code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
_lowerCamelCase : int = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) _lowerCamelCase : Union[str, Any] = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float: """simple docstring""" A__ = from_type.lower().strip('''s''' ) A__ = to_type.lower().strip('''s''' ) A__ = UNIT_SYMBOL.get(lowercase_ , lowercase_ ) A__ = UNIT_SYMBOL.get(lowercase_ , lowercase_ ) if from_sanitized not in METRIC_CONVERSION: A__ = ( f"""Invalid 'from_type' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(lowercase_ )}""" ) raise ValueError(lowercase_ ) if to_sanitized not in METRIC_CONVERSION: A__ = ( f"""Invalid 'to_type' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(lowercase_ )}""" ) raise ValueError(lowercase_ ) A__ = METRIC_CONVERSION[from_sanitized] A__ = METRIC_CONVERSION[to_sanitized] A__ = 1 if from_exponent > to_exponent: A__ = from_exponent - to_exponent else: A__ = -(to_exponent - from_exponent) return value * pow(10 , lowercase_ ) if __name__ == "__main__": from doctest import testmod testmod()
87
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: str )-> int: return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Tuple , lowerCAmelCase: str="attention" )-> List[Any]: _snake_case : Optional[Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _snake_case : Optional[int] = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) _snake_case : List[Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _snake_case : Optional[int] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) _snake_case : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _snake_case : Union[str, Any] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) _snake_case : Dict = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _snake_case : int = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: Any , lowerCAmelCase: Union[str, Any]=False )-> int: if split_mlp_wi: _snake_case : Dict = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _snake_case : Dict = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _snake_case : List[str] = (wi_a, wi_a) else: _snake_case : Optional[Any] = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _snake_case : Any = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: Dict , lowerCAmelCase: int , lowerCAmelCase: Optional[int] )-> Optional[Any]: return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def lowerCamelCase_ ( lowerCAmelCase: dict , *, lowerCAmelCase: int , lowerCAmelCase: bool , lowerCAmelCase: bool = False )-> str: _snake_case : List[Any] = traverse_util.flatten_dict(variables['target'] ) _snake_case : Dict = {'/'.join(lowerCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _snake_case : str = 'encoder/encoder/mlp/wi_0/kernel' in old print('Split MLP:' , lowerCAmelCase ) _snake_case : Any = collections.OrderedDict() # Shared embeddings. _snake_case : Optional[int] = old['token_embedder/embedding'] # Encoder. for i in range(lowerCAmelCase ): # Block i, layer 0 (Self Attention). _snake_case : Tuple = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , 'encoder' , 'pre_attention_layer_norm' ) _snake_case , _snake_case , _snake_case , _snake_case : Union[str, Any] = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , 'encoder' , 'attention' ) _snake_case : List[str] = layer_norm _snake_case : Tuple = k.T _snake_case : str = o.T _snake_case : Tuple = q.T _snake_case : Optional[Any] = v.T # Block i, layer 1 (MLP). _snake_case : Any = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , 'encoder' , 'pre_mlp_layer_norm' ) _snake_case , _snake_case : List[Any] = tax_mlp_lookup(lowerCAmelCase , lowerCAmelCase , 'encoder' , lowerCAmelCase ) _snake_case : int = layer_norm if split_mlp_wi: _snake_case : Union[str, Any] = wi[0].T _snake_case : Any = wi[1].T else: _snake_case : str = wi.T _snake_case : List[str] = wo.T if scalable_attention: # convert the rel_embedding of each layer _snake_case : Optional[Any] = tax_relpos_bias_lookup( lowerCAmelCase , lowerCAmelCase , 'encoder' ).T _snake_case : int = old['encoder/encoder_norm/scale'] if not scalable_attention: _snake_case : Any = tax_relpos_bias_lookup( lowerCAmelCase , 0 , 'encoder' ).T _snake_case : Optional[int] = tax_relpos_bias_lookup( lowerCAmelCase , 0 , 'decoder' ).T if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase ): # Block i, layer 0 (Self Attention). _snake_case : Optional[int] = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' , 'pre_self_attention_layer_norm' ) _snake_case , _snake_case , _snake_case , _snake_case : List[str] = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' , 'self_attention' ) _snake_case : List[str] = layer_norm _snake_case : Tuple = k.T _snake_case : str = o.T _snake_case : str = q.T _snake_case : List[Any] = v.T # Block i, layer 1 (Cross Attention). _snake_case : List[str] = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' , 'pre_cross_attention_layer_norm' ) _snake_case , _snake_case , _snake_case , _snake_case : Optional[Any] = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' , 'encoder_decoder_attention' ) _snake_case : Optional[Any] = layer_norm _snake_case : List[str] = k.T _snake_case : Optional[Any] = o.T _snake_case : Union[str, Any] = q.T _snake_case : List[Any] = v.T # Block i, layer 2 (MLP). _snake_case : List[str] = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' , 'pre_mlp_layer_norm' ) _snake_case , _snake_case : Tuple = tax_mlp_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' , lowerCAmelCase ) _snake_case : str = layer_norm if split_mlp_wi: _snake_case : List[str] = wi[0].T _snake_case : List[str] = wi[1].T else: _snake_case : Union[str, Any] = wi.T _snake_case : int = wo.T if scalable_attention: # convert the rel_embedding of each layer _snake_case : Dict = tax_relpos_bias_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' ).T _snake_case : Optional[int] = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _snake_case : Union[str, Any] = old['decoder/logits_dense/kernel'].T return new def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: bool )-> int: _snake_case : Optional[int] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _snake_case : str = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _snake_case : List[str] = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) _snake_case : Dict = state_dict['shared.weight'] return state_dict def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: str , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Optional[int]: _snake_case : List[Any] = checkpoints.load_tax_checkpoint(lowerCAmelCase ) _snake_case : Optional[int] = convert_tax_to_pytorch( lowerCAmelCase , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase , scalable_attention=lowerCAmelCase ) _snake_case : Tuple = make_state_dict(lowerCAmelCase , lowerCAmelCase ) model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: List[Any] , lowerCAmelCase: Dict , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , )-> Tuple: _snake_case : Union[str, Any] = MTaConfig.from_json_file(lowerCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _snake_case : int = UMTaEncoderModel(lowerCAmelCase ) else: _snake_case : int = UMTaForConditionalGeneration(lowerCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase ) print('Done' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) lowerCAmelCase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
411
0
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class _lowerCAmelCase : """simple docstring""" lowerCAmelCase = 42 # [batch_size x 3] lowerCAmelCase = 42 # [batch_size x 3] lowerCAmelCase = 42 # [batch_size x 3] lowerCAmelCase = 42 # [batch_size x 3] lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 def __A ( self : Optional[int] ) -> int: """simple docstring""" assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def __A ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def __A ( self : List[Any] ) -> Any: """simple docstring""" return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def __A ( self : Tuple ) -> torch.Tensor: """simple docstring""" lowerCAmelCase = torch.arange(self.height * self.width ) lowerCAmelCase = torch.stack( [ pixel_indices % self.width, torch.div(SCREAMING_SNAKE_CASE , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def __A ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase , *lowerCAmelCase = self.shape lowerCAmelCase = int(np.prod(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = self.get_image_coords() lowerCAmelCase = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) lowerCAmelCase = self.get_camera_rays(SCREAMING_SNAKE_CASE ) lowerCAmelCase = rays.view(SCREAMING_SNAKE_CASE , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : torch.Tensor ) -> torch.Tensor: """simple docstring""" lowerCAmelCase , *lowerCAmelCase , lowerCAmelCase = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] lowerCAmelCase = coords.view(SCREAMING_SNAKE_CASE , -1 , 2 ) lowerCAmelCase = self.resolution() lowerCAmelCase = self.fov() lowerCAmelCase = (flat.float() / (res - 1)) * 2 - 1 lowerCAmelCase = fracs * torch.tan(fov / 2 ) lowerCAmelCase = fracs.view(SCREAMING_SNAKE_CASE , -1 , 2 ) lowerCAmelCase = ( self.z.view(SCREAMING_SNAKE_CASE , 1 , 3 ) + self.x.view(SCREAMING_SNAKE_CASE , 1 , 3 ) * fracs[:, :, :1] + self.y.view(SCREAMING_SNAKE_CASE , 1 , 3 ) * fracs[:, :, 1:] ) lowerCAmelCase = directions / directions.norm(dim=-1 , keepdim=SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.stack( [ torch.broadcast_to(self.origin.view(SCREAMING_SNAKE_CASE , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , 2 , 3 ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> "DifferentiableProjectiveCamera": """simple docstring""" assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=SCREAMING_SNAKE_CASE , height=SCREAMING_SNAKE_CASE , x_fov=self.x_fov , y_fov=self.y_fov , ) def __a ( A__ ) -> DifferentiableProjectiveCamera: lowerCAmelCase = [] lowerCAmelCase = [] lowerCAmelCase = [] lowerCAmelCase = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): lowerCAmelCase = np.array([np.sin(A__ ), np.cos(A__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) lowerCAmelCase = -z * 4 lowerCAmelCase = np.array([np.cos(A__ ), -np.sin(A__ ), 0.0] ) lowerCAmelCase = np.cross(A__ , A__ ) origins.append(A__ ) xs.append(A__ ) ys.append(A__ ) zs.append(A__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A__ , axis=0 ) ).float() , width=A__ , height=A__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A__ )) , )
159
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Tuple = { 'configuration_table_transformer': [ 'TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TableTransformerConfig', 'TableTransformerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ 'TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TableTransformerForObjectDetection', 'TableTransformerModel', 'TableTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
159
1
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __A ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
220
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = '▁' __SCREAMING_SNAKE_CASE = {'vocab_file': 'sentencepiece.bpe.model'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/mbart-large-50-one-to-many-mmt': ( 'https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model' ), } } __SCREAMING_SNAKE_CASE = { 'facebook/mbart-large-50-one-to-many-mmt': 1024, } # fmt: off __SCREAMING_SNAKE_CASE = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN', 'af_ZA', 'az_AZ', 'bn_IN', 'fa_IR', 'he_IL', 'hr_HR', 'id_ID', 'ka_GE', 'km_KH', 'mk_MK', 'ml_IN', 'mn_MN', 'mr_IN', 'pl_PL', 'ps_AF', 'pt_XX', 'sv_SE', 'sw_KE', 'ta_IN', 'te_IN', 'th_TH', 'tl_XX', 'uk_UA', 'ur_PK', 'xh_ZA', 'gl_ES', 'sl_SI'] class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = ['input_ids', 'attention_mask'] _lowercase = [] _lowercase = [] def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Tuple =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token SCREAMING_SNAKE_CASE_ : str ={} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE_ : Dict =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) SCREAMING_SNAKE_CASE_ : Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_ : List[Any] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE_ : Tuple ={'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE_ : str =1 SCREAMING_SNAKE_CASE_ : Tuple =len(self.sp_model ) SCREAMING_SNAKE_CASE_ : Tuple ={ code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__UpperCAmelCase ) } SCREAMING_SNAKE_CASE_ : List[str] ={v: k for k, v in self.lang_code_to_id.items()} SCREAMING_SNAKE_CASE_ : int =len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) SCREAMING_SNAKE_CASE_ : List[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} SCREAMING_SNAKE_CASE_ : Optional[Any] =src_lang if src_lang is not None else 'en_XX' SCREAMING_SNAKE_CASE_ : Any =self.lang_code_to_id[self._src_lang] SCREAMING_SNAKE_CASE_ : List[Any] =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCamelCase ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __lowerCamelCase ( self ): return self._src_lang @src_lang.setter def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Any =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): SCREAMING_SNAKE_CASE_ : Optional[int] =self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Any =None return state def __setstate__( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : Any ={} SCREAMING_SNAKE_CASE_ : List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : List[str] ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCamelCase ( self , __UpperCAmelCase ): return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE_ : List[Any] =self.sp_model.PieceToId(__UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCamelCase ( self , __UpperCAmelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Any =[] SCREAMING_SNAKE_CASE_ : str ='' SCREAMING_SNAKE_CASE_ : List[str] =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token SCREAMING_SNAKE_CASE_ : Dict =True SCREAMING_SNAKE_CASE_ : Dict =[] else: current_sub_tokens.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : str =False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE_ : str =os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , 'wb' ) as fi: SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict =[1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE_ : List[Any] =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCAmelCase )) + ([0] * len(__UpperCAmelCase )) + suffix_ones def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) SCREAMING_SNAKE_CASE_ : List[str] =src_lang SCREAMING_SNAKE_CASE_ : Dict =self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : int =self.convert_tokens_to_ids(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : str =tgt_lang_id return inputs def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = "en_XX" , __UpperCAmelCase = None , __UpperCAmelCase = "ro_RO" , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : Dict =src_lang SCREAMING_SNAKE_CASE_ : List[Any] =tgt_lang return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCamelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] =self.lang_code_to_id[src_lang] SCREAMING_SNAKE_CASE_ : List[Any] =[self.cur_lang_code_id] SCREAMING_SNAKE_CASE_ : Optional[Any] =[self.eos_token_id] def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Any =self.lang_code_to_id[tgt_lang] SCREAMING_SNAKE_CASE_ : int =[self.cur_lang_code_id] SCREAMING_SNAKE_CASE_ : Optional[Any] =[self.eos_token_id]
220
1
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=[30, 30] , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=10 , UpperCamelCase_=0.02 , UpperCamelCase_=3 , UpperCamelCase_=None , UpperCamelCase_=8 , UpperCamelCase_=10 , ): lowercase_ :Optional[int] = parent lowercase_ :List[Any] = batch_size lowercase_ :List[Any] = image_size lowercase_ :List[str] = patch_size lowercase_ :Optional[int] = num_channels lowercase_ :List[str] = is_training lowercase_ :Tuple = use_labels lowercase_ :Tuple = hidden_size lowercase_ :List[Any] = num_hidden_layers lowercase_ :Optional[int] = num_attention_heads lowercase_ :int = intermediate_size lowercase_ :Optional[Any] = hidden_act lowercase_ :Dict = hidden_dropout_prob lowercase_ :Optional[int] = attention_probs_dropout_prob lowercase_ :Union[str, Any] = type_sequence_label_size lowercase_ :List[Any] = initializer_range lowercase_ :str = num_labels lowercase_ :Optional[Any] = scope lowercase_ :Optional[int] = n_targets lowercase_ :Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase_ :int = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase_ :Optional[int] = num_patches + 1 + self.num_detection_tokens def UpperCamelCase ( self ): lowercase_ :Any = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase_ :str = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase_ :str = [] for i in range(self.batch_size ): lowercase_ :str = {} lowercase_ :Any = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__a ) lowercase_ :List[str] = torch.rand(self.n_targets , 4 , device=__a ) labels.append(__a ) lowercase_ :Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :int = YolosModel(config=__a ) model.to(__a ) model.eval() lowercase_ :Optional[Any] = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Union[str, Any] = YolosForObjectDetection(__a ) model.to(__a ) model.eval() lowercase_ :List[Any] = model(pixel_values=__a ) lowercase_ :int = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase_ :Dict = model(pixel_values=__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def UpperCamelCase ( self ): lowercase_ :int = self.prepare_config_and_inputs() lowercase_ :Optional[int] = config_and_inputs lowercase_ :Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' lowercase : List[Any] =(YolosModel, YolosForObjectDetection) if is_torch_available() else () lowercase : int =( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) lowercase : Dict =False lowercase : Union[str, Any] =False lowercase : List[str] =False lowercase : List[Any] =False def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): lowercase_ :Optional[int] = super()._prepare_for_class(__a , __a , return_labels=__a ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase_ :int = [] for i in range(self.model_tester.batch_size ): lowercase_ :Dict = {} lowercase_ :Dict = torch.ones( size=(self.model_tester.n_targets,) , device=__a , dtype=torch.long ) lowercase_ :List[Any] = torch.ones( self.model_tester.n_targets , 4 , device=__a , dtype=torch.float ) labels.append(__a ) lowercase_ :Optional[Any] = labels return inputs_dict def UpperCamelCase ( self ): lowercase_ :int = YolosModelTester(self ) lowercase_ :Union[str, Any] = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() def UpperCamelCase ( self ): # YOLOS does not use inputs_embeds pass def UpperCamelCase ( self ): lowercase_ :Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :List[Any] = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ :Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def UpperCamelCase ( self ): lowercase_ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :List[Any] = model_class(__a ) lowercase_ :Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ :str = [*signature.parameters.keys()] lowercase_ :Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase ( self ): lowercase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ :Optional[Any] = True # in YOLOS, the seq_len is different lowercase_ :Any = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase_ :Tuple = True lowercase_ :Optional[Any] = False lowercase_ :Union[str, Any] = True lowercase_ :int = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): lowercase_ :str = model(**self._prepare_for_class(__a , __a ) ) lowercase_ :Union[str, Any] = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase_ :Union[str, Any] = True lowercase_ :Any = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): lowercase_ :Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) lowercase_ :Optional[int] = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase_ :List[str] = len(__a ) # Check attention is always last and order is fine lowercase_ :Union[str, Any] = True lowercase_ :str = True lowercase_ :List[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): lowercase_ :str = model(**self._prepare_for_class(__a , __a ) ) lowercase_ :Union[str, Any] = 1 self.assertEqual(out_len + added_hidden_states , len(__a ) ) lowercase_ :List[Any] = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCamelCase ( self ): def check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): lowercase_ :Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) lowercase_ :str = outputs.hidden_states lowercase_ :Union[str, Any] = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) # YOLOS has a different seq_length lowercase_ :Tuple = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ :Optional[Any] = True check_hidden_states_output(__a , __a , __a ) def UpperCamelCase ( self ): lowercase_ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__a ) @slow def UpperCamelCase ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ :Union[str, Any] = YolosModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def UpperCamelCase ( ) -> Tuple: '''simple docstring''' lowercase_ :List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def UpperCamelCase ( self ): lowercase_ :int = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__a ) lowercase_ :int = self.default_image_processor lowercase_ :Tuple = prepare_img() lowercase_ :Any = image_processor(images=__a , return_tensors='''pt''' ).to(__a ) # forward pass with torch.no_grad(): lowercase_ :Union[str, Any] = model(inputs.pixel_values ) # verify outputs lowercase_ :List[str] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __a ) lowercase_ :Optional[Any] = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=__a , ) lowercase_ :Optional[int] = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __a , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __a , atol=1E-4 ) ) # verify postprocessing lowercase_ :List[str] = image_processor.post_process_object_detection( __a , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase_ :Any = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(__a ) lowercase_ :Union[str, Any] = [75, 75, 17, 63, 17] lowercase_ :Dict = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(__a ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __a , atol=1E-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __a ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __a ) )
