : Union[str, Any] = TaLayerNorm(UpperCAmelCase ) __lowerCamelCase : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCAmelCase ) __lowerCamelCase : Optional[Any] = Attention(query_dim=UpperCAmelCase , heads=UpperCAmelCase , dim_head=UpperCAmelCase , out_bias=UpperCAmelCase , scale_qk=UpperCAmelCase ) __lowerCamelCase : Tuple = nn.Dropout(UpperCAmelCase ) def lowerCamelCase__ ( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any]=None , UpperCAmelCase : str=None , ): # pre_self_attention_layer_norm __lowerCamelCase : int = self.layer_norm(UpperCAmelCase ) if conditioning_emb is not None: __lowerCamelCase : Optional[Any] = self.FiLMLayer(UpperCAmelCase , UpperCAmelCase ) # Self-attention block __lowerCamelCase : Optional[Any] = self.attention(UpperCAmelCase ) __lowerCamelCase : Dict = hidden_states + self.dropout(UpperCAmelCase ) return hidden_states class _snake_case ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : List[str] ): super().__init__() __lowerCamelCase : str = Attention(query_dim=UpperCAmelCase , heads=UpperCAmelCase , dim_head=UpperCAmelCase , out_bias=UpperCAmelCase , scale_qk=UpperCAmelCase ) __lowerCamelCase : List[Any] = TaLayerNorm(UpperCAmelCase , eps=UpperCAmelCase ) __lowerCamelCase : str = nn.Dropout(UpperCAmelCase ) def lowerCamelCase__ ( self : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[int]=None , ): __lowerCamelCase : str = self.layer_norm(UpperCAmelCase ) __lowerCamelCase : Dict = self.attention( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , attention_mask=attention_mask.squeeze(1 ) , ) __lowerCamelCase : List[str] = hidden_states + self.dropout(UpperCAmelCase ) return layer_output class _snake_case ( nn.Module ): def __init__( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] ): super().__init__() __lowerCamelCase : str = TaDenseGatedActDense(d_model=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCAmelCase ) __lowerCamelCase : Dict = TaLayerNorm(UpperCAmelCase , eps=UpperCAmelCase ) __lowerCamelCase : Optional[Any] = nn.Dropout(UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any=None ): __lowerCamelCase : int = self.layer_norm(UpperCAmelCase ) if conditioning_emb is not None: __lowerCamelCase : Union[str, Any] = self.film(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : List[str] = self.DenseReluDense(UpperCAmelCase ) __lowerCamelCase : Optional[int] = hidden_states + self.dropout(UpperCAmelCase ) return hidden_states class _snake_case ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ): super().__init__() __lowerCamelCase : List[Any] = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : List[Any] = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : List[Any] = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : str = nn.Dropout(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = NewGELUActivation() def lowerCamelCase__ ( self : Dict , UpperCAmelCase : List[Any] ): __lowerCamelCase : Union[str, Any] = self.act(self.wi_a(UpperCAmelCase ) ) __lowerCamelCase : Any = self.wi_a(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = hidden_gelu * hidden_linear __lowerCamelCase : Any = self.dropout(UpperCAmelCase ) __lowerCamelCase : List[Any] = self.wo(UpperCAmelCase ) return hidden_states class _snake_case ( nn.Module ): def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[str]=1E-6 ): super().__init__() __lowerCamelCase : List[Any] = nn.Parameter(torch.ones(UpperCAmelCase ) ) __lowerCamelCase : Tuple = eps def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : Any ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 __lowerCamelCase : int = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCAmelCase ) __lowerCamelCase : Dict = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __lowerCamelCase : Union[str, Any] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _snake_case ( nn.Module ): def lowerCamelCase__ ( self : str , UpperCAmelCase : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(UpperCAmelCase , 3.0 )) )) class _snake_case ( nn.Module ): def __init__( self : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] ): super().__init__() __lowerCamelCase : Any = nn.Linear(UpperCAmelCase , out_features * 2 , bias=UpperCAmelCase ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any ): __lowerCamelCase : Optional[Any] = self.scale_bias(UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase : Dict = torch.chunk(UpperCAmelCase , 2 , -1 ) __lowerCamelCase : List[Any] = x * (1 + scale) + shift return x
366
0
'''simple docstring''' class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> None: lowerCAmelCase__ = set_counts lowerCAmelCase__ = max(lowerCamelCase_ ) lowerCAmelCase__ = len(lowerCamelCase_ ) lowerCAmelCase__ = [1] * num_sets lowerCAmelCase__ = list(range(lowerCamelCase_ ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> bool: lowerCAmelCase__ = self.get_parent(lowerCamelCase_ ) lowerCAmelCase__ = self.get_parent(lowerCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowerCAmelCase__ = 0 lowerCAmelCase__ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowerCAmelCase__ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowerCAmelCase__ = 0 lowerCAmelCase__ = src_parent lowerCAmelCase__ = self.set_counts[src_parent] lowerCAmelCase__ = max(self.max_set , lowerCamelCase_ ) return True def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: if self.parents[disj_set] == disj_set: return disj_set lowerCAmelCase__ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
90
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __A : List[Any] = logging.get_logger("transformers.models.speecht5") __A : Optional[Any] = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } __A : Optional[int] = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } __A : List[str] = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } __A : List[Any] = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } __A : Union[str, Any] = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } __A : Any = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } __A : Union[str, Any] = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } __A : Optional[int] = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } __A : Union[str, Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __A : Optional[Any] = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A : Optional[int] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A : int = [] __A : int = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] __A : Optional[Any] = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] __A : Tuple = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] __A : Union[str, Any] = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowercase ( UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : List[Any] , UpperCamelCase : int ): """simple docstring""" for attribute in key.split("." ): A__ : Dict =getattr(UpperCamelCase , UpperCamelCase ) if weight_type is not None: A__ : Union[str, Any] =getattr(UpperCamelCase , UpperCamelCase ).shape else: A__ : Tuple =hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": A__ : Any =value elif weight_type == "weight_g": A__ : Any =value elif weight_type == "weight_v": A__ : Any =value elif weight_type == "bias": A__ : Tuple =value elif weight_type == "running_mean": A__ : Dict =value elif weight_type == "running_var": A__ : List[str] =value elif weight_type == "num_batches_tracked": A__ : Dict =value else: A__ : Optional[int] =value logger.info(F'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def lowercase ( UpperCamelCase : Tuple , UpperCamelCase : Tuple ): """simple docstring""" for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: A__ , A__ : List[str] =key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase ( UpperCamelCase : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : Dict ): """simple docstring""" A__ : Tuple =[] if task == "s2t": A__ : Dict =hf_model.speechta.encoder.prenet.feature_encoder A__ : int =MAPPING_S2T A__ : List[Any] =IGNORE_KEYS_S2T elif task == "t2s": A__ : Union[str, Any] =None A__ : List[Any] =MAPPING_T2S A__ : Tuple =IGNORE_KEYS_T2S elif task == "s2s": A__ : Optional[Any] =hf_model.speechta.encoder.prenet.feature_encoder A__ : Tuple =MAPPING_S2S A__ : Any =IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(UpperCamelCase , UpperCamelCase ): logger.info(F'''{name} was ignored''' ) continue A__ : Optional[Any] =False if "conv_layers" in name: load_conv_layer( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , hf_model.config.feat_extract_norm == "group" , ) A__ : List[Any] =True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: A__ , A__ : Dict =key.split(".*." ) if prefix in name and suffix in name: A__ : int =suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: A__ : List[Any] =True if "*" in mapped_key: A__ : Optional[int] =name.split(UpperCamelCase )[0].split("." )[-2] A__ : int =mapped_key.replace("*" , UpperCamelCase ) if "weight_g" in name: A__ : str ="weight_g" elif "weight_v" in name: A__ : Optional[Any] ="weight_v" elif "bias" in name: A__ : Any ="bias" elif "weight" in name: A__ : Optional[int] ="weight" elif "running_mean" in name: A__ : Tuple ="running_mean" elif "running_var" in name: A__ : Optional[int] ="running_var" elif "num_batches_tracked" in name: A__ : str ="num_batches_tracked" else: A__ : List[Any] =None set_recursively(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) continue if not is_used: unused_weights.append(UpperCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase ( UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : Dict ): """simple docstring""" A__ : Any =full_name.split("conv_layers." )[-1] A__ : Dict =name.split("." ) A__ : int =int(items[0] ) A__ : str =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A__ : Optional[Any] =value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A__ : Optional[int] =value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) A__ : Any =value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) A__ : Any =value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCamelCase ) @torch.no_grad() def lowercase ( UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str] , UpperCamelCase : str=None , UpperCamelCase : Any=None , UpperCamelCase : Tuple=None , ): """simple docstring""" if config_path is not None: A__ : Any =SpeechTaConfig.from_pretrained(UpperCamelCase ) else: A__ : Any =SpeechTaConfig() if task == "s2t": A__ : Union[str, Any] =config.max_text_positions A__ : Dict =SpeechTaForSpeechToText(UpperCamelCase ) elif task == "t2s": A__ : str =1876 A__ : Optional[int] =600 A__ : Tuple =config.max_speech_positions A__ : Optional[Any] =SpeechTaForTextToSpeech(UpperCamelCase ) elif task == "s2s": A__ : str =1876 A__ : Tuple =config.max_speech_positions A__ : Any =SpeechTaForSpeechToSpeech(UpperCamelCase ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: A__ : str =SpeechTaTokenizer(UpperCamelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it A__ : Optional[Any] =AddedToken("<mask>" , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) A__ : int =mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) A__ : Dict =SpeechTaFeatureExtractor() A__ : Tuple =SpeechTaProcessor(tokenizer=UpperCamelCase , feature_extractor=UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) A__ : Union[str, Any] =torch.load(UpperCamelCase ) recursively_load_weights(fairseq_checkpoint["model"] , UpperCamelCase , UpperCamelCase ) model.save_pretrained(UpperCamelCase ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(UpperCamelCase ) model.push_to_hub(UpperCamelCase ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __A : str = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
656
0
'''simple docstring''' from sklearn.metrics import recall_score import datasets __lowerCamelCase : Optional[Any] = ''' Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. ''' __lowerCamelCase : List[Any] = ''' Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {\'recall\': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {\'recall\': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric(\'recall\') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {\'recall\': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric(\'recall\') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'recall\': array([1., 0., 0.])} ''' __lowerCamelCase : List[Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def __a ( self : Optional[Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def __a ( self : Any , _lowercase : int , _lowercase : Dict , _lowercase : str=None , _lowercase : List[Any]=1 , _lowercase : Tuple="binary" , _lowercase : Tuple=None , _lowercase : Tuple="warn" , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = recall_score( __lowerCamelCase , __lowerCamelCase , labels=__lowerCamelCase , pos_label=__lowerCamelCase , average=__lowerCamelCase , sample_weight=__lowerCamelCase , zero_division=__lowerCamelCase , ) return {"recall": float(__lowerCamelCase ) if score.size == 1 else score}
717
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __lowerCamelCase : Union[str, Any] = datasets.utils.logging.get_logger(__name__) @dataclass class __snake_case ( datasets.BuilderConfig ): lowerCAmelCase_ = 1_00_00 lowerCAmelCase_ = None lowerCAmelCase_ = None class __snake_case ( datasets.ArrowBasedBuilder ): lowerCAmelCase_ = ParquetConfig def __a ( self : List[str] ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __a ( self : Dict , _lowercase : List[str] ): """simple docstring""" if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) SCREAMING_SNAKE_CASE__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowercase , (str, list, tuple) ): SCREAMING_SNAKE_CASE__ = data_files if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE__ = [dl_manager.iter_files(_lowercase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] SCREAMING_SNAKE_CASE__ = [] for split_name, files in data_files.items(): if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE__ = [dl_manager.iter_files(_lowercase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_lowercase ): with open(_lowercase , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = datasets.Features.from_arrow_schema(pq.read_schema(_lowercase ) ) break splits.append(datasets.SplitGenerator(name=_lowercase , gen_kwargs={"""files""": files} ) ) return splits def __a ( self : Optional[Any] , _lowercase : pa.Table ): """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE__ = table_cast(_lowercase , self.info.features.arrow_schema ) return pa_table def __a ( self : Dict , _lowercase : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowercase ) ): with open(_lowercase , """rb""" ) as f: SCREAMING_SNAKE_CASE__ = pq.ParquetFile(_lowercase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): SCREAMING_SNAKE_CASE__ = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(_lowercase ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(_lowercase )}: {e}""" ) raise
379
0
"""simple docstring""" import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class UpperCAmelCase_ ( unittest.TestCase): def _UpperCamelCase ( self : Any ) -> int: _UpperCamelCase = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , ['''c'''] ) self.assertEqual(__UpperCamelCase , [2] ) # Out indices set to match out features _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(['''a''', '''c'''] , __UpperCamelCase , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , ['''a''', '''c'''] ) self.assertEqual(__UpperCamelCase , [0, 2] ) # Out features set to match out indices _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(__UpperCamelCase , [0, 2] , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , ['''a''', '''c'''] ) self.assertEqual(__UpperCamelCase , [0, 2] ) # Out features selected from negative indices _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(__UpperCamelCase , [-3, -1] , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , ['''a''', '''c'''] ) self.assertEqual(__UpperCamelCase , [-3, -1] ) def _UpperCamelCase ( self : Dict ) -> Any: # Stage names must be set with self.assertRaises(__UpperCamelCase ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , __UpperCamelCase ) # Out features must be a list with self.assertRaises(__UpperCamelCase ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(__UpperCamelCase ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(__UpperCamelCase ): verify_out_features_out_indices(__UpperCamelCase , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(__UpperCamelCase ): verify_out_features_out_indices(__UpperCamelCase , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(__UpperCamelCase ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(__UpperCamelCase ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(__UpperCamelCase ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def _UpperCamelCase ( self : str ) -> Optional[int]: _UpperCamelCase = BackboneMixin() _UpperCamelCase = ['''a''', '''b''', '''c'''] _UpperCamelCase = ['''a''', '''c'''] _UpperCamelCase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly _UpperCamelCase = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) _UpperCamelCase = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
420
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json""", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class UpperCAmelCase_ ( _lowercase): snake_case__ = '''gpt_neox''' def __init__( self : Dict , __UpperCamelCase : int=5_0432 , __UpperCamelCase : List[Any]=6144 , __UpperCamelCase : str=44 , __UpperCamelCase : List[str]=64 , __UpperCamelCase : int=2_4576 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : Dict=0.2_5 , __UpperCamelCase : int=1_0000 , __UpperCamelCase : Optional[Any]=0.0 , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Dict=2048 , __UpperCamelCase : Optional[Any]=0.0_2 , __UpperCamelCase : Optional[Any]=1E-5 , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Optional[int]=0 , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : List[Any]=False , __UpperCamelCase : List[str]=True , __UpperCamelCase : Optional[Any]=None , **__UpperCamelCase : Union[str, Any] , ) -> Union[str, Any]: super().__init__(bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) _UpperCamelCase = vocab_size _UpperCamelCase = max_position_embeddings _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = rotary_pct _UpperCamelCase = rotary_emb_base _UpperCamelCase = attention_dropout _UpperCamelCase = hidden_dropout _UpperCamelCase = classifier_dropout _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = use_cache _UpperCamelCase = tie_word_embeddings _UpperCamelCase = use_parallel_residual _UpperCamelCase = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def _UpperCamelCase ( self : Optional[int] ) -> Tuple: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F'''got {self.rope_scaling}''' ) _UpperCamelCase = self.rope_scaling.get('''type''' , __UpperCamelCase ) _UpperCamelCase = self.rope_scaling.get('''factor''' , __UpperCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__UpperCamelCase , __UpperCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
420
1
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def _lowercase ( lowerCamelCase__ : List[str] ): def wrapper(*lowerCamelCase__ : Tuple, **lowerCamelCase__ : Tuple ): _a = timeit.default_timer() _a = func(*lowerCamelCase__, **lowerCamelCase__ ) _a = timeit.default_timer() - starttime return delta _a = func.__name__ return wrapper def _lowercase ( lowerCamelCase__ : dict, lowerCamelCase__ : int=100, lowerCamelCase__ : Optional[Any]=None ): _a = [] _a = seq_shapes or {} for i in range(lowerCamelCase__ ): _a = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCamelCase__, _ArrayXD ): _a = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCamelCase__, datasets.Value ): if v.dtype == "string": _a = "The small grey turtle was surprisingly fast when challenged." else: _a = np.random.randint(10, size=1 ).astype(v.dtype ).item() elif isinstance(lowerCamelCase__, datasets.Sequence ): while isinstance(lowerCamelCase__, datasets.Sequence ): _a = v.feature _a = seq_shapes[k] _a = np.random.rand(*lowerCamelCase__ ).astype(v.dtype ) _a = data dummy_data.append((i, example) ) return dummy_data def _lowercase ( lowerCamelCase__ : Optional[int], lowerCamelCase__ : Tuple, lowerCamelCase__ : Optional[Any]=100, lowerCamelCase__ : Optional[Any]=None ): _a = generate_examples(lowerCamelCase__, num_examples=lowerCamelCase__, seq_shapes=lowerCamelCase__ ) with ArrowWriter(features=lowerCamelCase__, path=lowerCamelCase__ ) as writer: for key, record in dummy_data: _a = features.encode_example(lowerCamelCase__ ) writer.write(lowerCamelCase__ ) _a , _a = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) _a = datasets.Dataset.from_file(filename=lowerCamelCase__, info=datasets.DatasetInfo(features=lowerCamelCase__ ) ) return dataset
691
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _lowercase ( ): _a = argparse.ArgumentParser() parser.add_argument("--model_ckpt", type=lowerCamelCase__, default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs", type=lowerCamelCase__, default=5 ) parser.add_argument("--batch_size", type=lowerCamelCase__, default=6 ) parser.add_argument("--gradient_accumulation_steps", type=lowerCamelCase__, default=1 ) parser.add_argument("--freeze", type=lowerCamelCase__, default=lowerCamelCase__ ) parser.add_argument("--learning_rate", type=lowerCamelCase__, default=5e-4 ) parser.add_argument("--seed", type=lowerCamelCase__, default=0 ) parser.add_argument("--lr_scheduler_type", type=lowerCamelCase__, default="cosine" ) parser.add_argument("--num_warmup_steps", type=lowerCamelCase__, default=10 ) parser.add_argument("--weight_decay", type=lowerCamelCase__, default=0.01 ) parser.add_argument("--output_dir", type=lowerCamelCase__, default="./results" ) return parser.parse_args() __snake_case : str = load("accuracy") def _lowercase ( lowerCamelCase__ : List[str] ): _a , _a = eval_pred _a = np.argmax(lowerCamelCase__, axis=1 ) return metric.compute(predictions=lowerCamelCase__, references=lowerCamelCase__ ) class A ( a ): def __init__( self , snake_case_ ) -> None: super().__init__() _a = trainer def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[int]: if control.should_evaluate: _a = deepcopy(snake_case_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def _lowercase ( ): _a = get_args() set_seed(args.seed ) _a = load_dataset("codeparrot/codecomplex", split="train" ) _a = dataset.train_test_split(test_size=0.2 ) _a = train_test["test"].train_test_split(test_size=0.5 ) _a = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) _a = AutoTokenizer.from_pretrained(args.model_ckpt ) _a = tokenizer.eos_token _a = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7 ) _a = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _a = False _a = ClassLabel(num_classes=7, names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(lowerCamelCase__ : Tuple ): _a = tokenizer(example["src"], truncation=lowerCamelCase__, max_length=1_024 ) _a = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _a = train_test_validation.map( lowerCamelCase__, batched=lowerCamelCase__, remove_columns=train_test_validation["train"].column_names, ) _a = DataCollatorWithPadding(tokenizer=lowerCamelCase__ ) _a = TrainingArguments( output_dir=args.output_dir, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, evaluation_strategy="epoch", save_strategy="epoch", logging_strategy="epoch", per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, num_train_epochs=args.num_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, weight_decay=0.01, metric_for_best_model="accuracy", run_name="complexity-java", report_to="wandb", ) _a = Trainer( model=lowerCamelCase__, args=lowerCamelCase__, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["valid"], tokenizer=lowerCamelCase__, data_collator=lowerCamelCase__, compute_metrics=lowerCamelCase__, ) print("Training..." ) trainer.add_callback(CustomCallback(lowerCamelCase__ ) ) trainer.train() if __name__ == "__main__": main()
691
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) class snake_case ( lowercase_ ): """simple docstring""" _a = ["""pixel_values"""] def __init__( self, _lowercase = True, _lowercase = None, _lowercase = PILImageResampling.BILINEAR, _lowercase = True, _lowercase = None, _lowercase = True, _lowercase = 1 / 255, _lowercase = True, _lowercase = None, _lowercase = None, **_lowercase, ) -> None: super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE_ = size if size is not None else {'shortest_edge': 256} SCREAMING_SNAKE_CASE_ = get_size_dict(_lowercase, default_to_square=_lowercase ) SCREAMING_SNAKE_CASE_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE_ = get_size_dict(_lowercase, param_name='crop_size' ) SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = resample SCREAMING_SNAKE_CASE_ = do_center_crop SCREAMING_SNAKE_CASE_ = crop_size SCREAMING_SNAKE_CASE_ = do_rescale SCREAMING_SNAKE_CASE_ = rescale_factor SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ ( self, _lowercase, _lowercase, _lowercase = PILImageResampling.BICUBIC, _lowercase = None, **_lowercase, ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = get_size_dict(_lowercase, default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE_ = get_resize_output_image_size(_lowercase, size=size['shortest_edge'], default_to_square=_lowercase ) return resize(_lowercase, size=_lowercase, resample=_lowercase, data_format=_lowercase, **_lowercase ) def a__ ( self, _lowercase, _lowercase, _lowercase = None, **_lowercase, ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(_lowercase, size=(size['height'], size['width']), data_format=_lowercase, **_lowercase ) def a__ ( self, _lowercase, _lowercase, _lowercase = None, **_lowercase ) -> np.ndarray: return rescale(_lowercase, scale=_lowercase, data_format=_lowercase, **_lowercase ) def a__ ( self, _lowercase, _lowercase, _lowercase, _lowercase = None, **_lowercase, ) -> np.ndarray: return normalize(_lowercase, mean=_lowercase, std=_lowercase, data_format=_lowercase, **_lowercase ) def a__ ( self, _lowercase, _lowercase = None, _lowercase = None, _lowercase = None, _lowercase = None, _lowercase = None, _lowercase = None, _lowercase = None, _lowercase = None, _lowercase = None, _lowercase = None, _lowercase = None, _lowercase = ChannelDimension.FIRST, **_lowercase, ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ = size if size is not None else self.size SCREAMING_SNAKE_CASE_ = get_size_dict(_lowercase, default_to_square=_lowercase ) SCREAMING_SNAKE_CASE_ = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_ = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_ = get_size_dict(_lowercase, param_name='crop_size' ) SCREAMING_SNAKE_CASE_ = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ = [to_numpy_array(_lowercase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ = [self.resize(image=_lowercase, size=_lowercase, resample=_lowercase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_ = [self.center_crop(image=_lowercase, size=_lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ = [self.rescale(image=_lowercase, scale=_lowercase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ = [self.normalize(image=_lowercase, mean=_lowercase, std=_lowercase ) for image in images] SCREAMING_SNAKE_CASE_ = [to_channel_dimension_format(_lowercase, _lowercase ) for image in images] SCREAMING_SNAKE_CASE_ = {'pixel_values': images} return BatchFeature(data=_lowercase, tensor_type=_lowercase ) def a__ ( self, _lowercase, _lowercase = None ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): SCREAMING_SNAKE_CASE_ = target_sizes.numpy() SCREAMING_SNAKE_CASE_ = [] for idx in range(len(_lowercase ) ): SCREAMING_SNAKE_CASE_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ), size=target_sizes[idx], mode='bilinear', align_corners=_lowercase ) SCREAMING_SNAKE_CASE_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: SCREAMING_SNAKE_CASE_ = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
294
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model SCREAMING_SNAKE_CASE : List[Any] = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch def _UpperCamelCase ( lowerCAmelCase__: Dict ,lowerCAmelCase__: int ,lowerCAmelCase__: Tuple=None ) -> Union[str, Any]: if rng is None: SCREAMING_SNAKE_CASE_ = random.Random() SCREAMING_SNAKE_CASE_ = 1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE_ = [] for _ in range(lowerCAmelCase__ ): values.append(rng.randint(0 ,vocab_size - 1 ) ) SCREAMING_SNAKE_CASE_ = np.array(lowerCAmelCase__ ,dtype=jnp.intaa ).reshape(lowerCAmelCase__ ) return output def _UpperCamelCase ( lowerCAmelCase__: Tuple ,lowerCAmelCase__: str=None ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = ids_tensor(lowerCAmelCase__ ,vocab_size=2 ,rng=lowerCAmelCase__ ) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE_ = 1 return attn_mask @require_flax class snake_case : """simple docstring""" _a = None _a = () def a__ ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = inputs['input_ids'].shape[-1] // 2 SCREAMING_SNAKE_CASE_ = inputs['input_ids'][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE_ = jnp.ones_like(_lowercase ) SCREAMING_SNAKE_CASE_ = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE_ = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE_ = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def a__ ( self ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = max_length SCREAMING_SNAKE_CASE_ = 0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_ = getattr(_lowercase, _lowercase ) SCREAMING_SNAKE_CASE_ = pt_model_class(_lowercase ).eval() SCREAMING_SNAKE_CASE_ = load_flax_weights_in_pytorch_model(_lowercase, flax_model.params ) SCREAMING_SNAKE_CASE_ = flax_model.generate(_lowercase ).sequences SCREAMING_SNAKE_CASE_ = pt_model.generate(torch.tensor(_lowercase, dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE_ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist(), flax_generation_outputs.tolist() ) def a__ ( self ) -> Any: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1], _lowercase ) SCREAMING_SNAKE_CASE_ = jit(model.generate ) SCREAMING_SNAKE_CASE_ = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def a__ ( self ) -> int: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1], _lowercase ) SCREAMING_SNAKE_CASE_ = jit(model.generate ) SCREAMING_SNAKE_CASE_ = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def a__ ( self ) -> Any: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = max_length SCREAMING_SNAKE_CASE_ = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1], _lowercase ) SCREAMING_SNAKE_CASE_ = jit(model.generate ) SCREAMING_SNAKE_CASE_ = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def a__ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = max_length SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[0], input_ids.shape[0] * config.num_return_sequences ) def a__ ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = max_length SCREAMING_SNAKE_CASE_ = 0.8 SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 0.3 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 8 SCREAMING_SNAKE_CASE_ = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1], _lowercase ) SCREAMING_SNAKE_CASE_ = jit(model.generate ) SCREAMING_SNAKE_CASE_ = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def a__ ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_ = max_length SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 8 SCREAMING_SNAKE_CASE_ = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1], _lowercase ) SCREAMING_SNAKE_CASE_ = jit(model.generate ) SCREAMING_SNAKE_CASE_ = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def a__ ( self ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_ = max_length SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 8 SCREAMING_SNAKE_CASE_ = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1], _lowercase ) SCREAMING_SNAKE_CASE_ = jit(model.generate ) SCREAMING_SNAKE_CASE_ = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def a__ ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_ = attention_mask.at[(0, 0)].set(0 ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase, attention_mask=_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1], _lowercase ) SCREAMING_SNAKE_CASE_ = jit(model.generate ) SCREAMING_SNAKE_CASE_ = jit_generate(_lowercase, attention_mask=_lowercase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def a__ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_ = attention_mask.at[(0, 0)].set(0 ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase, attention_mask=_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1], _lowercase ) SCREAMING_SNAKE_CASE_ = jit(model.generate ) SCREAMING_SNAKE_CASE_ = jit_generate(_lowercase, attention_mask=_lowercase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def a__ ( self ) -> int: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_ = attention_mask.at[(0, 0)].set(0 ) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase, attention_mask=_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1], _lowercase ) SCREAMING_SNAKE_CASE_ = jit(model.generate ) SCREAMING_SNAKE_CASE_ = jit_generate(_lowercase, attention_mask=_lowercase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) @require_flax class snake_case ( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) SCREAMING_SNAKE_CASE_ = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) SCREAMING_SNAKE_CASE_ = 'Hello world' SCREAMING_SNAKE_CASE_ = tokenizer(_lowercase, return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(_lowercase, 'do_samples' ): model.generate(_lowercase, do_samples=_lowercase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(_lowercase, 'foo' ): SCREAMING_SNAKE_CASE_ = {'foo': 'bar'} model.generate(_lowercase, **_lowercase )
294
1
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , ) -> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative in a semiconductor' ) elif hole_conc < 0: raise ValueError('Hole concentration cannot be negative in a semiconductor' ) elif intrinsic_conc < 0: raise ValueError( 'Intrinsic concentration cannot be negative in a semiconductor' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
542
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : str = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
542
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class A_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : Tuple = StableDiffusionPanoramaPipeline _lowerCamelCase : str = TEXT_TO_IMAGE_PARAMS _lowerCamelCase : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase ( self : List[Any] ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=1 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) _UpperCAmelCase = DDIMScheduler() torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _UpperCAmelCase = CLIPTextModel(snake_case_ ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowercase ( self : Optional[int] , snake_case_ : Optional[int] , snake_case_ : List[Any]=0 ): _UpperCAmelCase = torch.manual_seed(snake_case_ ) _UpperCAmelCase = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def lowercase ( self : int ): _UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionPanoramaPipeline(**snake_case_ ) _UpperCAmelCase = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _UpperCAmelCase = self.get_dummy_inputs(snake_case_ ) _UpperCAmelCase = sd_pipe(**snake_case_ ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCAmelCase = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : List[Any] ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase ( self : Optional[int] ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def lowercase ( self : Any ): _UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionPanoramaPipeline(**snake_case_ ) _UpperCAmelCase = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _UpperCAmelCase = self.get_dummy_inputs(snake_case_ ) _UpperCAmelCase = "french fries" _UpperCAmelCase = sd_pipe(**snake_case_ , negative_prompt=snake_case_ ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCAmelCase = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionPanoramaPipeline(**snake_case_ ) _UpperCAmelCase = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _UpperCAmelCase = self.get_dummy_inputs(snake_case_ ) _UpperCAmelCase = sd_pipe(**snake_case_ , view_batch_size=2 ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCAmelCase = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Tuple ): _UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" ) _UpperCAmelCase = StableDiffusionPanoramaPipeline(**snake_case_ ) _UpperCAmelCase = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _UpperCAmelCase = self.get_dummy_inputs(snake_case_ ) _UpperCAmelCase = sd_pipe(**snake_case_ ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCAmelCase = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Dict ): _UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = PNDMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , skip_prk_steps=snake_case_ ) _UpperCAmelCase = StableDiffusionPanoramaPipeline(**snake_case_ ) _UpperCAmelCase = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _UpperCAmelCase = self.get_dummy_inputs(snake_case_ ) _UpperCAmelCase = sd_pipe(**snake_case_ ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCAmelCase = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class A_ ( unittest.TestCase ): def lowercase ( self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : List[Any] , snake_case_ : Optional[Any]=0 ): _UpperCAmelCase = torch.manual_seed(snake_case_ ) _UpperCAmelCase = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowercase ( self : Optional[Any] ): _UpperCAmelCase = "stabilityai/stable-diffusion-2-base" _UpperCAmelCase = DDIMScheduler.from_pretrained(snake_case_ , subfolder="scheduler" ) _UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained(snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**snake_case_ ).images _UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 2_0_4_8, 3) _UpperCAmelCase = np.array( [ 0.3_6_9_6_8_3_9_2, 0.2_7_0_2_5_3_7_2, 0.3_2_4_4_6_7_6_6, 0.2_8_3_7_9_3_8_7, 0.3_6_3_6_3_2_7_4, 0.3_0_7_3_3_3_4_7, 0.2_7_1_0_0_0_2_7, 0.2_7_0_5_4_1_2_5, 0.2_5_5_3_6_0_9_6, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def lowercase ( self : List[str] ): _UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" , safety_checker=snake_case_ ) _UpperCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**snake_case_ ).images _UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 2_0_4_8, 3) _UpperCAmelCase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase ( self : Tuple ): _UpperCAmelCase = 0 def callback_fn(snake_case_ : int , snake_case_ : int , snake_case_ : torch.FloatTensor ) -> None: _UpperCAmelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _UpperCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 2_5_6) _UpperCAmelCase = latents[0, -3:, -3:, -1] _UpperCAmelCase = np.array( [ 0.1_8_6_8_1_8_6_9, 0.3_3_9_0_7_8_1_6, 0.5_3_6_1_2_7_6, 0.1_4_4_3_2_8_6_5, -0.0_2_8_5_6_6_1_1, -0.7_3_9_4_1_1_2_3, 0.2_3_3_9_7_9_8_7, 0.4_7_3_2_2_6_8_2, -0.3_7_8_2_3_1_6_4, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _UpperCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 2_5_6) _UpperCAmelCase = latents[0, -3:, -3:, -1] _UpperCAmelCase = np.array( [ 0.1_8_5_3_9_6_4_5, 0.3_3_9_8_7_2_4_8, 0.5_3_7_8_5_5_9, 0.1_4_4_3_7_1_4_2, -0.0_2_4_5_5_2_6_1, -0.7_3_3_8_3_1_7, 0.2_3_9_9_0_7_5_5, 0.4_7_3_5_6_2_7_2, -0.3_7_8_6_5_0_5, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _UpperCAmelCase = False _UpperCAmelCase = "stabilityai/stable-diffusion-2-base" _UpperCAmelCase = DDIMScheduler.from_pretrained(snake_case_ , subfolder="scheduler" ) _UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained(snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ ) _UpperCAmelCase = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() pipe(**snake_case_ , callback=snake_case_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase ( self : List[str] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase = "stabilityai/stable-diffusion-2-base" _UpperCAmelCase = DDIMScheduler.from_pretrained(snake_case_ , subfolder="scheduler" ) _UpperCAmelCase = StableDiffusionPanoramaPipeline.from_pretrained(snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ ) _UpperCAmelCase = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**snake_case_ ) _UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 1_0**9