707
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=[30, 30] , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=10 , UpperCamelCase_=0.02 , UpperCamelCase_=3 , UpperCamelCase_=None , UpperCamelCase_=8 , UpperCamelCase_=10 , ): lowercase_ :Tuple = parent lowercase_ :Dict = batch_size lowercase_ :Optional[Any] = image_size lowercase_ :Optional[int] = patch_size lowercase_ :List[str] = num_channels lowercase_ :Dict = is_training lowercase_ :int = use_labels lowercase_ :Any = hidden_size lowercase_ :Optional[Any] = num_hidden_layers lowercase_ :Any = num_attention_heads lowercase_ :int = intermediate_size lowercase_ :List[str] = hidden_act lowercase_ :int = hidden_dropout_prob lowercase_ :Optional[Any] = attention_probs_dropout_prob lowercase_ :Any = type_sequence_label_size lowercase_ :Union[str, Any] = initializer_range lowercase_ :Tuple = num_labels lowercase_ :Dict = scope lowercase_ :int = n_targets lowercase_ :int = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase_ :int = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase_ :int = num_patches + 1 + self.num_detection_tokens def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase_ :Optional[int] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase_ :Any = [] for i in range(self.batch_size ): lowercase_ :Dict = {} lowercase_ :Optional[Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase_ ) lowercase_ :str = torch.rand(self.n_targets , 4 , device=UpperCamelCase_ ) labels.append(UpperCamelCase_ ) lowercase_ :str = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :str = YolosModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase_ :str = model(UpperCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Optional[int] = YolosForObjectDetection(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowercase_ :Dict = model(pixel_values=UpperCamelCase_ ) lowercase_ :Tuple = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowercase_ :Optional[Any] = model(pixel_values=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ :Tuple = config_and_inputs lowercase_ :int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' lowercase : Tuple =(YolosModel, YolosForObjectDetection) if is_torch_available() else () lowercase : Union[str, Any] =( {"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {} ) lowercase : Optional[int] =False lowercase : Optional[int] =False lowercase : Dict =False lowercase : List[str] =False def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): lowercase_ :Optional[Any] = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase_ :Dict = [] for i in range(self.model_tester.batch_size ): lowercase_ :Optional[int] = {} lowercase_ :Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase_ , dtype=torch.long ) lowercase_ :Union[str, Any] = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase_ , dtype=torch.float ) labels.append(UpperCamelCase_ ) lowercase_ :Optional[int] = labels return inputs_dict def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = YolosModelTester(self ) lowercase_ :List[Any] = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() def UpperCamelCase ( self ): # YOLOS does not use inputs_embeds pass def UpperCamelCase ( self ): lowercase_ , lowercase_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Optional[Any] = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ :int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) ) def UpperCamelCase ( self ): lowercase_ , lowercase_ :Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Any = model_class(UpperCamelCase_ ) lowercase_ :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ :Optional[Any] = [*signature.parameters.keys()] lowercase_ :int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ , lowercase_ :str = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ :Tuple = True # in YOLOS, the seq_len is different lowercase_ :Optional[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase_ :Any = True lowercase_ :List[str] = False lowercase_ :List[str] = True lowercase_ :Any = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowercase_ :str = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase_ :str = outputs.attentions self.assertEqual(len(UpperCamelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase_ :Union[str, Any] = True lowercase_ :int = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowercase_ :List[Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase_ :int = outputs.attentions self.assertEqual(len(UpperCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase_ :str = len(UpperCamelCase_ ) # Check attention is always last and order is fine lowercase_ :List[str] = True lowercase_ :Tuple = True lowercase_ :List[Any] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowercase_ :Any = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase_ :List[str] = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase_ ) ) lowercase_ :List[Any] = outputs.attentions self.assertEqual(len(UpperCamelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCamelCase ( self ): def check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :List[Any] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowercase_ :Optional[Any] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase_ :str = outputs.hidden_states lowercase_ :str = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) # YOLOS has a different seq_length lowercase_ :Tuple = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase_ , lowercase_ :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Optional[Any] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ :Dict = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase_ ) @slow def UpperCamelCase ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ :Dict = YolosModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowercase_ :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def UpperCamelCase ( self ): lowercase_ :Any = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase_ ) lowercase_ :Tuple = self.default_image_processor lowercase_ :str = prepare_img() lowercase_ :List[str] = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): lowercase_ :Optional[int] = model(inputs.pixel_values ) # verify outputs lowercase_ :List[str] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowercase_ :int = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=UpperCamelCase_ , ) lowercase_ :Tuple = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase_ , atol=1E-4 ) ) # verify postprocessing lowercase_ :List[str] = image_processor.post_process_object_detection( UpperCamelCase_ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowercase_ :str = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(UpperCamelCase_ ) lowercase_ :Optional[int] = [75, 75, 17, 63, 17] lowercase_ :List[str] = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(UpperCamelCase_ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase_ , atol=1E-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase_ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase_ ) )
441
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase__ ( __lowerCamelCase : Tuple ): __UpperCAmelCase : str = [2, 2, 6, 2] if """tiny""" in model_name else [2, 2, 18, 2] __UpperCAmelCase : Any = True if """large""" in model_name or """huge""" in model_name else False __UpperCAmelCase : int = True if """large""" in model_name or """huge""" in model_name else False __UpperCAmelCase : Optional[int] = True if """large""" in model_name or """huge""" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 3, 3] __UpperCAmelCase : Union[str, Any] = [5, 5, 5, 5] elif "fl4" in model_name: __UpperCAmelCase : str = [4, 4, 4, 4] __UpperCAmelCase : Optional[Any] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __UpperCAmelCase : Dict = [3, 3, 3, 3] if "lrf" in model_name: __UpperCAmelCase : Optional[Any] = [3, 3, 3, 3] else: __UpperCAmelCase : Optional[int] = [2, 2, 2, 2] if "tiny" in model_name: __UpperCAmelCase : List[str] = 96 elif "small" in model_name: __UpperCAmelCase : Dict = 96 elif "base" in model_name: __UpperCAmelCase : List[Any] = 128 elif "large" in model_name: __UpperCAmelCase : Any = 192 elif "xlarge" in model_name: __UpperCAmelCase : Tuple = 256 elif "huge" in model_name: __UpperCAmelCase : int = 352 # set label information __UpperCAmelCase : Tuple = """huggingface/label-files""" if "large" in model_name or "huge" in model_name: __UpperCAmelCase : Any = """imagenet-22k-id2label.json""" else: __UpperCAmelCase : Dict = """imagenet-1k-id2label.json""" __UpperCAmelCase : str = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : Optional[int] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : List[str] = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def lowerCamelCase__ ( __lowerCamelCase : Tuple ): if "patch_embed.proj" in name: __UpperCAmelCase : List[Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __UpperCAmelCase : Dict = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: __UpperCAmelCase : int = """encoder.""" + name if "encoder.layers" in name: __UpperCAmelCase : Optional[int] = name.replace("""encoder.layers""" , """encoder.stages""" ) if "downsample.proj" in name: __UpperCAmelCase : Optional[Any] = name.replace("""downsample.proj""" , """downsample.projection""" ) if "blocks" in name: __UpperCAmelCase : Union[str, Any] = name.replace("""blocks""" , """layers""" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __UpperCAmelCase : List[str] = name.replace("""modulation.f""" , """modulation.projection_in""" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __UpperCAmelCase : List[Any] = name.replace("""modulation.h""" , """modulation.projection_context""" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __UpperCAmelCase : str = name.replace("""modulation.proj""" , """modulation.projection_out""" ) if name == "norm.weight": __UpperCAmelCase : Optional[Any] = """layernorm.weight""" if name == "norm.bias": __UpperCAmelCase : Dict = """layernorm.bias""" if "head" in name: __UpperCAmelCase : Tuple = name.replace("""head""" , """classifier""" ) else: __UpperCAmelCase : int = """focalnet.""" + name return name def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str]=False ): # fmt: off __UpperCAmelCase : Dict = { """focalnet-tiny""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth""", """focalnet-tiny-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth""", """focalnet-small""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth""", """focalnet-small-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth""", """focalnet-base""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth""", """focalnet-base-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth""", """focalnet-large-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth""", """focalnet-large-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth""", """focalnet-xlarge-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth""", """focalnet-xlarge-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth""", } # fmt: on __UpperCAmelCase : int = model_name_to_url[model_name] print("""Checkpoint URL: """ , __lowerCamelCase ) __UpperCAmelCase : Dict = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""model"""] # rename keys for key in state_dict.copy().keys(): __UpperCAmelCase : Tuple = state_dict.pop(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = val __UpperCAmelCase : Optional[Any] = get_focalnet_config(__lowerCamelCase ) __UpperCAmelCase : Any = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion __UpperCAmelCase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Union[str, Any] = BitImageProcessor( do_resize=__lowerCamelCase , size={"""shortest_edge""": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=224 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) __UpperCAmelCase : Optional[Any] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) __UpperCAmelCase : List[Any] = processor(images=__lowerCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : str = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) __UpperCAmelCase : List[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) __UpperCAmelCase : Dict = model(**__lowerCamelCase ) __UpperCAmelCase : Any = outputs.logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) print("""First values of logits:""" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __UpperCAmelCase : Union[str, Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": __UpperCAmelCase : Dict = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": __UpperCAmelCase : int = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": __UpperCAmelCase : int = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": __UpperCAmelCase : Optional[int] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": __UpperCAmelCase : Optional[Any] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) a : Any = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
63
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not nums: raise ValueError('''List is empty''' ) return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
39
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : List[Any] ={"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int =[ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _lowercase : Dict =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
412
from __future__ import annotations from collections.abc import MutableSequence class lowerCAmelCase_ : '''simple docstring''' def __init__( self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) != degree + 1: raise ValueError( """The number of coefficients should be equal to the degree + 1.""" ) a__ = list(lowerCamelCase ) a__ = degree def __add__( self , lowerCamelCase ): '''simple docstring''' if self.degree > polynomial_a.degree: a__ = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowerCamelCase ) else: a__ = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowerCamelCase ) def __sub__( self , lowerCamelCase ): '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ): '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , lowerCamelCase ): '''simple docstring''' a__ = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowerCamelCase ) def _A ( self , lowerCamelCase ): '''simple docstring''' a__ = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ): '''simple docstring''' a__ = """""" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCamelCase ) return polynomial def __repr__( self ): '''simple docstring''' return self.__str__() def _A ( self ): '''simple docstring''' a__ = [0] * self.degree for i in range(self.degree ): a__ = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowerCamelCase ) def _A ( self , lowerCamelCase = 0 ): '''simple docstring''' a__ = [0] * (self.degree + 2) a__ = constant for i in range(self.degree + 1 ): a__ = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowerCamelCase ) def __eq__( self , lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , lowerCamelCase ): '''simple docstring''' return not self.__eq__(lowerCamelCase )
412
1
'''simple docstring''' def _snake_case ( _SCREAMING_SNAKE_CASE : list ) -> list: """simple docstring""" lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: lowerCAmelCase, lowerCAmelCase = arr[i + 1], arr[i] return arr if __name__ == "__main__": UpperCAmelCase = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
433
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCAmelCase = logging.get_logger(__name__) class __snake_case( _lowerCAmelCase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , A_ , ) super().__init__(*A_ , **A_ )
433
1
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __A : Tuple = logging.get_logger(__name__) __A : int = TypeVar('DatasetType', Dataset, IterableDataset) def lowerCAmelCase_ ( a : List[DatasetType] , a : Optional[List[float]] = None , a : Optional[int] = None , a : Optional[DatasetInfo] = None , a : Optional[NamedSplit] = None , a : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(snake_case__ ): if not isinstance(snake_case__ , (Dataset, IterableDataset) ): if isinstance(snake_case__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' 'is an empty dataset dictionary.' ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(snake_case__ )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case__ ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case__ ).__name__}.''' ) if i == 0: a__ , a__ = ( (Dataset, IterableDataset) if isinstance(snake_case__ , snake_case__ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case__ , snake_case__ ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( snake_case__ , snake_case__ , snake_case__ , info=snake_case__ , split=snake_case__ , stopping_strategy=snake_case__ ) else: return _interleave_iterable_datasets( snake_case__ , snake_case__ , snake_case__ , info=snake_case__ , split=snake_case__ , stopping_strategy=snake_case__ ) def lowerCAmelCase_ ( a : List[DatasetType] , a : Optional[DatasetInfo] = None , a : Optional[NamedSplit] = None , a : int = 0 , ): if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(snake_case__ ): if not isinstance(snake_case__ , (Dataset, IterableDataset) ): if isinstance(snake_case__ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' 'is an empty dataset dictionary.' ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(snake_case__ )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case__ ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case__ ).__name__}.''' ) if i == 0: a__ , a__ = ( (Dataset, IterableDataset) if isinstance(snake_case__ , snake_case__ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case__ , snake_case__ ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(snake_case__ , info=snake_case__ , split=snake_case__ , axis=snake_case__ ) else: return _concatenate_iterable_datasets(snake_case__ , info=snake_case__ , split=snake_case__ , axis=snake_case__ )
700
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __A : int = get_logger() __A : Optional[dict] = None class _UpperCamelCase ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): '''simple docstring''' def __init__( self , _a=None , _a=None , **_a ): """simple docstring""" super().__init__(features=_a ) import jax from jaxlib.xla_client import Device if isinstance(_a , _a ): raise ValueError( F'''Expected {device} to be a `str` not {type(_a )}, as `jaxlib.xla_extension.Device` ''' 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) a__ = device if isinstance(_a , _a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: a__ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' F'''device: {str(jax.devices()[0] )}.''' ) a__ = str(jax.devices()[0] ) a__ = jnp_array_kwargs @staticmethod def lowercase__ ( ): """simple docstring""" import jax return {str(_a ): device for device in jax.devices()} def lowercase__ ( self , _a ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(_a , _a ) and column: if all( isinstance(_a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_a , axis=0 ) return column def lowercase__ ( self , _a ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(_a , (str, bytes, type(_a )) ): return value elif isinstance(_a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() a__ = {} if isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: a__ = {'dtype': jnp.intaa} else: a__ = {'dtype': jnp.intaa} elif isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): a__ = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_a , PIL.Image.Image ): a__ = np.asarray(_a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: a__ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_a , **{**default_dtype, **self.jnp_array_kwargs} ) def lowercase__ ( self , _a ): """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_a , '__array__' ) and not isinstance(_a , jax.Array ): a__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] ) elif isinstance(_a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] ) return self._tensorize(_a ) def lowercase__ ( self , _a ): """simple docstring""" return map_nested(self._recursive_tensorize , _a , map_list=_a ) def lowercase__ ( self , _a ): """simple docstring""" a__ = self.numpy_arrow_extractor().extract_row(_a ) a__ = self.python_features_decoder.decode_row(_a ) return self.recursive_tensorize(_a ) def lowercase__ ( self , _a ): """simple docstring""" a__ = self.numpy_arrow_extractor().extract_column(_a ) a__ = self.python_features_decoder.decode_column(_a , pa_table.column_names[0] ) a__ = self.recursive_tensorize(_a ) a__ = self._consolidate(_a ) return column def lowercase__ ( self , _a ): """simple docstring""" a__ = self.numpy_arrow_extractor().extract_batch(_a ) a__ = self.python_features_decoder.decode_batch(_a ) a__ = self.recursive_tensorize(_a ) for column_name in batch: a__ = self._consolidate(batch[column_name] ) return batch
126
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class _A ( unittest.TestCase ): def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=18 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=400 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.48145466, 0.4578275, 0.40821073] , SCREAMING_SNAKE_CASE_=[0.26862954, 0.26130258, 0.27577711] , SCREAMING_SNAKE_CASE_=True , ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = size if size is not None else {'''height''': 224, '''width''': 224} UpperCamelCase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean UpperCamelCase__ = image_std UpperCamelCase__ = do_convert_rgb def _a (self ) -> List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def _a (self , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]: '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: UpperCamelCase__ = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: UpperCamelCase__ = [] for i in range(self.batch_size ): UpperCamelCase__ , UpperCamelCase__ = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension UpperCamelCase__ = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] if torchify: UpperCamelCase__ = [torch.from_numpy(SCREAMING_SNAKE_CASE_ ) for x in image_inputs] return image_inputs @require_torch @require_vision class _A ( __UpperCamelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : int =ChineseCLIPImageProcessor if is_vision_available() else None def _a (self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = ChineseCLIPImageProcessingTester(self , do_center_crop=SCREAMING_SNAKE_CASE_ ) @property def _a (self ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _a (self ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_resize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''size''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''center_crop''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''image_mean''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''image_std''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_convert_rgb''' ) ) def _a (self ) -> Tuple: '''simple docstring''' UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 224, '''width''': 224} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def _a (self ) -> str: '''simple docstring''' pass def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase__ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _a (self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase__ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _a (self ) -> List[str]: '''simple docstring''' UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase__ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) @require_torch @require_vision class _A ( __UpperCamelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : int =ChineseCLIPImageProcessor if is_vision_available() else None def _a (self ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 3 @property def _a (self ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _a (self ) -> str: '''simple docstring''' UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_resize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''size''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''center_crop''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''image_mean''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''image_std''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_convert_rgb''' ) ) def _a (self ) -> Tuple: '''simple docstring''' pass def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = self.image_processor_tester.prepare_inputs(equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image ) # Test not batched input UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase__ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
415
def __UpperCamelCase ( A = 10**12 ): UpperCamelCase__ = 1 UpperCamelCase__ = 0 UpperCamelCase__ = 1 UpperCamelCase__ = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f"""{solution() = }""")
415
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : str = '''upernet''' def __init__( self : Optional[Any] , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=5_1_2 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : str=[1, 2, 3, 6] , lowerCAmelCase__ : int=True , lowerCAmelCase__ : str=0.4 , lowerCAmelCase__ : Tuple=3_8_4 , lowerCAmelCase__ : Any=2_5_6 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Union[str, Any]=2_5_5 , **lowerCAmelCase__ : str , ) -> List[Any]: """simple docstring""" super().__init__(**lowerCAmelCase__ ) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _UpperCAmelCase : List[Any] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Tuple = backbone_config.get("model_type" ) _UpperCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase : List[Any] = config_class.from_dict(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = backbone_config _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : Optional[int] = pool_scales _UpperCAmelCase : Dict = use_auxiliary_head _UpperCAmelCase : Tuple = auxiliary_loss_weight _UpperCAmelCase : str = auxiliary_in_channels _UpperCAmelCase : Optional[Any] = auxiliary_channels _UpperCAmelCase : Union[str, Any] = auxiliary_num_convs _UpperCAmelCase : Dict = auxiliary_concat_input _UpperCAmelCase : str = loss_ignore_index def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[str] = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Any = self.backbone_config.to_dict() _UpperCAmelCase : Optional[int] = self.__class__.model_type return output
257
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[Any], a_: Optional[Any], a_: int ): _UpperCAmelCase : List[str] = UniSpeechSatForSequenceClassification.from_pretrained(a_, config=a_ ) _UpperCAmelCase : List[str] = downstream_dict["projector.weight"] _UpperCAmelCase : List[Any] = downstream_dict["projector.bias"] _UpperCAmelCase : Union[str, Any] = downstream_dict["model.post_net.linear.weight"] _UpperCAmelCase : Dict = downstream_dict["model.post_net.linear.bias"] return model def __UpperCAmelCase ( a_: Optional[Any], a_: Union[str, Any], a_: str ): _UpperCAmelCase : Optional[Any] = UniSpeechSatForAudioFrameClassification.from_pretrained(a_, config=a_ ) _UpperCAmelCase : List[str] = downstream_dict["model.linear.weight"] _UpperCAmelCase : Optional[int] = downstream_dict["model.linear.bias"] return model def __UpperCAmelCase ( a_: Tuple, a_: List[str], a_: Any ): _UpperCAmelCase : int = UniSpeechSatForXVector.from_pretrained(a_, config=a_ ) _UpperCAmelCase : List[Any] = downstream_dict["connector.weight"] _UpperCAmelCase : Optional[int] = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _UpperCAmelCase : str = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] _UpperCAmelCase : Union[str, Any] = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] _UpperCAmelCase : Optional[int] = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] _UpperCAmelCase : Any = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] _UpperCAmelCase : Dict = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] _UpperCAmelCase : Dict = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] _UpperCAmelCase : List[Any] = downstream_dict["objective.W"] return model @torch.no_grad() def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple, a_: Any, a_: Optional[Any] ): _UpperCAmelCase : Any = torch.load(a_, map_location="cpu" ) _UpperCAmelCase : Tuple = checkpoint["Downstream"] _UpperCAmelCase : Dict = UniSpeechSatConfig.from_pretrained(a_ ) _UpperCAmelCase : Any = WavaVecaFeatureExtractor.from_pretrained( a_, return_attention_mask=a_, do_normalize=a_ ) _UpperCAmelCase : List[Any] = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): _UpperCAmelCase : Union[str, Any] = convert_classification(a_, a_, a_ ) elif arch.endswith("ForAudioFrameClassification" ): _UpperCAmelCase : Any = convert_diarization(a_, a_, a_ ) elif arch.endswith("ForXVector" ): _UpperCAmelCase : str = convert_xvector(a_, a_, a_ ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: _UpperCAmelCase : Union[str, Any] = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(a_ ) hf_model.save_pretrained(a_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') __a = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
257
1
def UpperCamelCase_( lowerCamelCase_ = 100_0000 ) -> int: _lowercase : int = 1 _lowercase : Any = 1 _lowercase : Dict = {1: 1} for inputa in range(2 , lowerCamelCase_ ): _lowercase : Any = 0 _lowercase : Optional[int] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowercase : Union[str, Any] = (3 * number) + 1 counter += 1 if inputa not in counters: _lowercase : str = counter if counter > pre_counter: _lowercase : Optional[Any] = inputa _lowercase : Tuple = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
89
from __future__ import annotations def UpperCamelCase_( lowerCamelCase_ ) -> float: if not nums: raise ValueError('List is empty' ) return sum(lowerCamelCase_ ) / len(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
89
1
import csv import tweepy # Twitter API credentials snake_case = """""" snake_case = """""" snake_case = """""" snake_case = """""" def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = tweepy.OAuthHandler(lowercase , lowercase ) auth.set_access_token(lowercase , lowercase ) SCREAMING_SNAKE_CASE : Dict = tweepy.API(lowercase ) # initialize a list to hold all the tweepy Tweets SCREAMING_SNAKE_CASE : List[Any] = [] # make initial request for most recent tweets (200 is the maximum allowed count) SCREAMING_SNAKE_CASE : List[Any] = api.user_timeline(screen_name=lowercase , count=200 ) # save most recent tweets alltweets.extend(lowercase ) # save the id of the oldest tweet less one SCREAMING_SNAKE_CASE : int = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase ) > 0: print(F'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates SCREAMING_SNAKE_CASE : Dict = api.user_timeline( screen_name=lowercase , count=200 , max_id=lowercase ) # save most recent tweets alltweets.extend(lowercase ) # update the id of the oldest tweet less one SCREAMING_SNAKE_CASE : List[Any] = alltweets[-1].id - 1 print(F'''...{len(lowercase )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv SCREAMING_SNAKE_CASE : Optional[int] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'''new_{screen_name}_tweets.csv''' , "w" ) as f: SCREAMING_SNAKE_CASE : int = csv.writer(lowercase ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(lowercase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
488
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = IFImgaImgSuperResolutionPipeline UpperCamelCase_ : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} UpperCamelCase_ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) UpperCamelCase_ : str = PipelineTesterMixin.required_optional_params - {'''latents'''} def _A ( self : List[Any] ): return self._get_superresolution_dummy_components() def _A ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str]=0 ): if str(UpperCAmelCase_ ).startswith("mps" ): SCREAMING_SNAKE_CASE : Any = torch.manual_seed(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _A ( self : Tuple ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _A ( self : Optional[Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _A ( self : List[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _A ( self : Optional[int] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _A ( self : Tuple ): self._test_save_load_local() def _A ( self : List[str] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
488
1
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase_ ( _lowercase ): """simple docstring""" UpperCAmelCase__ = (DPMSolverSDEScheduler,) UpperCAmelCase__ = 10 def __lowercase( self , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: __UpperCamelCase = { 'num_train_timesteps': 1_100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**_SCREAMING_SNAKE_CASE ) return config def __lowercase( self ) -> List[Any]: for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> List[str]: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> Dict: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> int: __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCamelCase = sample.to(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase = scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) __UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1e-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1e-3 def __lowercase( self ) -> Tuple: __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config(prediction_type='v_prediction' ) __UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCamelCase = sample.to(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): __UpperCamelCase = scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) __UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1e-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1e-3 def __lowercase( self ) -> Any: __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(self.num_inference_steps , device=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter.to(_SCREAMING_SNAKE_CASE ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __UpperCamelCase = scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) __UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1e-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1e-3 def __lowercase( self ) -> Dict: __UpperCamelCase = self.scheduler_classes[0] __UpperCamelCase = self.get_scheduler_config() __UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE , use_karras_sigmas=_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(self.num_inference_steps , device=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = self.dummy_model() __UpperCamelCase = self.dummy_sample_deter.to(_SCREAMING_SNAKE_CASE ) * scheduler.init_noise_sigma __UpperCamelCase = sample.to(_SCREAMING_SNAKE_CASE ) for t in scheduler.timesteps: __UpperCamelCase = scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = output.prev_sample __UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) __UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2
383
def _a ( __lowercase = 1 , __lowercase = 1000 ) -> int: """simple docstring""" __UpperCamelCase = 1 __UpperCamelCase = 0 for divide_by_number in range(__lowercase , digit + 1 ): __UpperCamelCase = [] __UpperCamelCase = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__lowercase ): __UpperCamelCase = len(__lowercase ) __UpperCamelCase = divide_by_number else: has_been_divided.append(__lowercase ) __UpperCamelCase = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
383
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str ) -> int: '''simple docstring''' def get_masked_lm_array(UpperCamelCase__ : str ): _snake_case = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _snake_case = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) if "kernel" in name: _snake_case = array.transpose() return torch.from_numpy(_lowerCamelCase ) def get_encoder_array(UpperCamelCase__ : str ): _snake_case = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _snake_case = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) if "kernel" in name: _snake_case = array.transpose() return torch.from_numpy(_lowerCamelCase ) def get_encoder_layer_array(UpperCamelCase__ : int , UpperCamelCase__ : str ): _snake_case = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _snake_case = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) if "kernel" in name: _snake_case = array.transpose() return torch.from_numpy(_lowerCamelCase ) def get_encoder_attention_layer_array(UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] ): _snake_case = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' _snake_case = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) _snake_case = array.reshape(_lowerCamelCase ) if "kernel" in name: _snake_case = array.transpose() return torch.from_numpy(_lowerCamelCase ) print(F'''Loading model based on config from {config_path}...''' ) _snake_case = BertConfig.from_json_file(_lowerCamelCase ) _snake_case = BertForMaskedLM(_lowerCamelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): _snake_case = model.bert.encoder.layer[layer_index] # Self-attention _snake_case = layer.attention.self _snake_case = get_encoder_attention_layer_array( _lowerCamelCase , '_query_dense/kernel' , self_attn.query.weight.data.shape ) _snake_case = get_encoder_attention_layer_array( _lowerCamelCase , '_query_dense/bias' , self_attn.query.bias.data.shape ) _snake_case = get_encoder_attention_layer_array( _lowerCamelCase , '_key_dense/kernel' , self_attn.key.weight.data.shape ) _snake_case = get_encoder_attention_layer_array( _lowerCamelCase , '_key_dense/bias' , self_attn.key.bias.data.shape ) _snake_case = get_encoder_attention_layer_array( _lowerCamelCase , '_value_dense/kernel' , self_attn.value.weight.data.shape ) _snake_case = get_encoder_attention_layer_array( _lowerCamelCase , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output _snake_case = layer.attention.output _snake_case = get_encoder_attention_layer_array( _lowerCamelCase , '_output_dense/kernel' , self_output.dense.weight.data.shape ) _snake_case = get_encoder_attention_layer_array( _lowerCamelCase , '_output_dense/bias' , self_output.dense.bias.data.shape ) _snake_case = get_encoder_layer_array(_lowerCamelCase , '_attention_layer_norm/gamma' ) _snake_case = get_encoder_layer_array(_lowerCamelCase , '_attention_layer_norm/beta' ) # Intermediate _snake_case = layer.intermediate _snake_case = get_encoder_layer_array(_lowerCamelCase , '_intermediate_dense/kernel' ) _snake_case = get_encoder_layer_array(_lowerCamelCase , '_intermediate_dense/bias' ) # Output _snake_case = layer.output _snake_case = get_encoder_layer_array(_lowerCamelCase , '_output_dense/kernel' ) _snake_case = get_encoder_layer_array(_lowerCamelCase , '_output_dense/bias' ) _snake_case = get_encoder_layer_array(_lowerCamelCase , '_output_layer_norm/gamma' ) _snake_case = get_encoder_layer_array(_lowerCamelCase , '_output_layer_norm/beta' ) # Embeddings _snake_case = get_encoder_array('_position_embedding_layer/embeddings' ) _snake_case = get_encoder_array('_type_embedding_layer/embeddings' ) _snake_case = get_encoder_array('_embedding_norm_layer/gamma' ) _snake_case = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head _snake_case = model.cls.predictions.transform _snake_case = get_masked_lm_array('dense/kernel' ) _snake_case = get_masked_lm_array('dense/bias' ) _snake_case = get_masked_lm_array('layer_norm/gamma' ) _snake_case = get_masked_lm_array('layer_norm/beta' ) _snake_case = get_masked_lm_array('embedding_table' ) # Pooling _snake_case = BertPooler(config=_lowerCamelCase ) _snake_case = get_encoder_array('_pooler_layer/kernel' ) _snake_case = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(_lowerCamelCase ) # Integration test - should load without any errors ;) _snake_case = BertForMaskedLM.from_pretrained(_lowerCamelCase ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) UpperCAmelCase_ = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
719