236
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def UpperCAmelCase_ ( __lowercase : int ) -> Optional[Any]: '''simple docstring''' return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def UpperCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=__lowercase ) _UpperCAmelCase = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__lowercase ) EnvironmentCommand.register_subcommand(__lowercase ) TestCommand.register_subcommand(__lowercase ) RunBeamCommand.register_subcommand(__lowercase ) DummyDataCommand.register_subcommand(__lowercase ) # Parse args _UpperCAmelCase , _UpperCAmelCase = parser.parse_known_args() if not hasattr(__lowercase , "func" ): parser.print_help() exit(1 ) _UpperCAmelCase = parse_unknown_args(__lowercase ) # Run _UpperCAmelCase = args.func(__lowercase , **__lowercase ) service.run() if __name__ == "__main__": main()
236
1
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=13 ,SCREAMING_SNAKE_CASE_=[30, 30] ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_=3 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=32 ,SCREAMING_SNAKE_CASE_=5 ,SCREAMING_SNAKE_CASE_=4 ,SCREAMING_SNAKE_CASE_=37 ,SCREAMING_SNAKE_CASE_="gelu" ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=10 ,SCREAMING_SNAKE_CASE_=0.02 ,SCREAMING_SNAKE_CASE_=3 ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=8 ,SCREAMING_SNAKE_CASE_=10 ,): '''simple docstring''' snake_case : List[str] = parent snake_case : int = batch_size snake_case : List[str] = image_size snake_case : str = patch_size snake_case : Optional[int] = num_channels snake_case : List[Any] = is_training snake_case : List[str] = use_labels snake_case : Tuple = hidden_size snake_case : Tuple = num_hidden_layers snake_case : int = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : Dict = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : Union[str, Any] = type_sequence_label_size snake_case : Any = initializer_range snake_case : Union[str, Any] = num_labels snake_case : str = scope snake_case : Any = n_targets snake_case : Any = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens snake_case : Tuple = (image_size[1] // patch_size) * (image_size[0] // patch_size) snake_case : Any = num_patches + 1 + self.num_detection_tokens def snake_case_ ( self ): '''simple docstring''' snake_case : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) snake_case : str = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) snake_case : Any = [] for i in range(self.batch_size ): snake_case : Optional[int] = {} snake_case : Any = torch.randint( high=self.num_labels ,size=(self.n_targets,) ,device=SCREAMING_SNAKE_CASE_ ) snake_case : List[str] = torch.rand(self.n_targets ,4 ,device=SCREAMING_SNAKE_CASE_ ) labels.append(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = self.get_config() return config, pixel_values, labels def snake_case_ ( self ): '''simple docstring''' return YolosConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=SCREAMING_SNAKE_CASE_ ,initializer_range=self.initializer_range ,num_detection_tokens=self.num_detection_tokens ,num_labels=self.num_labels ,) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : str = YolosModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.expected_seq_len, self.hidden_size) ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Dict = YolosForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() snake_case : Dict = model(pixel_values=SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape ,(self.batch_size, self.num_detection_tokens, 4) ) snake_case : Union[str, Any] = model(pixel_values=SCREAMING_SNAKE_CASE_ ,labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape ,(self.batch_size, self.num_detection_tokens, 4) ) def snake_case_ ( self ): '''simple docstring''' snake_case : List[str] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case : Any = config_and_inputs snake_case : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( snake_case , snake_case , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : int = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __lowerCamelCase : str = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) __lowerCamelCase : List[Any] = False __lowerCamelCase : str = False __lowerCamelCase : List[str] = False __lowerCamelCase : Any = False def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=False ): '''simple docstring''' snake_case : Any = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": snake_case : Any = [] for i in range(self.model_tester.batch_size ): snake_case : Union[str, Any] = {} snake_case : Tuple = torch.ones( size=(self.model_tester.n_targets,) ,device=SCREAMING_SNAKE_CASE_ ,dtype=torch.long ) snake_case : List[str] = torch.ones( self.model_tester.n_targets ,4 ,device=SCREAMING_SNAKE_CASE_ ,dtype=torch.float ) labels.append(SCREAMING_SNAKE_CASE_ ) snake_case : Dict = labels return inputs_dict def snake_case_ ( self ): '''simple docstring''' snake_case : int = YolosModelTester(self ) snake_case : Optional[int] = ConfigTester(self ,config_class=SCREAMING_SNAKE_CASE_ ,has_text_modality=SCREAMING_SNAKE_CASE_ ,hidden_size=37 ) def snake_case_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ): '''simple docstring''' # YOLOS does not use inputs_embeds pass def snake_case_ ( self ): '''simple docstring''' snake_case , snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) snake_case : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ ,nn.Linear ) ) def snake_case_ ( self ): '''simple docstring''' snake_case , snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : str = model_class(SCREAMING_SNAKE_CASE_ ) snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : List[Any] = [*signature.parameters.keys()] snake_case : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case , snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : str = True # in YOLOS, the seq_len is different snake_case : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: snake_case : Optional[int] = True snake_case : int = False snake_case : Tuple = True snake_case : int = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): snake_case : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) snake_case : int = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case : Tuple = True snake_case : int = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): snake_case : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) snake_case : Any = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) snake_case : List[Any] = len(SCREAMING_SNAKE_CASE_ ) # Check attention is always last and order is fine snake_case : Optional[int] = True snake_case : Optional[Any] = True snake_case : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): snake_case : List[str] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) snake_case : List[str] = 1 self.assertEqual(out_len + added_hidden_states ,len(SCREAMING_SNAKE_CASE_ ) ) snake_case : Dict = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) def snake_case_ ( self ): '''simple docstring''' def check_hidden_states_output(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): snake_case : int = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): snake_case : List[str] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) snake_case : Any = outputs.hidden_states snake_case : Tuple = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) ,SCREAMING_SNAKE_CASE_ ) # YOLOS has a different seq_length snake_case : Optional[Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) snake_case , snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Tuple = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : Union[str, Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*SCREAMING_SNAKE_CASE_ ) @slow def snake_case_ ( self ): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Optional[Any] = YolosModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def lowercase ( ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case_ ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""hustvl/yolos-small""" ) if is_vision_available() else None @slow def snake_case_ ( self ): '''simple docstring''' snake_case : List[str] = YolosForObjectDetection.from_pretrained("""hustvl/yolos-small""" ).to(SCREAMING_SNAKE_CASE_ ) snake_case : Any = self.default_image_processor snake_case : Tuple = prepare_img() snake_case : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE_ ,return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): snake_case : Optional[int] = model(inputs.pixel_values ) # verify outputs snake_case : str = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape ,SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ,device=SCREAMING_SNAKE_CASE_ ,) snake_case : Optional[int] = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ,device=SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,SCREAMING_SNAKE_CASE_ ,atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] ,SCREAMING_SNAKE_CASE_ ,atol=1E-4 ) ) # verify postprocessing snake_case : str = image_processor.post_process_object_detection( SCREAMING_SNAKE_CASE_ ,threshold=0.3 ,target_sizes=[image.size[::-1]] )[0] snake_case : List[Any] = torch.tensor([0.99_94, 0.97_90, 0.99_64, 0.99_72, 0.98_61] ).to(SCREAMING_SNAKE_CASE_ ) snake_case : Any = [75, 75, 17, 63, 17] snake_case : List[str] = torch.tensor([3_35.06_09, 79.38_48, 3_75.42_16, 1_87.24_95] ).to(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(results["""scores"""] ) ,5 ) self.assertTrue(torch.allclose(results["""scores"""] ,SCREAMING_SNAKE_CASE_ ,atol=1E-4 ) ) self.assertSequenceEqual(results["""labels"""].tolist() ,SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(results["""boxes"""][0, :] ,SCREAMING_SNAKE_CASE_ ) )
315
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowercase ( __A : Optional[Any] ) -> Optional[Any]: '''simple docstring''' snake_case : Union[str, Any] = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def lowercase ( __A : Tuple , __A : List[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def lowercase ( __A : str ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", """stage2.cls_token""") ) return token def lowercase ( ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def lowercase ( __A : int , __A : Union[str, Any] , __A : Dict , __A : Dict ) -> int: '''simple docstring''' snake_case : Dict = """imagenet-1k-id2label.json""" snake_case : Tuple = 1000 snake_case : List[Any] = """huggingface/label-files""" snake_case : List[str] = num_labels snake_case : Optional[Any] = json.load(open(cached_download(hf_hub_url(__A , __A , repo_type="""dataset""" ) ) , """r""" ) ) snake_case : str = {int(__A ): v for k, v in idalabel.items()} snake_case : Union[str, Any] = idalabel snake_case : Any = {v: k for k, v in idalabel.items()} snake_case : Optional[Any] = CvtConfig(num_labels=__A , idalabel=__A , labelaid=__A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case : Any = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case : Dict = [2, 2, 20] snake_case : List[str] = [3, 12, 16] snake_case : int = [192, 768, 1024] snake_case : Union[str, Any] = CvtForImageClassification(__A ) snake_case : int = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case : Union[str, Any] = image_size snake_case : Dict = torch.load(__A , map_location=torch.device("""cpu""" ) ) snake_case : List[str] = OrderedDict() snake_case : Optional[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case : Optional[int] = list_of_state_dict + cls_token(__A ) snake_case : Dict = list_of_state_dict + embeddings(__A ) for cnt in range(config.depth[idx] ): snake_case : Any = list_of_state_dict + attention(__A , __A ) snake_case : Tuple = list_of_state_dict + final() for gg in list_of_state_dict: print(__A ) for i in range(len(__A ) ): snake_case : List[str] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__A ) model.save_pretrained(__A ) image_processor.save_pretrained(__A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowercase : int = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=r'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowercase : List[Any] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
315
1
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase(_lowercase , _lowercase , unittest.TestCase ): __snake_case: Optional[int] = StableDiffusionDiffEditPipeline __snake_case: List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} __snake_case: Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} __snake_case: int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case: Tuple = frozenset([] ) def lowercase__ ( self ) -> Dict: """simple docstring""" torch.manual_seed(0 ) a__ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=__SCREAMING_SNAKE_CASE , ) a__ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) a__ = DDIMInverseScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_zero=__SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) a__ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) a__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) a__ = CLIPTextModel(__SCREAMING_SNAKE_CASE ) a__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a__ = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase__ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) -> str: """simple docstring""" a__ = floats_tensor((1, 1_6, 1_6) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a__ = floats_tensor((1, 2, 4, 1_6, 1_6) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) if str(__SCREAMING_SNAKE_CASE ).startswith('mps' ): a__ = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a__ = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a__ = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase__ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) -> str: """simple docstring""" a__ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] a__ = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert('RGB' ) if str(__SCREAMING_SNAKE_CASE ).startswith('mps' ): a__ = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a__ = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a__ = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase__ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) -> Optional[Any]: """simple docstring""" a__ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) a__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] a__ = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert('RGB' ) if str(__SCREAMING_SNAKE_CASE ).startswith('mps' ): a__ = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: a__ = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) a__ = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def lowercase__ ( self ) -> Any: """simple docstring""" if not hasattr(self.pipeline_class , '_optional_components' ): return a__ = self.get_dummy_components() a__ = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) a__ = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) a__ = pipe(**__SCREAMING_SNAKE_CASE )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__SCREAMING_SNAKE_CASE ) a__ = self.pipeline_class.from_pretrained(__SCREAMING_SNAKE_CASE ) pipe_loaded.to(__SCREAMING_SNAKE_CASE ) pipe_loaded.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) for optional_component in pipe._optional_components: self.assertTrue( getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) is None , f'`{optional_component}` did not stay set to None after loading.' , ) a__ = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) a__ = pipe_loaded(**__SCREAMING_SNAKE_CASE )[0] a__ = np.abs(output - output_loaded ).max() self.assertLess(__SCREAMING_SNAKE_CASE , 1e-4 ) def lowercase__ ( self ) -> Dict: """simple docstring""" a__ = 'cpu' a__ = self.get_dummy_components() a__ = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a__ = self.get_dummy_mask_inputs(__SCREAMING_SNAKE_CASE ) a__ = pipe.generate_mask(**__SCREAMING_SNAKE_CASE ) a__ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 1_6, 1_6) ) a__ = np.array([0] * 9 ) a__ = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" a__ = 'cpu' a__ = self.get_dummy_components() a__ = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a__ = self.get_dummy_inversion_inputs(__SCREAMING_SNAKE_CASE ) a__ = pipe.invert(**__SCREAMING_SNAKE_CASE ).images a__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 3_2, 3_2, 3) ) a__ = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) a__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) def lowercase__ ( self ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" a__ = 'cpu' a__ = self.get_dummy_components() a__ = {'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'beta_schedule': 'scaled_linear'} a__ = DPMSolverMultistepScheduler(**__SCREAMING_SNAKE_CASE ) a__ = DPMSolverMultistepInverseScheduler(**__SCREAMING_SNAKE_CASE ) a__ = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a__ = self.get_dummy_inversion_inputs(__SCREAMING_SNAKE_CASE ) a__ = pipe.invert(**__SCREAMING_SNAKE_CASE ).images a__ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 3_2, 3_2, 3) ) a__ = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) a__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) @require_torch_gpu @slow class lowercase(unittest.TestCase ): def lowercase__ ( self ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowercase__ ( cls ) -> Optional[Any]: """simple docstring""" a__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) a__ = raw_image.convert('RGB' ).resize((7_6_8, 7_6_8) ) a__ = raw_image def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" a__ = torch.manual_seed(0 ) a__ = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=__SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa ) a__ = DDIMScheduler.from_config(pipe.scheduler.config ) a__ = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a__ = 'a bowl of fruit' a__ = 'a bowl of pears' a__ = pipe.generate_mask( image=self.raw_image , source_prompt=__SCREAMING_SNAKE_CASE , target_prompt=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , ) a__ = pipe.invert( prompt=__SCREAMING_SNAKE_CASE , image=self.raw_image , inpaint_strength=0.7 , generator=__SCREAMING_SNAKE_CASE ).latents a__ = pipe( prompt=__SCREAMING_SNAKE_CASE , mask_image=__SCREAMING_SNAKE_CASE , image_latents=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , negative_prompt=__SCREAMING_SNAKE_CASE , inpaint_strength=0.7 , output_type='numpy' , ).images[0] a__ = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((7_6_8, 7_6_8) ) ) / 2_5_5 ) assert np.abs((expected_image - image).max() ) < 5e-1 def lowercase__ ( self ) -> Tuple: """simple docstring""" a__ = torch.manual_seed(0 ) a__ = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=__SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa ) a__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) a__ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) a__ = 'a bowl of fruit' a__ = 'a bowl of pears' a__ = pipe.generate_mask( image=self.raw_image , source_prompt=__SCREAMING_SNAKE_CASE , target_prompt=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , ) a__ = pipe.invert( prompt=__SCREAMING_SNAKE_CASE , image=self.raw_image , inpaint_strength=0.7 , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2_5 , ).latents a__ = pipe( prompt=__SCREAMING_SNAKE_CASE , mask_image=__SCREAMING_SNAKE_CASE , image_latents=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , negative_prompt=__SCREAMING_SNAKE_CASE , inpaint_strength=0.7 , num_inference_steps=2_5 , output_type='numpy' , ).images[0] a__ = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((7_6_8, 7_6_8) ) ) / 2_5_5 ) assert np.abs((expected_image - image).max() ) < 5e-1
273
"""simple docstring""" import operator def __magic_name__ ( UpperCamelCase : list , UpperCamelCase : bool = False , UpperCamelCase : list | None = None ) -> list: a__ = operator.lt if reverse else operator.gt a__ = solution or [] if not arr: return solution a__ = [arr.pop(0 )] for i, item in enumerate(UpperCamelCase ): if _operator(UpperCamelCase , sublist[-1] ): sublist.append(UpperCamelCase ) arr.pop(UpperCamelCase ) # merging sublist into solution list if not solution: solution.extend(UpperCamelCase ) else: while sublist: a__ = sublist.pop(0 ) for i, xx in enumerate(UpperCamelCase ): if not _operator(UpperCamelCase , UpperCamelCase ): solution.insert(UpperCamelCase , UpperCamelCase ) break else: solution.append(UpperCamelCase ) strand_sort(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
273
1
'''simple docstring''' _A : Optional[int] ={ '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
631
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Optional[Any] =logging.get_logger(__name__) _A : Optional[int] ={ '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class _lowercase ( _lowercase ): a = """rwkv""" a = {"""max_position_embeddings""": """context_length"""} def __init__( self: Tuple , UpperCamelCase__: Optional[Any]=50_277 , UpperCamelCase__: Union[str, Any]=1_024 , UpperCamelCase__: Tuple=4_096 , UpperCamelCase__: List[Any]=32 , UpperCamelCase__: Dict=None , UpperCamelCase__: Dict=None , UpperCamelCase__: int=1e-5 , UpperCamelCase__: Any=0 , UpperCamelCase__: str=0 , UpperCamelCase__: Union[str, Any]=6 , UpperCamelCase__: Optional[int]=False , UpperCamelCase__: Dict=True , **UpperCamelCase__: Dict , ): lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : Optional[Any] = context_length lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : int = attention_hidden_size if attention_hidden_size is not None else hidden_size lowerCamelCase__ : Union[str, Any] = intermediate_size if intermediate_size is not None else 4 * hidden_size lowerCamelCase__ : List[str] = layer_norm_epsilon lowerCamelCase__ : int = rescale_every lowerCamelCase__ : Optional[int] = use_cache lowerCamelCase__ : Dict = bos_token_id lowerCamelCase__ : Any = eos_token_id super().__init__( tie_word_embeddings=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
631
1
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _A ( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ): '''simple docstring''' snake_case : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) snake_case : List[str] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(SCREAMING_SNAKE_CASE_ ) snake_case : List[str] = -1 snake_case : Union[str, Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = model.generate(SCREAMING_SNAKE_CASE_ ,max_new_tokens=10 ,do_sample=SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: snake_case : Any = TextStreamer(SCREAMING_SNAKE_CASE_ ) model.generate(SCREAMING_SNAKE_CASE_ ,max_new_tokens=10 ,do_sample=SCREAMING_SNAKE_CASE_ ,streamer=SCREAMING_SNAKE_CASE_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer snake_case : Any = cs.out[:-1] self.assertEqual(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case : Union[str, Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) snake_case : Dict = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = -1 snake_case : Optional[int] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = model.generate(SCREAMING_SNAKE_CASE_ ,max_new_tokens=10 ,do_sample=SCREAMING_SNAKE_CASE_ ) snake_case : Any = tokenizer.decode(greedy_ids[0] ) snake_case : List[str] = TextIteratorStreamer(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} snake_case : List[Any] = Thread(target=model.generate ,kwargs=SCREAMING_SNAKE_CASE_ ) thread.start() snake_case : Tuple = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(SCREAMING_SNAKE_CASE_ ) snake_case : Any = -1 snake_case : Dict = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = model.generate(SCREAMING_SNAKE_CASE_ ,max_new_tokens=10 ,do_sample=SCREAMING_SNAKE_CASE_ ) snake_case : str = greedy_ids[:, input_ids.shape[1] :] snake_case : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: snake_case : str = TextStreamer(SCREAMING_SNAKE_CASE_ ,skip_prompt=SCREAMING_SNAKE_CASE_ ) model.generate(SCREAMING_SNAKE_CASE_ ,max_new_tokens=10 ,do_sample=SCREAMING_SNAKE_CASE_ ,streamer=SCREAMING_SNAKE_CASE_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer snake_case : str = cs.out[:-1] self.assertEqual(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them snake_case : Dict = AutoTokenizer.from_pretrained("""distilgpt2""" ) snake_case : Tuple = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = -1 snake_case : Any = torch.ones((1, 5) ,device=SCREAMING_SNAKE_CASE_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: snake_case : List[Any] = TextStreamer(SCREAMING_SNAKE_CASE_ ,skip_special_tokens=SCREAMING_SNAKE_CASE_ ) model.generate(SCREAMING_SNAKE_CASE_ ,max_new_tokens=1 ,do_sample=SCREAMING_SNAKE_CASE_ ,streamer=SCREAMING_SNAKE_CASE_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token snake_case : Dict = cs.out[:-1] # Remove the final "\n" snake_case : Tuple = tokenizer(SCREAMING_SNAKE_CASE_ ,return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) ) def snake_case_ ( self ): '''simple docstring''' snake_case : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = -1 snake_case : int = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE_ ) snake_case : List[str] = TextIteratorStreamer(SCREAMING_SNAKE_CASE_ ,timeout=0.0_01 ) snake_case : Optional[int] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} snake_case : List[str] = Thread(target=model.generate ,kwargs=SCREAMING_SNAKE_CASE_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(SCREAMING_SNAKE_CASE_ ): snake_case : Tuple = """""" for new_text in streamer: streamer_text += new_text
36
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def lowercase ( __A : Dict , __A : Union[str, Any] , __A : List[str] ) -> Any: '''simple docstring''' snake_case : Tuple = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] snake_case : Optional[Any] = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } snake_case : Optional[int] = f"""{src_lang}-{tgt_lang}""" snake_case : Any = f""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR's WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(__A , exist_ok=__A ) snake_case : Union[str, Any] = os.path.join(__A , """README.md""" ) print(f"""Generating {path}""" ) with open(__A , """w""" , encoding="""utf-8""" ) as f: f.write(__A ) # make sure we are under the root of the project __lowercase : int = Path(__file__).resolve().parent.parent.parent __lowercase : List[str] = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __lowercase , __lowercase , __lowercase : List[str] = model_name.split('''-''') __lowercase : str = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
36
1
"""simple docstring""" import random def __UpperCAmelCase ( lowercase ,lowercase ,lowercase = False ): """simple docstring""" _UpperCAmelCase = {i: [] for i in range(lowercase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowercase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowercase ): for j in range(i + 1 ,lowercase ): if random.random() < probability: graph[i].append(lowercase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowercase ) return graph def __UpperCAmelCase ( lowercase ): """simple docstring""" return { i: [j for j in range(lowercase ) if i != j] for i in range(lowercase ) } if __name__ == "__main__": import doctest doctest.testmod()
275
"""simple docstring""" import random def __UpperCAmelCase ( lowercase ,lowercase ,lowercase = False ): """simple docstring""" _UpperCAmelCase = {i: [] for i in range(lowercase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowercase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowercase ): for j in range(i + 1 ,lowercase ): if random.random() < probability: graph[i].append(lowercase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowercase ) return graph def __UpperCAmelCase ( lowercase ): """simple docstring""" return { i: [j for j in range(lowercase ) if i != j] for i in range(lowercase ) } if __name__ == "__main__": import doctest doctest.testmod()
275
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowerCamelCase_ : Tuple = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCamelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCamelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __UpperCamelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether tp freeze the encoder."""} ) __UpperCamelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCamelCase : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) __UpperCamelCase : Optional[str] = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) __UpperCamelCase : Optional[int] = field( default=1_024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=128 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) __UpperCamelCase : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) __UpperCamelCase : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) __UpperCamelCase : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) __UpperCamelCase : Optional[str] = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Source language id for translation."""} ) __UpperCamelCase : Optional[str] = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Target language id for translation."""} ) __UpperCamelCase : Optional[int] = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """# num_beams to use for evaluation."""} ) __UpperCamelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(lowerCamelCase , os.path.join(lowerCamelCase , F'''{split}_results.json''' ) ) def A__ ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_: List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_: List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_: Optional[int] = parser.parse_args_into_dataclasses() check_output_dir(lowerCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_: List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_: Tuple = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ): assert hasattr(lowerCamelCase , lowerCamelCase ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(lowerCamelCase , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_: Any = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(lowerCamelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase_: Dict = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(lowerCamelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(lowerCamelCase , lowerCamelCase ): UpperCamelCase_: List[str] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase_: List[Any] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(lowerCamelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase_: Optional[Any] = SeqaSeqDataset # Get datasets UpperCamelCase_: List[Any] = ( dataset_class( lowerCamelCase , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) UpperCamelCase_: Optional[int] = ( dataset_class( lowerCamelCase , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase_: Optional[Any] = ( dataset_class( lowerCamelCase , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase_: Tuple = ( build_compute_metrics_fn(data_args.task , lowerCamelCase ) if training_args.predict_with_generate else None ) UpperCamelCase_: Optional[int] = SeqaSeqTrainer( model=lowerCamelCase , args=lowerCamelCase , data_args=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , data_collator=SeqaSeqDataCollator( lowerCamelCase , lowerCamelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowerCamelCase , tokenizer=lowerCamelCase , ) UpperCamelCase_: Optional[Any] = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) UpperCamelCase_: Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase_: Dict = train_result.metrics UpperCamelCase_: Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , lowerCamelCase , training_args.output_dir ) all_metrics.update(lowerCamelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_: List[str] = trainer.evaluate(metric_key_prefix="""val""" ) UpperCamelCase_: int = data_args.n_val UpperCamelCase_: Any = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , lowerCamelCase , training_args.output_dir ) all_metrics.update(lowerCamelCase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) UpperCamelCase_: List[Any] = trainer.predict(test_dataset=lowerCamelCase , metric_key_prefix="""test""" ) UpperCamelCase_: Union[str, Any] = test_output.metrics UpperCamelCase_: List[str] = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase_: Dict = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , lowerCamelCase , training_args.output_dir ) all_metrics.update(lowerCamelCase ) if training_args.predict_with_generate: UpperCamelCase_: str = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase ) UpperCamelCase_: Any = lmap(str.strip , lowerCamelCase ) write_txt_file(lowerCamelCase , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(lowerCamelCase , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def A__ ( lowerCamelCase ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
548
"""simple docstring""" from bisect import bisect from itertools import accumulate def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : Dict = sorted(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , key=lambda SCREAMING_SNAKE_CASE : x[0] / x[1] , reverse=SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase : int = [i[0] for i in r], [i[1] for i in r] UpperCamelCase : Optional[Any] = list(accumulate(SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Optional[Any] = bisect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
102
0