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCAmelCase_ = logging.getLogger(__name__) def lowerCamelCase__ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Tuple: '''simple docstring''' if os.path.exists(UpperCamelCase__ ): if os.path.exists(os.path.join(UpperCamelCase__ , 'config.json' ) ) and os.path.isfile( os.path.join(UpperCamelCase__ , 'config.json' ) ): os.remove(os.path.join(UpperCamelCase__ , 'config.json' ) ) if os.path.exists(os.path.join(UpperCamelCase__ , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(UpperCamelCase__ , 'pytorch_model.bin' ) ): os.remove(os.path.join(UpperCamelCase__ , 'pytorch_model.bin' ) ) else: os.makedirs(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict=False ) -> str: '''simple docstring''' _snake_case = 2 if unlogit: _snake_case = torch.pow(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = p * torch.log(UpperCamelCase__ ) _snake_case = 0 return -plogp.sum(dim=-1 ) def lowerCamelCase__ ( UpperCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(UpperCamelCase__ ) ) ) ) for row in range(len(UpperCamelCase__ ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[int]=False ) -> Any: '''simple docstring''' _snake_case , _snake_case = model.config.num_hidden_layers, model.config.num_attention_heads _snake_case = torch.zeros(UpperCamelCase__ , UpperCamelCase__ ).to(args.device ) _snake_case = torch.zeros(UpperCamelCase__ , UpperCamelCase__ ).to(args.device ) if head_mask is None: _snake_case = torch.ones(UpperCamelCase__ , UpperCamelCase__ ).to(args.device ) head_mask.requires_grad_(requires_grad=UpperCamelCase__ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _snake_case = None _snake_case = 0.0 _snake_case = 0.0 for step, inputs in enumerate(tqdm(UpperCamelCase__ , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _snake_case = tuple(t.to(args.device ) for t in inputs ) ((_snake_case) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _snake_case = model(UpperCamelCase__ , labels=UpperCamelCase__ , head_mask=UpperCamelCase__ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _snake_case , _snake_case , _snake_case = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(UpperCamelCase__ ): _snake_case = entropy(attn.detach() , UpperCamelCase__ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(UpperCamelCase__ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _snake_case = 2 _snake_case = torch.pow(torch.pow(UpperCamelCase__ , UpperCamelCase__ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: _snake_case = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(UpperCamelCase__ ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(UpperCamelCase__ ) logger.info('Head ranked by importance scores' ) _snake_case = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _snake_case = torch.arange( head_importance.numel() , device=args.device ) _snake_case = head_ranks.view_as(UpperCamelCase__ ) print_ad_tensor(UpperCamelCase__ ) return attn_entropy, head_importance, total_loss def lowerCamelCase__ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' _snake_case , _snake_case , _snake_case = compute_heads_importance(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , compute_entropy=UpperCamelCase__ ) _snake_case = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , UpperCamelCase__ , original_score * args.masking_threshold ) _snake_case = torch.ones_like(UpperCamelCase__ ) _snake_case = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _snake_case = original_score while current_score >= original_score * args.masking_threshold: _snake_case = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _snake_case = float('Inf' ) _snake_case = head_importance.view(-1 ).sort()[1] if len(UpperCamelCase__ ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _snake_case = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _snake_case = new_head_mask.view(-1 ) _snake_case = 0.0 _snake_case = new_head_mask.view_as(UpperCamelCase__ ) _snake_case = new_head_mask.clone().detach() print_ad_tensor(UpperCamelCase__ ) # Compute metric and head importance again _snake_case , _snake_case , _snake_case = compute_heads_importance( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , compute_entropy=UpperCamelCase__ , head_mask=UpperCamelCase__ ) _snake_case = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , UpperCamelCase__ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('Final head mask' ) print_ad_tensor(UpperCamelCase__ ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : int ) -> List[Any]: '''simple docstring''' _snake_case = datetime.now() _snake_case , _snake_case , _snake_case = compute_heads_importance( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , compute_entropy=UpperCamelCase__ , compute_importance=UpperCamelCase__ , head_mask=UpperCamelCase__ ) _snake_case = 1 / loss _snake_case = datetime.now() - before_time _snake_case = sum(p.numel() for p in model.parameters() ) _snake_case = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(UpperCamelCase__ ) ) } for k, v in heads_to_prune.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): _snake_case = [ v, ] assert sum(len(UpperCamelCase__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(UpperCamelCase__ ) _snake_case = sum(p.numel() for p in model.parameters() ) _snake_case = datetime.now() _snake_case , _snake_case , _snake_case = compute_heads_importance( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , compute_entropy=UpperCamelCase__ , compute_importance=UpperCamelCase__ , head_mask=UpperCamelCase__ , actually_pruned=UpperCamelCase__ , ) _snake_case = 1 / loss _snake_case = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , UpperCamelCase__ , UpperCamelCase__ , pruned_num_params / original_num_params * 100 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , UpperCamelCase__ , UpperCamelCase__ ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 100 ) save_model(UpperCamelCase__ , args.output_dir ) def lowerCamelCase__ ( ) -> str: '''simple docstring''' _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=UpperCamelCase__ , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=UpperCamelCase__ , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=UpperCamelCase__ , type=UpperCamelCase__ , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=UpperCamelCase__ , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=UpperCamelCase__ , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=UpperCamelCase__ , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=UpperCamelCase__ , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=128 , type=UpperCamelCase__ , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=UpperCamelCase__ , help='Batch size.' ) parser.add_argument('--seed' , type=UpperCamelCase__ , default=42 ) parser.add_argument('--local_rank' , type=UpperCamelCase__ , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=UpperCamelCase__ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=UpperCamelCase__ , default='' , help='Can be used for distant debugging.' ) _snake_case = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=UpperCamelCase__ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _snake_case = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _snake_case = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _snake_case = torch.device('cuda' , args.local_rank ) _snake_case = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _snake_case = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _snake_case = nn.parallel.DistributedDataParallel( UpperCamelCase__ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=UpperCamelCase__ ) elif args.n_gpu > 1: _snake_case = nn.DataParallel(UpperCamelCase__ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) torch.save(UpperCamelCase__ , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , UpperCamelCase__ ) # Prepare dataset _snake_case = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _snake_case = (torch.from_numpy(UpperCamelCase__ ),) _snake_case = TensorDataset(*UpperCamelCase__ ) _snake_case = RandomSampler(UpperCamelCase__ ) _snake_case = DataLoader(UpperCamelCase__ , sampler=UpperCamelCase__ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _snake_case = mask_heads(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) prune_heads(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
541
0
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCamelCase_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def _lowerCAmelCase ( __magic_name__ : str ) -> int: for pegasus_name, hf_name in PATTERNS: lowercase : Dict =k.replace(__magic_name__ , __magic_name__ ) return k def _lowerCAmelCase ( __magic_name__ : dict , __magic_name__ : dict ) -> PegasusForConditionalGeneration: lowercase : str =DEFAULTS.copy() cfg_kwargs.update(__magic_name__ ) lowercase : List[str] =PegasusConfig(**__magic_name__ ) lowercase : str =PegasusForConditionalGeneration(__magic_name__ ) lowercase : Dict =torch_model.model.state_dict() lowercase : Dict ={} for k, v in tf_weights.items(): lowercase : Union[str, Any] =rename_state_dict_key(__magic_name__ ) if new_k not in sd: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: lowercase : Optional[Any] =v.T lowercase : Optional[int] =torch.tensor(__magic_name__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected lowercase : Any =torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) lowercase : Tuple =mapping['''shared.weight'''] lowercase : Optional[int] =mapping['''shared.weight'''] lowercase : Optional[int] ={k: torch.zeros_like(__magic_name__ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**__magic_name__ ) lowercase , lowercase : List[Any] =torch_model.model.load_state_dict(__magic_name__ , strict=__magic_name__ ) lowercase : List[str] =[ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def _lowerCAmelCase ( __magic_name__ : Dict="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: lowercase : Dict =tf.train.list_variables(__magic_name__ ) lowercase : int ={} lowercase : Dict =['''Adafactor''', '''global_step'''] for name, shape in tqdm(__magic_name__ , desc='''converting tf checkpoint to dict''' ): lowercase : int =any(pat in name for pat in ignore_name ) if skip_key: continue lowercase : List[Any] =tf.train.load_variable(__magic_name__ , __magic_name__ ) lowercase : str =array return tf_weights def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[Any]: # save tokenizer first lowercase : Tuple =Path(__magic_name__ ).parent.name lowercase : Optional[Any] =task_specific_params[f'''summarization_{dataset}''']['''max_position_embeddings'''] lowercase : List[Any] =PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=__magic_name__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__magic_name__ ) # convert model lowercase : Tuple =get_tf_weights_as_numpy(__magic_name__ ) lowercase : str =task_specific_params[f'''summarization_{dataset}'''] if dataset == "large": lowercase : Union[str, Any] =task_specific_params lowercase : Any =convert_pegasus(__magic_name__ , __magic_name__ ) torch_model.save_pretrained(__magic_name__ ) lowercase : Dict =torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(__magic_name__ , Path(__magic_name__ ) / '''pytorch_model.bin''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") UpperCamelCase_ = parser.parse_args() if args.save_dir is None: UpperCamelCase_ = Path(args.tf_ckpt_path).parent.name UpperCamelCase_ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
92
from functools import lru_cache @lru_cache def _lowerCamelCase ( __lowerCamelCase ) -> int: '''simple docstring''' if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
79
0
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE( __A ): snake_case_ : List[str] = """new-model""" if is_tf_available(): class SCREAMING_SNAKE_CASE( __A ): snake_case_ : Any = NewModelConfig @require_tf class SCREAMING_SNAKE_CASE( unittest.TestCase ): @slow def snake_case__ ( self ) -> Tuple: """simple docstring""" __lowercase = """bert-base-cased""" __lowercase = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = TFAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def snake_case__ ( self ) -> List[Any]: """simple docstring""" __lowercase = """bert-base-cased""" __lowercase = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = TFAutoModelForPreTraining.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def snake_case__ ( self ) -> Optional[int]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ ) __lowercase ,__lowercase = TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def snake_case__ ( self ) -> Optional[int]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def snake_case__ ( self ) -> Optional[int]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ ) __lowercase ,__lowercase = TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def snake_case__ ( self ) -> int: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ) __lowercase ,__lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def snake_case__ ( self ) -> int: """simple docstring""" for model_name in ["bert-base-uncased"]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = TFAutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def snake_case__ ( self ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = TFAutoModelForQuestionAnswering.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow @require_tensorflow_probability def snake_case__ ( self ) -> Tuple: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __lowercase = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = TFAutoModelForTableQuestionAnswering.from_pretrained(lowerCamelCase__ ) __lowercase ,__lowercase = TFAutoModelForTableQuestionAnswering.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ) -> str: """simple docstring""" __lowercase = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 1_4410 ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" __lowercase = TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 1_4410 ) def snake_case__ ( self ) -> List[Any]: """simple docstring""" __lowercase = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = copy.deepcopy(model.config ) __lowercase = ["""FunnelBaseModel"""] __lowercase = TFAutoModel.from_config(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ ) __lowercase = TFAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ) -> Tuple: """simple docstring""" try: AutoConfig.register("""new-model""" , lowerCamelCase__ ) __lowercase = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(lowerCamelCase__ ): auto_class.register(lowerCamelCase__ , lowerCamelCase__ ) auto_class.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): auto_class.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API __lowercase = BertModelTester(self ).get_config() __lowercase = NewModelConfig(**tiny_config.to_dict() ) __lowercase = auto_class.from_config(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCamelCase__ ) __lowercase = auto_class.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def snake_case__ ( self ) -> Tuple: """simple docstring""" with self.assertRaisesRegex( lowerCamelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): __lowercase = TFAutoModel.from_pretrained("""bert-base""" ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( lowerCamelCase__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowercase = TFAutoModel.from_pretrained(lowerCamelCase__ , revision="""aaaaaa""" ) def snake_case__ ( self ) -> str: """simple docstring""" with self.assertRaisesRegex( lowerCamelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ): __lowercase = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex(lowerCamelCase__ , """Use `from_pt=True` to load this model""" ): __lowercase = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" __lowercase = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: __lowercase = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __lowercase = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) with RequestCounter() as counter: __lowercase = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
163
'''simple docstring''' from __future__ import annotations import requests def snake_case_ ( a__ : str ): """simple docstring""" __lowercase = f'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(a__ ).json() def snake_case_ ( a__ : int = 10 ): """simple docstring""" __lowercase = """https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty""" __lowercase = requests.get(a__ ).json()[:max_stories] return [get_hackernews_story(a__ ) for story_id in story_ids] def snake_case_ ( a__ : int = 10 ): """simple docstring""" __lowercase = hackernews_top_stories(a__ ) return "\n".join("""* [{title}]({url})""".format(**a__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
163
1
def _A ( __snake_case :int ) -> list: """simple docstring""" if n_term == "": return [] __SCREAMING_SNAKE_CASE = [] for temp in range(int(A__ ) ): series.append(f'''1/{temp + 1}''' if series else "1" ) return series if __name__ == "__main__": _snake_case : Optional[Any] = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
693
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer a_ :Tuple = logging.get_logger(__name__) a_ :Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ :Optional[int] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Any = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } a_ :Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_12, 'facebook/dpr-ctx_encoder-multiset-base': 5_12, } a_ :List[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_12, 'facebook/dpr-question_encoder-multiset-base': 5_12, } a_ :Tuple = { 'facebook/dpr-reader-single-nq-base': 5_12, 'facebook/dpr-reader-multiset-base': 5_12, } a_ :str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } a_ :Optional[int] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } a_ :Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ :List[str] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) a_ :Optional[int] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) a_ :Tuple = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_UpperCAmelCase ) class lowercase : def __call__( self : List[Any] , _lowercase : Any , _lowercase : Optional[str] = None , _lowercase : Optional[str] = None , _lowercase : Union[bool, str] = False , _lowercase : Union[bool, str] = False , _lowercase : Optional[int] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[bool] = None , **_lowercase : str , ): if titles is None and texts is None: return super().__call__( _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE__ : List[str] = titles if texts is None else texts return super().__call__( _lowercase , _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = titles if not isinstance(_lowercase , _lowercase ) else [titles] SCREAMING_SNAKE_CASE__ : Optional[int] = texts if not isinstance(_lowercase , _lowercase ) else [texts] SCREAMING_SNAKE_CASE__ : List[Any] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : str = questions if not isinstance(_lowercase , _lowercase ) else [questions] * n_passages if len(_lowercase ) != len(_lowercase ): raise ValueError( f"""There should be as many titles than texts but got {len(_lowercase )} titles and {len(_lowercase )} texts.""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = super().__call__(_lowercase , _lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Tuple = super().__call__(_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase )['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowercase , _lowercase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE__ : Optional[int] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE__ : Dict = attention_mask return self.pad(_lowercase , padding=_lowercase , max_length=_lowercase , return_tensors=_lowercase ) def lowercase__ ( self : List[Any] , _lowercase : BatchEncoding , _lowercase : DPRReaderOutput , _lowercase : int = 16 , _lowercase : int = 64 , _lowercase : int = 4 , ): SCREAMING_SNAKE_CASE__ : Optional[int] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = reader_output[:3] SCREAMING_SNAKE_CASE__ : Any = len(_lowercase ) SCREAMING_SNAKE_CASE__ : int = sorted(range(_lowercase ) , reverse=_lowercase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE__ : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE__ : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE__ : Dict = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE__ : List[str] = len(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowercase , top_spans=_lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowercase , start_index=_lowercase , end_index=_lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self : Dict , _lowercase : List[int] , _lowercase : List[int] , _lowercase : int , _lowercase : int , ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] for start_index, start_score in enumerate(_lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE__ : Optional[int] = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) SCREAMING_SNAKE_CASE__ : Tuple = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase : Dict = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase : List[Any] = ['''input_ids''', '''attention_mask''']
35
0
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->str: if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) _UpperCAmelCase =str(bin(_lowerCamelCase ) ) binary_number += "0" * shift_amount return binary_number def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->str: if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) _UpperCAmelCase =str(bin(_lowerCamelCase ) )[2:] if shift_amount >= len(_lowerCamelCase ): return "0b0" _UpperCAmelCase =binary_number[: len(_lowerCamelCase ) - shift_amount] return "0b" + shifted_binary_number def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->str: if number >= 0: # Get binary representation of positive number _UpperCAmelCase ="0" + str(bin(_lowerCamelCase ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number _UpperCAmelCase =len(bin(_lowerCamelCase )[3:] ) # Find 2's complement of number _UpperCAmelCase =bin(abs(_lowerCamelCase ) - (1 << binary_number_length) )[3:] _UpperCAmelCase =( "1" + "0" * (binary_number_length - len(_lowerCamelCase )) + binary_number ) if shift_amount >= len(_lowerCamelCase ): return "0b" + binary_number[0] * len(_lowerCamelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(_lowerCamelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
592
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _a ( A__ ): """simple docstring""" @slow @require_torch def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) _UpperCAmelCase =BertTokenizer.from_pretrained("bert-base-uncased" ) _UpperCAmelCase =bertabert.config.encoder.vocab_size _UpperCAmelCase =tokenizer.sep_token_id _UpperCAmelCase =tokenizer.cls_token_id _UpperCAmelCase =128 _UpperCAmelCase =datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) _UpperCAmelCase =datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) _UpperCAmelCase =train_dataset.select(range(32 ) ) _UpperCAmelCase =val_dataset.select(range(16 ) ) _UpperCAmelCase =4 def _map_to_encoder_decoder_inputs(_snake_case ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase =tokenizer(batch["article"] , padding="max_length" , truncation=_snake_case , max_length=512 ) _UpperCAmelCase =tokenizer(batch["highlights"] , padding="max_length" , truncation=_snake_case , max_length=128 ) _UpperCAmelCase =inputs.input_ids _UpperCAmelCase =inputs.attention_mask _UpperCAmelCase =outputs.input_ids _UpperCAmelCase =outputs.input_ids.copy() _UpperCAmelCase =[ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] _UpperCAmelCase =outputs.attention_mask assert all(len(_snake_case ) == 512 for x in inputs.input_ids ) assert all(len(_snake_case ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_snake_case ): _UpperCAmelCase =pred.label_ids _UpperCAmelCase =pred.predictions # all unnecessary tokens are removed _UpperCAmelCase =tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) _UpperCAmelCase =tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) _UpperCAmelCase =sum([int(pred_str[i] == label_str[i] ) for i in range(len(_snake_case ) )] ) / len(_snake_case ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase =train_dataset.map( _map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset _UpperCAmelCase =val_dataset.map( _map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) _UpperCAmelCase =self.get_auto_remove_tmp_dir() _UpperCAmelCase =SeqaSeqTrainingArguments( output_dir=_snake_case , per_device_train_batch_size=_snake_case , per_device_eval_batch_size=_snake_case , predict_with_generate=_snake_case , evaluation_strategy="steps" , do_train=_snake_case , do_eval=_snake_case , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer _UpperCAmelCase =SeqaSeqTrainer( model=_snake_case , args=_snake_case , compute_metrics=_compute_metrics , train_dataset=_snake_case , eval_dataset=_snake_case , tokenizer=_snake_case , ) # start training trainer.train()
592
1
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowerCAmelCase = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
10