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): snake_case__ = StableDiffusionDiffEditPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} snake_case__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case__ = frozenset([] ) def __UpperCamelCase ( self : int) -> int: """simple docstring""" torch.manual_seed(0) _lowerCAmelCase:int = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=32 ,attention_head_dim=(2, 4) ,use_linear_projection=a__ ,) _lowerCAmelCase:Tuple = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=a__ ,set_alpha_to_one=a__ ,) _lowerCAmelCase:Any = DDIMInverseScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=a__ ,set_alpha_to_zero=a__ ,) torch.manual_seed(0) _lowerCAmelCase:Dict = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0) _lowerCAmelCase:Optional[int] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act='''gelu''' ,projection_dim=512 ,) _lowerCAmelCase:Union[str, Any] = CLIPTextModel(a__) _lowerCAmelCase:str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') _lowerCAmelCase:int = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCamelCase ( self : Any ,a__ : Dict ,a__ : int=0) -> Any: """simple docstring""" _lowerCAmelCase:List[Any] = floats_tensor((1, 16, 16) ,rng=random.Random(a__)).to(a__) _lowerCAmelCase:List[Any] = floats_tensor((1, 2, 4, 16, 16) ,rng=random.Random(a__)).to(a__) if str(a__).startswith('''mps'''): _lowerCAmelCase:List[str] = torch.manual_seed(a__) else: _lowerCAmelCase:Optional[Any] = torch.Generator(device=a__).manual_seed(a__) _lowerCAmelCase:str = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCamelCase ( self : Dict ,a__ : Union[str, Any] ,a__ : Any=0) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase:List[str] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(a__)).to(a__) _lowerCAmelCase:List[str] = image.cpu().permute(0 ,2 ,3 ,1)[0] _lowerCAmelCase:Union[str, Any] = Image.fromarray(np.uinta(a__)).convert('''RGB''') if str(a__).startswith('''mps'''): _lowerCAmelCase:List[str] = torch.manual_seed(a__) else: _lowerCAmelCase:Union[str, Any] = torch.Generator(device=a__).manual_seed(a__) _lowerCAmelCase:Optional[int] = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCamelCase ( self : List[str] ,a__ : Optional[int] ,a__ : str=0) -> List[str]: """simple docstring""" _lowerCAmelCase:Tuple = floats_tensor((1, 3, 32, 32) ,rng=random.Random(a__)).to(a__) _lowerCAmelCase:List[str] = image.cpu().permute(0 ,2 ,3 ,1)[0] _lowerCAmelCase:int = Image.fromarray(np.uinta(a__)).convert('''RGB''') if str(a__).startswith('''mps'''): _lowerCAmelCase:List[str] = torch.manual_seed(a__) else: _lowerCAmelCase:Optional[Any] = torch.Generator(device=a__).manual_seed(a__) _lowerCAmelCase:Any = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def __UpperCamelCase ( self : Tuple) -> int: """simple docstring""" if not hasattr(self.pipeline_class ,'''_optional_components'''): return _lowerCAmelCase:Any = self.get_dummy_components() _lowerCAmelCase:str = self.pipeline_class(**a__) pipe.to(a__) pipe.set_progress_bar_config(disable=a__) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(a__ ,a__ ,a__) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components}) _lowerCAmelCase:List[str] = self.get_dummy_inputs(a__) _lowerCAmelCase:Dict = pipe(**a__)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a__) _lowerCAmelCase:int = self.pipeline_class.from_pretrained(a__) pipe_loaded.to(a__) pipe_loaded.set_progress_bar_config(disable=a__) for optional_component in pipe._optional_components: self.assertTrue( getattr(a__ ,a__) is None ,F'`{optional_component}` did not stay set to None after loading.' ,) _lowerCAmelCase:Optional[Any] = self.get_dummy_inputs(a__) _lowerCAmelCase:str = pipe_loaded(**a__)[0] _lowerCAmelCase:Union[str, Any] = np.abs(output - output_loaded).max() self.assertLess(a__ ,1E-4) def __UpperCamelCase ( self : List[str]) -> Optional[int]: """simple docstring""" _lowerCAmelCase:Optional[int] = '''cpu''' _lowerCAmelCase:str = self.get_dummy_components() _lowerCAmelCase:Any = self.pipeline_class(**a__) pipe.to(a__) pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase:str = self.get_dummy_mask_inputs(a__) _lowerCAmelCase:List[str] = pipe.generate_mask(**a__) _lowerCAmelCase:Union[str, Any] = mask[0, -3:, -3:] self.assertEqual(mask.shape ,(1, 16, 16)) _lowerCAmelCase:Optional[Any] = np.array([0] * 9) _lowerCAmelCase:Optional[Any] = np.abs(mask_slice.flatten() - expected_slice).max() self.assertLessEqual(a__ ,1E-3) self.assertEqual(mask[0, -3, -4] ,0) def __UpperCamelCase ( self : Any) -> str: """simple docstring""" _lowerCAmelCase:Optional[int] = '''cpu''' _lowerCAmelCase:str = self.get_dummy_components() _lowerCAmelCase:int = self.pipeline_class(**a__) pipe.to(a__) pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase:Dict = self.get_dummy_inversion_inputs(a__) _lowerCAmelCase:Optional[Any] = pipe.invert(**a__).images _lowerCAmelCase:List[str] = image[0, -1, -3:, -3:] self.assertEqual(image.shape ,(2, 32, 32, 3)) _lowerCAmelCase:Dict = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] ,) _lowerCAmelCase:str = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(a__ ,1E-3) def __UpperCamelCase ( self : int) -> Optional[Any]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3) def __UpperCamelCase ( self : Optional[Any]) -> Any: """simple docstring""" _lowerCAmelCase:Tuple = '''cpu''' _lowerCAmelCase:Union[str, Any] = self.get_dummy_components() _lowerCAmelCase:List[str] = {'''beta_start''': 0.00085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} _lowerCAmelCase:Optional[int] = DPMSolverMultistepScheduler(**a__) _lowerCAmelCase:List[str] = DPMSolverMultistepInverseScheduler(**a__) _lowerCAmelCase:List[str] = self.pipeline_class(**a__) pipe.to(a__) pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase:str = self.get_dummy_inversion_inputs(a__) _lowerCAmelCase:Tuple = pipe.invert(**a__).images _lowerCAmelCase:Optional[int] = image[0, -1, -3:, -3:] self.assertEqual(image.shape ,(2, 32, 32, 3)) _lowerCAmelCase:List[Any] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.51050, 0.5015, 0.4407, 0.4799] ,) _lowerCAmelCase:List[Any] = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(a__ ,1E-3) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : int) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __UpperCamelCase ( cls : Tuple) -> Dict: """simple docstring""" _lowerCAmelCase:Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''') _lowerCAmelCase:Optional[int] = raw_image.convert('''RGB''').resize((768, 768)) _lowerCAmelCase:Dict = raw_image def __UpperCamelCase ( self : Dict) -> List[Any]: """simple docstring""" _lowerCAmelCase:str = torch.manual_seed(0) _lowerCAmelCase:List[Any] = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' ,safety_checker=a__ ,torch_dtype=torch.floataa) _lowerCAmelCase:Union[str, Any] = DDIMScheduler.from_config(pipe.scheduler.config) _lowerCAmelCase:Tuple = DDIMInverseScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase:Any = '''a bowl of fruit''' _lowerCAmelCase:List[str] = '''a bowl of pears''' _lowerCAmelCase:List[str] = pipe.generate_mask( image=self.raw_image ,source_prompt=a__ ,target_prompt=a__ ,generator=a__ ,) _lowerCAmelCase:str = pipe.invert( prompt=a__ ,image=self.raw_image ,inpaint_strength=0.7 ,generator=a__).latents _lowerCAmelCase:Optional[int] = pipe( prompt=a__ ,mask_image=a__ ,image_latents=a__ ,generator=a__ ,negative_prompt=a__ ,inpaint_strength=0.7 ,output_type='''numpy''' ,).images[0] _lowerCAmelCase:List[str] = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''').resize((768, 768))) / 255 ) assert np.abs((expected_image - image).max()) < 5E-1 def __UpperCamelCase ( self : Dict) -> int: """simple docstring""" _lowerCAmelCase:int = torch.manual_seed(0) _lowerCAmelCase:List[str] = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' ,safety_checker=a__ ,torch_dtype=torch.floataa) _lowerCAmelCase:List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _lowerCAmelCase:Dict = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a__) _lowerCAmelCase:Any = '''a bowl of fruit''' _lowerCAmelCase:Union[str, Any] = '''a bowl of pears''' _lowerCAmelCase:Optional[int] = pipe.generate_mask( image=self.raw_image ,source_prompt=a__ ,target_prompt=a__ ,generator=a__ ,) _lowerCAmelCase:Dict = pipe.invert( prompt=a__ ,image=self.raw_image ,inpaint_strength=0.7 ,generator=a__ ,num_inference_steps=25 ,).latents _lowerCAmelCase:Optional[int] = pipe( prompt=a__ ,mask_image=a__ ,image_latents=a__ ,generator=a__ ,negative_prompt=a__ ,inpaint_strength=0.7 ,num_inference_steps=25 ,output_type='''numpy''' ,).images[0] _lowerCAmelCase:Optional[Any] = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''').resize((768, 768))) / 255 ) assert np.abs((expected_image - image).max()) < 5E-1
439
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class a__ : def __init__( self : List[str] ,a__ : List[Any] ,a__ : List[str]=2 ,a__ : Optional[Any]=32 ,a__ : int=16 ,a__ : Dict=3 ,a__ : Optional[int]=True ,a__ : int=True ,a__ : Optional[Any]=32 ,a__ : str=4 ,a__ : Tuple=[0, 1, 2, 3] ,a__ : Any=4 ,a__ : int=37 ,a__ : int="gelu" ,a__ : Optional[int]=0.1 ,a__ : List[Any]=0.1 ,a__ : Optional[Any]=0.02 ,a__ : str=3 ,a__ : str=[1, 384, 24, 24] ,a__ : Optional[Any]=True ,a__ : Tuple=None ,) -> Optional[Any]: """simple docstring""" _lowerCAmelCase:Optional[Any] = parent _lowerCAmelCase:Union[str, Any] = batch_size _lowerCAmelCase:List[Any] = image_size _lowerCAmelCase:int = patch_size _lowerCAmelCase:Optional[int] = num_channels _lowerCAmelCase:List[str] = is_training _lowerCAmelCase:int = use_labels _lowerCAmelCase:Any = hidden_size _lowerCAmelCase:Any = num_hidden_layers _lowerCAmelCase:List[Any] = backbone_out_indices _lowerCAmelCase:int = num_attention_heads _lowerCAmelCase:Tuple = intermediate_size _lowerCAmelCase:int = hidden_act _lowerCAmelCase:Optional[int] = hidden_dropout_prob _lowerCAmelCase:Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase:Any = initializer_range _lowerCAmelCase:int = num_labels _lowerCAmelCase:Optional[int] = backbone_featmap_shape _lowerCAmelCase:List[str] = scope _lowerCAmelCase:Union[str, Any] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase:Any = (image_size // patch_size) ** 2 _lowerCAmelCase:Tuple = num_patches + 1 def __UpperCamelCase ( self : Tuple) -> Dict: """simple docstring""" _lowerCAmelCase:List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase:Optional[int] = None if self.use_labels: _lowerCAmelCase:Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels) _lowerCAmelCase:Optional[Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" _lowerCAmelCase:Optional[int] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,backbone_out_indices=self.backbone_out_indices ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=a__ ,initializer_range=self.initializer_range ,is_hybrid=self.is_hybrid ,backbone_config=a__ ,backbone_featmap_shape=self.backbone_featmap_shape ,) def __UpperCamelCase ( self : int ,a__ : Tuple ,a__ : Tuple ,a__ : Tuple) -> Dict: """simple docstring""" _lowerCAmelCase:Dict = DPTModel(config=a__) model.to(a__) model.eval() _lowerCAmelCase:Optional[Any] = model(a__) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : str ,a__ : Optional[int] ,a__ : Union[str, Any] ,a__ : int) -> Optional[int]: """simple docstring""" _lowerCAmelCase:Tuple = self.num_labels _lowerCAmelCase:List[Any] = DPTForDepthEstimation(a__) model.to(a__) model.eval() _lowerCAmelCase:int = model(a__) self.parent.assertEqual(result.predicted_depth.shape ,(self.batch_size, self.image_size, self.image_size)) def __UpperCamelCase ( self : Union[str, Any] ,a__ : Dict ,a__ : List[Any] ,a__ : str) -> Optional[int]: """simple docstring""" _lowerCAmelCase:Dict = self.num_labels _lowerCAmelCase:str = DPTForSemanticSegmentation(a__) model.to(a__) model.eval() _lowerCAmelCase:int = model(a__ ,labels=a__) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size, self.image_size)) def __UpperCamelCase ( self : Optional[int]) -> List[str]: """simple docstring""" _lowerCAmelCase:List[str] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase:Any = config_and_inputs _lowerCAmelCase:Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): snake_case__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () snake_case__ = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False def __UpperCamelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" _lowerCAmelCase:List[str] = DPTModelTester(self) _lowerCAmelCase:List[str] = ConfigTester(self ,config_class=a__ ,has_text_modality=a__ ,hidden_size=37) def __UpperCamelCase ( self : str) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''') def __UpperCamelCase ( self : Optional[int]) -> Dict: """simple docstring""" pass def __UpperCamelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase:Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase:Union[str, Any] = model_class(a__) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module)) _lowerCAmelCase:Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ ,nn.Linear)) def __UpperCamelCase ( self : Dict) -> int: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase:Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase:int = model_class(a__) _lowerCAmelCase:Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase:Any = [*signature.parameters.keys()] _lowerCAmelCase:Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,a__) def __UpperCamelCase ( self : Tuple) -> int: """simple docstring""" _lowerCAmelCase:Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__) def __UpperCamelCase ( self : Dict) -> int: """simple docstring""" _lowerCAmelCase:Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a__) def __UpperCamelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase:Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a__) def __UpperCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _lowerCAmelCase , _lowerCAmelCase:Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase:Union[str, Any] = True if model_class in get_values(a__): continue _lowerCAmelCase:Union[str, Any] = model_class(a__) model.to(a__) model.train() _lowerCAmelCase:Optional[int] = self._prepare_for_class(a__ ,a__ ,return_labels=a__) _lowerCAmelCase:Union[str, Any] = model(**a__).loss loss.backward() def __UpperCamelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _lowerCAmelCase , _lowerCAmelCase:Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase:str = False _lowerCAmelCase:str = True if model_class in get_values(a__) or not model_class.supports_gradient_checkpointing: continue _lowerCAmelCase:Dict = model_class(a__) model.to(a__) model.gradient_checkpointing_enable() model.train() _lowerCAmelCase:Any = self._prepare_for_class(a__ ,a__ ,return_labels=a__) _lowerCAmelCase:Tuple = model(**a__).loss loss.backward() def __UpperCamelCase ( self : Any) -> int: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase:Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase:Dict = _config_zero_init(a__) for model_class in self.all_model_classes: _lowerCAmelCase:Tuple = model_class(config=a__) # Skip the check for the backbone _lowerCAmelCase:Tuple = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _lowerCAmelCase:Tuple = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=F'Parameter {name} of model {model_class} seems not properly initialized' ,) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def __UpperCamelCase ( self : Dict) -> Any: """simple docstring""" pass @slow def __UpperCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _lowerCAmelCase:str = DPTModel.from_pretrained(a__) self.assertIsNotNone(a__) def __UpperCamelCase ( self : int) -> Optional[int]: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase:List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase:Any = '''add''' with self.assertRaises(a__): _lowerCAmelCase:Any = DPTForDepthEstimation(a__) def UpperCAmelCase ( ): _lowerCAmelCase:Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase:List[str] = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''') _lowerCAmelCase:Optional[int] = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''').to(a__) _lowerCAmelCase:Tuple = prepare_img() _lowerCAmelCase:List[str] = image_processor(images=a__ ,return_tensors='''pt''').to(a__) # forward pass with torch.no_grad(): _lowerCAmelCase:Dict = model(**a__) _lowerCAmelCase:List[str] = outputs.predicted_depth # verify the predicted depth _lowerCAmelCase:str = torch.Size((1, 384, 384)) self.assertEqual(predicted_depth.shape ,a__) _lowerCAmelCase:Any = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]]).to(a__) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 ,a__ ,atol=1E-4))
439
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = jnp.ones((batch_size, length) ) / length return scores def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : int = 20 SCREAMING_SNAKE_CASE_ : int = self._get_uniform_logits(batch_size=2 ,length=snake_case__ ) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_ : Any = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch SCREAMING_SNAKE_CASE_ : Dict = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_ : int = jax.nn.softmax(snake_case__ ,axis=-1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ : Dict = FlaxTemperatureLogitsWarper(temperature=1.3 ) SCREAMING_SNAKE_CASE_ : Any = jax.nn.softmax(temp_dist_warper_sharper(snake_case__ ,scores.copy() ,cur_len=snake_case__ ) ,axis=-1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = jax.nn.softmax(temp_dist_warper_smoother(snake_case__ ,scores.copy() ,cur_len=snake_case__ ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : Optional[Any] = 10 SCREAMING_SNAKE_CASE_ : int = 2 # create ramp distribution SCREAMING_SNAKE_CASE_ : Optional[Any] = np.broadcast_to(np.arange(snake_case__ )[None, :] ,(batch_size, vocab_size) ).copy() SCREAMING_SNAKE_CASE_ : Optional[int] = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_ : List[str] = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = top_k_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case SCREAMING_SNAKE_CASE_ : int = 5 SCREAMING_SNAKE_CASE_ : Any = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.broadcast_to(np.arange(snake_case__ )[None, :] ,(batch_size, length) ).copy() SCREAMING_SNAKE_CASE_ : Union[str, Any] = top_k_warp_safety_check(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : str = 10 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_ : Any = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) SCREAMING_SNAKE_CASE_ : Dict = FlaxTopPLogitsWarper(0.8 ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.exp(top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_ : str = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_ : List[Any] = np.broadcast_to(np.arange(snake_case__ )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_ : Any = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_ : List[Any] = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = 20 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 4 SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : str = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=snake_case__ ) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_ : Dict = ids_tensor((batch_size, 20) ,vocab_size=20 ) SCREAMING_SNAKE_CASE_ : Optional[int] = 5 SCREAMING_SNAKE_CASE_ : List[str] = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = min_dist_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_ : Optional[int] = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = 15 SCREAMING_SNAKE_CASE_ : Any = min_dist_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertFalse(jnp.isinf(snake_case__ ).any() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = 20 SCREAMING_SNAKE_CASE_ : List[Any] = 4 SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case__ ) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor((batch_size, 1) ,vocab_size=20 ) SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : str = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_ : Dict = 3 SCREAMING_SNAKE_CASE_ : Dict = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertFalse(jnp.isinf(snake_case__ ).any() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = 20 SCREAMING_SNAKE_CASE_ : Any = 4 SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : Tuple = 5 SCREAMING_SNAKE_CASE_ : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case__ ,eos_token_id=snake_case__ ) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_ : Any = ids_tensor((batch_size, 4) ,vocab_size=20 ) SCREAMING_SNAKE_CASE_ : List[Any] = 4 SCREAMING_SNAKE_CASE_ : Dict = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_ : List[Any] = 3 SCREAMING_SNAKE_CASE_ : int = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = logits_processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) self.assertFalse(jnp.isinf(snake_case__ ).any() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = 4 SCREAMING_SNAKE_CASE_ : Dict = 10 SCREAMING_SNAKE_CASE_ : int = 15 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ : Any = ids_tensor((batch_size, sequence_length) ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = input_ids.copy() SCREAMING_SNAKE_CASE_ : str = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ : int = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ : int = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ : Dict = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE_ : Any = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case__ ,eos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = 10 # no processor list SCREAMING_SNAKE_CASE_ : Optional[int] = temp_dist_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = top_k_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : str = min_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = bos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = eos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # with processor list SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE_ : Any = processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) # scores should be equal self.assertTrue(jnp.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 4 SCREAMING_SNAKE_CASE_ : Optional[Any] = 10 SCREAMING_SNAKE_CASE_ : Dict = 15 SCREAMING_SNAKE_CASE_ : Dict = 2 SCREAMING_SNAKE_CASE_ : Tuple = 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor((batch_size, sequence_length) ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = input_ids.copy() SCREAMING_SNAKE_CASE_ : List[Any] = self._get_uniform_logits(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ : str = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ : List[str] = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ : int = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE_ : Tuple = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : str = FlaxForcedEOSTokenLogitsProcessor(max_length=snake_case__ ,eos_token_id=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = 10 # no processor list def run_no_processor_list(snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = temp_dist_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = top_k_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = top_p_warp(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = min_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = bos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = eos_dist_proc(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) return scores # with processor list def run_processor_list(snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE_ : List[str] = processor(snake_case__ ,snake_case__ ,cur_len=snake_case__ ) return scores SCREAMING_SNAKE_CASE_ : Tuple = jax.jit(snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = jax.jit(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = jitted_run_no_processor_list(snake_case__ ,snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = jitted_run_processor_list(snake_case__ ,snake_case__ ,snake_case__ ) # scores should be equal self.assertTrue(jnp.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
105
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple ="openai/whisper-base" SCREAMING_SNAKE_CASE_ : List[str] =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) SCREAMING_SNAKE_CASE_ : int ="transcriber" SCREAMING_SNAKE_CASE_ : Tuple =WhisperProcessor SCREAMING_SNAKE_CASE_ : List[Any] =WhisperForConditionalGeneration SCREAMING_SNAKE_CASE_ : Union[str, Any] =["audio"] SCREAMING_SNAKE_CASE_ : Any =["text"] def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" return self.pre_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).input_features def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" return self.model.generate(inputs=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): """simple docstring""" return self.pre_processor.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ )[0]
282
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase ) -> str: """simple docstring""" _a : List[Any] = k_size // 2 _a , _a : Dict = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _a : int = 1 / (2 * pi * sigma) * exp(-(square(UpperCAmelCase ) + square(UpperCAmelCase )) / (2 * square(UpperCAmelCase )) ) return g def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: """simple docstring""" _a , _a : Optional[Any] = image.shape[0], image.shape[1] # dst image height and width _a : List[Any] = height - k_size + 1 _a : Optional[Any] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _a : Any = zeros((dst_height * dst_width, k_size * k_size) ) _a : List[str] = 0 for i, j in product(range(UpperCAmelCase ) , range(UpperCAmelCase ) ): _a : List[Any] = ravel(image[i : i + k_size, j : j + k_size] ) _a : List[str] = window row += 1 # turn the kernel into shape(k*k, 1) _a : List[str] = gen_gaussian_kernel(UpperCAmelCase , UpperCAmelCase ) _a : Dict = ravel(UpperCAmelCase ) # reshape and get the dst image _a : str = dot(UpperCAmelCase , UpperCAmelCase ).reshape(UpperCAmelCase , UpperCAmelCase ).astype(UpperCAmelCase ) return dst if __name__ == "__main__": # read original image __lowerCamelCase = imread(R'../image_data/lena.jpg') # turn image in gray scale value __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __lowerCamelCase = gaussian_filter(gray, 3, sigma=1) __lowerCamelCase = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('gaussian filter with 3x3 mask', gaussianaxa) imshow('gaussian filter with 5x5 mask', gaussianaxa) waitKey()
307
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" _a : Any = LxmertConfig.from_json_file(UpperCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) _a : List[Any] = LxmertForPreTraining(UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , UpperCAmelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
307
1
def _lowerCamelCase ( lowerCamelCase_: int , lowerCamelCase_: int ): '''simple docstring''' return x if y == 0 else greatest_common_divisor(lowercase__ , x % y ) def _lowerCamelCase ( lowerCamelCase_: int , lowerCamelCase_: int ): '''simple docstring''' return (x * y) // greatest_common_divisor(lowercase__ , lowercase__ ) def _lowerCamelCase ( lowerCamelCase_: int = 20 ): '''simple docstring''' A : int = 1 for i in range(1 , n + 1 ): A : Optional[int] = lcm(lowercase__ , lowercase__ ) return g if __name__ == "__main__": print(F'''{solution() = }''')
256
"""simple docstring""" from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __snake_case : def __init__( self: Any , A_: str , A_: str=13 , A_: Dict=7 , A_: Optional[int]=True , A_: int=True , A_: List[str]=True , A_: Any=True , A_: List[Any]=99 , A_: Tuple=32 , A_: Union[str, Any]=2 , A_: Dict=4 , A_: Tuple=37 , A_: Dict="gelu" , A_: List[Any]=0.1 , A_: int=0.1 , A_: Union[str, Any]=5_12 , A_: List[Any]=16 , A_: Optional[Any]=2 , A_: int=0.02 , A_: List[str]=3 , A_: Optional[int]=4 , A_: List[str]=None , ): __lowerCamelCase = parent __lowerCamelCase = 13 __lowerCamelCase = 7 __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = 99 __lowerCamelCase = 32 __lowerCamelCase = 2 __lowerCamelCase = 4 __lowerCamelCase = 37 __lowerCamelCase = """gelu""" __lowerCamelCase = 0.1 __lowerCamelCase = 0.1 __lowerCamelCase = 5_12 __lowerCamelCase = 16 __lowerCamelCase = 2 __lowerCamelCase = 0.02 __lowerCamelCase = 3 __lowerCamelCase = 4 __lowerCamelCase = None def __a ( self: Optional[Any] ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self: Union[str, Any] , A_: str , A_: Dict , A_: Union[str, Any] , A_: Optional[int] , A_: Any , A_: Dict , A_: int ): __lowerCamelCase = TFRoFormerModel(config=A_ ) __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowerCamelCase = [input_ids, input_mask] __lowerCamelCase = model(A_ ) __lowerCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self: List[str] , A_: int , A_: str , A_: Any , A_: int , A_: str , A_: str , A_: Union[str, Any] ): __lowerCamelCase = True __lowerCamelCase = TFRoFormerForCausalLM(config=A_ ) __lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowerCamelCase = model(A_ )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def __a ( self: Any , A_: Optional[Any] , A_: Optional[Any] , A_: Union[str, Any] , A_: str , A_: str , A_: Optional[Any] , A_: int ): __lowerCamelCase = TFRoFormerForMaskedLM(config=A_ ) __lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowerCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self: Optional[Any] , A_: Dict , A_: Union[str, Any] , A_: List[Any] , A_: str , A_: int , A_: Optional[Any] , A_: int ): __lowerCamelCase = self.num_labels __lowerCamelCase = TFRoFormerForSequenceClassification(config=A_ ) __lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowerCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self: List[str] , A_: Tuple , A_: List[str] , A_: Union[str, Any] , A_: Optional[Any] , A_: List[str] , A_: Optional[int] , A_: List[Any] ): __lowerCamelCase = self.num_choices __lowerCamelCase = TFRoFormerForMultipleChoice(config=A_ ) __lowerCamelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __lowerCamelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowerCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self: Union[str, Any] , A_: Dict , A_: List[Any] , A_: List[Any] , A_: Union[str, Any] , A_: str , A_: Union[str, Any] , A_: List[str] ): __lowerCamelCase = self.num_labels __lowerCamelCase = TFRoFormerForTokenClassification(config=A_ ) __lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowerCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self: int , A_: Union[str, Any] , A_: Any , A_: Any , A_: Dict , A_: str , A_: int , A_: Tuple ): __lowerCamelCase = TFRoFormerForQuestionAnswering(config=A_ ) __lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowerCamelCase = model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self: Union[str, Any] ): __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __snake_case (lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __a = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __a = False __a = False def __a ( self: List[str] , A_: List[Any] , A_: List[str] , A_: str , A_: Union[str, Any] , A_: Dict ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def __a ( self: Tuple ): __lowerCamelCase = TFRoFormerModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __a ( self: int ): self.config_tester.run_common_tests() def __a ( self: Optional[int] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __a ( self: Union[str, Any] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def __a ( self: Optional[Any] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A_ ) def __a ( self: Tuple ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def __a ( self: Any ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def __a ( self: int ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def __a ( self: int ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def __a ( self: Optional[int] ): __lowerCamelCase = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(A_ ) @require_tf class __snake_case (unittest.TestCase ): @slow def __a ( self: Optional[Any] ): __lowerCamelCase = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) __lowerCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowerCamelCase = model(A_ )[0] # TODO Replace vocab size __lowerCamelCase = 5_00_00 __lowerCamelCase = [1, 6, vocab_size] self.assertEqual(output.shape , A_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __lowerCamelCase = tf.constant( [ [ [-0.12_053_341, -1.0_264_901, 0.29_221_946], [-1.5_133_783, 0.197_433, 0.15_190_607], [-5.0_135_403, -3.900_256, -0.84_038_764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 ) @require_tf class __snake_case (unittest.TestCase ): __a = 1e-4 def __a ( self: List[Any] ): __lowerCamelCase = tf.constant([[4, 10]] ) __lowerCamelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __lowerCamelCase = emba(input_ids.shape ) __lowerCamelCase = tf.constant( [[0.0_000, 0.0_000, 0.0_000, 1.0_000, 1.0_000, 1.0_000], [0.8_415, 0.0_464, 0.0_022, 0.5_403, 0.9_989, 1.0_000]] ) tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) def __a ( self: Optional[Any] ): __lowerCamelCase = tf.constant( [ [0.0_000, 0.0_000, 0.0_000, 0.0_000, 0.0_000], [0.8_415, 0.8_219, 0.8_020, 0.7_819, 0.7_617], [0.9_093, 0.9_364, 0.9_581, 0.9_749, 0.9_870], ] ) __lowerCamelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) __lowerCamelCase = emba.weight[:3, :5] tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) @require_tf class __snake_case (unittest.TestCase ): __a = 1e-4 def __a ( self: str ): # 2,12,16,64 __lowerCamelCase = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 __lowerCamelCase = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 __lowerCamelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __lowerCamelCase = embed_positions([2, 16, 7_68] )[None, None, :, :] __lowerCamelCase ,__lowerCamelCase = TFRoFormerSelfAttention.apply_rotary_position_embeddings( A_ , A_ , A_ ) __lowerCamelCase = tf.constant( [ [0.0_000, 0.0_100, 0.0_200, 0.0_300, 0.0_400, 0.0_500, 0.0_600, 0.0_700], [-0.2_012, 0.8_897, 0.0_263, 0.9_401, 0.2_074, 0.9_463, 0.3_481, 0.9_343], [-1.7_057, 0.6_271, -1.2_145, 1.3_897, -0.6_303, 1.7_647, -0.1_173, 1.8_985], [-2.1_731, -1.6_397, -2.7_358, 0.2_854, -2.1_840, 1.7_183, -1.3_018, 2.4_871], [0.2_717, -3.6_173, -2.9_206, -2.1_988, -3.6_638, 0.3_858, -2.9_155, 2.2_980], [3.9_859, -2.1_580, -0.7_984, -4.4_904, -4.1_181, -2.0_252, -4.4_782, 1.1_253], ] ) __lowerCamelCase = tf.constant( [ [0.0_000, -0.0_100, -0.0_200, -0.0_300, -0.0_400, -0.0_500, -0.0_600, -0.0_700], [0.2_012, -0.8_897, -0.0_263, -0.9_401, -0.2_074, -0.9_463, -0.3_481, -0.9_343], [1.7_057, -0.6_271, 1.2_145, -1.3_897, 0.6_303, -1.7_647, 0.1_173, -1.8_985], [2.1_731, 1.6_397, 2.7_358, -0.2_854, 2.1_840, -1.7_183, 1.3_018, -2.4_871], [-0.2_717, 3.6_173, 2.9_206, 2.1_988, 3.6_638, -0.3_858, 2.9_155, -2.2_980], [-3.9_859, 2.1_580, 0.7_984, 4.4_904, 4.1_181, 2.0_252, 4.4_782, -1.1_253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A_ , atol=self.tolerance )
281
0
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=512 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=None , ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def snake_case__ ( self ): __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase = BioGptModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowercase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) __lowercase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): __lowercase = BioGptForCausalLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowercase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): __lowercase = BioGptModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # create attention mask __lowercase = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCAmelCase_ ) __lowercase = self.seq_length // 2 __lowercase = 0 # first forward pass __lowercase , __lowercase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ).to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids __lowercase = ids_tensor((1,) , lowerCAmelCase_ ).item() + 1 __lowercase = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) __lowercase = random_other_next_tokens # append to next input_ids and attn_mask __lowercase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowerCAmelCase_ )] , dim=1 , ) # get two different outputs __lowercase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )["last_hidden_state"] __lowercase = model(lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )["last_hidden_state"] # select random slice __lowercase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase = output_from_no_past[:, -1, random_slice_idx].detach() __lowercase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) ) def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): __lowercase = BioGptModel(config=lowerCAmelCase_ ).to(lowerCAmelCase_ ).eval() __lowercase = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCAmelCase_ ) # first forward pass __lowercase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) __lowercase , __lowercase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __lowercase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __lowercase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )["last_hidden_state"] __lowercase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )[ "last_hidden_state" ] # select random slice __lowercase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) ) def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ , lowerCAmelCase_=False ): __lowercase = BioGptForCausalLM(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) if gradient_checkpointing: model.gradient_checkpointing_enable() __lowercase = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case__ ( self , lowerCAmelCase_ , *lowerCAmelCase_ ): __lowercase = BioGptModel(lowerCAmelCase_ ) __lowercase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_01 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): __lowercase = self.num_labels __lowercase = BioGptForTokenClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowercase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case ( __snake_case ,__snake_case ,__snake_case ,unittest.TestCase ): """simple docstring""" __lowerCAmelCase = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) __lowerCAmelCase = (BioGptForCausalLM,) if is_torch_available() else () __lowerCAmelCase = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = False def snake_case__ ( self ): __lowercase = BioGptModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def snake_case__ ( self ): self.config_tester.run_common_tests() def snake_case__ ( self ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def snake_case__ ( self ): __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def snake_case__ ( self ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowerCAmelCase_ ) def snake_case__ ( self ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowerCAmelCase_ , gradient_checkpointing=lowerCAmelCase_ ) def snake_case__ ( self ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowerCAmelCase_ ) def snake_case__ ( self ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowerCAmelCase_ ) def snake_case__ ( self ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowerCAmelCase_ ) @slow def snake_case__ ( self ): __lowercase = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(lowerCAmelCase_ ) __lowercase = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) __lowercase = "left" # Define PAD Token = EOS Token = 50256 __lowercase = tokenizer.eos_token __lowercase = model.config.eos_token_id # use different length sentences to test batching __lowercase = [ "Hello, my dog is a little", "Today, I", ] __lowercase = tokenizer(lowerCAmelCase_ , return_tensors="pt" , padding=lowerCAmelCase_ ) __lowercase = inputs["input_ids"].to(lowerCAmelCase_ ) __lowercase = model.generate( input_ids=lowerCAmelCase_ , attention_mask=inputs["attention_mask"].to(lowerCAmelCase_ ) , ) __lowercase = tokenizer(sentences[0] , return_tensors="pt" ).input_ids.to(lowerCAmelCase_ ) __lowercase = model.generate(input_ids=lowerCAmelCase_ ) __lowercase = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() __lowercase = tokenizer(sentences[1] , return_tensors="pt" ).input_ids.to(lowerCAmelCase_ ) __lowercase = model.generate(input_ids=lowerCAmelCase_ , max_length=model.config.max_length - num_paddings ) __lowercase = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) __lowercase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase_ ) __lowercase = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase_ ) __lowercase = [ "Hello, my dog is a little bit bigger than a little bit.", "Today, I have a good idea of how to use the information", ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , [non_padded_sentence, padded_sentence] ) @slow def snake_case__ ( self ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = BioGptModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def snake_case__ ( self ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = 3 __lowercase = input_dict["input_ids"] __lowercase = input_ids.ne(1 ).to(lowerCAmelCase_ ) __lowercase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowercase = BioGptForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowercase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case__ ( self ): __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = 3 __lowercase = "multi_label_classification" __lowercase = input_dict["input_ids"] __lowercase = input_ids.ne(1 ).to(lowerCAmelCase_ ) __lowercase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __lowercase = BioGptForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowercase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self ): __lowercase = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) __lowercase = torch.tensor([[2, 4805, 9, 656, 21]] ) __lowercase = model(lowerCAmelCase_ )[0] __lowercase = 4_2384 __lowercase = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowercase = torch.tensor( [[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1E-4 ) ) @slow def snake_case__ ( self ): __lowercase = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) __lowercase = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(lowerCAmelCase_ ) torch.manual_seed(0 ) __lowercase = tokenizer("COVID-19 is" , return_tensors="pt" ).to(lowerCAmelCase_ ) __lowercase = model.generate( **lowerCAmelCase_ , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=lowerCAmelCase_ , ) __lowercase = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase_ ) __lowercase = ( "COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" " causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" " territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," " and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" " more than 800,000 deaths." ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