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class snake_case__ ( UpperCamelCase_ , unittest.TestCase ): _lowerCAmelCase =FlaxAutoencoderKL @property def UpperCAmelCase__ ( self : int ): snake_case__ : Optional[Any] = 4 snake_case__ : Optional[Any] = 3 snake_case__ : List[Any] = (3_2, 3_2) snake_case__ : int = jax.random.PRNGKey(0 ) snake_case__ : List[Any] = jax.random.uniform(_lowerCamelCase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCAmelCase__ ( self : List[Any] ): snake_case__ : Optional[Any] = { 'block_out_channels': [3_2, 6_4], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } snake_case__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict
170
0
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowerCamelCase : List[str] = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } lowerCamelCase : Any = logging.WARNING def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = os.getenv('DATASETS_VERBOSITY' , lowercase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return __name__.split('.' )[0] def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] = None ): '''simple docstring''' if name is None: lowerCamelCase_ = _get_library_name() return logging.getLogger(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return _get_library_root_logger().getEffectiveLevel() def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] ): '''simple docstring''' _get_library_root_logger().setLevel(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return set_verbosity(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return set_verbosity(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return set_verbosity(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return set_verbosity(lowercase ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = False def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class A: '''simple docstring''' def __init__( self : Any , *A_ : str , **A_ : Optional[Any] ) -> int: # pylint: disable=unused-argument """simple docstring""" lowerCamelCase_ = args[0] if args else None def __iter__( self : Optional[int] ) -> Any: """simple docstring""" return iter(self._iterator ) def __getattr__( self : int , A_ : Optional[int] ) -> Dict: """simple docstring""" def empty_fn(*A_ : Optional[int] , **A_ : str ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Tuple ) -> List[Any]: """simple docstring""" return self def __exit__( self : int , A_ : Optional[int] , A_ : Union[str, Any] , A_ : Optional[int] ) -> str: """simple docstring""" return lowerCamelCase : Dict = True class A: '''simple docstring''' def __call__( self : Dict , *A_ : int , A_ : Any=False , **A_ : Any ) -> Optional[int]: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*lowerCamelCase_ , **lowerCamelCase_ ) else: return EmptyTqdm(*lowerCamelCase_ , **lowerCamelCase_ ) def a__ ( self : str , *A_ : Union[str, Any] , **A_ : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCamelCase_ , **lowerCamelCase_ ) def a__ ( self : int ) -> Any: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCamelCase : Union[str, Any] = _tqdm_cls() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' global _tqdm_active lowerCamelCase_ = True def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' global _tqdm_active lowerCamelCase_ = False
710
class A: '''simple docstring''' def __init__( self : Dict ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = {} def a__ ( self : Union[str, Any] , A_ : List[Any] ) -> int: """simple docstring""" if vertex not in self.adjacency: lowerCamelCase_ = {} self.num_vertices += 1 def a__ ( self : int , A_ : int , A_ : Optional[Any] , A_ : List[str] ) -> Tuple: """simple docstring""" self.add_vertex(A_ ) self.add_vertex(A_ ) if head == tail: return lowerCamelCase_ = weight lowerCamelCase_ = weight def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(A_ ) ): lowerCamelCase_ = list(edges[i] ) edges.sort(key=lambda A_ : e[2] ) for i in range(len(A_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase_ = edges[i][2] + 1 for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = weight lowerCamelCase_ = weight def __str__( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = '' for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase_ = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ ( self : List[str] ) -> int: """simple docstring""" return self.adjacency.keys() @staticmethod def a__ ( A_ : Optional[Any]=None , A_ : List[str]=None ) -> List[str]: """simple docstring""" lowerCamelCase_ = Graph() if vertices is None: lowerCamelCase_ = [] if edges is None: lowerCamelCase_ = [] for vertex in vertices: g.add_vertex(A_ ) for edge in edges: g.add_edge(*A_ ) return g class A: '''simple docstring''' def __init__( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = {} lowerCamelCase_ = {} def __len__( self : Any ) -> List[str]: """simple docstring""" return len(self.parent ) def a__ ( self : List[str] , A_ : Any ) -> Dict: """simple docstring""" if item in self.parent: return self.find(A_ ) lowerCamelCase_ = item lowerCamelCase_ = 0 return item def a__ ( self : List[str] , A_ : Tuple ) -> Optional[int]: """simple docstring""" if item not in self.parent: return self.make_set(A_ ) if item != self.parent[item]: lowerCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def a__ ( self : Any , A_ : int , A_ : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.find(A_ ) lowerCamelCase_ = self.find(A_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase_ = roota return roota return None @staticmethod def a__ ( A_ : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = graph.num_vertices lowerCamelCase_ = Graph.UnionFind() lowerCamelCase_ = [] while num_components > 1: lowerCamelCase_ = {} for vertex in graph.get_vertices(): lowerCamelCase_ = -1 lowerCamelCase_ = graph.get_edges() for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edge lowerCamelCase_ = union_find.find(A_ ) lowerCamelCase_ = union_find.find(A_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = cheap_edge[vertex] if union_find.find(A_ ) != union_find.find(A_ ): union_find.union(A_ , A_ ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase_ = num_components - 1 lowerCamelCase_ = Graph.build(edges=A_ ) return mst
651
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase_ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase__ ( __lowerCamelCase ): """simple docstring""" def __init__( self : Tuple ,*a__ : Any ,**a__ : List[str] ): warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." ,a__ ,) super().__init__(*a__ ,**a__ )
331
'''simple docstring''' import json import sys def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" with open(_lowercase , encoding="utf-8" ) as f: a__ = json.load(_lowercase ) a__ = ["<details>", "<summary>Show updated benchmarks!</summary>", " "] for benchmark_name in sorted(_lowercase ): a__ = results[benchmark_name] a__ = benchmark_name.split("/" )[-1] output_md.append(F'### Benchmark: {benchmark_file_name}' ) a__ = "| metric |" a__ = "|--------|" a__ = "| new / old (diff) |" for metric_name in sorted(_lowercase ): a__ = benchmark_res[metric_name] a__ = metric_vals["new"] a__ = metric_vals.get("old" , _lowercase ) a__ = metric_vals.get("diff" , _lowercase ) a__ = F' {new_val:f}' if isinstance(_lowercase , (int, float) ) else "None" if old_val is not None: val_str += F' / {old_val:f}' if isinstance(_lowercase , (int, float) ) else "None" if dif_val is not None: val_str += F' ({dif_val:f})' if isinstance(_lowercase , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("</details>" ) with open(_lowercase , "w" , encoding="utf-8" ) as f: f.writelines("\n".join(_lowercase ) ) if __name__ == "__main__": UpperCamelCase_ : Dict = sys.argv[1] UpperCamelCase_ : int = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
331
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class lowerCAmelCase ( snake_case ): def __init__( self , *a__ , **a__ ): warnings.warn( 'The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DeiTImageProcessor instead.' , a__ , ) super().__init__(*a__ , **a__ )
494
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = """philschmid/bart-large-cnn-samsum""" lowerCAmelCase__ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) lowerCAmelCase__ = """summarizer""" lowerCAmelCase__ = AutoTokenizer lowerCAmelCase__ = AutoModelForSeqaSeqLM lowerCAmelCase__ = ["""text"""] lowerCAmelCase__ = ["""text"""] def __A ( self , a__ ): return self.pre_processor(a__ , return_tensors='pt' , truncation=a__ ) def __A ( self , a__ ): return self.model.generate(**a__ )[0] def __A ( self , a__ ): return self.pre_processor.decode(a__ , skip_special_tokens=a__ , clean_up_tokenization_spaces=a__ )
494
1
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : List[str] = tau * frequency / samplerate UpperCAmelCase_ : Tuple = sin(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = cos(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : Any = (1 - _cos) / 2 UpperCAmelCase_ : int = 1 - _cos UpperCAmelCase_ : str = 1 + alpha UpperCAmelCase_ : List[str] = -2 * _cos UpperCAmelCase_ : Optional[int] = 1 - alpha UpperCAmelCase_ : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = tau * frequency / samplerate UpperCAmelCase_ : Dict = sin(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = cos(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : Union[str, Any] = (1 + _cos) / 2 UpperCAmelCase_ : str = -1 - _cos UpperCAmelCase_ : List[str] = 1 + alpha UpperCAmelCase_ : List[str] = -2 * _cos UpperCAmelCase_ : List[str] = 1 - alpha UpperCAmelCase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : Any = tau * frequency / samplerate UpperCAmelCase_ : Optional[int] = sin(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = cos(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = _sin / (2 * q_factor) UpperCAmelCase_ : str = _sin / 2 UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Optional[int] = -ba UpperCAmelCase_ : Dict = 1 + alpha UpperCAmelCase_ : Any = -2 * _cos UpperCAmelCase_ : List[str] = 1 - alpha UpperCAmelCase_ : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : List[str] = tau * frequency / samplerate UpperCAmelCase_ : Tuple = sin(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = cos(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = _sin / (2 * q_factor) UpperCAmelCase_ : Tuple = 1 - alpha UpperCAmelCase_ : Dict = -2 * _cos UpperCAmelCase_ : Optional[Any] = 1 + alpha UpperCAmelCase_ : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : List[Any] = tau * frequency / samplerate UpperCAmelCase_ : int = sin(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = cos(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = _sin / (2 * q_factor) UpperCAmelCase_ : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase_ : Dict = 1 + alpha * big_a UpperCAmelCase_ : Dict = -2 * _cos UpperCAmelCase_ : Tuple = 1 - alpha * big_a UpperCAmelCase_ : Any = 1 + alpha / big_a UpperCAmelCase_ : str = -2 * _cos UpperCAmelCase_ : List[str] = 1 - alpha / big_a UpperCAmelCase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : List[str] = tau * frequency / samplerate UpperCAmelCase_ : Dict = sin(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = cos(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = _sin / (2 * q_factor) UpperCAmelCase_ : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase_ : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ : Tuple = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ : str = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ : int = 2 * sqrt(_SCREAMING_SNAKE_CASE ) * alpha UpperCAmelCase_ : Optional[Any] = big_a * (pmc + aaa) UpperCAmelCase_ : Any = 2 * big_a * mpc UpperCAmelCase_ : Any = big_a * (pmc - aaa) UpperCAmelCase_ : Tuple = ppmc + aaa UpperCAmelCase_ : int = -2 * pmpc UpperCAmelCase_ : Any = ppmc - aaa UpperCAmelCase_ : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : Any = tau * frequency / samplerate UpperCAmelCase_ : int = sin(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = cos(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : Optional[int] = 10 ** (gain_db / 40) UpperCAmelCase_ : List[str] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ : str = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ : List[str] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ : Optional[Any] = 2 * sqrt(_SCREAMING_SNAKE_CASE ) * alpha UpperCAmelCase_ : int = big_a * (ppmc + aaa) UpperCAmelCase_ : Tuple = -2 * big_a * pmpc UpperCAmelCase_ : Tuple = big_a * (ppmc - aaa) UpperCAmelCase_ : List[Any] = pmc + aaa UpperCAmelCase_ : List[str] = 2 * mpc UpperCAmelCase_ : Dict = pmc - aaa UpperCAmelCase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
71
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase : List[str] = 1_6 _lowerCamelCase : Any = 3_2 def _UpperCAmelCase (UpperCamelCase_ : Accelerator , UpperCamelCase_ : int = 16 ): '''simple docstring''' _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _lowerCAmelCase : Tuple = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase_ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase : Union[str, Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCAmelCase : Dict = datasets.map( UpperCamelCase_ , batched=UpperCamelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase : Union[str, Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase_ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCAmelCase : int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCAmelCase : Union[str, Any] = 16 elif accelerator.mixed_precision != "no": _lowerCAmelCase : str = 8 else: _lowerCAmelCase : str = None return tokenizer.pad( UpperCamelCase_ , padding="""longest""" , max_length=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _lowerCAmelCase : Dict = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) _lowerCAmelCase : Optional[int] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase : Dict = mocked_dataloaders # noqa: F811 def _UpperCAmelCase (UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase_ ) == "1": _lowerCAmelCase : str = 2 # Initialize accelerator _lowerCAmelCase : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase : List[str] = config["""lr"""] _lowerCAmelCase : Dict = int(config["""num_epochs"""] ) _lowerCAmelCase : Dict = int(config["""seed"""] ) _lowerCAmelCase : Any = int(config["""batch_size"""] ) _lowerCAmelCase : Optional[int] = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=UpperCamelCase_ ) def inner_training_loop(UpperCamelCase_ : List[Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(UpperCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase : Any = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase : int = model.to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase : List[Any] = AdamW(params=model.parameters() , lr=UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase : str = get_dataloaders(UpperCamelCase_ , UpperCamelCase_ ) # Instantiate scheduler _lowerCAmelCase : Any = get_linear_schedule_with_warmup( optimizer=UpperCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Now we train the model for epoch in range(UpperCamelCase_ ): model.train() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowerCAmelCase : Optional[int] = model(**UpperCamelCase_ ) _lowerCAmelCase : int = outputs.loss accelerator.backward(UpperCamelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase : Any = model(**UpperCamelCase_ ) _lowerCAmelCase : str = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase , _lowerCAmelCase : List[str] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCamelCase_ , references=UpperCamelCase_ , ) _lowerCAmelCase : List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , UpperCamelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : str = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase_ , default=UpperCamelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _lowerCAmelCase : Any = parser.parse_args() _lowerCAmelCase : Dict = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
429
0
'''simple docstring''' from __future__ import annotations import queue class lowerCamelCase_ : def __init__( self : int , lowerCAmelCase__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE : str = data SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Tuple = None def UpperCAmelCase ( ): print('''\n********Press N to stop entering at any point of time********\n''' ) SCREAMING_SNAKE_CASE : Optional[Any] = input('''Enter the value of the root node: ''' ).strip().lower() SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() SCREAMING_SNAKE_CASE : List[Any] = TreeNode(int(__lowerCAmelCase ) ) q.put(__lowerCAmelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : Tuple = q.get() SCREAMING_SNAKE_CASE : Union[str, Any] = F"""Enter the left node of {node_found.data}: """ SCREAMING_SNAKE_CASE : Any = input(__lowerCAmelCase ).strip().lower() or "n" if check == "n": return tree_node SCREAMING_SNAKE_CASE : List[Any] = TreeNode(int(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE : List[Any] = left_node q.put(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Any = F"""Enter the right node of {node_found.data}: """ SCREAMING_SNAKE_CASE : str = input(__lowerCAmelCase ).strip().lower() or "n" if check == "n": return tree_node SCREAMING_SNAKE_CASE : Dict = TreeNode(int(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE : List[str] = right_node q.put(__lowerCAmelCase ) raise def UpperCAmelCase ( A : Union[str, Any] ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def UpperCAmelCase ( A : str ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def UpperCAmelCase ( A : Optional[Any] ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def UpperCAmelCase ( A : List[str] ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() q.put(__lowerCAmelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : List[str] = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def UpperCAmelCase ( A : List[Any] ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return SCREAMING_SNAKE_CASE : queue.Queue = queue.Queue() q.put(__lowerCAmelCase ) while not q.empty(): SCREAMING_SNAKE_CASE : Optional[int] = [] while not q.empty(): SCREAMING_SNAKE_CASE : List[Any] = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__lowerCAmelCase ) def UpperCAmelCase ( A : Union[str, Any] ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return SCREAMING_SNAKE_CASE : list[TreeNode] = [] SCREAMING_SNAKE_CASE : List[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Any = n.left # end of while means current node doesn't have left child SCREAMING_SNAKE_CASE : str = stack.pop() # start to traverse its right child SCREAMING_SNAKE_CASE : List[Any] = n.right def UpperCAmelCase ( A : str ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return SCREAMING_SNAKE_CASE : list[TreeNode] = [] SCREAMING_SNAKE_CASE : Optional[Any] = node while n or stack: while n: stack.append(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : int = n.left SCREAMING_SNAKE_CASE : int = stack.pop() print(n.data , end=''',''' ) SCREAMING_SNAKE_CASE : int = n.right def UpperCAmelCase ( A : Optional[int] ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not node: return SCREAMING_SNAKE_CASE : Dict = [], [] SCREAMING_SNAKE_CASE : Any = node stacka.append(__lowerCAmelCase ) while stacka: # to find the reversed order of post order, store it in stack2 SCREAMING_SNAKE_CASE : List[Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__lowerCAmelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def UpperCAmelCase ( A : List[Any] = "" , A : str=50 , A : int="*" ): if not s: return "\n" + width * char SCREAMING_SNAKE_CASE : Optional[Any] = divmod(width - len(__lowerCAmelCase ) - 2 , 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) lowerCAmelCase_ : int = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
718
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def UpperCAmelCase ( A : int , A : Tuple , A : Any ): SCREAMING_SNAKE_CASE : int = hf_hub_url(repo_id=A , path=A , revision=A ) assert url == F"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(A )}"""
464
0
'''simple docstring''' import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=10 ): '''simple docstring''' _snake_case = [] for _ in range(SCREAMING_SNAKE_CASE__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=10 ): '''simple docstring''' _snake_case = [] for step in range(SCREAMING_SNAKE_CASE__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = os.path.join(SCREAMING_SNAKE_CASE__ , "schedule.bin" ) torch.save(scheduler.state_dict() , SCREAMING_SNAKE_CASE__ ) _snake_case = torch.load(SCREAMING_SNAKE_CASE__ ) scheduler.load_state_dict(SCREAMING_SNAKE_CASE__ ) return lrs @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) for a, b in zip(lowerCamelCase , lowerCamelCase ): self.assertAlmostEqual(lowerCamelCase , lowerCamelCase , delta=lowerCamelCase ) def UpperCamelCase( self ): _snake_case = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCamelCase ) _snake_case = torch.tensor([0.4, 0.2, -0.5] ) _snake_case = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _snake_case = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): _snake_case = criterion(lowerCamelCase , lowerCamelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def UpperCamelCase( self ): _snake_case = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCamelCase ) _snake_case = torch.tensor([0.4, 0.2, -0.5] ) _snake_case = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _snake_case = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCamelCase , weight_decay=0.0 , relative_step=lowerCamelCase , scale_parameter=lowerCamelCase , warmup_init=lowerCamelCase , ) for _ in range(1_000 ): _snake_case = criterion(lowerCamelCase , lowerCamelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ : str = nn.Linear(50 , 50 ) if is_torch_available() else None UpperCAmelCase__ : List[str] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None UpperCAmelCase__ : List[Any] = 10 def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ): self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) for a, b in zip(lowerCamelCase , lowerCamelCase ): self.assertAlmostEqual(lowerCamelCase , lowerCamelCase , delta=lowerCamelCase , msg=lowerCamelCase ) def UpperCamelCase( self ): _snake_case = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _snake_case = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _snake_case , _snake_case = data _snake_case = scheduler_func(self.optimizer , **lowerCamelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _snake_case = unwrap_schedule(lowerCamelCase , self.num_steps ) self.assertListAlmostEqual( lowerCamelCase , lowerCamelCase , tol=1e-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) _snake_case = scheduler_func(self.optimizer , **lowerCamelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCamelCase ) # wrap to test picklability of the schedule _snake_case = unwrap_and_save_reload_schedule(lowerCamelCase , self.num_steps ) self.assertListEqual(lowerCamelCase , lowerCamelCase , msg=F'''failed for {scheduler_func} in save and reload''' ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , lowerCamelCase ): _snake_case = fn def __call__( self , *lowerCamelCase , **lowerCamelCase ): return self.fn(*lowerCamelCase , **lowerCamelCase ) @classmethod def UpperCamelCase( self , lowerCamelCase ): _snake_case = list(map(self , scheduler.lr_lambdas ) )