576
from __future__ import annotations def __lowercase ( _UpperCAmelCase = 4 ) -> list[list[int]]: '''simple docstring''' __lowercase = abs(_UpperCAmelCase ) or 4 return [[1 + x + y * row_size for x in range(_UpperCAmelCase )] for y in range(_UpperCAmelCase )] def __lowercase ( _UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' return reverse_row(transpose(_UpperCAmelCase ) ) # OR.. transpose(reverse_column(matrix)) def __lowercase ( _UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' return reverse_row(reverse_column(_UpperCAmelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def __lowercase ( _UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' return reverse_column(transpose(_UpperCAmelCase ) ) # OR.. transpose(reverse_row(matrix)) def __lowercase ( _UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' __lowercase = [list(_UpperCAmelCase ) for x in zip(*_UpperCAmelCase )] return matrix def __lowercase ( _UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' __lowercase = matrix[::-1] return matrix def __lowercase ( _UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' __lowercase = [x[::-1] for x in matrix] return matrix def __lowercase ( _UpperCAmelCase ) -> None: '''simple docstring''' for i in matrix: print(*_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase__ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) lowerCAmelCase__ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) lowerCAmelCase__ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
576
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time snake_case__ = Lock() def lowerCamelCase__ ( a : Union[str, Any] , a : int , a : List[Any] , a : str , a : List[Any] , a : Optional[Any] , a : Any ) -> str: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(a ) process_lock.release() # receive your right neighbor's value process_lock.acquire() a__ :int = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left a__ :str = min(a , a ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(a ) process_lock.release() # receive your left neighbor's value process_lock.acquire() a__ :Optional[int] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right a__ :int = max(a , a ) # after all swaps are performed, send the values back to main result_pipe[1].send(a ) def lowerCamelCase__ ( a : Optional[int] ) -> Dict: """simple docstring""" a__ :str = [] a__ :Optional[Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop a__ :List[Any] = Pipe() a__ :int = Pipe() process_array_.append( Process( target=a , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) a__ :str = temp_rs a__ :Dict = temp_rr for i in range(1 , len(a ) - 1 ): a__ :Dict = Pipe() a__ :Any = Pipe() process_array_.append( Process( target=a , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) a__ :Optional[int] = temp_rs a__ :str = temp_rr process_array_.append( Process( target=a , args=( len(a ) - 1, arr[len(a ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(a ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(a ) ): a__ :Any = result_pipe[p][0].recv() process_array_[p].join() return arr def lowerCamelCase__ ( ) -> Tuple: """simple docstring""" a__ :str = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*a ) a__ :Optional[int] = odd_even_transposition(a ) print("Sorted List\n" ) print(*a ) if __name__ == "__main__": main()
395
import math def lowerCamelCase__ ( a : list , a : int ) -> int: """simple docstring""" a__ :str = len(a ) a__ :List[str] = int(math.floor(math.sqrt(a ) ) ) a__ :int = 0 while arr[min(a , a ) - 1] < x: a__ :Union[str, Any] = step step += int(math.floor(math.sqrt(a ) ) ) if prev >= n: return -1 while arr[prev] < x: a__ :str = prev + 1 if prev == min(a , a ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": snake_case__ = input('''Enter numbers separated by a comma:\n''').strip() snake_case__ = [int(item) for item in user_input.split(''',''')] snake_case__ = int(input('''Enter the number to be searched:\n''')) snake_case__ = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(f'''Number {x} is at index {res}''')
395
1
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __magic_name__ ( __lowerCamelCase ): '''simple docstring''' __lowercase : Optional[Any] = '''gptj''' __lowercase : Any = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , __lowercase=50_400 , __lowercase=2_048 , __lowercase=4_096 , __lowercase=28 , __lowercase=16 , __lowercase=64 , __lowercase=None , __lowercase="gelu_new" , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=1E-5 , __lowercase=0.0_2 , __lowercase=True , __lowercase=50_256 , __lowercase=50_256 , __lowercase=False , **__lowercase , ): """simple docstring""" __A : Dict = vocab_size __A : Any = n_positions __A : Tuple = n_embd __A : List[Any] = n_layer __A : Tuple = n_head __A : Optional[Any] = n_inner __A : Optional[Any] = rotary_dim __A : Dict = activation_function __A : List[str] = resid_pdrop __A : List[str] = embd_pdrop __A : Tuple = attn_pdrop __A : Optional[int] = layer_norm_epsilon __A : Tuple = initializer_range __A : int = use_cache __A : int = bos_token_id __A : List[Any] = eos_token_id super().__init__( bos_token_id=a_ , eos_token_id=a_ , tie_word_embeddings=a_ , **a_ ) class __magic_name__ ( __lowerCamelCase ): '''simple docstring''' def __init__( self , __lowercase , __lowercase = "default" , __lowercase = None , __lowercase = False , ): """simple docstring""" super().__init__(a_ , task=a_ , patching_specs=a_ , use_past=a_ ) if not getattr(self._config , 'pad_token_id' , a_ ): # TODO: how to do that better? __A : int = 0 @property def snake_case__ ( self ): """simple docstring""" __A : Tuple = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(a_ , direction='inputs' ) __A : Optional[Any] = {0: "batch", 1: "past_sequence + sequence"} else: __A : Optional[Any] = {0: "batch", 1: "sequence"} return common_inputs @property def snake_case__ ( self ): """simple docstring""" return self._config.n_layer @property def snake_case__ ( self ): """simple docstring""" return self._config.n_head def snake_case__ ( self , __lowercase , __lowercase = -1 , __lowercase = -1 , __lowercase = False , __lowercase = None , ): """simple docstring""" __A : str = super(a_ , self ).generate_dummy_inputs( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) # We need to order the input in the way they appears in the forward() __A : Dict = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __A : Optional[int] = common_inputs["input_ids"].shape # Not using the same length for past_key_values __A : Tuple = seqlen + 2 __A : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __A : List[str] = [ (torch.zeros(a_ ), torch.zeros(a_ )) for _ in range(self.num_layers ) ] __A : Union[str, Any] = common_inputs["attention_mask"] if self.use_past: __A : Optional[int] = ordered_inputs["attention_mask"].dtype __A : Any = torch.cat( [ordered_inputs['attention_mask'], torch.ones(a_ , a_ , dtype=a_ )] , dim=1 ) return ordered_inputs @property def snake_case__ ( self ): """simple docstring""" return 13
707
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def _lowercase ( UpperCamelCase__ : int = 1000000, UpperCamelCase__ : int = 10 ): __A : defaultdict = defaultdict(UpperCamelCase__ ) for outer_width in range(3, (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: __A : Optional[int] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ), 1 ) else: __A : Optional[Any] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(UpperCamelCase__, outer_width - 1, 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f'''{solution() = }''')
540
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 SCREAMING_SNAKE_CASE : Any = get_tests_dir("fixtures") class snake_case ( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> List[str]: # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE_ = mock.Mock() SCREAMING_SNAKE_CASE_ = 500 SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = HTTPError SCREAMING_SNAKE_CASE_ = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=__a ) as mock_head: SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def a__ ( self ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class snake_case ( unittest.TestCase ): """simple docstring""" @classmethod def a__ ( cls ) -> Tuple: SCREAMING_SNAKE_CASE_ = TOKEN HfFolder.save_token(__a ) @classmethod def a__ ( cls ) -> List[str]: try: delete_repo(token=cls._token, repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def a__ ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(__a ) feature_extractor.push_to_hub('test-feature-extractor', use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__a, getattr(__a, __a ) ) # Reset repo delete_repo(token=self._token, repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __a, repo_id='test-feature-extractor', push_to_hub=__a, use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__a, getattr(__a, __a ) ) def a__ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(__a ) feature_extractor.push_to_hub('valid_org/test-feature-extractor', use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__a, getattr(__a, __a ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __a, repo_id='valid_org/test-feature-extractor-org', push_to_hub=__a, use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__a, getattr(__a, __a ) ) def a__ ( self ) -> Tuple: CustomFeatureExtractor.register_for_auto_class() SCREAMING_SNAKE_CASE_ = CustomFeatureExtractor.from_pretrained(__a ) feature_extractor.push_to_hub('test-dynamic-feature-extractor', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map, {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'}, ) SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained( f"""{USER}/test-dynamic-feature-extractor""", trust_remote_code=__a ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__, 'CustomFeatureExtractor' )
294
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def snake_case ( ) -> Generator[int, None, None]: lowerCamelCase : dict[int, int] = {} lowerCamelCase : str = 2 while True: lowerCamelCase : int = factor_map.pop(UpperCamelCase__ , UpperCamelCase__ ) if factor: lowerCamelCase : List[Any] = factor + prime while x in factor_map: x += factor lowerCamelCase : int = factor else: lowerCamelCase : Optional[int] = prime yield prime prime += 1 def snake_case ( UpperCamelCase__ : float = 1E10 ) -> int: lowerCamelCase : Optional[int] = sieve() lowerCamelCase : List[str] = 1 while True: lowerCamelCase : Tuple = next(UpperCamelCase__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(UpperCamelCase__ ) n += 2 if __name__ == "__main__": print(solution())
222
0
def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate UpperCAmelCase_ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly UpperCAmelCase_ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
561
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : List[Any] =SpeechTaTokenizer UpperCamelCase__ : Optional[Any] =False UpperCamelCase__ : List[Any] =True def __a ( self :Union[str, Any]) -> int: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = SpeechTaTokenizer(_lowercase) UpperCAmelCase_ = AddedToken('''<mask>''' , lstrip=_lowercase , rstrip=_lowercase) UpperCAmelCase_ = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token}) tokenizer.add_tokens(['''<ctc_blank>''']) tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Tuple , _lowercase :Optional[int]) -> Optional[int]: UpperCAmelCase_ = '''this is a test''' UpperCAmelCase_ = '''this is a test''' return input_text, output_text def __a ( self :List[Any] , _lowercase :str , _lowercase :List[str]=False , _lowercase :Union[str, Any]=20 , _lowercase :Any=5) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ = self.get_input_output_texts(_lowercase) UpperCAmelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase) UpperCAmelCase_ = tokenizer.decode(_lowercase , clean_up_tokenization_spaces=_lowercase) return text, ids def __a ( self :Dict) -> str: UpperCAmelCase_ = '''<pad>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :int) -> Dict: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<s>''') self.assertEqual(vocab_keys[1] , '''<pad>''') self.assertEqual(vocab_keys[-4] , '''œ''') self.assertEqual(vocab_keys[-2] , '''<mask>''') self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''') self.assertEqual(len(_lowercase) , 81) def __a ( self :Dict) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 79) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.get_tokenizers(do_lower_case=_lowercase) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = len(_lowercase) self.assertNotEqual(_lowercase , 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCAmelCase_ = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] UpperCAmelCase_ = tokenizer.add_tokens(_lowercase) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = len(_lowercase) self.assertNotEqual(_lowercase , 0) self.assertEqual(_lowercase , _lowercase) self.assertEqual(_lowercase , len(_lowercase)) self.assertEqual(_lowercase , all_size + len(_lowercase)) UpperCAmelCase_ = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=_lowercase) self.assertGreaterEqual(len(_lowercase) , 4) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) UpperCAmelCase_ = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} UpperCAmelCase_ = tokenizer.add_special_tokens(_lowercase) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = len(_lowercase) self.assertNotEqual(_lowercase , 0) self.assertEqual(_lowercase , _lowercase) self.assertEqual(_lowercase , len(_lowercase)) self.assertEqual(_lowercase , all_size_a + len(_lowercase)) UpperCAmelCase_ = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=_lowercase) self.assertGreaterEqual(len(_lowercase) , 6) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[0] , tokens[1]) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokens[-4]) self.assertEqual(tokens[0] , tokenizer.eos_token_id) self.assertEqual(tokens[-3] , tokenizer.pad_token_id) def __a ( self :Any) -> List[str]: pass def __a ( self :Any) -> Tuple: pass def __a ( self :Dict) -> Dict: UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') # fmt: off self.assertListEqual(_lowercase , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t''']) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.''']) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) # fmt: off self.assertListEqual(_lowercase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26]) # fmt: on UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.''']) @slow def __a ( self :Any) -> List[Any]: # Use custom sequence because this tokenizer does not handle numbers. UpperCAmelCase_ = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off UpperCAmelCase_ = { '''input_ids''': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=_lowercase , )
561
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list: snake_case__ = [] snake_case__ , snake_case__ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) snake_case__ = result + left + right return input_list def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> list: if len(__lowerCAmelCase ) <= 1: return input_list snake_case__ = list(__lowerCAmelCase ) # iteration for two-way merging snake_case__ = 2 while p <= len(__lowerCAmelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ): snake_case__ = i snake_case__ = i + p - 1 snake_case__ = (low + high + 1) // 2 snake_case__ = merge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # final merge of last two parts if p * 2 >= len(__lowerCAmelCase ): snake_case__ = i snake_case__ = merge(__lowerCAmelCase , 0 , __lowerCAmelCase , len(__lowerCAmelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": lowerCamelCase__ : str = [] else: lowerCamelCase__ : List[Any] = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
33
'''simple docstring''' def UpperCamelCase ( lowercase_ : int ) -> int: '''simple docstring''' if n == 1 or not isinstance(lowercase_ , lowercase_ ): return 0 elif n == 2: return 1 else: lowercase =[0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCamelCase ( lowercase_ : int ) -> int: '''simple docstring''' lowercase =0 lowercase =2 while digits < n: index += 1 lowercase =len(str(fibonacci(lowercase_ ) ) ) return index def UpperCamelCase ( lowercase_ : int = 1_0_0_0 ) -> int: '''simple docstring''' return fibonacci_digits_index(lowercase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
72
0
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _snake_case ( _snake_case : Dict ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _snake_case ( ): with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" lowerCAmelCase : str = [1, 2, 3] with pytest.raises(_snake_case ): with parallel_backend('''unsupported backend''' ): map_nested(_snake_case , _snake_case , num_proc=2 ) with pytest.raises(_snake_case ): with parallel_backend('''unsupported backend''' ): map_nested(_snake_case , _snake_case , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1] ) def _snake_case ( _snake_case : str ): lowerCAmelCase : Any = [1, 2] lowerCAmelCase : List[str] = {'''a''': 1, '''b''': 2} lowerCAmelCase : int = {'''a''': [1, 2], '''b''': [3, 4]} lowerCAmelCase : str = {'''a''': {'''1''': 1}, '''b''': 2} lowerCAmelCase : List[str] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} lowerCAmelCase : Optional[Any] = [2, 3] lowerCAmelCase : Optional[Any] = {'''a''': 2, '''b''': 3} lowerCAmelCase : Optional[int] = {'''a''': [2, 3], '''b''': [4, 5]} lowerCAmelCase : str = {'''a''': {'''1''': 2}, '''b''': 3} lowerCAmelCase : Any = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(_snake_case , _snake_case , num_proc=_snake_case ) == expected_map_nested_sa assert map_nested(_snake_case , _snake_case , num_proc=_snake_case ) == expected_map_nested_sa assert map_nested(_snake_case , _snake_case , num_proc=_snake_case ) == expected_map_nested_sa assert map_nested(_snake_case , _snake_case , num_proc=_snake_case ) == expected_map_nested_sa assert map_nested(_snake_case , _snake_case , num_proc=_snake_case ) == expected_map_nested_sa
710
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class snake_case_( a__ ): __UpperCamelCase = '''philschmid/bart-large-cnn-samsum''' __UpperCamelCase = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) __UpperCamelCase = '''summarizer''' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = ['''text'''] __UpperCamelCase = ['''text'''] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : int ): return self.pre_processor(UpperCamelCase_ , return_tensors='''pt''' , truncation=UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str ): return self.model.generate(**UpperCamelCase_ )[0] def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Tuple ): return self.pre_processor.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ )
637
0
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase_ : int = datasets.utils.logging.get_logger(__name__) lowercase_ : Tuple = ['names', 'prefix'] lowercase_ : str = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] lowercase_ : Optional[int] = ['encoding_errors', 'on_bad_lines'] lowercase_ : List[Any] = ['date_format'] @dataclass class _lowerCamelCase ( datasets.BuilderConfig ): __a = "," __a = None __a = "infer" __a = None __a = None __a = None __a = None __a = None __a = True __a = None __a = None __a = None __a = None __a = False __a = None __a = None __a = None __a = True __a = True __a = False __a = True __a = None __a = "." __a = None __a = '"' __a = 0 __a = None __a = None __a = None __a = None __a = True __a = True __a = 0 __a = True __a = False __a = None __a = 10000 __a = None __a = "strict" __a = "error" __a = None def UpperCamelCase_ ( self ) -> Dict: if self.delimiter is not None: SCREAMING_SNAKE_CASE__: Optional[Any]= self.delimiter if self.column_names is not None: SCREAMING_SNAKE_CASE__: Union[str, Any]= self.column_names @property def UpperCamelCase_ ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE__: str= { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCamelCase ( datasets.ArrowBasedBuilder ): __a = CsvConfig def UpperCamelCase_ ( self ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> str: if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) SCREAMING_SNAKE_CASE__: Optional[int]= dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase , (str, list, tuple) ): SCREAMING_SNAKE_CASE__: Any= data_files if isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE__: Tuple= [files] SCREAMING_SNAKE_CASE__: str= [dl_manager.iter_files(lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] SCREAMING_SNAKE_CASE__: List[Any]= [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE__: Union[str, Any]= [files] SCREAMING_SNAKE_CASE__: Optional[int]= [dl_manager.iter_files(lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={'''files''': files} ) ) return splits def UpperCamelCase_ ( self , lowerCAmelCase ) -> pa.Table: if self.config.features is not None: SCREAMING_SNAKE_CASE__: int= self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase ) for feature in self.config.features.values() ): # cheaper cast SCREAMING_SNAKE_CASE__: Optional[int]= pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE__: Optional[int]= table_cast(lowerCAmelCase , lowerCAmelCase ) return pa_table def UpperCamelCase_ ( self , lowerCAmelCase ) -> List[Any]: SCREAMING_SNAKE_CASE__: str= self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str SCREAMING_SNAKE_CASE__: str= ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase ) ): SCREAMING_SNAKE_CASE__: List[Any]= pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase ): SCREAMING_SNAKE_CASE__: int= pa.Table.from_pandas(lowerCAmelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(lowerCAmelCase )}: {e}' ) raise
64
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
64
1
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __UpperCamelCase ( _A : str , _A : str , _A : List[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase : Any = AlbertConfig.from_json_file(_A ) print(F"Building PyTorch model from configuration: {config}" ) lowerCAmelCase : Optional[int] = AlbertForPreTraining(_A ) # Load weights from tf checkpoint load_tf_weights_in_albert(_A , _A , _A ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _lowerCAmelCase : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
646
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """xlm-roberta""" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.0_2 , snake_case__=1e-1_2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : Any = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : int = initializer_range lowerCAmelCase : List[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Union[str, Any] = use_cache lowerCAmelCase : List[str] = classifier_dropout class lowerCAmelCase ( a ): @property def lowercase ( self ): if self.task == "multiple-choice": lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
646
1
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } __UpperCAmelCase = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } __UpperCAmelCase = { '''ctrl''': 256, } __UpperCAmelCase = { '''Pregnancy''': 168_629, '''Christianity''': 7_675, '''Explain''': 106_423, '''Fitness''': 63_440, '''Saving''': 63_163, '''Ask''': 27_171, '''Ass''': 95_985, '''Joke''': 163_509, '''Questions''': 45_622, '''Thoughts''': 49_605, '''Retail''': 52_342, '''Feminism''': 164_338, '''Writing''': 11_992, '''Atheism''': 192_263, '''Netflix''': 48_616, '''Computing''': 39_639, '''Opinion''': 43_213, '''Alone''': 44_967, '''Funny''': 58_917, '''Gaming''': 40_358, '''Human''': 4_088, '''India''': 1_331, '''Joker''': 77_138, '''Diet''': 36_206, '''Legal''': 11_859, '''Norman''': 4_939, '''Tip''': 72_689, '''Weight''': 52_343, '''Movies''': 46_273, '''Running''': 23_425, '''Science''': 2_090, '''Horror''': 37_793, '''Confession''': 60_572, '''Finance''': 12_250, '''Politics''': 16_360, '''Scary''': 191_985, '''Support''': 12_654, '''Technologies''': 32_516, '''Teenage''': 66_160, '''Event''': 32_769, '''Learned''': 67_460, '''Notion''': 182_770, '''Wikipedia''': 37_583, '''Books''': 6_665, '''Extract''': 76_050, '''Confessions''': 102_701, '''Conspiracy''': 75_932, '''Links''': 63_674, '''Narcissus''': 150_425, '''Relationship''': 54_766, '''Relationships''': 134_796, '''Reviews''': 41_671, '''News''': 4_256, '''Translation''': 26_820, '''multilingual''': 128_406, } def _snake_case ( A ) -> Optional[int]: lowerCAmelCase__ = set() lowerCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase__ = char lowerCAmelCase__ = set(A ) return pairs class a__ ( a__ ): '''simple docstring''' lowercase__ : List[Any] = VOCAB_FILES_NAMES lowercase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowercase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Dict = CONTROL_CODES def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="<unk>" , **lowerCamelCase_ ) -> List[Any]: super().__init__(unk_token=lowerCamelCase_ , **lowerCamelCase_ ) with open(lowerCamelCase_ , encoding='''utf-8''' ) as vocab_handle: lowerCAmelCase__ = json.load(lowerCamelCase_ ) lowerCAmelCase__ = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase_ , encoding='''utf-8''' ) as merges_handle: lowerCAmelCase__ = merges_handle.read().split('''\n''' )[1:-1] lowerCAmelCase__ = [tuple(merge.split() ) for merge in merges] lowerCAmelCase__ = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) lowerCAmelCase__ = {} @property def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: return len(self.encoder ) def __SCREAMING_SNAKE_CASE ( self ) -> int: return dict(self.encoder , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> List[Any]: if token in self.cache: return self.cache[token] lowerCAmelCase__ = tuple(lowerCamelCase_ ) lowerCAmelCase__ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowerCAmelCase__ = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: lowerCAmelCase__ = min(lowerCamelCase_ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ , lowerCAmelCase__ = bigram lowerCAmelCase__ = [] lowerCAmelCase__ = 0 while i < len(lowerCamelCase_ ): try: lowerCAmelCase__ = word.index(lowerCamelCase_ , lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase__ = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ = tuple(lowerCamelCase_ ) lowerCAmelCase__ = new_word if len(lowerCamelCase_ ) == 1: break else: lowerCAmelCase__ = get_pairs(lowerCamelCase_ ) lowerCAmelCase__ = '''@@ '''.join(lowerCamelCase_ ) lowerCAmelCase__ = word[:-4] lowerCAmelCase__ = word return word def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: lowerCAmelCase__ = [] lowerCAmelCase__ = re.findall(r'''\S+\n?''' , lowerCamelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase_ ).split(''' ''' ) ) ) return split_tokens def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Union[str, Any]: return self.decoder.get(lowerCamelCase_ , self.unk_token ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Tuple: lowerCAmelCase__ = ''' '''.join(lowerCamelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + '''\n''' ) lowerCAmelCase__ = 0 with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowerCAmelCase__ = token_index writer.write(''' '''.join(lowerCamelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
90
'''simple docstring''' import math def _SCREAMING_SNAKE_CASE ( __snake_case : int ): _A = [] _A = 2 _A = int(math.sqrt(__snake_case ) ) # Size of every segment _A = [True] * (end + 1) _A = [] while start <= end: if temp[start] is True: in_prime.append(__snake_case ) for i in range(start * start , end + 1 , __snake_case ): _A = False start += 1 prime += in_prime _A = end + 1 _A = min(2 * end , __snake_case ) while low <= n: _A = [True] * (high - low + 1) for each in in_prime: _A = math.floor(low / each ) * each if t < low: t += each for j in range(__snake_case , high + 1 , __snake_case ): _A = False for j in range(len(__snake_case ) ): if temp[j] is True: prime.append(j + low ) _A = high + 1 _A = min(high + end , __snake_case ) return prime print(sieve(10**6))
107
0
'''simple docstring''' from __future__ import annotations from typing import TypedDict class _UpperCAmelCase ( snake_case ): __lowerCamelCase: str __lowerCamelCase: int def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(_UpperCamelCase ) )] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) lowercase_ : Any = all_rotations(_UpperCamelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation lowercase_ : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(_UpperCamelCase ), } return response def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: lowercase_ : str = int(_UpperCamelCase ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(_UpperCamelCase ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) lowercase_ : Union[str, Any] = [""] * len(_UpperCamelCase ) for _ in range(len(_UpperCamelCase ) ): for i in range(len(_UpperCamelCase ) ): lowercase_ : Tuple = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": UpperCamelCase__ = 'Provide a string that I will generate its BWT transform: ' UpperCamelCase__ = input(entry_msg).strip() UpperCamelCase__ = bwt_transform(s) print( f"""Burrows Wheeler transform for string '{s}' results """ f"""in '{result["bwt_string"]}'""" ) UpperCamelCase__ = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f"""Reversing Burrows Wheeler transform for entry '{result["bwt_string"]}' """ f"""we get original string '{original_string}'""" )
640
'''simple docstring''' from __future__ import annotations UpperCamelCase__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] UpperCamelCase__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : str = [] lowercase_ : List[str] = len(_UpperCamelCase ) for i in range(_UpperCamelCase ): lowercase_ : float = -1 for j in range(i + 1 , _UpperCamelCase ): if arr[i] < arr[j]: lowercase_ : Union[str, Any] = arr[j] break result.append(_UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = [] for i, outer in enumerate(_UpperCamelCase ): lowercase_ : float = -1 for inner in arr[i + 1 :]: if outer < inner: lowercase_ : Optional[Any] = inner break result.append(_UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = len(_UpperCamelCase ) lowercase_ : list[float] = [] lowercase_ : list[float] = [-1] * arr_size for index in reversed(range(_UpperCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowercase_ : Optional[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) UpperCamelCase__ = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
640
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case ( A__ ): def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=True , a=False , a=False , a=False , a=2 , a=99 , a=0 , a=32 , a=5 , a=4 , a=0.1 , a=0.1 , a=512 , a=12 , a=2 , a=0.02 , a=3 , a=4 , a="last" , a=None , a=None , ) -> Optional[Any]: SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_lengths SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = gelu_activation SCREAMING_SNAKE_CASE = sinusoidal_embeddings SCREAMING_SNAKE_CASE = causal SCREAMING_SNAKE_CASE = asm SCREAMING_SNAKE_CASE = n_langs SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = n_special SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = summary_type SCREAMING_SNAKE_CASE = use_proj SCREAMING_SNAKE_CASE = scope def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE = None if self.use_input_lengths: SCREAMING_SNAKE_CASE = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , 2).float() SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices) SCREAMING_SNAKE_CASE = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> Dict: SCREAMING_SNAKE_CASE = FlaubertModel(config=a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a , lengths=a , langs=a) SCREAMING_SNAKE_CASE = model(a , langs=a) SCREAMING_SNAKE_CASE = model(a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> str: SCREAMING_SNAKE_CASE = FlaubertWithLMHeadModel(a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a , token_type_ids=a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> Any: SCREAMING_SNAKE_CASE = FlaubertForQuestionAnsweringSimple(a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a) SCREAMING_SNAKE_CASE = model(a , start_positions=a , end_positions=a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> Dict: SCREAMING_SNAKE_CASE = FlaubertForQuestionAnswering(a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a) SCREAMING_SNAKE_CASE = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , p_mask=a , ) SCREAMING_SNAKE_CASE = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , ) ((SCREAMING_SNAKE_CASE) , ) = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE = model(a , start_positions=a , end_positions=a) ((SCREAMING_SNAKE_CASE) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> int: SCREAMING_SNAKE_CASE = FlaubertForSequenceClassification(a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a) SCREAMING_SNAKE_CASE = model(a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> Any: SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = FlaubertForTokenClassification(a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model(a , attention_mask=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , a , a , a , ) -> Tuple: SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = FlaubertForMultipleChoice(config=a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class _snake_case ( A__ , A__ , unittest.TestCase ): _lowercase : Any = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _lowercase : Any = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a) -> Optional[int]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE__ ( self , a , a , a=False) -> Any: SCREAMING_SNAKE_CASE = super()._prepare_for_class(a , a , return_labels=a) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = FlaubertModelTester(self) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=a , emb_dim=37) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*a) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a) def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*a) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*a) @slow def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = FlaubertModel.from_pretrained(a) self.assertIsNotNone(a) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(config=a) SCREAMING_SNAKE_CASE = self._prepare_for_class(a , a) SCREAMING_SNAKE_CASE = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu'), inputs_dict['attention_mask'].to('cpu'))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'traced_model.pt')) SCREAMING_SNAKE_CASE = torch.jit.load(os.path.join(a , 'traced_model.pt') , map_location=a) loaded(inputs_dict['input_ids'].to(a) , inputs_dict['attention_mask'].to(a)) @require_torch class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased') SCREAMING_SNAKE_CASE = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(a)[0] SCREAMING_SNAKE_CASE = torch.Size((1, 11, 768)) self.assertEqual(output.shape , a) SCREAMING_SNAKE_CASE = torch.tensor( [[[-2.62_51, -1.42_98, -0.02_27], [-2.85_10, -1.63_87, 0.22_58], [-2.81_14, -1.18_32, -0.30_66]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1E-4))
73
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_lxmert""": ["""LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LxmertConfig"""], """tokenization_lxmert""": ["""LxmertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ["""LxmertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ """LxmertEncoder""", """LxmertForPreTraining""", """LxmertForQuestionAnswering""", """LxmertModel""", """LxmertPreTrainedModel""", """LxmertVisualFeatureEncoder""", """LxmertXLayer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ """TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLxmertForPreTraining""", """TFLxmertMainLayer""", """TFLxmertModel""", """TFLxmertPreTrainedModel""", """TFLxmertVisualFeatureEncoder""", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys a : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
218
0
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class __lowercase ( unittest.TestCase ): def _a ( self) -> List[Any]: __snake_case = tf.convert_to_tensor( [ [ 8.222_0991, # 3rd highest value; idx. 0 -0.562_0044, 5.2322_9752, 4.038_6393, -6.879_8378, -0.5478_5802, -3.201_2153, 2.9277_7176, 1.8817_1953, 7.3534_1276, # 5th highest value; idx. 9 8.4320_7833, # 2nd highest value; idx. 10 -9.8571_1836, -5.9620_9236, -1.1303_9161, -7.111_5294, -0.836_9633, -5.318_6408, 7.0642_7407, 0.8136_9344, -0.8202_3817, -5.917_9796, 0.5881_3443, -6.9977_8438, 4.7155_1189, -0.1877_1637, 7.4402_0759, # 4th highest value; idx. 25 9.3845_0987, # 1st highest value; idx. 26 2.1266_2941, -9.3256_2038, 2.3565_2522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5842_5518, 4.5313_9238, -5.5751_0464, -6.2803_0699, -7.1952_9503, -4.0212_2551, 1.3933_7037, -6.0670_7057, 1.5948_0517, -9.64_3119, 0.0390_7799, 0.6723_1762, -8.8820_6726, 6.2711_5922, # 4th highest value; idx. 13 2.2852_0723, 4.8276_7506, 4.3042_1368, 8.827_5313, # 2nd highest value; idx. 17 5.4402_9958, # 5th highest value; idx. 18 -4.473_5794, 7.3857_9536, # 3rd highest value; idx. 20 -2.9105_1663, 2.6194_6077, -2.567_4762, -9.4895_9302, -4.0292_2645, -1.3541_6918, 9.6770_2323, # 1st highest value; idx. 27 -5.8947_8553, 1.8537_0467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __snake_case = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __snake_case = tf.convert_to_tensor( [8.22_2099, 7.353_4126, 8.43_2078, 7.440_2075, 9.3_8451, 6.27_1159, 8.82_7531, 5.440_2995, 7.385_7956, 9.67_7023] , dtype=tf.floataa , ) # expected non filtered values as noted above __snake_case = tf_top_k_top_p_filtering(lowercase_ , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4) __snake_case = output[output != -float('inf')] __snake_case = tf.cast( tf.where(tf.not_equal(lowercase_ , tf.constant(-float('inf') , dtype=tf.floataa))) , dtype=tf.intaa , ) tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-12) tf.debugging.assert_equal(lowercase_ , lowercase_) @require_tf class __lowercase ( unittest.TestCase , lowerCamelCase__ ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): __UpperCAmelCase = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def _a ( self) -> Optional[Any]: # TF-only test: tf.saved_model export __snake_case = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2') __snake_case = 2 __snake_case = 2 class __lowercase ( tf.Module ): def __init__( self , lowercase_) -> List[str]: super(lowercase_ , self).__init__() __snake_case = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids'), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask'), ) , jit_compile=lowercase_ , ) def _a ( self , lowercase_ , lowercase_) -> Optional[Any]: __snake_case = self.model.generate( input_ids=lowercase_ , attention_mask=lowercase_ , max_new_tokens=lowercase_ , return_dict_in_generate=lowercase_ , ) return {"sequences": outputs["sequences"]} __snake_case = [[2, 0], [1_0_2, 1_0_3]] __snake_case = [[1, 0], [1, 1]] __snake_case = DummyModel(model=lowercase_) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(lowercase_ , lowercase_ , signatures={'serving_default': dummy_model.serving}) __snake_case = tf.saved_model.load(lowercase_).signatures['serving_default'] for batch_size in range(1 , len(lowercase_) + 1): __snake_case = { 'input_ids': tf.constant(dummy_input_ids[:batch_size]), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size]), } __snake_case = serving_func(**lowercase_)['sequences'] __snake_case = test_model.generate(**lowercase_ , max_new_tokens=lowercase_) tf.debugging.assert_equal(lowercase_ , lowercase_) @slow def _a ( self) -> Any: # TF-only test: tf.saved_model export __snake_case = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2') __snake_case = 1 __snake_case = 2 class __lowercase ( tf.Module ): def __init__( self , lowercase_) -> Union[str, Any]: super(lowercase_ , self).__init__() __snake_case = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids'), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask'), ) , jit_compile=lowercase_ , ) def _a ( self , lowercase_ , lowercase_) -> Dict: __snake_case = self.model.generate( input_ids=lowercase_ , attention_mask=lowercase_ , max_new_tokens=lowercase_ , return_dict_in_generate=lowercase_ , ) return {"sequences": outputs["sequences"]} __snake_case = [[2], [1_0_2, 1_0_3]] __snake_case = [[1], [1, 1]] __snake_case = DummyModel(model=lowercase_) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(lowercase_ , lowercase_ , signatures={'serving_default': dummy_model.serving}) __snake_case = tf.saved_model.load(lowercase_).signatures['serving_default'] for input_row in range(len(lowercase_)): __snake_case = { 'input_ids': tf.constant([dummy_input_ids[input_row]]), 'attention_mask': tf.constant([dummy_attention_masks[input_row]]), } __snake_case = serving_func(**lowercase_)['sequences'] __snake_case = test_model.generate(**lowercase_ , max_new_tokens=lowercase_) tf.debugging.assert_equal(lowercase_ , lowercase_) @slow @require_tensorflow_text def _a ( self) -> Optional[int]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=lowercase_) class __lowercase ( tf.keras.layers.Layer ): def __init__( self) -> Dict: super().__init__() __snake_case = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(lowercase_ , 'spiece.model') , 'rb').read()) __snake_case = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5') def _a ( self , lowercase_ , *lowercase_ , **lowercase_) -> Optional[Any]: __snake_case = self.tokenizer.tokenize(lowercase_) __snake_case , __snake_case = text.pad_model_inputs( lowercase_ , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id) __snake_case = self.model.generate(input_ids=lowercase_ , attention_mask=lowercase_) return self.tokenizer.detokenize(lowercase_) __snake_case = CompleteSentenceTransformer() __snake_case = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs') __snake_case = complete_model(lowercase_) __snake_case = tf.keras.Model(lowercase_ , lowercase_) keras_model.save(lowercase_) def _a ( self) -> Any: # Has PT equivalent: this test relies on random sampling __snake_case = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 1_0, 'temperature': 0.7, } __snake_case = 1_4 __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2') __snake_case = 'Hello, my dog is cute and' __snake_case = tokenizer(lowercase_ , return_tensors='tf') __snake_case = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2') __snake_case = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0'): tf.random.set_seed(0) __snake_case = model.generate(**lowercase_ , eos_token_id=lowercase_ , **lowercase_) self.assertTrue(expectation == len(generated_tokens[0])) __snake_case = [6_3_8, 1_9_8] with tf.device(':/CPU:0'): tf.random.set_seed(0) __snake_case = model.generate(**lowercase_ , eos_token_id=lowercase_ , **lowercase_) self.assertTrue(expectation == len(generated_tokens[0])) def _a ( self) -> Union[str, Any]: # Has PT equivalent: ample use of framework-specific code __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart') __snake_case = 'Hugging Face is a technology company based in New York and Paris.' __snake_case = bart_tokenizer(lowercase_ , return_tensors='tf').input_ids __snake_case = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart') __snake_case = bart_model.generate(lowercase_).numpy() class __lowercase ( lowerCamelCase__ ): def _a ( self , lowercase_ , lowercase_=None , **lowercase_) -> Dict: return super().call(lowercase_ , **lowercase_) __snake_case = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart') __snake_case = bart_model.generate(lowercase_ , foo='bar').numpy() self.assertTrue(np.array_equal(lowercase_ , lowercase_)) class __lowercase ( bart_model.model.encoder.__class__ ): def _a ( self , lowercase_ , **lowercase_) -> Optional[Any]: return super().call(lowercase_ , **lowercase_) __snake_case = FakeEncoder(bart_model.config , bart_model.model.shared) __snake_case = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __snake_case = bart_model.generate(lowercase_).numpy() with self.assertRaises(lowercase_): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(lowercase_ , foo='bar')
676
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( snake_case__ : Dataset , snake_case__ : Dict[str, str] ) -> Optional[Any]: '''simple docstring''' __snake_case = args.log_outputs __snake_case = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric __snake_case = load_metric('wer' ) __snake_case = load_metric('cer' ) # compute metrics __snake_case = wer.compute(references=result['target'] , predictions=result['prediction'] ) __snake_case = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results __snake_case = f"WER: {wer_result}\nCER: {cer_result}" print(snake_case__ ) with open(f"{dataset_id}_eval_results.txt" , 'w' ) as f: f.write(snake_case__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case = f"log_{dataset_id}_predictions.txt" __snake_case = f"log_{dataset_id}_targets.txt" with open(snake_case__ , 'w' ) as p, open(snake_case__ , 'w' ) as t: # mapping function to write output def write_to_file(snake_case__ : Union[str, Any] , snake_case__ : Tuple ): p.write(f"{i}" + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f"{i}" + '\n' ) t.write(batch['target'] + '\n' ) result.map(snake_case__ , with_indices=snake_case__ ) def A ( snake_case__ : str ) -> str: '''simple docstring''' __snake_case = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case = re.sub(snake_case__ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: __snake_case = ' '.join(text.split(snake_case__ ) ) return text def A ( snake_case__ : int ) -> Optional[int]: '''simple docstring''' # load dataset __snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case = feature_extractor.sampling_rate # resample audio __snake_case = dataset.cast_column('audio' , Audio(sampling_rate=snake_case__ ) ) # load eval pipeline if args.device is None: __snake_case = 0 if torch.cuda.is_available() else -1 __snake_case = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case__ : Optional[Any] ): __snake_case = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case = prediction['text'] __snake_case = normalize_text(batch['sentence'] ) return batch # run inference on all examples __snake_case = dataset.map(snake_case__ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case__ , snake_case__ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) UpperCAmelCase__ : str = parser.parse_args() main(args)
676
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __SCREAMING_SNAKE_CASE ( unittest.TestCase , lowercase): def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = load_tool("text-classification" ) self.tool.setup() _UpperCAmelCase = load_tool("text-classification" , remote=__UpperCamelCase ) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def UpperCAmelCase__ ( self : Optional[int] ): _UpperCAmelCase = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" )
684
from __future__ import annotations from collections import namedtuple def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> tuple: _UpperCAmelCase = namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
684
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() # fmt: off _SCREAMING_SNAKE_CASE =['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on _SCREAMING_SNAKE_CASE =dict(zip(_a , range(len(_a ) ) ) ) _SCREAMING_SNAKE_CASE =['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] _SCREAMING_SNAKE_CASE ={'''unk_token''': '''<unk>'''} _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_a ) ) _SCREAMING_SNAKE_CASE ={ '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __UpperCamelCase ( self : Union[str, Any] , **_a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : Tuple , **_a : List[Any] ) -> List[Any]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : str , **_a : Union[str, Any] ) -> Tuple: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE =[Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=_a , image_processor=_a ) processor_slow.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) _SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=_a , image_processor=_a ) processor_fast.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _a ) self.assertIsInstance(processor_fast.tokenizer , _a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _a ) self.assertIsInstance(processor_fast.image_processor , _a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _SCREAMING_SNAKE_CASE =self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _SCREAMING_SNAKE_CASE =CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =image_processor(_a , return_tensors='''np''' ) _SCREAMING_SNAKE_CASE =processor(images=_a , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''lower newer''' _SCREAMING_SNAKE_CASE =processor(text=_a ) _SCREAMING_SNAKE_CASE =tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''lower newer''' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE =processor.batch_decode(_a ) _SCREAMING_SNAKE_CASE =tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =CLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''lower newer''' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
191
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available snake_case_ : Optional[Any] = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys snake_case_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
191
1
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A ( UpperCAmelCase_ ): def __init__(self : Tuple , *__UpperCAmelCase : int , __UpperCAmelCase : Any=None , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase__ = eval_examples UpperCAmelCase__ = post_process_function def lowercase_ (self : Optional[int] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : str = "eval" ) -> Any: """simple docstring""" UpperCAmelCase__ = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase__ = self.get_eval_dataloader(__UpperCAmelCase ) UpperCAmelCase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase__ = self.compute_metrics UpperCAmelCase__ = None UpperCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase__ = time.time() try: UpperCAmelCase__ = eval_loop( __UpperCAmelCase , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__UpperCAmelCase , metric_key_prefix=__UpperCAmelCase , ) finally: UpperCAmelCase__ = compute_metrics UpperCAmelCase__ = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __UpperCAmelCase , __UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase__ = self.post_process_function(__UpperCAmelCase , __UpperCAmelCase , output.predictions ) UpperCAmelCase__ = self.compute_metrics(__UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): UpperCAmelCase__ = metrics.pop(__UpperCAmelCase ) metrics.update(output.metrics ) else: UpperCAmelCase__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , __UpperCAmelCase ) return metrics def lowercase_ (self : int , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : str=None , __UpperCAmelCase : str = "test" ) -> str: """simple docstring""" UpperCAmelCase__ = self.get_test_dataloader(__UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase__ = self.compute_metrics UpperCAmelCase__ = None UpperCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase__ = time.time() try: UpperCAmelCase__ = eval_loop( __UpperCAmelCase , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__UpperCAmelCase , metric_key_prefix=__UpperCAmelCase , ) finally: UpperCAmelCase__ = compute_metrics UpperCAmelCase__ = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __UpperCAmelCase , __UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase__ = self.post_process_function(__UpperCAmelCase , __UpperCAmelCase , output.predictions , "predict" ) UpperCAmelCase__ = self.compute_metrics(__UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): UpperCAmelCase__ = metrics.pop(__UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__UpperCAmelCase )
486
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
486
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase__ : Optional[int] = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowercase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
43
'''simple docstring''' import collections import os import re from pathlib import Path lowercase__ : List[Any] = "src/transformers" # Matches is_xxx_available() lowercase__ : Optional[Any] = re.compile(R"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} lowercase__ : Any = re.compile(R"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowercase__ : Union[str, Any] = re.compile(R"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available lowercase__ : Optional[int] = re.compile(R"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") lowercase__ : List[str] = re.compile(R"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowercase__ : Any = re.compile(R"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", lowercase__ : List[Any] = re.compile(R"^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], lowercase__ : Optional[Any] = re.compile(R"^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo lowercase__ : Union[str, Any] = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: lowercase__ : int = re.compile(R"^\s*try:") # Catches a line with else: lowercase__ : Any = re.compile(R"^\s*else:") def __lowerCamelCase ( _UpperCamelCase : Optional[Any] ): '''simple docstring''' if _re_test_backend.search(_UpperCamelCase ) is None: return None UpperCAmelCase_ = [b[0] for b in _re_backend.findall(_UpperCamelCase )] backends.sort() return "_and_".join(_UpperCamelCase ) def __lowerCamelCase ( _UpperCamelCase : int ): '''simple docstring''' with open(_UpperCamelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = 0 while line_index < len(_UpperCamelCase ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_UpperCamelCase ): return None # First grab the objects without a specific backend in _import_structure UpperCAmelCase_ = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: UpperCAmelCase_ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_UpperCamelCase ): UpperCAmelCase_ = _re_one_line_import_struct.search(_UpperCamelCase ).groups()[0] UpperCAmelCase_ = re.findall(R'''\[([^\]]+)\]''' , _UpperCamelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue UpperCAmelCase_ = _re_import_struct_key_value.search(_UpperCamelCase ) if single_line_import_search is not None: UpperCAmelCase_ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_UpperCamelCase ) > 0] objects.extend(_UpperCamelCase ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 UpperCAmelCase_ = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCAmelCase_ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): UpperCAmelCase_ = lines[line_index] if _re_import_struct_add_one.search(_UpperCamelCase ) is not None: objects.append(_re_import_struct_add_one.search(_UpperCamelCase ).groups()[0] ) elif _re_import_struct_add_many.search(_UpperCamelCase ) is not None: UpperCAmelCase_ = _re_import_struct_add_many.search(_UpperCamelCase ).groups()[0].split(''', ''' ) UpperCAmelCase_ = [obj[1:-1] for obj in imports if len(_UpperCamelCase ) > 0] objects.extend(_UpperCamelCase ) elif _re_between_brackets.search(_UpperCamelCase ) is not None: UpperCAmelCase_ = _re_between_brackets.search(_UpperCamelCase ).groups()[0].split(''', ''' ) UpperCAmelCase_ = [obj[1:-1] for obj in imports if len(_UpperCamelCase ) > 0] objects.extend(_UpperCamelCase ) elif _re_quote_object.search(_UpperCamelCase ) is not None: objects.append(_re_quote_object.search(_UpperCamelCase ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 UpperCAmelCase_ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCAmelCase_ = [] while ( line_index < len(_UpperCamelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): UpperCAmelCase_ = lines[line_index] UpperCAmelCase_ = _re_import.search(_UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCAmelCase_ = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_UpperCamelCase ): # If the line is an if is_backend_available, we grab all objects associated. UpperCAmelCase_ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCAmelCase_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCAmelCase_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): UpperCAmelCase_ = lines[line_index] UpperCAmelCase_ = _re_import.search(_UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 UpperCAmelCase_ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : Optional[Any] ): '''simple docstring''' def find_duplicates(_UpperCamelCase : Tuple ): return [k for k, v in collections.Counter(_UpperCamelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCAmelCase_ = [] for key in import_dict_objects.keys(): UpperCAmelCase_ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) UpperCAmelCase_ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCAmelCase_ = '''base imports''' if key == '''none''' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def __lowerCamelCase ( ): '''simple docstring''' UpperCAmelCase_ = [] for root, _, files in os.walk(_UpperCamelCase ): if "__init__.py" in files: UpperCAmelCase_ = os.path.join(_UpperCamelCase , '''__init__.py''' ) UpperCAmelCase_ = parse_init(_UpperCamelCase ) if objects is not None: UpperCAmelCase_ = analyze_results(*_UpperCamelCase ) if len(_UpperCamelCase ) > 0: UpperCAmelCase_ = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('''\n'''.join(_UpperCamelCase ) ) if len(_UpperCamelCase ) > 0: raise ValueError('''\n\n'''.join(_UpperCamelCase ) ) def __lowerCamelCase ( ): '''simple docstring''' UpperCAmelCase_ = [] for path, directories, files in os.walk(_UpperCamelCase ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_UpperCamelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_UpperCamelCase ) / folder).glob('''*.py''' ) ) ) == 0: continue UpperCAmelCase_ = str((Path(_UpperCamelCase ) / folder).relative_to(_UpperCamelCase ) ) UpperCAmelCase_ = short_path.replace(os.path.sep , '''.''' ) submodules.append(_UpperCamelCase ) for fname in files: if fname == "__init__.py": continue UpperCAmelCase_ = str((Path(_UpperCamelCase ) / fname).relative_to(_UpperCamelCase ) ) UpperCAmelCase_ = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_UpperCamelCase ) return submodules lowercase__ : Union[str, Any] = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", "models.esm.openfold_utils", ] def __lowerCamelCase ( ): '''simple docstring''' from transformers.utils import direct_transformers_import UpperCAmelCase_ = direct_transformers_import(_UpperCamelCase ) UpperCAmelCase_ = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_UpperCamelCase , '''__init__.py''' ) , '''r''' ) as f: UpperCAmelCase_ = f.read() import_structure_keys.update(set(re.findall(R'''import_structure\[\"([^\"]*)\"\]''' , _UpperCamelCase ) ) ) UpperCAmelCase_ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_UpperCamelCase ) > 0: UpperCAmelCase_ = '''\n'''.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' F"""{list_of_modules}\n""" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
43
1
'''simple docstring''' import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def UpperCamelCase ( lowercase_ : List[str] , lowercase_ : Union[str, Any]=1_0 ) -> List[Any]: '''simple docstring''' lowercase =[] for _ in range(lowercase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : str=1_0 ) -> Dict: '''simple docstring''' lowercase =[] for step in range(lowercase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowercase =os.path.join(lowercase_ , '''schedule.bin''' ) torch.save(scheduler.state_dict() , lowercase_ ) lowercase =torch.load(lowercase_ ) scheduler.load_state_dict(lowercase_ ) return lrs @require_torch class __magic_name__ ( unittest.TestCase ): def _A( self , snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for a, b in zip(snake_case_ , snake_case_ ): self.assertAlmostEqual(snake_case_ , snake_case_ , delta=snake_case_ ) def _A( self ): lowercase =torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case_ ) lowercase =torch.tensor([0.4, 0.2, -0.5] ) lowercase =nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowercase =AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(1_00 ): lowercase =criterion(snake_case_ , snake_case_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def _A( self ): lowercase =torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case_ ) lowercase =torch.tensor([0.4, 0.2, -0.5] ) lowercase =nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowercase =Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=snake_case_ , weight_decay=0.0 , relative_step=snake_case_ , scale_parameter=snake_case_ , warmup_init=snake_case_ , ) for _ in range(10_00 ): lowercase =criterion(snake_case_ , snake_case_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class __magic_name__ ( unittest.TestCase ): UpperCamelCase__ = nn.Linear(50 , 50 ) if is_torch_available() else None UpperCamelCase__ = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCamelCase__ = 10 def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ): self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for a, b in zip(snake_case_ , snake_case_ ): self.assertAlmostEqual(snake_case_ , snake_case_ , delta=snake_case_ , msg=snake_case_ ) def _A( self ): lowercase ={'''num_warmup_steps''': 2, '''num_training_steps''': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowercase ={ get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): lowercase , lowercase =data lowercase =scheduler_func(self.optimizer , **snake_case_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) lowercase =unwrap_schedule(snake_case_ , self.num_steps ) self.assertListAlmostEqual( snake_case_ , snake_case_ , tol=1E-2 , msg=f'failed for {scheduler_func} in normal scheduler' , ) lowercase =scheduler_func(self.optimizer , **snake_case_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(snake_case_ ) # wrap to test picklability of the schedule lowercase =unwrap_and_save_reload_schedule(snake_case_ , self.num_steps ) self.assertListEqual(snake_case_ , snake_case_ , msg=f'failed for {scheduler_func} in save and reload' ) class __magic_name__ : def __init__( self , snake_case_ ): lowercase =fn def __call__( self , *snake_case_ , **snake_case_ ): return self.fn(*snake_case_ , **snake_case_ ) @classmethod def _A( self , snake_case_ ): lowercase =list(map(self , scheduler.lr_lambdas ) )
72
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Tuple = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCamelCase__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { """Salesforce/codegen-350M-nl""": """https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json""", """Salesforce/codegen-350M-multi""": """https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json""", """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json""", """Salesforce/codegen-2B-nl""": """https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json""", """Salesforce/codegen-2B-multi""": """https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json""", """Salesforce/codegen-2B-mono""": """https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json""", """Salesforce/codegen-6B-nl""": """https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json""", """Salesforce/codegen-6B-multi""": """https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json""", """Salesforce/codegen-6B-mono""": """https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json""", """Salesforce/codegen-16B-nl""": """https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json""", """Salesforce/codegen-16B-multi""": """https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json""", """Salesforce/codegen-16B-mono""": """https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json""", } class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : List[Any] = 'codegen' __lowerCAmelCase : Dict = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , SCREAMING_SNAKE_CASE_=5_04_00 , SCREAMING_SNAKE_CASE_=20_48 , SCREAMING_SNAKE_CASE_=20_48 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=28 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="gelu_new" , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=5_02_56 , SCREAMING_SNAKE_CASE_=5_02_56 , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Dict = vocab_size lowercase__ : List[str] = n_ctx lowercase__ : List[str] = n_positions lowercase__ : List[Any] = n_embd lowercase__ : Dict = n_layer lowercase__ : List[str] = n_head lowercase__ : List[str] = n_inner lowercase__ : int = rotary_dim lowercase__ : Dict = activation_function lowercase__ : Any = resid_pdrop lowercase__ : Tuple = embd_pdrop lowercase__ : int = attn_pdrop lowercase__ : Dict = layer_norm_epsilon lowercase__ : str = initializer_range lowercase__ : List[Any] = use_cache lowercase__ : Dict = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , tie_word_embeddings=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) class _snake_case ( UpperCAmelCase_ ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "default" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ , task=SCREAMING_SNAKE_CASE_ , patching_specs=SCREAMING_SNAKE_CASE_ , use_past=SCREAMING_SNAKE_CASE_) if not getattr(self._config , """pad_token_id""" , SCREAMING_SNAKE_CASE_): # TODO: how to do that better? lowercase__ : Optional[Any] = 0 @property def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}}) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction="""inputs""") lowercase__ : Union[str, Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: lowercase__ : str = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowercase__ ( self): '''simple docstring''' return self._config.n_layer @property def lowercase__ ( self): '''simple docstring''' return self._config.n_head def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , ): '''simple docstring''' lowercase__ : Any = super(SCREAMING_SNAKE_CASE_ , self).generate_dummy_inputs( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , seq_length=SCREAMING_SNAKE_CASE_ , is_pair=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_) # We need to order the input in the way they appears in the forward() lowercase__ : Dict = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""") else: import torch lowercase__ : Tuple = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowercase__ : int = seqlen + 2 lowercase__ : Optional[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase__ : Optional[int] = [ (torch.zeros(SCREAMING_SNAKE_CASE_), torch.zeros(SCREAMING_SNAKE_CASE_)) for _ in range(self.num_layers) ] lowercase__ : Optional[int] = common_inputs["""attention_mask"""] if self.use_past: lowercase__ : str = ordered_inputs["""attention_mask"""].dtype lowercase__ : int = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_)] , dim=1) return ordered_inputs @property def lowercase__ ( self): '''simple docstring''' return 13
700
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' if components is None: lowercase__ : List[str] = [] lowercase__ : Dict = list(SCREAMING_SNAKE_CASE_) def __len__( self): '''simple docstring''' return len(self.__components) def __str__( self): '''simple docstring''' return "(" + ",".join(map(SCREAMING_SNAKE_CASE_ , self.__components)) + ")" def __add__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Optional[Any] = len(self) if size == len(SCREAMING_SNAKE_CASE_): lowercase__ : List[str] = [self.__components[i] + other.component(SCREAMING_SNAKE_CASE_) for i in range(SCREAMING_SNAKE_CASE_)] return Vector(SCREAMING_SNAKE_CASE_) else: raise Exception("""must have the same size""") def __sub__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = len(self) if size == len(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = [self.__components[i] - other.component(SCREAMING_SNAKE_CASE_) for i in range(SCREAMING_SNAKE_CASE_)] return Vector(SCREAMING_SNAKE_CASE_) else: # error case raise Exception("""must have the same size""") @overload def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' ... @overload def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' ... def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , (float, int)): lowercase__ : Optional[int] = [c * other for c in self.__components] return Vector(SCREAMING_SNAKE_CASE_) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and len(self) == len(SCREAMING_SNAKE_CASE_): lowercase__ : Dict = len(self) lowercase__ : Optional[Any] = [self.__components[i] * other.component(SCREAMING_SNAKE_CASE_) for i in range(SCREAMING_SNAKE_CASE_)] return sum(SCREAMING_SNAKE_CASE_) else: # error case raise Exception("""invalid operand!""") def lowercase__ ( self): '''simple docstring''' return Vector(self.__components) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and -len(self.__components) <= i < len(self.__components): return self.__components[i] else: raise Exception("""index out of range""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' assert -len(self.__components) <= pos < len(self.__components) lowercase__ : List[Any] = value def lowercase__ ( self): '''simple docstring''' if len(self.__components) == 0: raise Exception("""Vector is empty""") lowercase__ : Union[str, Any] = [c**2 for c in self.__components] return math.sqrt(sum(SCREAMING_SNAKE_CASE_)) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False): '''simple docstring''' lowercase__ : Union[str, Any] = self * other lowercase__ : Optional[Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den)) else: return math.acos(num / den) def UpperCamelCase ( lowercase_ ) -> Vector: '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) return Vector([0] * dimension ) def UpperCamelCase ( lowercase_ , lowercase_ ) -> Vector: '''simple docstring''' assert isinstance(lowercase_ , lowercase_ ) and (isinstance(lowercase_ , lowercase_ )) lowercase__ : Union[str, Any] = [0] * dimension lowercase__ : Any = 1 return Vector(lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Vector: '''simple docstring''' assert ( isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) and (isinstance(lowercase_ , (int, float) )) ) return x * scalar + y def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Vector: '''simple docstring''' random.seed(lowercase_ ) lowercase__ : int = [random.randint(lowercase_ , lowercase_ ) for _ in range(lowercase_ )] return Vector(lowercase_ ) class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = matrix lowercase__ : Any = w lowercase__ : Any = h def __str__( self): '''simple docstring''' lowercase__ : str = """""" for i in range(self.__height): ans += "|" for j in range(self.__width): if j < self.__width - 1: ans += str(self.__matrix[i][j]) + "," else: ans += str(self.__matrix[i][j]) + "|\n" return ans def __add__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): lowercase__ : Tuple = [] for i in range(self.__height): lowercase__ : Tuple = [ self.__matrix[i][j] + other.component(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for j in range(self.__width) ] matrix.append(SCREAMING_SNAKE_CASE_) return Matrix(SCREAMING_SNAKE_CASE_ , self.__width , self.__height) else: raise Exception("""matrix must have the same dimension!""") def __sub__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): lowercase__ : Optional[int] = [] for i in range(self.__height): lowercase__ : List[str] = [ self.__matrix[i][j] - other.component(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) for j in range(self.__width) ] matrix.append(SCREAMING_SNAKE_CASE_) return Matrix(SCREAMING_SNAKE_CASE_ , self.__width , self.__height) else: raise Exception("""matrices must have the same dimension!""") @overload def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' ... @overload def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' ... def __mul__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): # matrix-vector if len(SCREAMING_SNAKE_CASE_) == self.__width: lowercase__ : List[Any] = zero_vector(self.__height) for i in range(self.__height): lowercase__ : Union[str, Any] = [ self.__matrix[i][j] * other.component(SCREAMING_SNAKE_CASE_) for j in range(self.__width) ] ans.change_component(SCREAMING_SNAKE_CASE_ , sum(SCREAMING_SNAKE_CASE_)) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""") elif isinstance(SCREAMING_SNAKE_CASE_ , (int, float)): # matrix-scalar lowercase__ : Tuple = [ [self.__matrix[i][j] * other for j in range(self.__width)] for i in range(self.__height) ] return Matrix(SCREAMING_SNAKE_CASE_ , self.__width , self.__height) return None def lowercase__ ( self): '''simple docstring''' return self.__height def lowercase__ ( self): '''simple docstring''' return self.__width def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: lowercase__ : Tuple = value else: raise Exception("""change_component: indices out of bounds""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""") lowercase__ : List[Any] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(SCREAMING_SNAKE_CASE_)): lowercase__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(SCREAMING_SNAKE_CASE_ , self.__width - 1 , self.__height - 1).determinant() def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""") if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else: raise Exception("""Indices out of bounds""") def lowercase__ ( self): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""") if self.__height < 1: raise Exception("""Matrix has no element""") elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: lowercase__ : Optional[int] = [ self.__matrix[0][y] * self.cofactor(0 , SCREAMING_SNAKE_CASE_) for y in range(self.__width) ] return sum(SCREAMING_SNAKE_CASE_) def UpperCamelCase ( lowercase_ ) -> Matrix: '''simple docstring''' lowercase__ : list[list[float]] = [[0] * n for _ in range(lowercase_ )] return Matrix(lowercase_ , lowercase_ , lowercase_ ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Matrix: '''simple docstring''' random.seed(lowercase_ ) lowercase__ : list[list[float]] = [ [random.randint(lowercase_ , lowercase_ ) for _ in range(lowercase_ )] for _ in range(lowercase_ ) ] return Matrix(lowercase_ , lowercase_ , lowercase_ )
495
0
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowercase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowercase : list[int] = [ord(letter) for letter in string.ascii_lowercase] lowercase : set[int] = {ord(char) for char in VALID_CHARS} lowercase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowerCAmelCase__ ( _a : Optional[Any] , _a : Any ): snake_case_ : str = "" snake_case_ : int snake_case_ : int snake_case_ : int for keychar, cipherchar in zip(cycle(_a ) , _a ): snake_case_ : Dict = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_a ) return decoded def lowerCAmelCase__ ( _a : Dict ): snake_case_ : list[str] = [] for key in product(_a , repeat=3 ): snake_case_ : int = try_key(_a , _a ) if encoded is not None: possibles.append(_a ) return possibles def lowerCAmelCase__ ( _a : int , _a : int ): return [possible for possible in possibles if common_word in possible.lower()] def lowerCAmelCase__ ( _a : Tuple = "p059_cipher.txt" ): snake_case_ : list[int] snake_case_ : list[str] snake_case_ : str snake_case_ : str snake_case_ : str = Path(_a ).parent.joinpath(_a ).read_text(encoding="utf-8" ) snake_case_ : str = [int(_a ) for number in data.strip().split("," )] snake_case_ : List[str] = filter_valid_chars(_a ) for common_word in COMMON_WORDS: snake_case_ : Any = filter_common_word(_a , _a ) if len(_a ) == 1: break snake_case_ : List[str] = possibles[0] return sum(ord(_a ) for char in decoded_text ) if __name__ == "__main__": print(F"""{solution() = }""")
568
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCamelCase__ ( lowercase__ ): """simple docstring""" def A_ ( self , snake_case ): '''simple docstring''' with open(snake_case , encoding="utf-8" ) as input_file: UpperCAmelCase : Dict = re.compile(r"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) UpperCAmelCase : Tuple = input_file.read() UpperCAmelCase : List[Any] = regexp.search(snake_case ) return match def A_ ( self , snake_case ): '''simple docstring''' with open(snake_case , encoding="utf-8" ) as input_file: UpperCAmelCase : List[str] = re.compile(r"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) UpperCAmelCase : List[Any] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase : str = regexp.finditer(snake_case ) UpperCAmelCase : Union[str, Any] = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = Path("./datasets" ) UpperCAmelCase : Optional[int] = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(snake_case ) ): raise AssertionError(f"open(...) must use utf-8 encoding in {dataset}" ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = Path("./datasets" ) UpperCAmelCase : Any = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(snake_case ) ): raise AssertionError(f"print statement found in {dataset}. Use datasets.logger/logging instead." )
679
0