672
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __magic_name__ : Tuple = 0 __magic_name__ : Dict = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __magic_name__ : str = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __magic_name__ : Dict = tuple[int, int] class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): _snake_case = pos_x _snake_case = pos_y _snake_case = (pos_y, pos_x) _snake_case = goal_x _snake_case = goal_y _snake_case = g_cost _snake_case = parent _snake_case = self.calculate_heuristic() _snake_case = self.g_cost + self.h_cost def UpperCamelCase( self ): _snake_case = self.pos_x - self.goal_x _snake_case = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowerCamelCase ) + abs(lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , lowerCamelCase ): return self.f_cost < other.f_cost class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , lowerCamelCase , lowerCamelCase ): _snake_case = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCamelCase ) _snake_case = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , lowerCamelCase ) _snake_case = [self.start] _snake_case = [] _snake_case = False def UpperCamelCase( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _snake_case = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowerCamelCase ) self.closed_nodes.append(lowerCamelCase ) _snake_case = self.get_successors(lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCamelCase ) else: # retrieve the best current path _snake_case = self.open_nodes.pop(self.open_nodes.index(lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCamelCase ) else: self.open_nodes.append(lowerCamelCase ) return [self.start.pos] def UpperCamelCase( self , lowerCamelCase ): _snake_case = [] for action in delta: _snake_case = parent.pos_x + action[1] _snake_case = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCamelCase , lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCamelCase , ) ) return successors def UpperCamelCase( self , lowerCamelCase ): _snake_case = node _snake_case = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _snake_case = current_node.parent path.reverse() return path class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , lowerCamelCase , lowerCamelCase ): _snake_case = AStar(lowerCamelCase , lowerCamelCase ) _snake_case = AStar(lowerCamelCase , lowerCamelCase ) _snake_case = False def UpperCamelCase( self ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _snake_case = self.fwd_astar.open_nodes.pop(0 ) _snake_case = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowerCamelCase , lowerCamelCase ) self.fwd_astar.closed_nodes.append(lowerCamelCase ) self.bwd_astar.closed_nodes.append(lowerCamelCase ) _snake_case = current_bwd_node _snake_case = current_fwd_node _snake_case = { self.fwd_astar: self.fwd_astar.get_successors(lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowerCamelCase ) else: # retrieve the best current path _snake_case = astar.open_nodes.pop( astar.open_nodes.index(lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowerCamelCase ) else: astar.open_nodes.append(lowerCamelCase ) return [self.fwd_astar.start.pos] def UpperCamelCase( self , lowerCamelCase , lowerCamelCase ): _snake_case = self.fwd_astar.retrace_path(lowerCamelCase ) _snake_case = self.bwd_astar.retrace_path(lowerCamelCase ) bwd_path.pop() bwd_path.reverse() _snake_case = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __magic_name__ : Optional[int] = (0, 0) __magic_name__ : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __magic_name__ : Any = time.time() __magic_name__ : Optional[int] = AStar(init, goal) __magic_name__ : str = a_star.search() __magic_name__ : List[Any] = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') __magic_name__ : List[str] = time.time() __magic_name__ : Optional[Any] = BidirectionalAStar(init, goal) __magic_name__ : Optional[int] = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
672
1
from maths.prime_check import is_prime def SCREAMING_SNAKE_CASE ( lowerCAmelCase ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): _UpperCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(lowerCAmelCase ) if is_prime(lowerCAmelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
719
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __A( unittest.TestCase ): def _UpperCamelCase ( self, A ): """simple docstring""" _UpperCamelCase = 3 _UpperCamelCase = 250 _UpperCamelCase = ids_tensor((batch_size, length), A ) _UpperCamelCase = torch.ones((batch_size, length), device=A, dtype=torch.float ) / length return input_ids, scores def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase , _UpperCamelCase = self._get_tensors(5 ) _UpperCamelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(A, A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(A, A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(A, A ) ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = MaxLengthCriteria(max_length=10 ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(A, A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(A, A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(A, A ) ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = MaxNewTokensCriteria(start_length=5, max_new_tokens=5 ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(A, A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(A, A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(A, A ) ) _UpperCamelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length, 10 ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase , _UpperCamelCase = self._get_tensors(5 ) _UpperCamelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(A, A ) ) _UpperCamelCase = MaxTimeCriteria(max_time=0.1, initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(A, A ) ) def _UpperCamelCase ( self ): """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ), 10 ) with self.assertWarns(A ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ), 11 ) _UpperCamelCase = validate_stopping_criteria(StoppingCriteriaList(), 11 ) self.assertEqual(len(A ), 1 )
105
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) <= 1 or n <= 1: return insert_next(SCREAMING_SNAKE_CASE__ , n - 1 ) rec_insertion_sort(SCREAMING_SNAKE_CASE__ , n - 1 ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if index >= len(SCREAMING_SNAKE_CASE__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = ( collection[index], collection[index - 1], ) insert_next(SCREAMING_SNAKE_CASE__ , index + 1 ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = input('Enter integers separated by spaces: ') UpperCAmelCase_ : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
533
'''simple docstring''' import numpy as np class lowercase__ : '''simple docstring''' def __init__( self ): _SCREAMING_SNAKE_CASE : List[Any] = (0, 0) _SCREAMING_SNAKE_CASE : List[str] = None _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 _SCREAMING_SNAKE_CASE : List[str] = 0 _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 def __eq__( self , __snake_case ): return self.position == cell.position def UpperCAmelCase_ ( self ): print(self.position ) class lowercase__ : '''simple docstring''' def __init__( self , __snake_case=(5, 5) ): _SCREAMING_SNAKE_CASE : str = np.zeros(__snake_case ) _SCREAMING_SNAKE_CASE : Optional[Any] = world_size[0] _SCREAMING_SNAKE_CASE : Tuple = world_size[1] def UpperCAmelCase_ ( self ): print(self.w ) def UpperCAmelCase_ ( self , __snake_case ): _SCREAMING_SNAKE_CASE : Optional[int] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] _SCREAMING_SNAKE_CASE : Optional[int] = cell.position[0] _SCREAMING_SNAKE_CASE : Optional[int] = cell.position[1] _SCREAMING_SNAKE_CASE : Tuple = [] for n in neughbour_cord: _SCREAMING_SNAKE_CASE : Optional[Any] = current_x + n[0] _SCREAMING_SNAKE_CASE : List[Any] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: _SCREAMING_SNAKE_CASE : Optional[int] = Cell() _SCREAMING_SNAKE_CASE : Union[str, Any] = (x, y) _SCREAMING_SNAKE_CASE : Dict = cell neighbours.append(__snake_case ) return neighbours def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = [] _SCREAMING_SNAKE_CASE : Optional[Any] = [] _open.append(SCREAMING_SNAKE_CASE__ ) while _open: _SCREAMING_SNAKE_CASE : Any = np.argmin([n.f for n in _open] ) _SCREAMING_SNAKE_CASE : List[Any] = _open[min_f] _closed.append(_open.pop(SCREAMING_SNAKE_CASE__ ) ) if current == goal: break for n in world.get_neigbours(SCREAMING_SNAKE_CASE__ ): for c in _closed: if c == n: continue _SCREAMING_SNAKE_CASE : Optional[int] = current.g + 1 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = n.position _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = goal.position _SCREAMING_SNAKE_CASE : Dict = (ya - ya) ** 2 + (xa - xa) ** 2 _SCREAMING_SNAKE_CASE : Any = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Any = [] while current.parent is not None: path.append(current.position ) _SCREAMING_SNAKE_CASE : List[Any] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": UpperCAmelCase_ : List[Any] = Gridworld() # Start position and goal UpperCAmelCase_ : Optional[Any] = Cell() UpperCAmelCase_ : Tuple = (0, 0) UpperCAmelCase_ : Optional[Any] = Cell() UpperCAmelCase_ : Tuple = (4, 4) print(F"path from {start.position} to {goal.position}") UpperCAmelCase_ : Union[str, Any] = astar(world, start, goal) # Just for visual reasons. for i in s: UpperCAmelCase_ : Optional[int] = 1 print(world.w)
533
1
"""simple docstring""" import socket def A__ ( ): '''simple docstring''' _SCREAMING_SNAKE_CASE = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _SCREAMING_SNAKE_CASE = socket.gethostname() _SCREAMING_SNAKE_CASE = 12_312 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: _SCREAMING_SNAKE_CASE = sock.recv(1_024 ) if not data: break out_file.write(UpperCamelCase__ ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
168
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Tuple = logging.get_logger(__name__) def A__ ( UpperCamelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _SCREAMING_SNAKE_CASE = 128 elif "12-12" in model_name: _SCREAMING_SNAKE_CASE = 12 _SCREAMING_SNAKE_CASE = 12 elif "14-14" in model_name: _SCREAMING_SNAKE_CASE = 14 _SCREAMING_SNAKE_CASE = 14 elif "16-16" in model_name: _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 16 else: raise ValueError('''Model not supported''' ) _SCREAMING_SNAKE_CASE = '''huggingface/label-files''' if "speech-commands" in model_name: _SCREAMING_SNAKE_CASE = 35 _SCREAMING_SNAKE_CASE = '''speech-commands-v2-id2label.json''' else: _SCREAMING_SNAKE_CASE = 527 _SCREAMING_SNAKE_CASE = '''audioset-id2label.json''' _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='''dataset''' ) , '''r''' ) ) _SCREAMING_SNAKE_CASE = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def A__ ( UpperCamelCase__ ): '''simple docstring''' if "module.v" in name: _SCREAMING_SNAKE_CASE = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: _SCREAMING_SNAKE_CASE = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: _SCREAMING_SNAKE_CASE = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: _SCREAMING_SNAKE_CASE = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: _SCREAMING_SNAKE_CASE = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: _SCREAMING_SNAKE_CASE = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: _SCREAMING_SNAKE_CASE = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: _SCREAMING_SNAKE_CASE = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _SCREAMING_SNAKE_CASE = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _SCREAMING_SNAKE_CASE = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _SCREAMING_SNAKE_CASE = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _SCREAMING_SNAKE_CASE = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: _SCREAMING_SNAKE_CASE = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: _SCREAMING_SNAKE_CASE = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: _SCREAMING_SNAKE_CASE = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def A__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _SCREAMING_SNAKE_CASE = orig_state_dict.pop(UpperCamelCase__ ) if "qkv" in key: _SCREAMING_SNAKE_CASE = key.split('''.''' ) _SCREAMING_SNAKE_CASE = int(key_split[3] ) _SCREAMING_SNAKE_CASE = config.hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] _SCREAMING_SNAKE_CASE = val[-dim:, :] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[dim : dim * 2] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = val return orig_state_dict def A__ ( UpperCamelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) @torch.no_grad() def A__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' _SCREAMING_SNAKE_CASE = get_audio_spectrogram_transformer_config(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict _SCREAMING_SNAKE_CASE = model_name_to_url[model_name] _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' ) # remove some keys remove_keys(UpperCamelCase__ ) # rename some keys _SCREAMING_SNAKE_CASE = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) # load 🤗 model _SCREAMING_SNAKE_CASE = ASTForAudioClassification(UpperCamelCase__ ) model.eval() model.load_state_dict(UpperCamelCase__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _SCREAMING_SNAKE_CASE = -4.2_67_73_93 if '''speech-commands''' not in model_name else -6.84_59_78 _SCREAMING_SNAKE_CASE = 4.5_68_99_74 if '''speech-commands''' not in model_name else 5.5_65_45_26 _SCREAMING_SNAKE_CASE = 1_024 if '''speech-commands''' not in model_name else 128 _SCREAMING_SNAKE_CASE = ASTFeatureExtractor(mean=UpperCamelCase__ , std=UpperCamelCase__ , max_length=UpperCamelCase__ ) if "speech-commands" in model_name: _SCREAMING_SNAKE_CASE = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) _SCREAMING_SNAKE_CASE = dataset[0]['''audio''']['''array'''] else: _SCREAMING_SNAKE_CASE = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = torchaudio.load(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE = waveform.squeeze().numpy() _SCREAMING_SNAKE_CASE = feature_extractor(UpperCamelCase__ , sampling_rate=16_000 , return_tensors='''pt''' ) # forward pass _SCREAMING_SNAKE_CASE = model(**UpperCamelCase__ ) _SCREAMING_SNAKE_CASE = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _SCREAMING_SNAKE_CASE = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": _SCREAMING_SNAKE_CASE = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": _SCREAMING_SNAKE_CASE = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _SCREAMING_SNAKE_CASE = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": _SCREAMING_SNAKE_CASE = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": _SCREAMING_SNAKE_CASE = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": _SCREAMING_SNAKE_CASE = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": _SCREAMING_SNAKE_CASE = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) print(F'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F'''MIT/{model_name}''' ) feature_extractor.push_to_hub(F'''MIT/{model_name}''' ) if __name__ == "__main__": lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase : List[str] = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
168
1
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _UpperCAmelCase = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _UpperCAmelCase = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def UpperCamelCase ( __lowercase : int ): '''simple docstring''' A_ : Tuple = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) ,dtype=__lowercase )[0] @deprecated(__lowercase ,'Please use tf.data to implement this functionality.' ) def UpperCamelCase ( __lowercase : List[str] ): '''simple docstring''' print('Extracting' ,f.name ) with gzip.GzipFile(fileobj=__lowercase ) as bytestream: A_ : str = _readaa(__lowercase ) if magic != 20_51: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) A_ : Optional[int] = _readaa(__lowercase ) A_ : List[Any] = _readaa(__lowercase ) A_ : Any = _readaa(__lowercase ) A_ : List[str] = bytestream.read(rows * cols * num_images ) A_ : Optional[int] = numpy.frombuffer(__lowercase ,dtype=numpy.uinta ) A_ : Union[str, Any] = data.reshape(__lowercase ,__lowercase ,__lowercase ,1 ) return data @deprecated(__lowercase ,'Please use tf.one_hot on tensors.' ) def UpperCamelCase ( __lowercase : Optional[int] ,__lowercase : int ): '''simple docstring''' A_ : Dict = labels_dense.shape[0] A_ : List[str] = numpy.arange(__lowercase ) * num_classes A_ : Any = numpy.zeros((num_labels, num_classes) ) A_ : List[Any] = 1 return labels_one_hot @deprecated(__lowercase ,'Please use tf.data to implement this functionality.' ) def UpperCamelCase ( __lowercase : List[str] ,__lowercase : Tuple=False ,__lowercase : List[str]=10 ): '''simple docstring''' print('Extracting' ,f.name ) with gzip.GzipFile(fileobj=__lowercase ) as bytestream: A_ : int = _readaa(__lowercase ) if magic != 20_49: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) A_ : List[Any] = _readaa(__lowercase ) A_ : Dict = bytestream.read(__lowercase ) A_ : List[str] = numpy.frombuffer(__lowercase ,dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowercase ,__lowercase ) return labels class UpperCAmelCase : '''simple docstring''' @deprecated( lowercase , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self , lowercase , lowercase , lowercase=False , lowercase=False , lowercase=dtypes.floataa , lowercase=True , lowercase=None , ): """simple docstring""" A_ , A_ : Dict = random_seed.get_seed(lowercase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) A_ : Optional[int] = dtypes.as_dtype(lowercase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: A_ : Optional[int] = 1_0_0_0_0 A_ : int = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'''images.shape: {images.shape} labels.shape: {labels.shape}''' A_ : Dict = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 A_ : int = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. A_ : Dict = images.astype(numpy.floataa ) A_ : Optional[int] = numpy.multiply(lowercase , 1.0 / 255.0 ) A_ : Optional[int] = images A_ : List[Any] = labels A_ : str = 0 A_ : Union[str, Any] = 0 @property def lowerCAmelCase_ ( self ): """simple docstring""" return self._images @property def lowerCAmelCase_ ( self ): """simple docstring""" return self._labels @property def lowerCAmelCase_ ( self ): """simple docstring""" return self._num_examples @property def lowerCAmelCase_ ( self ): """simple docstring""" return self._epochs_completed def lowerCAmelCase_ ( self , lowercase , lowercase=False , lowercase=True ): """simple docstring""" if fake_data: A_ : List[Any] = [1] * 7_8_4 A_ : Dict = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(lowercase )], [fake_label for _ in range(lowercase )], ) A_ : int = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: A_ : Tuple = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase ) A_ : Dict = self.images[perma] A_ : Optional[Any] = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch A_ : List[Any] = self._num_examples - start A_ : Optional[int] = self._images[start : self._num_examples] A_ : Optional[int] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: A_ : Tuple = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase ) A_ : Dict = self.images[perm] A_ : Any = self.labels[perm] # Start next epoch A_ : Any = 0 A_ : Optional[Any] = batch_size - rest_num_examples A_ : Optional[int] = self._index_in_epoch A_ : Dict = self._images[start:end] A_ : Any = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size A_ : Tuple = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowercase ,'Please write your own downloading logic.' ) def UpperCamelCase ( __lowercase : Optional[Any] ,__lowercase : Optional[int] ,__lowercase : Any ): '''simple docstring''' if not gfile.Exists(__lowercase ): gfile.MakeDirs(__lowercase ) A_ : Optional[Any] = os.path.join(__lowercase ,__lowercase ) if not gfile.Exists(__lowercase ): urllib.request.urlretrieve(__lowercase ,__lowercase ) # noqa: S310 with gfile.GFile(__lowercase ) as f: A_ : Optional[int] = f.size() print('Successfully downloaded' ,__lowercase ,__lowercase ,'bytes.' ) return filepath @deprecated( __lowercase ,'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def UpperCamelCase ( __lowercase : Dict ,__lowercase : str=False ,__lowercase : int=False ,__lowercase : str=dtypes.floataa ,__lowercase : int=True ,__lowercase : List[Any]=50_00 ,__lowercase : Union[str, Any]=None ,__lowercase : Union[str, Any]=DEFAULT_SOURCE_URL ,): '''simple docstring''' if fake_data: def fake(): return _DataSet( [] ,[] ,fake_data=__lowercase ,one_hot=__lowercase ,dtype=__lowercase ,seed=__lowercase ) A_ : Union[str, Any] = fake() A_ : Any = fake() A_ : str = fake() return _Datasets(train=__lowercase ,validation=__lowercase ,test=__lowercase ) if not source_url: # empty string check A_ : Tuple = DEFAULT_SOURCE_URL A_ : List[Any] = 'train-images-idx3-ubyte.gz' A_ : Optional[int] = 'train-labels-idx1-ubyte.gz' A_ : Optional[Any] = 't10k-images-idx3-ubyte.gz' A_ : Optional[int] = 't10k-labels-idx1-ubyte.gz' A_ : str = _maybe_download( __lowercase ,__lowercase ,source_url + train_images_file ) with gfile.Open(__lowercase ,'rb' ) as f: A_ : Optional[int] = _extract_images(__lowercase ) A_ : Optional[Any] = _maybe_download( __lowercase ,__lowercase ,source_url + train_labels_file ) with gfile.Open(__lowercase ,'rb' ) as f: A_ : Union[str, Any] = _extract_labels(__lowercase ,one_hot=__lowercase ) A_ : Any = _maybe_download( __lowercase ,__lowercase ,source_url + test_images_file ) with gfile.Open(__lowercase ,'rb' ) as f: A_ : str = _extract_images(__lowercase ) A_ : Union[str, Any] = _maybe_download( __lowercase ,__lowercase ,source_url + test_labels_file ) with gfile.Open(__lowercase ,'rb' ) as f: A_ : int = _extract_labels(__lowercase ,one_hot=__lowercase ) if not 0 <= validation_size <= len(__lowercase ): A_ : Dict = ( 'Validation size should be between 0 and ' f'''{len(__lowercase )}. Received: {validation_size}.''' ) raise ValueError(__lowercase ) A_ : int = train_images[:validation_size] A_ : List[str] = train_labels[:validation_size] A_ : Tuple = train_images[validation_size:] A_ : Dict = train_labels[validation_size:] A_ : str = {'dtype': dtype, 'reshape': reshape, 'seed': seed} A_ : Optional[int] = _DataSet(__lowercase ,__lowercase ,**__lowercase ) A_ : int = _DataSet(__lowercase ,__lowercase ,**__lowercase ) A_ : int = _DataSet(__lowercase ,__lowercase ,**__lowercase ) return _Datasets(train=__lowercase ,validation=__lowercase ,test=__lowercase )