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( snake_case , snake_case , snake_case )-> Optional[int]: # Construct model if gpta_config_file == "": _lowerCamelCase = GPTaConfig() else: _lowerCamelCase = GPTaConfig.from_json_file(snake_case ) _lowerCamelCase = GPTaModel(snake_case ) # Load weights from numpy load_tf_weights_in_gpta(snake_case , snake_case , snake_case ) # Save pytorch-model _lowerCamelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME _lowerCamelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , snake_case ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) A_ : Union[str, Any] =parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
717
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A_ : Tuple =imread(R"""digital_image_processing/image_data/lena_small.jpg""") A_ : Union[str, Any] =cvtColor(img, COLOR_BGR2GRAY) def SCREAMING_SNAKE_CASE_ ( )-> Union[str, Any]: _lowerCamelCase = cn.convert_to_negative(snake_case ) # assert negative_img array for at least one True assert negative_img.any() def SCREAMING_SNAKE_CASE_ ( )-> Any: with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(snake_case , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def SCREAMING_SNAKE_CASE_ ( )-> int: _lowerCamelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def SCREAMING_SNAKE_CASE_ ( )-> Optional[int]: _lowerCamelCase = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() _lowerCamelCase = canny.canny(snake_case ) # assert canny array for at least one True assert canny_array.any() def SCREAMING_SNAKE_CASE_ ( )-> Optional[int]: assert gg.gaussian_filter(snake_case , 5 , sigma=0.9 ).all() def SCREAMING_SNAKE_CASE_ ( )-> str: # laplace diagonals _lowerCamelCase = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) _lowerCamelCase = conv.img_convolve(snake_case , snake_case ).astype(snake_case ) assert res.any() def SCREAMING_SNAKE_CASE_ ( )-> Tuple: assert med.median_filter(snake_case , 3 ).any() def SCREAMING_SNAKE_CASE_ ( )-> Dict: _lowerCamelCase , _lowerCamelCase = sob.sobel_filter(snake_case ) assert grad.any() and theta.any() def SCREAMING_SNAKE_CASE_ ( )-> Any: _lowerCamelCase = sp.make_sepia(snake_case , 20 ) assert sepia.all() def SCREAMING_SNAKE_CASE_ ( snake_case : str = "digital_image_processing/image_data/lena_small.jpg" )-> List[Any]: _lowerCamelCase = bs.Burkes(imread(snake_case , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def SCREAMING_SNAKE_CASE_ ( snake_case : str = "digital_image_processing/image_data/lena_small.jpg" , )-> List[str]: _lowerCamelCase = rs.NearestNeighbour(imread(snake_case , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def SCREAMING_SNAKE_CASE_ ( )-> List[Any]: _lowerCamelCase = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. _lowerCamelCase = imread(snake_case , 0 ) # Test for get_neighbors_pixel function() return not None _lowerCamelCase = 0 _lowerCamelCase = 0 _lowerCamelCase = image[x_coordinate][y_coordinate] _lowerCamelCase = lbp.get_neighbors_pixel( snake_case , snake_case , snake_case , snake_case ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _lowerCamelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _lowerCamelCase = lbp.local_binary_value(snake_case , snake_case , snake_case ) assert lbp_image.any()
222
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class _lowerCamelCase ( _a ): """simple docstring""" UpperCAmelCase_ : List[Any] ="mra" def __init__( self , UpperCAmelCase=50265 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=1 , UpperCAmelCase=0.02 , UpperCAmelCase=1E-5 , UpperCAmelCase="absolute" , UpperCAmelCase=4 , UpperCAmelCase="full" , UpperCAmelCase=0 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) __snake_case : Tuple = vocab_size __snake_case : Any = max_position_embeddings __snake_case : Optional[int] = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : str = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : List[Any] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Dict = initializer_range __snake_case : Any = type_vocab_size __snake_case : Optional[Any] = layer_norm_eps __snake_case : int = position_embedding_type __snake_case : Tuple = block_per_row __snake_case : Union[str, Any] = approx_mode __snake_case : Dict = initial_prior_first_n_blocks __snake_case : List[Any] = initial_prior_diagonal_n_blocks
243
'''simple docstring''' import qiskit def snake_case_ (UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' _a = qiskit.Aer.get_backend('''aer_simulator''' ) _a = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator _a = qiskit.execute(UpperCamelCase , UpperCamelCase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(UpperCamelCase ) if __name__ == "__main__": _snake_case : Tuple = half_adder(1, 1) print(F'''Half Adder Output Qubit Counts: {counts}''')
22
0
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """T5Config""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : jnp.array , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> jnp.ndarray: __lowercase = jnp.zeros_like(SCREAMING_SNAKE_CASE ) __lowercase = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) __lowercase = shifted_input_ids.at[:, 0].set(SCREAMING_SNAKE_CASE ) __lowercase = jnp.where(shifted_input_ids == -100 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return shifted_input_ids class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = "mt5" lowerCAmelCase__ : List[str] = MTaConfig class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = "mt5" lowerCAmelCase__ : Optional[Any] = MTaConfig class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Dict = "mt5" lowerCAmelCase__ : List[Any] = MTaConfig
700
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = version.parse("1.12" ) @property def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : Any ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : Dict ) -> int: """simple docstring""" return 12 def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
688
0
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[str] = TypeVar('''DatasetType''', Dataset, IterableDataset) def UpperCAmelCase_ ( _A , _A = None , _A = None , _A = None , _A = None , _A = "first_exhausted" , ): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(_A ): if not isinstance(_A , (Dataset, IterableDataset) ): if isinstance(_A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' '''is an empty dataset dictionary.''' ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(_A )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_A ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_A ).__name__}.''' ) if i == 0: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = ( (Dataset, IterableDataset) if isinstance(_A , _A ) else (IterableDataset, Dataset) ) elif not isinstance(_A , _A ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( _A , _A , _A , info=_A , split=_A , stopping_strategy=_A ) else: return _interleave_iterable_datasets( _A , _A , _A , info=_A , split=_A , stopping_strategy=_A ) def UpperCAmelCase_ ( _A , _A = None , _A = None , _A = 0 , ): '''simple docstring''' if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(_A ): if not isinstance(_A , (Dataset, IterableDataset) ): if isinstance(_A , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' '''is an empty dataset dictionary.''' ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(_A )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_A ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_A ).__name__}.''' ) if i == 0: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = ( (Dataset, IterableDataset) if isinstance(_A , _A ) else (IterableDataset, Dataset) ) elif not isinstance(_A , _A ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_A , info=_A , split=_A , axis=_A ) else: return _concatenate_iterable_datasets(_A , info=_A , split=_A , axis=_A )
493
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase__ : """simple docstring""" @staticmethod def lowercase_ ( *__lowerCamelCase : int , **__lowerCamelCase : List[Any] ) -> List[str]: pass def UpperCAmelCase_ ( _A ): '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _SCREAMING_SNAKE_CASE : Optional[Any] = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" a = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def lowercase_ ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = pipeline( '''document-question-answering''' , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = INVOICE_URL SCREAMING_SNAKE_CASE__ = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , '''''' ) ) ) SCREAMING_SNAKE_CASE__ = '''What is the placebo?''' SCREAMING_SNAKE_CASE__ = [ { '''image''': load_image(__lowerCamelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def lowercase_ ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = dqa_pipeline(__lowerCamelCase , top_k=2 ) self.assertEqual( __lowerCamelCase , [ [ {'''score''': ANY(__lowerCamelCase ), '''answer''': ANY(__lowerCamelCase ), '''start''': ANY(__lowerCamelCase ), '''end''': ANY(__lowerCamelCase )}, {'''score''': ANY(__lowerCamelCase ), '''answer''': ANY(__lowerCamelCase ), '''start''': ANY(__lowerCamelCase ), '''end''': ANY(__lowerCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def lowercase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) SCREAMING_SNAKE_CASE__ = INVOICE_URL SCREAMING_SNAKE_CASE__ = '''How many cats are there?''' SCREAMING_SNAKE_CASE__ = [ {'''score''': 0.0001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] SCREAMING_SNAKE_CASE__ = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE__ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' SCREAMING_SNAKE_CASE__ = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE__ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def lowercase_ ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) SCREAMING_SNAKE_CASE__ = INVOICE_URL SCREAMING_SNAKE_CASE__ = '''What is the invoice number?''' SCREAMING_SNAKE_CASE__ = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def lowercase_ ( self : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE__ = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) SCREAMING_SNAKE_CASE__ = INVOICE_URL SCREAMING_SNAKE_CASE__ = '''What is the invoice number?''' SCREAMING_SNAKE_CASE__ = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def lowercase_ ( self : Dict ) -> int: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=__lowerCamelCase , revision='''3dc6de3''' , ) SCREAMING_SNAKE_CASE__ = INVOICE_URL SCREAMING_SNAKE_CASE__ = '''What is the invoice number?''' SCREAMING_SNAKE_CASE__ = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) SCREAMING_SNAKE_CASE__ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) SCREAMING_SNAKE_CASE__ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) SCREAMING_SNAKE_CASE__ = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , '''''' ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE__ = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def lowercase_ ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=__lowerCamelCase , revision='''3dc6de3''' , max_seq_len=50 , ) SCREAMING_SNAKE_CASE__ = INVOICE_URL SCREAMING_SNAKE_CASE__ = '''What is the invoice number?''' SCREAMING_SNAKE_CASE__ = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) SCREAMING_SNAKE_CASE__ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) SCREAMING_SNAKE_CASE__ = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , '''''' ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE__ = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def lowercase_ ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) SCREAMING_SNAKE_CASE__ = INVOICE_URL SCREAMING_SNAKE_CASE__ = '''What is the invoice number?''' SCREAMING_SNAKE_CASE__ = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def lowercase_ ( self : Union[str, Any] ) -> Optional[Any]: pass
493
1
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] ) -> int: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: SCREAMING_SNAKE_CASE_ : str = dataset_size < in_memory_max_size else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[Any] = is_small_dataset(lowerCamelCase_ ) assert result == expected
700
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCamelCase__ : Dict = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) UpperCamelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'https://pypi.org/pypi/diffusers/json' SCREAMING_SNAKE_CASE_ : Optional[int] = json.loads(request.urlopen(lowerCamelCase_ ).read() )['releases'].keys() return sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : version.Version(lowerCamelCase_ ) ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Path(lowerCamelCase_ ) / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] ) -> Any: """simple docstring""" init_hf_modules() SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE_ : Tuple = re.findall('^\s*import\s+\.(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCamelCase_ ) ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = [module_file] SCREAMING_SNAKE_CASE_ : Tuple = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE_ : int = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ).parent SCREAMING_SNAKE_CASE_ : int = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE_ : Any = [F'{f}.py' for f in new_import_files] SCREAMING_SNAKE_CASE_ : Optional[int] = len(lowerCamelCase_ ) == 0 all_relative_imports.extend(lowerCamelCase_ ) return all_relative_imports def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE_ : List[str] = re.findall('^\s*import\s+(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE_ : List[str] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(set(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : List[str] = [] for imp in imports: try: importlib.import_module(lowerCamelCase_ ) except ImportError: missing_packages.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' F'{", ".join(lowerCamelCase_ )}. Run `pip install {" ".join(lowerCamelCase_ )}`' ) return get_relative_imports(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = module_path.replace(os.path.sep , '.' ) SCREAMING_SNAKE_CASE_ : Any = importlib.import_module(lowerCamelCase_ ) if class_name is None: return find_pipeline_class(lowerCamelCase_ ) return getattr(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE_ : List[Any] = dict(inspect.getmembers(lowerCamelCase_ , inspect.isclass ) ) SCREAMING_SNAKE_CASE_ : List[str] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCamelCase_ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) SCREAMING_SNAKE_CASE_ : Any = cls return pipeline_class def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if os.path.isfile(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = module_file_or_url SCREAMING_SNAKE_CASE_ : Dict = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: SCREAMING_SNAKE_CASE_ : List[str] = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE_ : Dict = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE_ : List[Any] = latest_version if latest_version[1:] in available_versions else 'main' logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: SCREAMING_SNAKE_CASE_ : int = F'v{revision}' elif revision == "main": SCREAMING_SNAKE_CASE_ : List[Any] = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE_ : Tuple = COMMUNITY_PIPELINES_URL.format(revision=lowerCamelCase_ , pipeline=lowerCamelCase_ ) try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_download( lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Tuple = 'git' SCREAMING_SNAKE_CASE_ : Dict = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE_ : List[str] = hf_hub_download( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE_ : Dict = check_imports(lowerCamelCase_ ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE_ : Union[str, Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(lowerCamelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCamelCase_ , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'{module_needed}.py' shutil.copy(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE_ : int = HfFolder.get_token() else: SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[Any] = model_info(lowerCamelCase_ , revision=lowerCamelCase_ , token=lowerCamelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE_ : Any = submodule_path / commit_hash SCREAMING_SNAKE_CASE_ : List[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCamelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCamelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCamelCase_ , F'{module_needed}.py' , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return os.path.join(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , **lowerCamelCase_ : Dict , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = get_cached_module_file( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return get_class_in_module(lowerCamelCase_ , final_module.replace('.py' , '' ) )
685
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _lowerCAmelCase : List[Any] = logging.get_logger(__name__) class A_ ( _a ): def __init__( self: int ,*__lowerCAmelCase: Tuple ,**__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." ,__lowerCAmelCase ,) super().__init__(*__lowerCAmelCase ,**__lowerCAmelCase )
46
class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self :List[Any]): """simple docstring""" _lowercase ={} def UpperCamelCase__ ( self :str): """simple docstring""" print(self.vertex) for i in self.vertex: print(snake_case, ' -> ', ' -> '.join([str(snake_case) for j in self.vertex[i]])) def UpperCamelCase__ ( self :Any, snake_case :int, snake_case :int): """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(snake_case) else: # else make a new vertex _lowercase =[to_vertex] def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" _lowercase =[False] * len(self.vertex) # call the recursive helper function for i in range(len(self.vertex)): if not visited[i]: self.dfs_recursive(snake_case, snake_case) def UpperCamelCase__ ( self :List[str], snake_case :int, snake_case :list): """simple docstring""" _lowercase =True print(snake_case, end=' ') # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(snake_case, snake_case) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
181
0
import argparse import copy def __A ( _A ): """simple docstring""" __a = {} with open(_A ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __a = [] _list.append([line.split()[1], line.split()[2]] ) __a = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __a = [] _list.append([line.split()[0], line.split()[2]] ) __a = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def __A ( _A , _A ): """simple docstring""" with open(_A ) as f: __a = f.read(1 ) __a = start_node __a = [] __a = start_node __a = 0 while visiting not in first_solution: __a = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_A ) and k[0] not in first_solution: __a = k[1] __a = k[0] first_solution.append(_A ) __a = distance_of_first_solution + int(_A ) __a = best_node first_solution.append(_A ) __a = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __a = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def __A ( _A , _A ): """simple docstring""" __a = [] for n in solution[1:-1]: __a = solution.index(_A ) for kn in solution[1:-1]: __a = solution.index(_A ) if n == kn: continue __a = copy.deepcopy(_A ) __a = kn __a = n __a = 0 for k in _tmp[:-1]: __a = _tmp[_tmp.index(_A ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __a = distance + int(i[1] ) _tmp.append(_A ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __a = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _A : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def __A ( _A , _A , _A , _A , _A ): """simple docstring""" __a = 1 __a = first_solution __a = [] __a = distance_of_first_solution __a = solution while count <= iters: __a = find_neighborhood(_A , _A ) __a = 0 __a = neighborhood[index_of_best_solution] __a = len(_A ) - 1 __a = False while not found: __a = 0 while i < len(_A ): if best_solution[i] != solution[i]: __a = best_solution[i] __a = solution[i] break __a = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __a = True __a = best_solution[:-1] __a = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __a = cost __a = solution else: __a = index_of_best_solution + 1 __a = neighborhood[index_of_best_solution] if len(_A ) >= size: tabu_list.pop(0 ) __a = count + 1 return best_solution_ever, best_cost def __A ( _A=None ): """simple docstring""" __a = generate_neighbours(args.File ) __a , __a = generate_first_solution( args.File , _A ) __a , __a = tabu_search( _A , _A , _A , args.Iterations , args.Size , ) print(f"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
702
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint SCREAMING_SNAKE_CASE : str = { """169M""": 12, """430M""": 24, """1B5""": 24, """3B""": 32, """7B""": 32, """14B""": 40, } SCREAMING_SNAKE_CASE : Dict = { """169M""": 768, """430M""": 1024, """1B5""": 2048, """3B""": 2560, """7B""": 4096, """14B""": 5120, } def __A ( _A ): """simple docstring""" __a = list(state_dict.keys() ) for name in state_dict_keys: __a = state_dict.pop(_A ) # emb -> embedding if name.startswith("emb." ): __a = name.replace("emb." , "embeddings." ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("blocks.0.ln0" ): __a = name.replace("blocks.0.ln0" , "blocks.0.pre_ln" ) # att -> attention __a = re.sub(r"blocks\.(\d+)\.att" , r"blocks.\1.attention" , _A ) # ffn -> feed_forward __a = re.sub(r"blocks\.(\d+)\.ffn" , r"blocks.\1.feed_forward" , _A ) # time_mix_k -> time_mix_key and reshape if name.endswith(".time_mix_k" ): __a = name.replace(".time_mix_k" , ".time_mix_key" ) # time_mix_v -> time_mix_value and reshape if name.endswith(".time_mix_v" ): __a = name.replace(".time_mix_v" , ".time_mix_value" ) # time_mix_r -> time_mix_key and reshape if name.endswith(".time_mix_r" ): __a = name.replace(".time_mix_r" , ".time_mix_receptance" ) if name != "head.weight": __a = "rwkv." + name __a = weight return state_dict def __A ( _A , _A , _A , _A=None , _A=None , _A=False , _A=None ): """simple docstring""" if tokenizer_file is None: print("No `--tokenizer_file` provided, we will use the default tokenizer." ) __a = 5_0277 __a = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b" ) else: __a = PreTrainedTokenizerFast(tokenizer_file=_A ) __a = len(_A ) tokenizer.save_pretrained(_A ) # 2. Build the config __a = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: __a = candidate break if size is None: raise ValueError("Could not infer the size, please provide it with the `--size` argument." ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) __a = RwkvConfig( vocab_size=_A , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_A ) # 3. Download model file then convert state_dict __a = hf_hub_download(_A , _A ) __a = torch.load(_A , map_location="cpu" ) __a = convert_state_dict(_A ) # 4. Split in shards and save __a , __a = shard_checkpoint(_A ) for shard_file, shard in shards.items(): torch.save(_A , os.path.join(_A , _A ) ) if index is not None: __a = os.path.join(_A , _A ) # Save the index as well with open(_A , "w" , encoding="utf-8" ) as f: __a = json.dumps(_A , indent=2 , sort_keys=_A ) + "\n" f.write(_A ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( "Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model." ) __a = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: __a = torch.load(os.path.join(_A , _A ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_A , _A ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("Please provide a `model_name` to push the model to the Hub." ) __a = AutoModelForCausalLM.from_pretrained(_A ) model.push_to_hub(_A , max_shard_size="2GB" ) tokenizer.push_to_hub(_A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
525
0
import argparse import hashlib # hashlib is only used inside the Test class import struct class _SCREAMING_SNAKE_CASE : def __init__( self : Tuple , snake_case_ : Dict ): """simple docstring""" A : Union[str, Any] = data A : Optional[Any] = [0X67_452_301, 0Xef_cda_b89, 0X98_bad_cfe, 0X10_325_476, 0Xc3_d2e_1f0] @staticmethod def _UpperCAmelCase ( snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] ): """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0Xff_fff_fff def _UpperCAmelCase ( self : Tuple ): """simple docstring""" A : List[str] = b'''\x80''' + b'''\x00''' * (63 - (len(self.data ) + 8) % 64) A : Any = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _UpperCAmelCase ( self : Any , snake_case_ : List[str] ): """simple docstring""" A : List[str] = list(struct.unpack('''>16L''' , snake_case_ ) ) + [0] * 64 for i in range(16 , 80 ): A : Tuple = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _UpperCAmelCase ( self : int ): """simple docstring""" A : List[Any] = self.padding() A : str = self.split_blocks() for block in self.blocks: A : Any = self.expand_block(snake_case_ ) A , A , A , A , A : Tuple = self.h for i in range(0 , 80 ): if 0 <= i < 20: A : Dict = (b & c) | ((~b) & d) A : List[str] = 0X5a_827_999 elif 20 <= i < 40: A : Dict = b ^ c ^ d A : Any = 0X6e_d9e_ba1 elif 40 <= i < 60: A : Tuple = (b & c) | (b & d) | (c & d) A : str = 0X8f_1bb_cdc elif 60 <= i < 80: A : Union[str, Any] = b ^ c ^ d A : List[str] = 0Xca_62c_1d6 A , A , A , A , A : Any = ( self.rotate(snake_case_ , 5 ) + f + e + k + expanded_block[i] & 0Xff_fff_fff, a, self.rotate(snake_case_ , 30 ), c, d, ) A : Optional[int] = ( self.h[0] + a & 0Xff_fff_fff, self.h[1] + b & 0Xff_fff_fff, self.h[2] + c & 0Xff_fff_fff, self.h[3] + d & 0Xff_fff_fff, self.h[4] + e & 0Xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def _lowerCamelCase ( ): '''simple docstring''' A : Union[str, Any] = B'''Test String''' assert SHAaHash(lowerCamelCase_ ).final_hash() == hashlib.shaa(lowerCamelCase_ ).hexdigest() # noqa: S324 def _lowerCamelCase ( ): '''simple docstring''' A : Union[str, Any] = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) A : List[str] = parser.parse_args() A : List[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: A : Optional[int] = f.read() else: A : Union[str, Any] = bytes(lowerCamelCase_ , '''utf-8''' ) print(SHAaHash(lowerCamelCase_ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
256
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCamelCase_ = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( snake_case ): lowerCamelCase_ = 'upernet' def __init__( self : Optional[int] , snake_case_ : Dict=None , snake_case_ : Any=512 , snake_case_ : str=0.02 , snake_case_ : Optional[int]=[1, 2, 3, 6] , snake_case_ : Union[str, Any]=True , snake_case_ : Optional[Any]=0.4 , snake_case_ : Dict=384 , snake_case_ : List[Any]=256 , snake_case_ : str=1 , snake_case_ : Dict=False , snake_case_ : str=255 , **snake_case_ : Optional[Any] , ): """simple docstring""" super().__init__(**snake_case_ ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A : List[str] = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(snake_case_ , snake_case_ ): A : Union[str, Any] = backbone_config.get('''model_type''' ) A : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] A : str = config_class.from_dict(snake_case_ ) A : List[str] = backbone_config A : str = hidden_size A : Any = initializer_range A : str = pool_scales A : List[str] = use_auxiliary_head A : Optional[Any] = auxiliary_loss_weight A : Tuple = auxiliary_in_channels A : Optional[Any] = auxiliary_channels A : int = auxiliary_num_convs A : Any = auxiliary_concat_input A : Union[str, Any] = loss_ignore_index def _UpperCAmelCase ( self : str ): """simple docstring""" A : Optional[Any] = copy.deepcopy(self.__dict__ ) A : str = self.backbone_config.to_dict() A : List[str] = self.__class__.model_type return output
256
1
"""simple docstring""" from collections import Counter from timeit import timeit def lowerCAmelCase_( lowercase_ : str = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def lowerCAmelCase_( lowercase_ : str = "" ) -> bool: if len(lowercase_ ) == 0: return True _lowerCamelCase = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string _lowerCamelCase = {} for character in lower_case_input_str: _lowerCamelCase = character_freq_dict.get(lowercase_ , 0 ) + 1 _lowerCamelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def lowerCAmelCase_( lowercase_ : str = "" ) -> None: print('''\nFor string = ''' , lowercase_ , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(lowercase_ ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(lowercase_ ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Tuple = input( '''Enter string to determine if it can be rearranged as a palindrome or not: ''' ).strip() benchmark(check_str) __SCREAMING_SNAKE_CASE : int = can_string_be_rearranged_as_palindrome_counter(check_str) print(F"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
623
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : Optional[Any] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
623
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = tempfile.mkdtemp() lowerCamelCase : int = BlipImageProcessor() lowerCamelCase : Tuple = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) lowerCamelCase : int = BlipaProcessor(__A , __A ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self , **__A ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__A ).tokenizer def _snake_case ( self , **__A ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__A ).image_processor def _snake_case ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase : Optional[int] = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase : Any = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCamelCase : str = self.get_image_processor(do_normalize=__A , padding_value=1.0 ) lowerCamelCase : Union[str, Any] = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = self.get_image_processor() lowerCamelCase : str = self.get_tokenizer() lowerCamelCase : Dict = BlipaProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : str = self.prepare_image_inputs() lowerCamelCase : List[str] = image_processor(__A , return_tensors="np" ) lowerCamelCase : List[Any] = processor(images=__A , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Tuple = self.get_image_processor() lowerCamelCase : int = self.get_tokenizer() lowerCamelCase : Tuple = BlipaProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : List[Any] = "lower newer" lowerCamelCase : Optional[Any] = processor(text=__A ) lowerCamelCase : str = tokenizer(__A , return_token_type_ids=__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = self.get_image_processor() lowerCamelCase : int = self.get_tokenizer() lowerCamelCase : Optional[int] = BlipaProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Optional[int] = "lower newer" lowerCamelCase : Dict = self.prepare_image_inputs() lowerCamelCase : List[str] = processor(text=__A , images=__A ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.get_image_processor() lowerCamelCase : str = self.get_tokenizer() lowerCamelCase : Optional[Any] = BlipaProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase : List[Any] = processor.batch_decode(__A ) lowerCamelCase : Tuple = tokenizer.batch_decode(__A ) self.assertListEqual(__A , __A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.get_image_processor() lowerCamelCase : str = self.get_tokenizer() lowerCamelCase : Dict = BlipaProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Optional[Any] = "lower newer" lowerCamelCase : Optional[int] = self.prepare_image_inputs() lowerCamelCase : Dict = processor(text=__A , images=__A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
340
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Tuple = ["image_processor", "tokenizer"] __A : Any = "ViTImageProcessor" __A : Dict = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __A=None , __A=None , **__A ): """simple docstring""" lowerCamelCase : str = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __A , ) lowerCamelCase : Optional[Any] = kwargs.pop("feature_extractor" ) lowerCamelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , __A=None , **__A ): """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCamelCase : Any = self.tokenizer(__A , return_tensors=__A , **__A ) if visual_prompt is not None: lowerCamelCase : Optional[Any] = self.image_processor(__A , return_tensors=__A , **__A ) if images is not None: lowerCamelCase : Optional[int] = self.image_processor(__A , return_tensors=__A , **__A ) if visual_prompt is not None and images is not None: lowerCamelCase : Tuple = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCamelCase : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCamelCase : Optional[int] = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self , *__A , **__A ): """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self , *__A , **__A ): """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __A , ) return self.image_processor_class @property def _snake_case ( self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __A , ) return self.image_processor
340
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self , a__ ) -> Any: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): A = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(a__ ) def _UpperCAmelCase ( self ) -> Tuple: A = """sshleifer/tiny-gpt2""" A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) A = PyTorchBenchmark(a__ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: A = """sgugger/tiny-distilbert-classification""" A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , only_pretrain_model=a__ , ) A = PyTorchBenchmark(a__ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: A = """sshleifer/tiny-gpt2""" A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , torchscript=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) A = PyTorchBenchmark(a__ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _UpperCAmelCase ( self ) -> Tuple: A = """sshleifer/tiny-gpt2""" A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , fpaa=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) A = PyTorchBenchmark(a__ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> str: A = """sshleifer/tiny-gpt2""" A = AutoConfig.from_pretrained(a__ ) # set architectures equal to `None` A = None A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) A = PyTorchBenchmark(a__ , configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Dict: A = """sshleifer/tiny-gpt2""" A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) A = PyTorchBenchmark(a__ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def _UpperCAmelCase ( self ) -> Dict: A = """sshleifer/tiny-gpt2""" A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=a__ , multi_process=a__ , ) A = PyTorchBenchmark(a__ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> int: A = """sshleifer/tiny-gpt2""" A = AutoConfig.from_pretrained(a__ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) A = PyTorchBenchmark(a__ , configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[str]: A = """sshleifer/tinier_bart""" A = AutoConfig.from_pretrained(a__ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) A = PyTorchBenchmark(a__ , configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Dict: A = """sshleifer/tiny-gpt2""" A = AutoConfig.from_pretrained(a__ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) A = PyTorchBenchmark(a__ , configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Any: A = """sshleifer/tinier_bart""" A = AutoConfig.from_pretrained(a__ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) A = PyTorchBenchmark(a__ , configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Optional[int]: A = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , save_to_csv=a__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a__ , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(a__ , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(a__ , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(a__ , """train_time.csv""" ) , env_info_csv_file=os.path.join(a__ , """env.csv""" ) , multi_process=a__ , ) A = PyTorchBenchmark(a__ ) benchmark.run() self.assertTrue(Path(os.path.join(a__ , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(a__ , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(a__ , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(a__ , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(a__ , """env.csv""" ) ).exists() ) def _UpperCAmelCase ( self ) -> Optional[int]: A = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(a__ ): self.assertTrue(hasattr(a__ , """sequential""" ) ) self.assertTrue(hasattr(a__ , """cumulative""" ) ) self.assertTrue(hasattr(a__ , """current""" ) ) self.assertTrue(hasattr(a__ , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a__ , """log.txt""" ) , log_print=a__ , trace_memory_line_by_line=a__ , multi_process=a__ , ) A = PyTorchBenchmark(a__ ) A = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(a__ , """log.txt""" ) ).exists() )
546
def _lowerCAmelCase ( UpperCamelCase__: str ) -> str: """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
546
1
from typing import TYPE_CHECKING from ...utils import _LazyModule __lowercase : int = {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __lowercase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
36