558
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline _UpperCAmelCase = { """n_samples""": 64, """horizon""": 32, """num_inference_steps""": 20, """n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network """scale_grad_by_std""": True, """scale""": 0.1, """eta""": 0.0, """t_grad_cutoff""": 2, """device""": """cpu""", } if __name__ == "__main__": _UpperCAmelCase = """hopper-medium-v2""" _UpperCAmelCase = gym.make(env_name) _UpperCAmelCase = ValueGuidedRLPipeline.from_pretrained( """bglick13/hopper-medium-v2-value-function-hor32""", env=env, ) env.seed(0) _UpperCAmelCase = env.reset() _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1000 _UpperCAmelCase = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy _UpperCAmelCase = pipeline(obs, planning_horizon=32) # execute action in environment _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = env.step(denorm_actions) _UpperCAmelCase = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" F""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) _UpperCAmelCase = next_observation except KeyboardInterrupt: pass print(F"""Total reward: {total_reward}""")
558
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 1 @register_to_config def __init__( self : str , __snake_case : Dict=2000 , __snake_case : Union[str, Any]=0.1 , __snake_case : Union[str, Any]=20 , __snake_case : Optional[int]=1e-3 ): lowerCamelCase :Any = None lowerCamelCase :Union[str, Any] = None lowerCamelCase :Optional[Any] = None def snake_case ( self : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Union[str, torch.device] = None ): lowerCamelCase :List[Any] = torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def snake_case ( self : Any , __snake_case : str , __snake_case : Any , __snake_case : Dict , __snake_case : int=None ): if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score lowerCamelCase :Any = ( -0.2_5 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) lowerCamelCase :str = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) lowerCamelCase :Optional[Any] = std.flatten() while len(std.shape ) < len(score.shape ): lowerCamelCase :Any = std.unsqueeze(-1 ) lowerCamelCase :Optional[int] = -score / std # compute lowerCamelCase :List[str] = -1.0 / len(self.timesteps ) lowerCamelCase :Optional[int] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) lowerCamelCase :int = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): lowerCamelCase :Any = beta_t.unsqueeze(-1 ) lowerCamelCase :List[Any] = -0.5 * beta_t * x lowerCamelCase :List[Any] = torch.sqrt(__snake_case ) lowerCamelCase :Union[str, Any] = drift - diffusion**2 * score lowerCamelCase :Optional[int] = x + drift * dt # add noise lowerCamelCase :Tuple = randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) lowerCamelCase :str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ): return self.config.num_train_timesteps
49
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'roberta-prelayernorm' def __init__( self : str , __snake_case : List[str]=50265 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Any=3072 , __snake_case : Optional[int]="gelu" , __snake_case : List[Any]=0.1 , __snake_case : int=0.1 , __snake_case : Union[str, Any]=512 , __snake_case : Dict=2 , __snake_case : int=0.0_2 , __snake_case : Any=1e-1_2 , __snake_case : Optional[int]=1 , __snake_case : Dict=0 , __snake_case : Optional[int]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , **__snake_case : Optional[int] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowerCamelCase :Optional[int] = vocab_size lowerCamelCase :Dict = hidden_size lowerCamelCase :Tuple = num_hidden_layers lowerCamelCase :Optional[int] = num_attention_heads lowerCamelCase :Any = hidden_act lowerCamelCase :List[Any] = intermediate_size lowerCamelCase :Union[str, Any] = hidden_dropout_prob lowerCamelCase :str = attention_probs_dropout_prob lowerCamelCase :Tuple = max_position_embeddings lowerCamelCase :int = type_vocab_size lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :Union[str, Any] = layer_norm_eps lowerCamelCase :Dict = position_embedding_type lowerCamelCase :List[Any] = use_cache lowerCamelCase :Optional[int] = classifier_dropout class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowerCamelCase :Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
49
1
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def lowercase (_A , _A , _A , _A = 1_0_0 , ): """simple docstring""" _lowerCAmelCase : List[str] = x_start _lowerCAmelCase : Optional[Any] = fnc(_A ) _lowerCAmelCase : Union[str, Any] = 0.0 for _ in range(_A ): # Approximates curve as a sequence of linear lines and sums their length _lowerCAmelCase : Dict = (x_end - x_start) / steps + xa _lowerCAmelCase : Optional[Any] = fnc(_A ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step _lowerCAmelCase : Union[str, Any] = xa _lowerCAmelCase : Optional[Any] = fxa return length if __name__ == "__main__": def lowercase (_A ): """simple docstring""" return math.sin(1_0 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") lowerCAmelCase : str = 10 while i <= 10_00_00: print(F'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
444
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase : Tuple = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : str = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } lowerCAmelCase : str = { """gpt2""": 10_24, """gpt2-medium""": 10_24, """gpt2-large""": 10_24, """gpt2-xl""": 10_24, """distilgpt2""": 10_24, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = GPTaTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="<|endoftext|>" , snake_case__="<|endoftext|>" , snake_case__="<|endoftext|>" , snake_case__=False , **snake_case__ , ): '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , add_prefix_space=snake_case__ , **snake_case__ , ) _lowerCAmelCase : str = kwargs.pop('add_bos_token' , snake_case__ ) _lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : str = getattr(snake_case__ , pre_tok_state.pop('type' ) ) _lowerCAmelCase : List[str] = add_prefix_space _lowerCAmelCase : Dict = pre_tok_class(**snake_case__ ) _lowerCAmelCase : Any = add_prefix_space def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ , add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: _lowerCAmelCase : str = input_ids[-self.model_max_length :] return input_ids
444
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
658
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Tuple = features[:, labels == i] _lowerCAmelCase : Dict = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Union[str, Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : int = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = features.mean(1 ) _lowerCAmelCase : List[str] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : str = features[:, labels == i] _lowerCAmelCase : Optional[Any] = data.shape[1] _lowerCAmelCase : Optional[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Optional[Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : List[Any] = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : Optional[Any] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : List[Any] = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[str] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = svd_matrix[:, 0:dimensions] _lowerCAmelCase : str = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : List[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Union[str, Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : List[str] = 2 _lowerCAmelCase : List[Any] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Tuple = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
658
1
def _a ( lowercase__ : int , lowercase__ : int ): '''simple docstring''' while b: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = b, a % b return a def _a ( lowercase__ : int , lowercase__ : int ): '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(lowercase__ , a % b ) def _a ( ): '''simple docstring''' print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
85
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu SCREAMING_SNAKE_CASE__ : Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: SCREAMING_SNAKE_CASE__ : Tuple = json.load(f) @require_torch class snake_case ( unittest.TestCase ): def __lowercase( self : List[str] , a_ : Any )-> str: """simple docstring""" return FSMTTokenizer.from_pretrained(a_ ) def __lowercase( self : int , a_ : Union[str, Any] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = FSMTForConditionalGeneration.from_pretrained(a_ ).to(a_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def __lowercase( self : int , a_ : Optional[int] , a_ : str )-> List[str]: """simple docstring""" # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality SCREAMING_SNAKE_CASE__ : Any = F'''facebook/wmt19-{pair}''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_tokenizer(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_model(a_ ) SCREAMING_SNAKE_CASE__ : int = bleu_data[pair]['src'] SCREAMING_SNAKE_CASE__ : Optional[int] = bleu_data[pair]['tgt'] SCREAMING_SNAKE_CASE__ : Any = tokenizer(a_ , return_tensors='pt' , truncation=a_ , padding='longest' ).to(a_ ) SCREAMING_SNAKE_CASE__ : int = model.generate( input_ids=batch.input_ids , num_beams=8 , ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.batch_decode( a_ , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = calculate_bleu(a_ , a_ ) print(a_ ) self.assertGreaterEqual(scores['bleu'] , a_ )
85
1
def lowerCamelCase_ ( A : int = 3 , A : int = 7 , A : int = 1_00_00_00 ): """simple docstring""" lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 for current_denominator in range(1 , limit + 1 ): lowerCAmelCase_ = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: lowerCAmelCase_ = current_numerator lowerCAmelCase_ = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_00_00_00))
716
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=4 , ): lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_attention_mask lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = num_choices def lowercase__ ( self): lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCAmelCase_ = None if self.use_attention_mask: lowerCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length]) lowerCAmelCase_ = None if self.use_token_type_ids: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowerCAmelCase_ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self): lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def lowercase__ ( self): lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = True lowerCAmelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCamelCase_ ( A , unittest.TestCase ): '''simple docstring''' a :Optional[Any] = True a :Optional[Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self): lowerCAmelCase_ = FlaxRobertaModelTester(self) @slow def lowercase__ ( self): for model_class_name in self.all_model_classes: lowerCAmelCase_ = model_class_name.from_pretrained('''roberta-base''' , from_pt=_UpperCAmelCase) lowerCAmelCase_ = model(np.ones((1, 1))) self.assertIsNotNone(_UpperCAmelCase)
413
0
from __future__ import annotations def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[tuple[int, int]]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase = position __UpperCAmelCase = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __UpperCAmelCase = [] for position in positions: __UpperCAmelCase , __UpperCAmelCase = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def __a ( SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): __UpperCAmelCase , __UpperCAmelCase = position if board[y][x] == 0: __UpperCAmelCase = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True __UpperCAmelCase = 0 return False def __a ( SCREAMING_SNAKE_CASE ) -> list[list[int]]: '''simple docstring''' __UpperCAmelCase = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): __UpperCAmelCase = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board __UpperCAmelCase = 0 __UpperCAmelCase = f'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
303
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class A_ ( _a ): '''simple docstring''' a__ = CustomTokenizer pass
303
1
def a(lowercase__ = 100 ): '''simple docstring''' snake_case_ = set() snake_case_ = 0 snake_case_ = n + 1 # maximum limit for a in range(2 , lowercase__ ): for b in range(2 , lowercase__ ): snake_case_ = a**b # calculates the current power collect_powers.add(lowercase__ ) # adds the result to the set return len(lowercase__ ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
46
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') A = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __A = field( default=__snake_case , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __A = field( default=__snake_case , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __A = field( default=__snake_case , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __A = field( default=__snake_case , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __A = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __A = field( default=__snake_case , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = field(default=__snake_case , metadata={"""help""": """The input training data file (a text file)."""} ) __A = field( default=__snake_case , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __A = field( default=__snake_case , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __A = field( default=__snake_case , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __A = field( default=__snake_case , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __A = field( default=__snake_case , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __A = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __A = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __lowerCAmelCase ( self ): """simple docstring""" if self.train_file is not None: snake_case_ = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: snake_case_ = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = 42 __A = True __A = None __A = None def __call__( self , __UpperCamelCase ): """simple docstring""" snake_case_ = 'label' if 'label' in features[0].keys() else 'labels' snake_case_ = [feature.pop(__UpperCamelCase ) for feature in features] snake_case_ = len(__UpperCamelCase ) snake_case_ = len(features[0]['input_ids'] ) snake_case_ = [ [{k: v[i] for k, v in feature.items()} for i in range(__UpperCamelCase )] for feature in features ] snake_case_ = list(chain(*__UpperCamelCase ) ) snake_case_ = self.tokenizer.pad( __UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten snake_case_ = {k: v.view(__UpperCamelCase , __UpperCamelCase , -1 ) for k, v in batch.items()} # Add back labels snake_case_ = torch.tensor(__UpperCamelCase , dtype=torch.intaa ) return batch def a(): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ , snake_case_ , snake_case_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ = training_args.get_process_log_level() logger.setLevel(lowercase__ ) datasets.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: snake_case_ = {} if data_args.train_file is not None: snake_case_ = data_args.train_file if data_args.validation_file is not None: snake_case_ = data_args.validation_file snake_case_ = data_args.train_file.split('.' )[-1] snake_case_ = load_dataset( lowercase__ , data_files=lowercase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. snake_case_ = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. snake_case_ = [f"""ending{i}""" for i in range(4 )] snake_case_ = 'sent1' snake_case_ = 'sent2' if data_args.max_seq_length is None: snake_case_ = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) snake_case_ = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case_ = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowercase__ ): snake_case_ = [[context] * 4 for context in examples[context_name]] snake_case_ = examples[question_header_name] snake_case_ = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(lowercase__ ) ] # Flatten out snake_case_ = list(chain(*lowercase__ ) ) snake_case_ = list(chain(*lowercase__ ) ) # Tokenize snake_case_ = tokenizer( lowercase__ , lowercase__ , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowercase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) snake_case_ = raw_datasets['train'] if data_args.max_train_samples is not None: snake_case_ = min(len(lowercase__ ) , data_args.max_train_samples ) snake_case_ = train_dataset.select(range(lowercase__ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): snake_case_ = train_dataset.map( lowercase__ , batched=lowercase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) snake_case_ = raw_datasets['validation'] if data_args.max_eval_samples is not None: snake_case_ = min(len(lowercase__ ) , data_args.max_eval_samples ) snake_case_ = eval_dataset.select(range(lowercase__ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): snake_case_ = eval_dataset.map( lowercase__ , batched=lowercase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator snake_case_ = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowercase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowercase__ ): snake_case_ , snake_case_ = eval_predictions snake_case_ = np.argmax(lowercase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer snake_case_ = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , compute_metrics=lowercase__ , ) # Training if training_args.do_train: snake_case_ = None if training_args.resume_from_checkpoint is not None: snake_case_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ = last_checkpoint snake_case_ = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() # Saves the tokenizer too for easy upload snake_case_ = train_result.metrics snake_case_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase__ ) ) snake_case_ = min(lowercase__ , len(lowercase__ ) ) trainer.log_metrics('train' , lowercase__ ) trainer.save_metrics('train' , lowercase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ = trainer.evaluate() snake_case_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase__ ) snake_case_ = min(lowercase__ , len(lowercase__ ) ) trainer.log_metrics('eval' , lowercase__ ) trainer.save_metrics('eval' , lowercase__ ) snake_case_ = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def a(lowercase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
46
1
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowercase = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' _lowercase = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' _lowercase = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): def UpperCamelCase ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def UpperCamelCase ( self , A__ , A__ , A__=None , A__=True , A__=False ) -> List[Any]: if rouge_types is None: snake_case = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] snake_case = rouge_scorer.RougeScorer(rouge_types=A__ , use_stemmer=A__ ) if use_aggregator: snake_case = scoring.BootstrapAggregator() else: snake_case = [] for ref, pred in zip(A__ , A__ ): snake_case = scorer.score(A__ , A__ ) if use_aggregator: aggregator.add_scores(A__ ) else: scores.append(A__ ) if use_aggregator: snake_case = aggregator.aggregate() else: snake_case = {} for key in scores[0]: snake_case = [score[key] for score in scores] return result
342
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil _lowercase = 100 _lowercase = set(range(3, NUM_PRIMES, 2)) primes.add(2) _lowercase = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def __UpperCamelCase ( a : int ) ->set[int]: if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} snake_case = set() snake_case = 42 snake_case = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def __UpperCamelCase ( a : int = 5000 ) ->int | None: for number_to_partition in range(1 , a ): if len(partition(a ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'{solution() = }')