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") __UpperCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : Optional[int] =field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : bool =field( default=a_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) lowerCamelCase : bool =field( default=a_ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) lowerCamelCase : Optional[int] =field( default=a_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCamelCase : Optional[int] =field( default=a_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) lowerCamelCase : Optional[int] =field( default=a_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : str =field( default=a_ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase : str =field( default=a_ , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) lowerCamelCase : Optional[str] =field( default=a_ , metadata={"help": "Train language if it is different from the evaluation language."} ) lowerCamelCase : Optional[str] =field( default=a_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] =field( default=a_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] =field( default=a_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase : Optional[bool] =field( default=a_ , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) lowerCamelCase : bool =field( default=a_ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase : str =field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase : bool =field( default=a_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCamelCase : bool =field( default=a_ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def snake_case_ () -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_xnli""" , __A ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowerCAmelCase : int = training_args.get_process_log_level() logger.setLevel(__A ) datasets.utils.logging.set_verbosity(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __lowerCAmelCase : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: __lowerCAmelCase : Union[str, Any] = load_dataset( """xnli""" , model_args.language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: __lowerCAmelCase : List[str] = load_dataset( """xnli""" , model_args.train_language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase : Dict = train_dataset.features["""label"""].names if training_args.do_eval: __lowerCAmelCase : Tuple = load_dataset( """xnli""" , model_args.language , split="""validation""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase : Optional[int] = eval_dataset.features["""label"""].names if training_args.do_predict: __lowerCAmelCase : List[Any] = load_dataset( """xnli""" , model_args.language , split="""test""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase : Optional[Any] = predict_dataset.features["""label"""].names # Labels __lowerCAmelCase : Optional[int] = len(__A ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__A , idalabel={str(__A ): label for i, label in enumerate(__A )} , labelaid={label: i for i, label in enumerate(__A )} , finetuning_task="""xnli""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase : Dict = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase : List[str] = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase : int = False def preprocess_function(__A : List[str] ): # Tokenize the texts return tokenizer( examples["""premise"""] , examples["""hypothesis"""] , padding=__A , max_length=data_args.max_seq_length , truncation=__A , ) if training_args.do_train: if data_args.max_train_samples is not None: __lowerCAmelCase : Union[str, Any] = min(len(__A ) , data_args.max_train_samples ) __lowerCAmelCase : List[str] = train_dataset.select(range(__A ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): __lowerCAmelCase : Dict = train_dataset.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on train dataset""" , ) # Log a few random samples from the training set: for index in random.sample(range(len(__A ) ) , 3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: __lowerCAmelCase : str = min(len(__A ) , data_args.max_eval_samples ) __lowerCAmelCase : Optional[int] = eval_dataset.select(range(__A ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): __lowerCAmelCase : List[Any] = eval_dataset.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on validation dataset""" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: __lowerCAmelCase : Dict = min(len(__A ) , data_args.max_predict_samples ) __lowerCAmelCase : Optional[int] = predict_dataset.select(range(__A ) ) with training_args.main_process_first(desc="""prediction dataset map pre-processing""" ): __lowerCAmelCase : Union[str, Any] = predict_dataset.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on prediction dataset""" , ) # Get the metric function __lowerCAmelCase : Optional[Any] = evaluate.load("""xnli""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A : EvalPrediction ): __lowerCAmelCase : Optional[int] = p.predictions[0] if isinstance(p.predictions , __A ) else p.predictions __lowerCAmelCase : Tuple = np.argmax(__A , axis=1 ) return metric.compute(predictions=__A , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase : Dict = default_data_collator elif training_args.fpaa: __lowerCAmelCase : Union[str, Any] = DataCollatorWithPadding(__A , pad_to_multiple_of=8 ) else: __lowerCAmelCase : Optional[int] = None # Initialize our Trainer __lowerCAmelCase : Optional[int] = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__A , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: __lowerCAmelCase : Optional[int] = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase : int = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase : Tuple = last_checkpoint __lowerCAmelCase : List[str] = trainer.train(resume_from_checkpoint=__A ) __lowerCAmelCase : int = train_result.metrics __lowerCAmelCase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A ) ) __lowerCAmelCase : Optional[int] = min(__A , len(__A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , __A ) trainer.save_metrics("""train""" , __A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase : List[str] = trainer.evaluate(eval_dataset=__A ) __lowerCAmelCase : List[str] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A ) __lowerCAmelCase : List[Any] = min(__A , len(__A ) ) trainer.log_metrics("""eval""" , __A ) trainer.save_metrics("""eval""" , __A ) # Prediction if training_args.do_predict: logger.info("""*** Predict ***""" ) __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Any = trainer.predict(__A , metric_key_prefix="""predict""" ) __lowerCAmelCase : List[Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__A ) ) __lowerCAmelCase : str = min(__A , len(__A ) ) trainer.log_metrics("""predict""" , __A ) trainer.save_metrics("""predict""" , __A ) __lowerCAmelCase : Any = np.argmax(__A , axis=1 ) __lowerCAmelCase : int = os.path.join(training_args.output_dir , """predictions.txt""" ) if trainer.is_world_process_zero(): with open(__A , """w""" ) as writer: writer.write("""index\tprediction\n""" ) for index, item in enumerate(__A ): __lowerCAmelCase : List[Any] = label_list[item] writer.write(f'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
651
0
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class _lowerCamelCase (lowerCamelCase ): def __lowerCamelCase ( self ): __snake_case = SMALL_MODEL_IDENTIFIER __snake_case = 'pt' __snake_case = 'tf' def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ ): __snake_case = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ ): __snake_case = TFAutoModel.from_pretrained(self.test_model , from_pt=SCREAMING_SNAKE_CASE_ ) model_tf.save_pretrained(SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __snake_case = 'mock_framework' # Framework provided - return whatever the user provides __snake_case = FeaturesManager.determine_framework(self.test_model , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(SCREAMING_SNAKE_CASE_ ) __snake_case = FeaturesManager.determine_framework(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(SCREAMING_SNAKE_CASE_ ) __snake_case = FeaturesManager.determine_framework(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(SCREAMING_SNAKE_CASE_ ) __snake_case = FeaturesManager.determine_framework(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(SCREAMING_SNAKE_CASE_ ) __snake_case = FeaturesManager.determine_framework(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __snake_case = FeaturesManager.determine_framework(SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __snake_case = MagicMock(return_value=SCREAMING_SNAKE_CASE_ ) with patch('transformers.onnx.features.is_tf_available' , SCREAMING_SNAKE_CASE_ ): __snake_case = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(SCREAMING_SNAKE_CASE_ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __snake_case = MagicMock(return_value=SCREAMING_SNAKE_CASE_ ) with patch('transformers.onnx.features.is_torch_available' , SCREAMING_SNAKE_CASE_ ): __snake_case = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(SCREAMING_SNAKE_CASE_ , self.framework_tf ) # Both in environment -> use PyTorch __snake_case = MagicMock(return_value=SCREAMING_SNAKE_CASE_ ) __snake_case = MagicMock(return_value=SCREAMING_SNAKE_CASE_ ) with patch('transformers.onnx.features.is_tf_available' , SCREAMING_SNAKE_CASE_ ), patch( 'transformers.onnx.features.is_torch_available' , SCREAMING_SNAKE_CASE_ ): __snake_case = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(SCREAMING_SNAKE_CASE_ , self.framework_pt ) # Both not in environment -> raise error __snake_case = MagicMock(return_value=SCREAMING_SNAKE_CASE_ ) __snake_case = MagicMock(return_value=SCREAMING_SNAKE_CASE_ ) with patch('transformers.onnx.features.is_tf_available' , SCREAMING_SNAKE_CASE_ ), patch( 'transformers.onnx.features.is_torch_available' , SCREAMING_SNAKE_CASE_ ): with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __snake_case = FeaturesManager.determine_framework(self.test_model )
345
import os import sys import unittest lowerCamelCase_ : Union[str, Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCamelCase_ : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _lowerCamelCase (unittest.TestCase ): def __lowerCamelCase ( self ): __snake_case = find_backend(' if not is_torch_available():' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , 'torch' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __snake_case = find_backend(' if not (is_torch_available() and is_transformers_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , 'torch_and_transformers' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __snake_case = find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , 'torch_and_transformers_and_onnx' ) def __lowerCamelCase ( self ): __snake_case = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , SCREAMING_SNAKE_CASE_ ) self.assertIn('torch_and_transformers' , SCREAMING_SNAKE_CASE_ ) self.assertIn('flax_and_transformers' , SCREAMING_SNAKE_CASE_ ) self.assertIn('torch_and_transformers_and_onnx' , SCREAMING_SNAKE_CASE_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel' , objects['torch'] ) self.assertIn('FlaxUNet2DConditionModel' , objects['flax'] ) self.assertIn('StableDiffusionPipeline' , objects['torch_and_transformers'] ) self.assertIn('FlaxStableDiffusionPipeline' , objects['flax_and_transformers'] ) self.assertIn('LMSDiscreteScheduler' , objects['torch_and_scipy'] ) self.assertIn('OnnxStableDiffusionPipeline' , objects['torch_and_transformers_and_onnx'] ) def __lowerCamelCase ( self ): __snake_case = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '\nCONSTANT = None\n' ) __snake_case = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( SCREAMING_SNAKE_CASE_ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) __snake_case = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' __snake_case = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __snake_case = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' __snake_case = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , SCREAMING_SNAKE_CASE_ )
345
1
from __future__ import annotations import queue class _lowercase : def __init__( self : List[Any] , lowerCamelCase__ : int ) -> Dict: """simple docstring""" A_ = data A_ = None A_ = None def _lowerCamelCase ( ): '''simple docstring''' print('''\n********Press N to stop entering at any point of time********\n''' ) A_ = input('''Enter the value of the root node: ''' ).strip().lower() A_ = queue.Queue() A_ = TreeNode(int(__a ) ) q.put(__a ) while not q.empty(): A_ = q.get() A_ = f"Enter the left node of {node_found.data}: " A_ = input(__a ).strip().lower() or '''n''' if check == "n": return tree_node A_ = TreeNode(int(__a ) ) A_ = left_node q.put(__a ) A_ = f"Enter the right node of {node_found.data}: " A_ = input(__a ).strip().lower() or '''n''' if check == "n": return tree_node A_ = TreeNode(int(__a ) ) A_ = right_node q.put(__a ) raise def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__a , __a ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__a , __a ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__a , __a ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__a , __a ) or not node: return A_ = queue.Queue() q.put(__a ) while not q.empty(): A_ = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__a , __a ) or not node: return A_ = queue.Queue() q.put(__a ) while not q.empty(): A_ = [] while not q.empty(): A_ = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__a ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__a , __a ) or not node: return A_ = [] A_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(__a ) A_ = n.left # end of while means current node doesn't have left child A_ = stack.pop() # start to traverse its right child A_ = n.right def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__a , __a ) or not node: return A_ = [] A_ = node while n or stack: while n: stack.append(__a ) A_ = n.left A_ = stack.pop() print(n.data , end=''',''' ) A_ = n.right def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(__a , __a ) or not node: return A_ ,A_ = [], [] A_ = node stacka.append(__a ) while stacka: # to find the reversed order of post order, store it in stack2 A_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__a ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE = "" , SCREAMING_SNAKE_CASE=50 , SCREAMING_SNAKE_CASE="*" ): '''simple docstring''' if not s: return "\n" + width * char A_ ,A_ = divmod(width - len(__a ) - 2 , 2 ) return f"{left * char} {s} {(left + extra) * char}" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) __lowercase = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
203
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase: Tuple = get_logger(__name__) _lowerCAmelCase: List[str] = Path(__file__).parent / 'model_card_template.md' _lowerCAmelCase: Any = uuida().hex _lowerCAmelCase: List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: int = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase: Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def _lowercase( __a : Union[Dict, str, None] = None ): a__ =f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__a , __a ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__a , __a ): ua += "; " + user_agent return ua def _lowercase( __a : str , __a : Optional[str] = None , __a : Optional[str] = None ): if token is None: a__ =HfFolder.get_token() if organization is None: a__ =whoami(__a )['name'] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def _lowercase( __a : Union[str, Any] , __a : Dict ): if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(__a , 'local_rank' ) and args.local_rank not in [-1, 0]: return a__ =args.hub_token if hasattr(__a , 'hub_token' ) else None a__ =get_full_repo_name(__a , token=__a ) a__ =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__a , model_name=__a , repo_name=__a , dataset_name=args.dataset_name if hasattr(__a , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__a , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(__a , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__a , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__a , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__a , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__a , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__a , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(__a , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__a , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) a__ =os.path.join(args.output_dir , 'README.md' ) model_card.save(__a ) def _lowercase( __a : Optional[str] , __a : Optional[str] = None ): if resolved_file is None or commit_hash is not None: return commit_hash a__ =str(Path(__a ).as_posix() ) a__ =re.search(r'snapshots/([^/]+)/' , __a ) if search is None: return None a__ =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase: List[str] = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) _lowerCAmelCase: List[str] = os.path.join(hf_cache_home, 'diffusers') def _lowercase( __a : Optional[str] = None , __a : Optional[str] = None ): if new_cache_dir is None: a__ =DIFFUSERS_CACHE if old_cache_dir is None: a__ =old_diffusers_cache a__ =Path(__a ).expanduser() a__ =Path(__a ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): a__ =new_cache_dir / old_blob_path.relative_to(__a ) new_blob_path.parent.mkdir(parents=__a , exist_ok=__a ) os.replace(__a , __a ) try: os.symlink(__a , __a ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase: Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): _lowerCAmelCase: int = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase: List[Any] = int(f.read()) except ValueError: _lowerCAmelCase: Any = 0 if cache_version < 1: _lowerCAmelCase: str = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: _lowerCAmelCase: Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ 'the directory exists and can be written to.' ) def _lowercase( __a : str , __a : Optional[str] = None ): if variant is not None: a__ =weights_name.split('.' ) a__ =splits[:-1] + [variant] + splits[-1:] a__ ='.'.join(__a ) return weights_name def _lowercase( __a : Union[str, Any] , *, __a : Optional[Any] , __a : Optional[Any] , __a : List[Any] , __a : Tuple , __a : Optional[Any] , __a : Dict , __a : str , __a : int , __a : Tuple , __a : Union[str, Any] , __a : int=None , ): a__ =str(__a ) if os.path.isfile(__a ): return pretrained_model_name_or_path elif os.path.isdir(__a ): if os.path.isfile(os.path.join(__a , __a ) ): # Load from a PyTorch checkpoint a__ =os.path.join(__a , __a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__a , __a , __a ) ): a__ =os.path.join(__a , __a , __a ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__a ).base_version ) >= version.parse('0.20.0' ) ): try: a__ =hf_hub_download( __a , filename=_add_variant(__a , __a ) , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __a , ) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__a , __a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__a , __a )}' so that the correct variant file can be added.""" , __a , ) try: # 2. Load model file as usual a__ =hf_hub_download( __a , filename=__a , cache_dir=__a , force_download=__a , proxies=__a , resume_download=__a , local_files_only=__a , use_auth_token=__a , user_agent=__a , subfolder=__a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ 'this model name. Check the model page at ' f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
20
0
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
712
'''simple docstring''' import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
666
0
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : """simple docstring""" def __init__( self : str ,__A : Union[str, Any] ,__A : Any=13 ,__A : Union[str, Any]=7 ,__A : List[Any]=True ,__A : int=True ,__A : Optional[Any]=False ,__A : Union[str, Any]=True ,__A : Union[str, Any]=99 ,__A : Any=32 ,__A : Tuple=5 ,__A : Tuple=4 ,__A : Union[str, Any]=37 ,__A : str="gelu" ,__A : Optional[int]=0.1 ,__A : Dict=0.1 ,__A : Any=512 ,__A : Optional[Any]=16 ,__A : Any=2 ,__A : List[str]=0.02 ,__A : Dict=3 ,__A : Any=4 ,__A : int=None ,) -> Dict: _lowercase = parent _lowercase = batch_size _lowercase = seq_length _lowercase = is_training _lowercase = use_input_mask _lowercase = use_token_type_ids _lowercase = use_labels _lowercase = vocab_size _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = intermediate_size _lowercase = hidden_act _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = max_position_embeddings _lowercase = type_vocab_size _lowercase = type_sequence_label_size _lowercase = initializer_range _lowercase = num_labels _lowercase = num_choices _lowercase = scope def __UpperCAmelCase ( self : List[Any] ) -> str: _lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowercase = None if self.use_input_mask: _lowercase = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase = None if self.use_token_type_ids: _lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowercase = None _lowercase = None _lowercase = None if self.use_labels: _lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowercase = ids_tensor([self.batch_size] ,self.num_choices ) _lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: return BioGptConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__A ,initializer_range=self.initializer_range ,) def __UpperCAmelCase ( self : Optional[Any] ,__A : List[Any] ,__A : Optional[int] ,__A : Optional[Any] ,__A : str ,__A : int ,__A : int ,__A : Optional[Any] ) -> int: _lowercase = BioGptModel(config=__A ) model.to(__A ) model.eval() _lowercase = model(__A ,attention_mask=__A ) _lowercase = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : List[str] ,__A : Optional[Any] ,__A : Dict ,__A : Dict ,__A : Union[str, Any] ,__A : str ,__A : Any ,__A : str ,__A : List[Any] ,__A : List[Any] ,) -> Tuple: _lowercase = BioGptForCausalLM(config=__A ) model.to(__A ) model.eval() _lowercase = model(__A ,attention_mask=__A ,token_type_ids=__A ,labels=__A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : Optional[int] ,__A : str ,__A : int ,__A : int ,__A : int ,__A : List[Any] ,*__A : Union[str, Any] ) -> Tuple: _lowercase = BioGptModel(config=__A ) model.to(__A ) model.eval() # create attention mask _lowercase = torch.ones(input_ids.shape ,dtype=torch.long ,device=__A ) _lowercase = self.seq_length // 2 _lowercase = 0 # first forward pass _lowercase , _lowercase = model(__A ,attention_mask=__A ).to_tuple() # create hypothetical next token and extent to next_input_ids _lowercase = ids_tensor((self.batch_size, 1) ,config.vocab_size ) # change a random masked slice from input_ids _lowercase = ids_tensor((1,) ,__A ).item() + 1 _lowercase = ids_tensor((self.batch_size, 1) ,config.vocab_size ).squeeze(-1 ) _lowercase = random_other_next_tokens # append to next input_ids and attn_mask _lowercase = torch.cat([input_ids, next_tokens] ,dim=-1 ) _lowercase = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) ,dtype=torch.long ,device=__A )] ,dim=1 ,) # get two different outputs _lowercase = model(__A ,attention_mask=__A )['last_hidden_state'] _lowercase = model(__A ,past_key_values=__A ,attention_mask=__A )['last_hidden_state'] # select random slice _lowercase = ids_tensor((1,) ,output_from_past.shape[-1] ).item() _lowercase = output_from_no_past[:, -1, random_slice_idx].detach() _lowercase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A ,__A ,atol=1e-3 ) ) def __UpperCAmelCase ( self : Tuple ,__A : List[str] ,__A : Any ,__A : List[Any] ,__A : Dict ,__A : Optional[int] ,*__A : List[Any] ) -> List[str]: _lowercase = BioGptModel(config=__A ).to(__A ).eval() _lowercase = torch.ones(input_ids.shape ,dtype=torch.long ,device=__A ) # first forward pass _lowercase = model(__A ,attention_mask=__A ,use_cache=__A ) _lowercase , _lowercase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _lowercase = ids_tensor((self.batch_size, 3) ,config.vocab_size ) _lowercase = ids_tensor((self.batch_size, 3) ,2 ) # append to next input_ids and _lowercase = torch.cat([input_ids, next_tokens] ,dim=-1 ) _lowercase = torch.cat([attention_mask, next_attn_mask] ,dim=-1 ) _lowercase = model(__A ,attention_mask=__A )['last_hidden_state'] _lowercase = model(__A ,attention_mask=__A ,past_key_values=__A )[ 'last_hidden_state' ] # select random slice _lowercase = ids_tensor((1,) ,output_from_past.shape[-1] ).item() _lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() _lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A ,__A ,atol=1e-3 ) ) def __UpperCAmelCase ( self : Any ,__A : List[str] ,__A : int ,__A : List[str] ,__A : List[str] ,__A : List[Any] ,*__A : Any ,__A : Union[str, Any]=False ) -> Any: _lowercase = BioGptForCausalLM(__A ) model.to(__A ) if gradient_checkpointing: model.gradient_checkpointing_enable() _lowercase = model(__A ,labels=__A ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def __UpperCAmelCase ( self : Tuple ,__A : str ,*__A : Tuple ) -> List[str]: _lowercase = BioGptModel(__A ) _lowercase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) ,0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) ,0.01 ) def __UpperCAmelCase ( self : List[Any] ,__A : Union[str, Any] ,__A : Optional[Any] ,__A : Any ,__A : Union[str, Any] ,__A : Dict ,*__A : Any ) -> int: _lowercase = self.num_labels _lowercase = BioGptForTokenClassification(__A ) model.to(__A ) model.eval() _lowercase = model(__A ,attention_mask=__A ,token_type_ids=__A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self : Any ) -> Optional[int]: _lowercase = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) = config_and_inputs _lowercase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A_ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (BioGptForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : List[Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[Any] = False def __UpperCAmelCase ( self : Optional[Any] ) -> Any: _lowercase = BioGptModelTester(self ) _lowercase = ConfigTester(self ,config_class=__A ,hidden_size=37 ) def __UpperCAmelCase ( self : str ) -> Any: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : str ) -> str: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: _lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowercase = type self.model_tester.create_and_check_model(*__A ) def __UpperCAmelCase ( self : List[Any] ) -> List[str]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__A ) def __UpperCAmelCase ( self : Any ) -> List[Any]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__A ,gradient_checkpointing=__A ) def __UpperCAmelCase ( self : Any ) -> Tuple: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__A ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__A ) def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__A ) @slow def __UpperCAmelCase ( self : Any ) -> Optional[int]: _lowercase = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(__A ) _lowercase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _lowercase = 'left' # Define PAD Token = EOS Token = 50256 _lowercase = tokenizer.eos_token _lowercase = model.config.eos_token_id # use different length sentences to test batching _lowercase = [ 'Hello, my dog is a little', 'Today, I', ] _lowercase = tokenizer(__A ,return_tensors='pt' ,padding=__A ) _lowercase = inputs['input_ids'].to(__A ) _lowercase = model.generate( input_ids=__A ,attention_mask=inputs['attention_mask'].to(__A ) ,) _lowercase = tokenizer(sentences[0] ,return_tensors='pt' ).input_ids.to(__A ) _lowercase = model.generate(input_ids=__A ) _lowercase = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() _lowercase = tokenizer(sentences[1] ,return_tensors='pt' ).input_ids.to(__A ) _lowercase = model.generate(input_ids=__A ,max_length=model.config.max_length - num_paddings ) _lowercase = tokenizer.batch_decode(__A ,skip_special_tokens=__A ) _lowercase = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=__A ) _lowercase = tokenizer.decode(output_padded[0] ,skip_special_tokens=__A ) _lowercase = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(__A ,__A ) self.assertListEqual(__A ,[non_padded_sentence, padded_sentence] ) @slow def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase = BioGptModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def __UpperCAmelCase ( self : int ) -> int: _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() _lowercase = 3 _lowercase = input_dict['input_ids'] _lowercase = input_ids.ne(1 ).to(__A ) _lowercase = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) _lowercase = BioGptForSequenceClassification(__A ) model.to(__A ) model.eval() _lowercase = model(__A ,attention_mask=__A ,labels=__A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : Optional[int] ) -> int: _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() _lowercase = 3 _lowercase = 'multi_label_classification' _lowercase = input_dict['input_ids'] _lowercase = input_ids.ne(1 ).to(__A ) _lowercase = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) _lowercase = BioGptForSequenceClassification(__A ) model.to(__A ) model.eval() _lowercase = model(__A ,attention_mask=__A ,labels=__A ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class A_ ( unittest.TestCase ): """simple docstring""" @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: _lowercase = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) _lowercase = torch.tensor([[2, 4805, 9, 656, 21]] ) _lowercase = model(__A )[0] _lowercase = 4_2384 _lowercase = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape ,__A ) _lowercase = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__A ,atol=1e-4 ) ) @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: _lowercase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _lowercase = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(__A ) torch.manual_seed(0 ) _lowercase = tokenizer('COVID-19 is' ,return_tensors='pt' ).to(__A ) _lowercase = model.generate( **__A ,min_length=100 ,max_length=1024 ,num_beams=5 ,early_stopping=__A ,) _lowercase = tokenizer.decode(output_ids[0] ,skip_special_tokens=__A ) _lowercase = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(__A ,__A )
67
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('check_bouncy() accepts only integer arguments' ) _A = str(_SCREAMING_SNAKE_CASE ) _A = ''.join(sorted(_SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) _A = 0 _A = 1 while True: if check_bouncy(_SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
27
0
import math def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): if initial_intensity < 0: raise ValueError("The value of intensity cannot be negative" ) # handling of negative values of initial intensity if angle < 0 or angle > 3_6_0: raise ValueError("In Malus Law, the angle is in the range 0-360 degrees" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__lowerCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
203
from maths.prime_check import is_prime def lowerCAmelCase_ ( __lowerCamelCase ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): __snake_case : List[str] = F'Input value of [number={number}] must be an integer' raise TypeError(__lowerCamelCase ) if is_prime(__lowerCamelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
203
1
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 __lowerCamelCase = sys.version_info >= (3, 10) def a ( __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Union[str, Any]=None ) -> List[Any]: return field(default_factory=lambda: default , metadata=__lowerCAmelCase ) @dataclass class __A : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 @dataclass class __A : UpperCAmelCase__ = 4_2 UpperCAmelCase__ = field(default="toto" ,metadata={"help": "help message"} ) @dataclass class __A : UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = None class __A ( UpperCamelCase_ ): UpperCAmelCase__ = """titi""" UpperCAmelCase__ = """toto""" class __A ( UpperCamelCase_ ): UpperCAmelCase__ = """titi""" UpperCAmelCase__ = """toto""" UpperCAmelCase__ = 4_2 @dataclass class __A : UpperCAmelCase__ = "toto" def lowerCamelCase__ ( self : List[str] ) -> Union[str, Any]: __magic_name__: Optional[int] = BasicEnum(self.foo ) @dataclass class __A : UpperCAmelCase__ = "toto" def lowerCamelCase__ ( self : str ) -> Dict: __magic_name__: str = MixedTypeEnum(self.foo ) @dataclass class __A : UpperCAmelCase__ = None UpperCAmelCase__ = field(default=UpperCamelCase_ ,metadata={"help": "help message"} ) UpperCAmelCase__ = None UpperCAmelCase__ = list_field(default=[] ) UpperCAmelCase__ = list_field(default=[] ) @dataclass class __A : UpperCAmelCase__ = list_field(default=[] ) UpperCAmelCase__ = list_field(default=[1, 2, 3] ) UpperCAmelCase__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) UpperCAmelCase__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class __A : UpperCAmelCase__ = field() UpperCAmelCase__ = field() UpperCAmelCase__ = field() def lowerCamelCase__ ( self : str ) -> str: __magic_name__: Dict = BasicEnum(self.required_enum ) @dataclass class __A : UpperCAmelCase__ = 42 UpperCAmelCase__ = field() UpperCAmelCase__ = None UpperCAmelCase__ = field(default="toto" ,metadata={"help": "help message"} ) UpperCAmelCase__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class __A : UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = None @dataclass class __A : UpperCAmelCase__ = None UpperCAmelCase__ = field(default=UpperCamelCase_ ,metadata={"help": "help message"} ) UpperCAmelCase__ = None UpperCAmelCase__ = list_field(default=[] ) UpperCAmelCase__ = list_field(default=[] ) class __A ( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : str ) -> Dict: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __magic_name__: Any = {k: v for k, v in vars(_a ).items() if k != """container"""} __magic_name__: Optional[Any] = {k: v for k, v in vars(_a ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , _a ) and yy.get("""choices""" , _a ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](_a ) , yy["""type"""](_a ) ) del xx["type"], yy["type"] self.assertEqual(_a , _a ) def lowerCamelCase__ ( self : List[Any] ) -> List[str]: __magic_name__: Any = HfArgumentParser(_a ) __magic_name__: Dict = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_a , required=_a ) expected.add_argument("""--bar""" , type=_a , required=_a ) expected.add_argument("""--baz""" , type=_a , required=_a ) expected.add_argument("""--flag""" , type=_a , default=_a , const=_a , nargs="""?""" ) self.argparsersEqual(_a , _a ) __magic_name__: Dict = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] (__magic_name__ ): Optional[int] = parser.parse_args_into_dataclasses(_a , look_for_args_file=_a ) self.assertFalse(example.flag ) def lowerCamelCase__ ( self : List[str] ) -> Union[str, Any]: __magic_name__: List[Any] = HfArgumentParser(_a ) __magic_name__: str = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=4_2 , type=_a ) expected.add_argument("""--baz""" , default="""toto""" , type=_a , help="""help message""" ) self.argparsersEqual(_a , _a ) def lowerCamelCase__ ( self : Dict ) -> Any: __magic_name__: Optional[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_a , default=_a , const=_a , nargs="""?""" ) expected.add_argument("""--baz""" , type=_a , default=_a , const=_a , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=_a , dest="""baz""" ) expected.add_argument("""--opt""" , type=_a , default=_a ) __magic_name__: Tuple = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_a ) for dataclass_type in dataclass_types: __magic_name__: List[Any] = HfArgumentParser(_a ) self.argparsersEqual(_a , _a ) __magic_name__: Any = parser.parse_args([] ) self.assertEqual(_a , Namespace(foo=_a , baz=_a , opt=_a ) ) __magic_name__: Any = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(_a , Namespace(foo=_a , baz=_a , opt=_a ) ) __magic_name__: Union[str, Any] = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(_a , Namespace(foo=_a , baz=_a , opt=_a ) ) __magic_name__: Optional[int] = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(_a , Namespace(foo=_a , baz=_a , opt=_a ) ) __magic_name__: int = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(_a , Namespace(foo=_a , baz=_a , opt=_a ) ) def lowerCamelCase__ ( self : str ) -> Optional[Any]: __magic_name__: Optional[int] = HfArgumentParser(_a ) __magic_name__: int = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 4_2] , type=make_choice_type_function(["""titi""", """toto""", 4_2] ) , ) self.argparsersEqual(_a , _a ) __magic_name__: Tuple = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) __magic_name__: int = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __magic_name__: List[Any] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) __magic_name__: Tuple = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __magic_name__: Dict = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 4_2 ) __magic_name__: List[str] = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCamelCase__ ( self : List[str] ) -> Union[str, Any]: @dataclass class __A : UpperCAmelCase__ = "toto" __magic_name__: str = HfArgumentParser(_a ) __magic_name__: Any = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 4_2) , type=make_choice_type_function(["""titi""", """toto""", 4_2] ) , ) self.argparsersEqual(_a , _a ) __magic_name__: Optional[int] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) __magic_name__: str = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) __magic_name__: Any = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 4_2 ) def lowerCamelCase__ ( self : int ) -> Optional[int]: __magic_name__: Dict = HfArgumentParser(_a ) __magic_name__: int = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=_a ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=_a ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_a ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=_a ) self.argparsersEqual(_a , _a ) __magic_name__: str = parser.parse_args([] ) self.assertEqual( _a , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) __magic_name__: Union[str, Any] = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(_a , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def lowerCamelCase__ ( self : Any ) -> Optional[int]: __magic_name__: Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=_a , type=_a ) expected.add_argument("""--bar""" , default=_a , type=_a , help="""help message""" ) expected.add_argument("""--baz""" , default=_a , type=_a ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=_a ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=_a ) __magic_name__: Union[str, Any] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_a ) for dataclass_type in dataclass_types: __magic_name__: Dict = HfArgumentParser(_a ) self.argparsersEqual(_a , _a ) __magic_name__: List[Any] = parser.parse_args([] ) self.assertEqual(_a , Namespace(foo=_a , bar=_a , baz=_a , ces=[] , des=[] ) ) __magic_name__: List[str] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(_a , Namespace(foo=1_2 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def lowerCamelCase__ ( self : int ) -> Any: __magic_name__: List[Any] = HfArgumentParser(_a ) __magic_name__: Optional[int] = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=_a , required=_a ) expected.add_argument("""--required_str""" , type=_a , required=_a ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=_a , ) self.argparsersEqual(_a , _a ) def lowerCamelCase__ ( self : Optional[Any] ) -> int: __magic_name__: Optional[Any] = HfArgumentParser(_a ) __magic_name__: Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_a , required=_a ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=_a , ) expected.add_argument("""--opt""" , type=_a , default=_a ) expected.add_argument("""--baz""" , default="""toto""" , type=_a , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_a ) self.argparsersEqual(_a , _a ) def lowerCamelCase__ ( self : Dict ) -> Dict: __magic_name__: Dict = HfArgumentParser(_a ) __magic_name__: Union[str, Any] = { """foo""": 1_2, """bar""": 3.14, """baz""": """42""", """flag""": True, } __magic_name__: List[Any] = parser.parse_dict(_a )[0] __magic_name__: str = BasicExample(**_a ) self.assertEqual(_a , _a ) def lowerCamelCase__ ( self : Dict ) -> Optional[Any]: __magic_name__: Optional[Any] = HfArgumentParser(_a ) __magic_name__: str = { """foo""": 1_2, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 4_2, } self.assertRaises(_a , parser.parse_dict , _a , allow_extra_keys=_a ) def lowerCamelCase__ ( self : Optional[int] ) -> int: __magic_name__: Optional[int] = HfArgumentParser(_a ) __magic_name__: Any = { """foo""": 1_2, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__: str = os.path.join(_a , """temp_json""" ) os.mkdir(_a ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(_a , _a ) __magic_name__: Union[str, Any] = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] __magic_name__: Optional[Any] = BasicExample(**_a ) self.assertEqual(_a , _a ) def lowerCamelCase__ ( self : str ) -> List[str]: __magic_name__: Optional[Any] = HfArgumentParser(_a ) __magic_name__: Any = { """foo""": 1_2, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__: int = os.path.join(_a , """temp_yaml""" ) os.mkdir(_a ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(_a , _a ) __magic_name__: List[Any] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] __magic_name__: int = BasicExample(**_a ) self.assertEqual(_a , _a ) def lowerCamelCase__ ( self : Optional[int] ) -> Dict: __magic_name__: str = HfArgumentParser(_a ) self.assertIsNotNone(_a )
96
"""simple docstring""" from math import factorial def _lowercase ( __lowerCAmelCase = 100 ) -> int: return sum(int(__lowerCAmelCase ) for x in str(factorial(__lowerCAmelCase ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
680
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ): __lowerCAmelCase : int = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) __lowerCAmelCase : Any = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowerCAmelCase : List[Any] = model(lowerCAmelCase__ )["last_hidden_state"] __lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , lowerCAmelCase__ ) # compare the actual values for a slice. __lowerCAmelCase : str = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
709
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class A__ : def __init__( self ): __lowerCAmelCase : Any = {} def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = {} def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if nodea not in self.connections: self.add_node(_SCREAMING_SNAKE_CASE ) if nodea not in self.connections: self.add_node(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = probability def __lowerCamelCase ( self ): return list(self.connections ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = 0 __lowerCAmelCase : List[Any] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Optional[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase : str = Counter(graph.get_nodes() ) __lowerCAmelCase : Tuple = start for _ in range(_UpperCamelCase ): __lowerCAmelCase : int = graph.transition(_UpperCamelCase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
549
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase ={"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =["ViTFeatureExtractor"] lowerCamelCase =["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
285
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> int: """simple docstring""" UpperCamelCase__ : int = tempfile.mkdtemp() UpperCamelCase__ : str = BlipImageProcessor() UpperCamelCase__ : List[Any] = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) UpperCamelCase__ : List[Any] = BlipaProcessor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self , **__SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ).tokenizer def __SCREAMING_SNAKE_CASE ( self , **__SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ).image_processor def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] UpperCamelCase__ : Dict = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : str = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ : Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCamelCase__ : str = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) UpperCamelCase__ : Optional[Any] = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Dict = self.get_image_processor() UpperCamelCase__ : Tuple = self.get_tokenizer() UpperCamelCase__ : int = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = self.prepare_image_inputs() UpperCamelCase__ : Optional[Any] = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) UpperCamelCase__ : List[Any] = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : str = self.get_image_processor() UpperCamelCase__ : Any = self.get_tokenizer() UpperCamelCase__ : Tuple = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = '''lower newer''' UpperCamelCase__ : Tuple = processor(text=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = tokenizer(__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Optional[int] = self.get_tokenizer() UpperCamelCase__ : Dict = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = '''lower newer''' UpperCamelCase__ : Any = self.prepare_image_inputs() UpperCamelCase__ : Any = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE ): processor() def __SCREAMING_SNAKE_CASE ( self ) -> int: """simple docstring""" UpperCamelCase__ : List[str] = self.get_image_processor() UpperCamelCase__ : Optional[int] = self.get_tokenizer() UpperCamelCase__ : Tuple = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : Tuple = processor.batch_decode(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : int = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = '''lower newer''' UpperCamelCase__ : List[str] = self.prepare_image_inputs() UpperCamelCase__ : List[Any] = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
285
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : Optional[Any] = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
354
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: _lowercase : Any = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) _lowercase : Any = DatasetInfosDict.from_directory(lowerCamelCase_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: _lowercase : Union[str, Any] = str(lowerCamelCase_ ) dataset_info.write_to_directory(lowerCamelCase_ ) _lowercase : List[str] = DatasetInfo.from_directory(lowerCamelCase_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowerCamelCase_ , 'dataset_info.json' ) ) def UpperCamelCase_( ) -> int: _lowercase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) _lowercase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(lowerCamelCase_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _lowercase : str = yaml.safe_dump(lowerCamelCase_ ) _lowercase : str = yaml.safe_load(lowerCamelCase_ ) assert dataset_info_yaml_dict == reloaded def UpperCamelCase_( ) -> int: _lowercase : Tuple = DatasetInfo() _lowercase : Tuple = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Dict: _lowercase : Tuple = str(lowerCamelCase_ ) dataset_infos_dict.write_to_directory(lowerCamelCase_ ) _lowercase : Tuple = DatasetInfosDict.from_directory(lowerCamelCase_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _lowercase : Any = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _lowercase : str = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowerCamelCase_ , 'README.md' ) )
354
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 a__ = get_tests_dir('''fixtures''') class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> Tuple: # A mock response for an HTTP head request to emulate server down _a : Optional[Any] = mock.Mock() _a : List[Any] = 5_0_0 _a : Optional[Any] = {} _a : List[Any] = HTTPError _a : Optional[Any] = {} # Download this model to make sure it's in the cache. _a : Dict = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_a ) as mock_head: _a : Tuple = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def __lowercase ( self ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 _a : int = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowercase ( cls ) -> Optional[Any]: _a : str = TOKEN HfFolder.save_token(_a ) @classmethod def __lowercase ( cls ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def __lowercase ( self ) -> str: _a : int = WavaVecaFeatureExtractor.from_pretrained(_a ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) _a : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _a , repo_id='''test-feature-extractor''' , push_to_hub=_a , use_auth_token=self._token ) _a : Tuple = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) def __lowercase ( self ) -> Dict: _a : str = WavaVecaFeatureExtractor.from_pretrained(_a ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) _a : Dict = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _a , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=_a , use_auth_token=self._token ) _a : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_a , getattr(_a , _a ) ) def __lowercase ( self ) -> Any: CustomFeatureExtractor.register_for_auto_class() _a : Dict = CustomFeatureExtractor.from_pretrained(_a ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) _a : Tuple = AutoFeatureExtractor.from_pretrained( F"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=_a ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
14
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowercase_ = TypeVar("""T""") class a_ ( Generic[T] ): '''simple docstring''' def __init__( self , A , A ) -> None: _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = len(A ) _SCREAMING_SNAKE_CASE = [any_type for _ in range(self.N )] + arr _SCREAMING_SNAKE_CASE = fnc self.build() def snake_case_( self ) -> None: for p in range(self.N - 1 , 0 , -1 ): _SCREAMING_SNAKE_CASE = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def snake_case_( self , A , A ) -> None: p += self.N _SCREAMING_SNAKE_CASE = v while p > 1: _SCREAMING_SNAKE_CASE = p // 2 _SCREAMING_SNAKE_CASE = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def snake_case_( self , A , A ) -> T | None: # noqa: E741 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = l + self.N, r + self.N _SCREAMING_SNAKE_CASE = None while l <= r: if l % 2 == 1: _SCREAMING_SNAKE_CASE = self.st[l] if res is None else self.fn(A , self.st[l] ) if r % 2 == 0: _SCREAMING_SNAKE_CASE = self.st[r] if res is None else self.fn(A , self.st[r] ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowercase_ = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] lowercase_ = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } lowercase_ = SegmentTree(test_array, min) lowercase_ = SegmentTree(test_array, max) lowercase_ = SegmentTree(test_array, lambda a, b: a + b) def lowerCamelCase ( ) ->None: for i in range(len(__lowerCamelCase ) ): for j in range(__lowerCamelCase , len(__lowerCamelCase ) ): _SCREAMING_SNAKE_CASE = reduce(__lowerCamelCase , test_array[i : j + 1] ) _SCREAMING_SNAKE_CASE = reduce(__lowerCamelCase , test_array[i : j + 1] ) _SCREAMING_SNAKE_CASE = reduce(lambda __lowerCamelCase , __lowerCamelCase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__lowerCamelCase , __lowerCamelCase ) assert max_range == max_segment_tree.query(__lowerCamelCase , __lowerCamelCase ) assert sum_range == sum_segment_tree.query(__lowerCamelCase , __lowerCamelCase ) test_all_segments() for index, value in test_updates.items(): lowercase_ = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
314
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
65
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> list[str]: if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) __a = number_of_bytes // partitions __a = [] for i in range(lowerCAmelCase__ ): __a = i * bytes_per_partition + 1 __a = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
65
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( __snake_case ): _SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] _SCREAMING_SNAKE_CASE = 'BlipImageProcessor' _SCREAMING_SNAKE_CASE = 'AutoTokenizer' def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str ): __a = False super().__init__(A_ , A_ ) __a = self.image_processor def __call__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int = None , __SCREAMING_SNAKE_CASE : Tuple = None , __SCREAMING_SNAKE_CASE : List[str] = True , __SCREAMING_SNAKE_CASE : Dict = False , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Union[str, Any] = None , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : Tuple = None , __SCREAMING_SNAKE_CASE : Union[str, Any] = None , __SCREAMING_SNAKE_CASE : List[Any] = False , __SCREAMING_SNAKE_CASE : Tuple = False , __SCREAMING_SNAKE_CASE : List[str] = False , __SCREAMING_SNAKE_CASE : List[Any] = False , __SCREAMING_SNAKE_CASE : int = False , __SCREAMING_SNAKE_CASE : List[Any] = True , __SCREAMING_SNAKE_CASE : Optional[int] = None , **__SCREAMING_SNAKE_CASE : Any , ): if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: __a = self.tokenizer __a = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) return text_encoding # add pixel_values __a = self.image_processor(A_ , return_tensors=A_ ) if text is not None: __a = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) else: __a = None if text_encoding is not None: encoding_image_processor.update(A_ ) return encoding_image_processor def _UpperCAmelCase ( self : Any , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : List[str] ): return self.tokenizer.batch_decode(*A_ , **A_ ) def _UpperCAmelCase ( self : List[Any] , *__SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Tuple ): return self.tokenizer.decode(*A_ , **A_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _UpperCAmelCase ( self : List[Any] ): __a = self.tokenizer.model_input_names __a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
197
def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: UpperCamelCase : List[Any] = [1] for i in range(2 , _lowerCAmelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCamelCase : Tuple = [] UpperCamelCase : str = list(range(_lowerCAmelCase ) ) # Find permutation while factorials: UpperCamelCase : int = factorials.pop() UpperCamelCase , UpperCamelCase : int = divmod(_lowerCAmelCase , _lowerCAmelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
629
0
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class lowerCAmelCase__ ( A_ ): __a = """bart""" __a = ["""past_key_values"""] __a = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Any , _lowerCamelCase : List[str]=50265 , _lowerCamelCase : Any=1024 , _lowerCamelCase : Dict=12 , _lowerCamelCase : Optional[int]=4096 , _lowerCamelCase : Optional[int]=16 , _lowerCamelCase : List[Any]=12 , _lowerCamelCase : List[str]=4096 , _lowerCamelCase : Dict=16 , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Dict="gelu" , _lowerCamelCase : Optional[Any]=1024 , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : int=0.0 , _lowerCamelCase : int=0.0_2 , _lowerCamelCase : Union[str, Any]=0.0 , _lowerCamelCase : List[str]=False , _lowerCamelCase : str=True , _lowerCamelCase : int=3 , _lowerCamelCase : str=1 , _lowerCamelCase : int=0 , _lowerCamelCase : List[Any]=2 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Union[str, Any]=2 , _lowerCamelCase : str=2 , **_lowerCamelCase : List[Any] , ): _snake_case = vocab_size _snake_case = max_position_embeddings _snake_case = d_model _snake_case = encoder_ffn_dim _snake_case = encoder_layers _snake_case = encoder_attention_heads _snake_case = decoder_ffn_dim _snake_case = decoder_layers _snake_case = decoder_attention_heads _snake_case = dropout _snake_case = attention_dropout _snake_case = activation_dropout _snake_case = activation_function _snake_case = init_std _snake_case = encoder_layerdrop _snake_case = decoder_layerdrop _snake_case = classifier_dropout _snake_case = use_cache _snake_case = encoder_layers _snake_case = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , forced_eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , _lowerCamelCase ): _snake_case = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' '''The config can simply be saved and uploaded again to be fixed.''' ) class lowerCAmelCase__ ( A_ ): @property def lowercase ( self : List[str] ): if self.task in ["default", "seq2seq-lm"]: _snake_case = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _snake_case = {0: '''batch'''} _snake_case = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _snake_case = {0: '''batch''', 1: '''decoder_sequence'''} _snake_case = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _snake_case = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _snake_case , _snake_case = self.num_layers for i in range(_lowerCamelCase ): _snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} _snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _snake_case = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def lowercase ( self : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: _snake_case = super().outputs else: _snake_case = super(_lowerCamelCase , self ).outputs if self.use_past: _snake_case , _snake_case = self.num_layers for i in range(_lowerCamelCase ): _snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} _snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def lowercase ( self : Dict , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[TensorType] = None , ): _snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Generate decoder inputs _snake_case = seq_length if not self.use_past else 1 _snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _snake_case = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _snake_case = dict(**_lowerCamelCase , **_lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _snake_case , _snake_case = common_inputs['''input_ids'''].shape _snake_case = common_inputs['''decoder_input_ids'''].shape[1] _snake_case , _snake_case = self.num_attention_heads _snake_case = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _snake_case = decoder_seq_length + 3 _snake_case = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _snake_case = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_lowerCamelCase , _lowerCamelCase )] , dim=1 ) _snake_case = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _snake_case , _snake_case = self.num_layers _snake_case = min(_lowerCamelCase , _lowerCamelCase ) _snake_case = max(_lowerCamelCase , _lowerCamelCase ) - min_num_layers _snake_case = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), ) ) # TODO: test this. _snake_case = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_lowerCamelCase , _lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) ) return common_inputs def lowercase ( self : List[Any] , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[TensorType] = None , ): _snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _snake_case , _snake_case = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _snake_case = seqlen + 2 _snake_case , _snake_case = self.num_layers _snake_case , _snake_case = self.num_attention_heads _snake_case = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _snake_case = common_inputs['''attention_mask'''].dtype _snake_case = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_lowerCamelCase , _lowerCamelCase , dtype=_lowerCamelCase )] , dim=1 ) _snake_case = [ (torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) for _ in range(_lowerCamelCase ) ] return common_inputs def lowercase ( self : Dict , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _snake_case = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _snake_case = tokenizer.num_special_tokens_to_add(_lowerCamelCase ) _snake_case = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence _snake_case = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _snake_case = dict(tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return common_inputs def lowercase ( self : Optional[int] , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: _snake_case = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) elif self.task == "causal-lm": _snake_case = self._generate_dummy_inputs_for_causal_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) else: _snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) return common_inputs def lowercase ( self : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : int ): if self.task in ["default", "seq2seq-lm"]: _snake_case = super()._flatten_past_key_values_(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: _snake_case = super(_lowerCamelCase , self )._flatten_past_key_values_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
704
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : str = "cpu" , __lowerCamelCase : Union[str, None] = None ) -> None: _snake_case = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(__lowerCamelCase , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) _snake_case = v.half() if save_path is None: # overwrite src_path _snake_case = src_path torch.save(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": fire.Fire(convert)
430
0
from cva import destroyAllWindows, imread, imshow, waitKey def _A ( SCREAMING_SNAKE_CASE ): # getting number of pixels in the image UpperCAmelCase__ , UpperCAmelCase__: str = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): UpperCAmelCase__: Tuple = [2_5_5, 2_5_5, 2_5_5] - img[i][j] return img if __name__ == "__main__": # read original image _lowerCAmelCase : Any =imread("""image_data/lena.jpg""", 1) # convert to its negative _lowerCAmelCase : Any =convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
113
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCAmelCase : str =logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : Any =""" Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE=8 ): UpperCAmelCase__: int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase__: Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __UpperCamelCase ( _a ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): super().__init__() self.register_modules( unet=lowerCamelCase__ , scheduler=lowerCamelCase__ , movq=lowerCamelCase__ , ) UpperCAmelCase__: Optional[int] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if latents is None: UpperCAmelCase__: Any = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase__: Tuple = latents.to(lowerCamelCase__ ) UpperCAmelCase__: Union[str, Any] = latents * scheduler.init_noise_sigma return latents def _UpperCAmelCase ( self , lowerCamelCase__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase__: Any = torch.device(F"cuda:{gpu_id}" ) UpperCAmelCase__: int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase ( self , lowerCamelCase__=0 ): if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase__: Union[str, Any] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowerCamelCase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase__: int = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase__ , UpperCAmelCase__: Tuple = cpu_offload_with_hook(lowerCamelCase__ , lowerCamelCase__ , prev_module_hook=lowerCamelCase__ ) # We'll offload the last model manually. UpperCAmelCase__: List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCAmelCase ( self ): if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase__ ) def __call__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 5_1_2 , lowerCamelCase__ = 5_1_2 , lowerCamelCase__ = 1_0_0 , lowerCamelCase__ = 4.0 , lowerCamelCase__ = 1 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , ): UpperCAmelCase__: str = self._execution_device UpperCAmelCase__: List[Any] = guidance_scale > 1.0 if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase__: List[Any] = torch.cat(lowerCamelCase__ , dim=0 ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase__: List[Any] = torch.cat(lowerCamelCase__ , dim=0 ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase__: Any = torch.cat(lowerCamelCase__ , dim=0 ) UpperCAmelCase__: Dict = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: UpperCAmelCase__: Tuple = image_embeds.repeat_interleave(lowerCamelCase__ , dim=0 ) UpperCAmelCase__: Union[str, Any] = negative_image_embeds.repeat_interleave(lowerCamelCase__ , dim=0 ) UpperCAmelCase__: Any = hint.repeat_interleave(lowerCamelCase__ , dim=0 ) UpperCAmelCase__: Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCamelCase__ ) UpperCAmelCase__: Dict = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCamelCase__ ) self.scheduler.set_timesteps(lowerCamelCase__ , device=lowerCamelCase__ ) UpperCAmelCase__: Optional[Any] = self.scheduler.timesteps UpperCAmelCase__: Optional[int] = self.movq.config.latent_channels UpperCAmelCase__ , UpperCAmelCase__: Tuple = downscale_height_and_width(lowerCamelCase__ , lowerCamelCase__ , self.movq_scale_factor ) # create initial latent UpperCAmelCase__: Any = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCamelCase__ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase__: str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase__: List[str] = {"image_embeds": image_embeds, "hint": hint} UpperCAmelCase__: Any = self.unet( sample=lowerCamelCase__ , timestep=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , added_cond_kwargs=lowerCamelCase__ , return_dict=lowerCamelCase__ , )[0] if do_classifier_free_guidance: UpperCAmelCase__ , UpperCAmelCase__: str = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase__ , UpperCAmelCase__: Any = noise_pred.chunk(2 ) UpperCAmelCase__ , UpperCAmelCase__: Any = variance_pred.chunk(2 ) UpperCAmelCase__: List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase__: Dict = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase__ , UpperCAmelCase__: int = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase__: List[Any] = self.scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , generator=lowerCamelCase__ , )[0] # post-processing UpperCAmelCase__: Union[str, Any] = self.movq.decode(lowerCamelCase__ , force_not_quantize=lowerCamelCase__ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCAmelCase__: List[str] = image * 0.5 + 0.5 UpperCAmelCase__: int = image.clamp(0 , 1 ) UpperCAmelCase__: Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase__: List[str] = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase__ )
113
1
'''simple docstring''' from manim import * class snake_case ( lowercase__ ): """simple docstring""" def a__ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = Rectangle(height=0.5, width=0.5 ) SCREAMING_SNAKE_CASE_ = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE_ = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase, buff=0 ) SCREAMING_SNAKE_CASE_ = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase, buff=0 ) SCREAMING_SNAKE_CASE_ = VGroup(__lowerCamelCase, __lowerCamelCase ).arrange(__lowerCamelCase, buff=0 ) SCREAMING_SNAKE_CASE_ = Text('CPU', font_size=24 ) SCREAMING_SNAKE_CASE_ = Group(__lowerCamelCase, __lowerCamelCase ).arrange(__lowerCamelCase, buff=0.5, aligned_edge=__lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [mem.copy() for i in range(1 )] SCREAMING_SNAKE_CASE_ = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase, buff=0 ) SCREAMING_SNAKE_CASE_ = Text('GPU', font_size=24 ) SCREAMING_SNAKE_CASE_ = Group(__lowerCamelCase, __lowerCamelCase ).arrange(__lowerCamelCase, buff=0.5, aligned_edge=__lowerCamelCase ) gpu.align_to(__lowerCamelCase, __lowerCamelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase, buff=0 ) SCREAMING_SNAKE_CASE_ = Text('Model', font_size=24 ) SCREAMING_SNAKE_CASE_ = Group(__lowerCamelCase, __lowerCamelCase ).arrange(__lowerCamelCase, buff=0.5, aligned_edge=__lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(__lowerCamelCase, run_time=1 ), Create(__lowerCamelCase, run_time=1 ), Create(__lowerCamelCase, run_time=1 ), ) SCREAMING_SNAKE_CASE_ = MarkupText( f"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""", font_size=24, ) SCREAMING_SNAKE_CASE_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE_ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""", font_size=18, ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCamelCase, run_time=2.5 ), Write(__lowerCamelCase ), Write(__lowerCamelCase ) ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for i, rect in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase, opacity=0.7 ) cpu_target.move_to(__lowerCamelCase ) cpu_target.generate_target() SCREAMING_SNAKE_CASE_ = 0.46 / 4 SCREAMING_SNAKE_CASE_ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ), buff=0.02, direction=__lowerCamelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target, direction=__lowerCamelCase, buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target, direction=__lowerCamelCase, buff=0.0 ) cpu_targs.append(__lowerCamelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(__lowerCamelCase ) ) second_animations.append(MoveToTarget(__lowerCamelCase, run_time=1.5 ) ) self.play(*__lowerCamelCase ) self.play(*__lowerCamelCase ) self.wait()
705
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class snake_case ( lowercase_ ): """simple docstring""" _a = """levit""" def __init__( self, _lowercase=224, _lowercase=3, _lowercase=3, _lowercase=2, _lowercase=1, _lowercase=16, _lowercase=[128, 256, 384], _lowercase=[4, 8, 12], _lowercase=[4, 4, 4], _lowercase=[16, 16, 16], _lowercase=0, _lowercase=[2, 2, 2], _lowercase=[2, 2, 2], _lowercase=0.02, **_lowercase, ) -> int: super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = kernel_size SCREAMING_SNAKE_CASE_ = stride SCREAMING_SNAKE_CASE_ = padding SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = key_dim SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = attention_ratio SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class snake_case ( lowercase_ ): """simple docstring""" _a = version.parse("""1.11""" ) @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def a__ ( self ) -> float: return 1E-4
238
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( lowercase__ = "The quick brown fox jumps over the lazy dog" , ) -> bool: lowerCAmelCase__ : Optional[int] = set() # Replace all the whitespace in our sentence lowerCAmelCase__ : Optional[int] = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(lowercase__ ) == 2_6 def SCREAMING_SNAKE_CASE ( lowercase__ = "The quick brown fox jumps over the lazy dog" , ) -> bool: lowerCAmelCase__ : Any = [False] * 2_6 for char in input_str: if char.islower(): lowerCAmelCase__ : int = True elif char.isupper(): lowerCAmelCase__ : str = True return all(lowercase__ ) def SCREAMING_SNAKE_CASE ( lowercase__ = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def SCREAMING_SNAKE_CASE ( ) -> None: from timeit import timeit lowerCAmelCase__ : Dict = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=lowercase__ ) ) print(timeit("is_pangram_faster()" , setup=lowercase__ ) ) print(timeit("is_pangram_fastest()" , setup=lowercase__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
453
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class __a ( __magic_name__ ): """simple docstring""" __UpperCamelCase : str = 'dpr' def __init__( self , snake_case=30_522 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3_072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=2 , snake_case=0.02 , snake_case=1e-12 , snake_case=0 , snake_case="absolute" , snake_case = 0 , **snake_case , ): """simple docstring""" super().__init__(pad_token_id=snake_case , **snake_case ) lowerCAmelCase__ : Dict = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : List[str] = num_hidden_layers lowerCAmelCase__ : List[Any] = num_attention_heads lowerCAmelCase__ : Any = hidden_act lowerCAmelCase__ : Any = intermediate_size lowerCAmelCase__ : str = hidden_dropout_prob lowerCAmelCase__ : List[str] = attention_probs_dropout_prob lowerCAmelCase__ : List[Any] = max_position_embeddings lowerCAmelCase__ : Optional[Any] = type_vocab_size lowerCAmelCase__ : Tuple = initializer_range lowerCAmelCase__ : Dict = layer_norm_eps lowerCAmelCase__ : Dict = projection_dim lowerCAmelCase__ : Any = position_embedding_type
453
1
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowercase ( _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : str , _snake_case : Tuple=5 ) ->Dict: """simple docstring""" assert masked_input.count('''<mask>''' ) == 1 __snake_case : Dict = torch.tensor(tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) ).unsqueeze(0 ) # Batch size 1 __snake_case : Optional[Any] = model(_snake_case )[0] # The last hidden-state is the first element of the output tuple __snake_case : Optional[Any] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __snake_case : List[Any] = logits[0, masked_index, :] __snake_case : List[str] = logits.softmax(dim=0 ) __snake_case : List[str] = prob.topk(k=_snake_case , dim=0 ) __snake_case : str = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_snake_case ) )] ) __snake_case : Dict = tokenizer.mask_token __snake_case : str = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): __snake_case : Optional[Any] = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(_snake_case ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(_snake_case ) , _snake_case ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(_snake_case , _snake_case ), values[index].item(), predicted_token, ) ) return topk_filled_outputs SCREAMING_SNAKE_CASE : Optional[Any] = CamembertTokenizer.from_pretrained("""camembert-base""") SCREAMING_SNAKE_CASE : Tuple = CamembertForMaskedLM.from_pretrained("""camembert-base""") model.eval() SCREAMING_SNAKE_CASE : List[str] = """Le camembert est <mask> :)""" print(fill_mask(masked_input, model, tokenizer, topk=3))
718
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __snake_case : List[str] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=a_ , cache_dir=a_ ) __snake_case : Optional[Any] = [t[-1] for t in os.walk(os.path.join(a_ , os.listdir(a_ )[0] , '''snapshots''' ) )] __snake_case : Any = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=a_ ) __snake_case : Union[str, Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __snake_case : Union[str, Any] = jax.random.PRNGKey(0 ) __snake_case : Tuple = 4 __snake_case : Any = jax.device_count() __snake_case : Any = num_samples * [prompt] __snake_case : Optional[int] = pipeline.prepare_inputs(a_ ) # shard inputs and rng __snake_case : Optional[int] = replicate(a_ ) __snake_case : List[str] = jax.random.split(a_ , a_ ) __snake_case : List[str] = shard(a_ ) __snake_case : int = pipeline(a_ , a_ , a_ , a_ , jit=a_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.151_4745 ) < 1E-3 assert np.abs(np.abs(a_ , dtype=np.floataa ).sum() - 4_9947.875 ) < 5E-1 __snake_case : int = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(a_ ) == num_samples def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=a_ ) __snake_case : Union[str, Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __snake_case : Dict = jax.random.PRNGKey(0 ) __snake_case : Union[str, Any] = 50 __snake_case : Optional[Any] = jax.device_count() __snake_case : List[Any] = num_samples * [prompt] __snake_case : Tuple = pipeline.prepare_inputs(a_ ) # shard inputs and rng __snake_case : Tuple = replicate(a_ ) __snake_case : Tuple = jax.random.split(a_ , a_ ) __snake_case : Any = shard(a_ ) __snake_case : Optional[int] = pipeline(a_ , a_ , a_ , a_ , jit=a_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0565_2401) ) < 1E-3 assert np.abs((np.abs(a_ , dtype=np.floataa ).sum() - 238_3808.2) ) < 5E-1 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=a_ ) __snake_case : Any = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __snake_case : Optional[int] = jax.random.PRNGKey(0 ) __snake_case : Optional[Any] = 50 __snake_case : Any = jax.device_count() __snake_case : Optional[Any] = num_samples * [prompt] __snake_case : Any = pipeline.prepare_inputs(a_ ) # shard inputs and rng __snake_case : Optional[int] = replicate(a_ ) __snake_case : int = jax.random.split(a_ , a_ ) __snake_case : int = shard(a_ ) __snake_case : List[Any] = pipeline(a_ , a_ , a_ , a_ , jit=a_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1E-3 assert np.abs((np.abs(a_ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5E-1 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) __snake_case : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __snake_case : List[Any] = jax.random.PRNGKey(0 ) __snake_case : Tuple = 50 __snake_case : Dict = jax.device_count() __snake_case : Any = num_samples * [prompt] __snake_case : List[Any] = pipeline.prepare_inputs(a_ ) # shard inputs and rng __snake_case : Dict = replicate(a_ ) __snake_case : str = jax.random.split(a_ , a_ ) __snake_case : Dict = shard(a_ ) __snake_case : Any = pipeline(a_ , a_ , a_ , a_ , jit=a_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1E-3 assert np.abs((np.abs(a_ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5E-1 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = FlaxDDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , set_alpha_to_one=a_ , steps_offset=1 , ) __snake_case , __snake_case : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=a_ , safety_checker=a_ , ) __snake_case : int = scheduler.create_state() __snake_case : Optional[int] = scheduler_state __snake_case : str = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __snake_case : Tuple = jax.random.PRNGKey(0 ) __snake_case : List[str] = 50 __snake_case : Optional[int] = jax.device_count() __snake_case : Optional[Any] = num_samples * [prompt] __snake_case : Union[str, Any] = pipeline.prepare_inputs(a_ ) # shard inputs and rng __snake_case : Optional[Any] = replicate(a_ ) __snake_case : str = jax.random.split(a_ , a_ ) __snake_case : int = shard(a_ ) __snake_case : Optional[Any] = pipeline(a_ , a_ , a_ , a_ , jit=a_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4504_3945) ) < 1E-3 assert np.abs((np.abs(a_ , dtype=np.floataa ).sum() - 234_7693.5) ) < 5E-1 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __snake_case : Dict = jax.device_count() __snake_case : Any = num_samples * [prompt] __snake_case : List[str] = jax.random.split(jax.random.PRNGKey(0 ) , a_ ) __snake_case , __snake_case : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=a_ , ) __snake_case : Tuple = replicate(a_ ) __snake_case : Dict = pipeline.prepare_inputs(a_ ) __snake_case : Union[str, Any] = shard(a_ ) __snake_case : str = pipeline(a_ , a_ , a_ , jit=a_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) __snake_case : Tuple = images[2, 0, 2_56, 10:17, 1] # With memory efficient attention __snake_case , __snake_case : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=a_ , use_memory_efficient_attention=a_ , ) __snake_case : Tuple = replicate(a_ ) __snake_case : Optional[Any] = pipeline.prepare_inputs(a_ ) __snake_case : Union[str, Any] = shard(a_ ) __snake_case : Tuple = pipeline(a_ , a_ , a_ , jit=a_ ).images assert images_eff.shape == (num_samples, 1, 5_12, 5_12, 3) __snake_case : Optional[int] = images[2, 0, 2_56, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
229
0