342
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=__snake_case ): """simple docstring""" a = ["flax", "transformers"] def __init__( self : Tuple , *_A : int , **_A : Dict): """simple docstring""" requires_backends(self , ["""flax""", """transformers"""]) @classmethod def _lowerCAmelCase ( cls : Optional[int] , *_A : Optional[int] , **_A : List[str]): """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""]) @classmethod def _lowerCAmelCase ( cls : int , *_A : Union[str, Any] , **_A : Any): """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""]) class _snake_case ( metaclass=__snake_case ): """simple docstring""" a = ["flax", "transformers"] def __init__( self : str , *_A : str , **_A : Optional[Any]): """simple docstring""" requires_backends(self , ["""flax""", """transformers"""]) @classmethod def _lowerCAmelCase ( cls : Union[str, Any] , *_A : Any , **_A : List[str]): """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""]) @classmethod def _lowerCAmelCase ( cls : Tuple , *_A : str , **_A : List[Any]): """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""]) class _snake_case ( metaclass=__snake_case ): """simple docstring""" a = ["flax", "transformers"] def __init__( self : List[Any] , *_A : Tuple , **_A : Union[str, Any]): """simple docstring""" requires_backends(self , ["""flax""", """transformers"""]) @classmethod def _lowerCAmelCase ( cls : Optional[Any] , *_A : int , **_A : str): """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""]) @classmethod def _lowerCAmelCase ( cls : Dict , *_A : List[str] , **_A : Dict): """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""]) class _snake_case ( metaclass=__snake_case ): """simple docstring""" a = ["flax", "transformers"] def __init__( self : List[str] , *_A : int , **_A : int): """simple docstring""" requires_backends(self , ["""flax""", """transformers"""]) @classmethod def _lowerCAmelCase ( cls : Tuple , *_A : Optional[int] , **_A : Dict): """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""]) @classmethod def _lowerCAmelCase ( cls : Union[str, Any] , *_A : int , **_A : Dict): """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""])
635
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Optional[int]: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file _SCREAMING_SNAKE_CASE : Optional[int] = TapasConfig.from_json_file(__SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter _SCREAMING_SNAKE_CASE : Dict = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _SCREAMING_SNAKE_CASE : str = TapasForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams _SCREAMING_SNAKE_CASE : Optional[int] = 4 _SCREAMING_SNAKE_CASE : Any = True # hparam_utils.py hparams _SCREAMING_SNAKE_CASE : Any = 0.66_46_94 _SCREAMING_SNAKE_CASE : str = 0.20_79_51 _SCREAMING_SNAKE_CASE : str = 0.12_11_94 _SCREAMING_SNAKE_CASE : List[Any] = True _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = 0.0_35_25_13 _SCREAMING_SNAKE_CASE : Optional[Any] = TapasForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _SCREAMING_SNAKE_CASE : int = 4 _SCREAMING_SNAKE_CASE : Tuple = False # hparam_utils.py hparams _SCREAMING_SNAKE_CASE : Any = 36.45_19 _SCREAMING_SNAKE_CASE : Union[str, Any] = 0.90_34_21 _SCREAMING_SNAKE_CASE : Optional[Any] = 2_22.0_88 _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Optional[int] = True _SCREAMING_SNAKE_CASE : Dict = 0.76_31_41 _SCREAMING_SNAKE_CASE : Union[str, Any] = TapasForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) elif task == "TABFACT": _SCREAMING_SNAKE_CASE : int = TapasForSequenceClassification(config=__SCREAMING_SNAKE_CASE ) elif task == "MLM": _SCREAMING_SNAKE_CASE : int = TapasForMaskedLM(config=__SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": _SCREAMING_SNAKE_CASE : int = TapasModel(config=__SCREAMING_SNAKE_CASE ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) _SCREAMING_SNAKE_CASE : str = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
635
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
9
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller UpperCamelCase_ : List[Any] = 3 def UpperCamelCase ( _UpperCAmelCase : int ) -> int: '''simple docstring''' print("Generating primitive root of p" ) while True: _lowercase : Any = random.randrange(3 , _UpperCAmelCase ) if pow(_UpperCAmelCase , 2 , _UpperCAmelCase ) == 1: continue if pow(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) == 1: continue return g def UpperCamelCase ( _UpperCAmelCase : int ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: '''simple docstring''' print("Generating prime p..." ) _lowercase : Optional[int] = rabin_miller.generate_large_prime(_UpperCAmelCase ) # select large prime number. _lowercase : Dict = primitive_root(_UpperCAmelCase ) # one primitive root on modulo p. _lowercase : Any = random.randrange(3 , _UpperCAmelCase ) # private_key -> have to be greater than 2 for safety. _lowercase : Tuple = cryptomath.find_mod_inverse(pow(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) _lowercase : List[Any] = (key_size, e_a, e_a, p) _lowercase : Union[str, Any] = (key_size, d) return public_key, private_key def UpperCamelCase ( _UpperCAmelCase : str , _UpperCAmelCase : int ) -> None: '''simple docstring''' if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() _lowercase , _lowercase : Optional[Any] = generate_key(_UpperCAmelCase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , "w" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , "w" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def UpperCamelCase ( ) -> None: '''simple docstring''' print("Making key files..." ) make_key_files("elgamal" , 2048 ) print("Key files generation successful" ) if __name__ == "__main__": main()
461
0
from __future__ import annotations import bisect def _lowerCamelCase ( __A : Tuple , __A : int , __A : int = 0 , __A : List[Any] = -1 ) -> int: if hi < 0: _UpperCAmelCase : int = len(_SCREAMING_SNAKE_CASE ) while lo < hi: _UpperCAmelCase : Any = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _UpperCAmelCase : Any = mid + 1 else: _UpperCAmelCase : List[str] = mid return lo def _lowerCamelCase ( __A : Any , __A : Dict , __A : str = 0 , __A : Union[str, Any] = -1 ) -> int: if hi < 0: _UpperCAmelCase : str = len(_SCREAMING_SNAKE_CASE ) while lo < hi: _UpperCAmelCase : str = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _UpperCAmelCase : int = mid + 1 else: _UpperCAmelCase : List[Any] = mid return lo def _lowerCamelCase ( __A : Union[str, Any] , __A : List[str] , __A : Tuple = 0 , __A : Any = -1 ) -> None: sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( __A : Optional[int] , __A : Dict , __A : int = 0 , __A : Union[str, Any] = -1 ) -> None: sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( __A : int , __A : Optional[int] ) -> int | None: _UpperCAmelCase : int = 0 _UpperCAmelCase : Tuple = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: _UpperCAmelCase : int = left + (right - left) // 2 _UpperCAmelCase : Optional[int] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _UpperCAmelCase : List[str] = midpoint - 1 else: _UpperCAmelCase : Optional[Any] = midpoint + 1 return None def _lowerCamelCase ( __A : Optional[int] , __A : Union[str, Any] ) -> int | None: _UpperCAmelCase : Union[str, Any] = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def _lowerCamelCase ( __A : Any , __A : Optional[int] , __A : str , __A : Dict ) -> int | None: if right < left: return None _UpperCAmelCase : Any = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = input('Enter numbers separated by comma:\n').strip() SCREAMING_SNAKE_CASE = sorted(int(item) for item in user_input.split(',')) SCREAMING_SNAKE_CASE = int(input('Enter a single number to be found in the list:\n')) SCREAMING_SNAKE_CASE = binary_search(collection, target) if result is None: print(F'{target} was not found in {collection}.') else: print(F'{target} was found at position {result} in {collection}.')
701
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( __A : int , __A : Optional[Any] , __A : int ) -> int: # Initialise PyTorch model _UpperCAmelCase : Dict = RemBertConfig.from_json_file(__A ) print('''Building PyTorch model from configuration: {}'''.format(str(__A ) ) ) _UpperCAmelCase : int = RemBertModel(__A ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__A , __A , __A ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(__A ) ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
186
0
'''simple docstring''' from datetime import datetime as dt import os from github import Github __SCREAMING_SNAKE_CASE : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def UpperCamelCase_ ( ) -> List[str]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = Github(os.environ["GITHUB_TOKEN"] ) _UpperCAmelCase : List[Any] = g.get_repo("huggingface/transformers" ) _UpperCAmelCase : str = repo.get_issues(state="open" ) for issue in open_issues: _UpperCAmelCase : int = sorted([comment for comment in issue.get_comments()] , key=lambda _UpperCAmelCase : i.created_at , reverse=_UpperCAmelCase ) _UpperCAmelCase : List[str] = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
244
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Dict = "linear" __UpperCamelCase: Tuple = "cosine" __UpperCamelCase: Optional[int] = "cosine_with_restarts" __UpperCamelCase: str = "polynomial" __UpperCamelCase: int = "constant" __UpperCamelCase: Any = "constant_with_warmup" __UpperCamelCase: Optional[Any] = "piecewise_constant" def UpperCamelCase_ ( _UpperCAmelCase : Optimizer , _UpperCAmelCase : int = -1 ) -> Any: """simple docstring""" return LambdaLR(_UpperCAmelCase , lambda _UpperCAmelCase : 1 , last_epoch=_UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Optimizer , _UpperCAmelCase : int , _UpperCAmelCase : int = -1 ) -> Optional[int]: """simple docstring""" def lr_lambda(_UpperCAmelCase : int ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1.0 , _UpperCAmelCase ) ) return 1.0 return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , last_epoch=_UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Optimizer , _UpperCAmelCase : str , _UpperCAmelCase : int = -1 ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Union[str, Any] = step_rules.split("," ) for rule_str in rule_list[:-1]: _UpperCAmelCase , _UpperCAmelCase : Tuple = rule_str.split(":" ) _UpperCAmelCase : Dict = int(_UpperCAmelCase ) _UpperCAmelCase : int = float(_UpperCAmelCase ) _UpperCAmelCase : Dict = value _UpperCAmelCase : List[str] = float(rule_list[-1] ) def create_rules_function(_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): def rule_func(_UpperCAmelCase : int ) -> float: _UpperCAmelCase : Union[str, Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_UpperCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _UpperCAmelCase : Optional[Any] = create_rules_function(_UpperCAmelCase , _UpperCAmelCase ) return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , last_epoch=_UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any]=-1 ) -> Optional[int]: """simple docstring""" def lr_lambda(_UpperCAmelCase : int ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1 , _UpperCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Optimizer , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : float = 0.5 , _UpperCAmelCase : int = -1 ) -> Any: """simple docstring""" def lr_lambda(_UpperCAmelCase : List[Any] ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1 , _UpperCAmelCase ) ) _UpperCAmelCase : Union[str, Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_UpperCAmelCase ) * 2.0 * progress )) ) return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Optimizer , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = -1 ) -> int: """simple docstring""" def lr_lambda(_UpperCAmelCase : int ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1 , _UpperCAmelCase ) ) _UpperCAmelCase : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_UpperCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any]=1e-7 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : List[Any]=-1 ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(_UpperCAmelCase : int ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1 , _UpperCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _UpperCAmelCase : int = lr_init - lr_end _UpperCAmelCase : Optional[Any] = num_training_steps - num_warmup_steps _UpperCAmelCase : int = 1 - (current_step - num_warmup_steps) / decay_steps _UpperCAmelCase : Optional[int] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __SCREAMING_SNAKE_CASE : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def UpperCamelCase_ ( _UpperCAmelCase : Union[str, SchedulerType] , _UpperCAmelCase : Optimizer , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 1 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : int = -1 , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[str] = SchedulerType(_UpperCAmelCase ) _UpperCAmelCase : str = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_UpperCAmelCase , last_epoch=_UpperCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_UpperCAmelCase , step_rules=_UpperCAmelCase , last_epoch=_UpperCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_UpperCAmelCase , num_warmup_steps=_UpperCAmelCase , last_epoch=_UpperCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _UpperCAmelCase , num_warmup_steps=_UpperCAmelCase , num_training_steps=_UpperCAmelCase , num_cycles=_UpperCAmelCase , last_epoch=_UpperCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _UpperCAmelCase , num_warmup_steps=_UpperCAmelCase , num_training_steps=_UpperCAmelCase , power=_UpperCAmelCase , last_epoch=_UpperCAmelCase , ) return schedule_func( _UpperCAmelCase , num_warmup_steps=_UpperCAmelCase , num_training_steps=_UpperCAmelCase , last_epoch=_UpperCAmelCase )
244
1
from __future__ import annotations from typing import Generic, TypeVar snake_case = TypeVar("T") class __A ( Generic[T] ): '''simple docstring''' def __init__( self , _snake_case ): _lowerCAmelCase : List[Any] = data _lowerCAmelCase : Dict = self _lowerCAmelCase : Tuple = 0 class __A ( Generic[T] ): '''simple docstring''' def __init__( self ): # map from node name to the node object _lowerCAmelCase : dict[T, DisjointSetTreeNode[T]] = {} def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): # create a new set with x as its member _lowerCAmelCase : List[str] = DisjointSetTreeNode(_snake_case ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): # find the set x belongs to (with path-compression) _lowerCAmelCase : Dict = self.map[data] if elem_ref != elem_ref.parent: _lowerCAmelCase : Tuple = self.find_set(elem_ref.parent.data ) return elem_ref.parent def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): # helper function for union operation if nodea.rank > nodea.rank: _lowerCAmelCase : int = nodea else: _lowerCAmelCase : Optional[Any] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): # merge 2 disjoint sets self.link(self.find_set(_snake_case ) , self.find_set(_snake_case ) ) class __A ( Generic[T] ): '''simple docstring''' def __init__( self ): # connections: map from the node to the neighbouring nodes (with weights) _lowerCAmelCase : dict[T, dict[T, int]] = {} def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): # add a node ONLY if its not present in the graph if node not in self.connections: _lowerCAmelCase : Any = {} def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case ): # add an edge with the given weight self.add_node(_snake_case ) self.add_node(_snake_case ) _lowerCAmelCase : int = weight _lowerCAmelCase : Optional[int] = weight def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[Any] = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda _snake_case : x[2] ) # creating the disjoint set _lowerCAmelCase : Tuple = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(_snake_case ) # MST generation _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Dict = 0 _lowerCAmelCase : int = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = edges[index] index += 1 _lowerCAmelCase : Dict = disjoint_set.find_set(_snake_case ) _lowerCAmelCase : List[str] = disjoint_set.find_set(_snake_case ) if parent_u != parent_v: num_edges += 1 graph.add_edge(_snake_case , _snake_case , _snake_case ) disjoint_set.union(_snake_case , _snake_case ) return graph
587
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : int = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Optional[int] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: _lowerCAmelCase : str = s_dict.pop(lowerCAmelCase__ ) elif "subsample" in key: _lowerCAmelCase : Optional[Any] = s_dict.pop(lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase : Tuple = emb.weight.shape _lowerCAmelCase : List[Any] = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = emb.weight.data return lin_layer def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Tuple = torch.load(lowerCAmelCase__ , map_location="cpu" ) _lowerCAmelCase : Dict = mam_aaa["args"] _lowerCAmelCase : Optional[Any] = mam_aaa["model"] _lowerCAmelCase : Optional[Any] = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(lowerCAmelCase__ ) rename_keys(lowerCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = state_dict["decoder.embed_tokens.weight"].shape[0] _lowerCAmelCase : Dict = args.share_decoder_input_output_embed _lowerCAmelCase : str = [int(lowerCAmelCase__ ) for i in args.conv_kernel_sizes.split("," )] _lowerCAmelCase : Any = SpeechaTextConfig( vocab_size=lowerCAmelCase__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , num_conv_layers=len(lowerCAmelCase__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=lowerCAmelCase__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=lowerCAmelCase__ , num_beams=5 , max_length=2_00 , use_cache=lowerCAmelCase__ , decoder_start_token_id=2 , early_stopping=lowerCAmelCase__ , ) _lowerCAmelCase : Union[str, Any] = SpeechaTextForConditionalGeneration(lowerCAmelCase__ ) _lowerCAmelCase , _lowerCAmelCase : List[str] = model.model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0 and not set(lowerCAmelCase__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," f""" but all the following weights are missing {missing}""" ) if tie_embeds: _lowerCAmelCase : Union[str, Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _lowerCAmelCase : Dict = lm_head_weights model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") snake_case = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
587
1
from __future__ import annotations import typing from collections import Counter def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1): for perpendicular in range(_a , max_perimeter + 1): SCREAMING_SNAKE_CASE : List[Any] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(_a): SCREAMING_SNAKE_CASE : int = int(base + perpendicular + hypotenuse) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCamelCase__ ( _a = 1000): SCREAMING_SNAKE_CASE : List[str] = pythagorean_triple(_a) return triplets.most_common(1)[0][0] if __name__ == "__main__": print(F'''Perimeter {solution()} has maximum solutions''')
25
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
25
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __a ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = 42 class __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self : Union[str, Any] , snake_case_ : int = 32 , snake_case_ : int = 64 , snake_case_ : int = 20 , snake_case_ : int = 7_68 , snake_case_ : str=77 , snake_case_ : List[Any]=4 , snake_case_ : float = 0.0 , snake_case_ : str = "silu" , snake_case_ : Optional[str] = None , snake_case_ : Optional[str] = None , snake_case_ : Optional[str] = "linear" , snake_case_ : Optional[str] = "prd" , snake_case_ : Optional[int] = None , snake_case_ : Optional[int] = None , snake_case_ : Optional[int] = None , )-> List[str]: super().__init__() __lowerCAmelCase =num_attention_heads __lowerCAmelCase =attention_head_dim __lowerCAmelCase =num_attention_heads * attention_head_dim __lowerCAmelCase =additional_embeddings __lowerCAmelCase =time_embed_dim or inner_dim __lowerCAmelCase =embedding_proj_dim or embedding_dim __lowerCAmelCase =clip_embed_dim or embedding_dim __lowerCAmelCase =Timesteps(snake_case_ , snake_case_ , 0) __lowerCAmelCase =TimestepEmbedding(snake_case_ , snake_case_ , out_dim=snake_case_ , act_fn=snake_case_) __lowerCAmelCase =nn.Linear(snake_case_ , snake_case_) if embedding_proj_norm_type is None: __lowerCAmelCase =None elif embedding_proj_norm_type == "layer": __lowerCAmelCase =nn.LayerNorm(snake_case_) else: raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""") __lowerCAmelCase =nn.Linear(snake_case_ , snake_case_) if encoder_hid_proj_type is None: __lowerCAmelCase =None elif encoder_hid_proj_type == "linear": __lowerCAmelCase =nn.Linear(snake_case_ , snake_case_) else: raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""") __lowerCAmelCase =nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , snake_case_)) if added_emb_type == "prd": __lowerCAmelCase =nn.Parameter(torch.zeros(1 , 1 , snake_case_)) elif added_emb_type is None: __lowerCAmelCase =None else: raise ValueError( F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""") __lowerCAmelCase =nn.ModuleList( [ BasicTransformerBlock( snake_case_ , snake_case_ , snake_case_ , dropout=snake_case_ , activation_fn="""gelu""" , attention_bias=snake_case_ , ) for d in range(snake_case_) ]) if norm_in_type == "layer": __lowerCAmelCase =nn.LayerNorm(snake_case_) elif norm_in_type is None: __lowerCAmelCase =None else: raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""") __lowerCAmelCase =nn.LayerNorm(snake_case_) __lowerCAmelCase =nn.Linear(snake_case_ , snake_case_) __lowerCAmelCase =torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0_0_0_0.0) causal_attention_mask.triu_(1) __lowerCAmelCase =causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , snake_case_ , persistent=snake_case_) __lowerCAmelCase =nn.Parameter(torch.zeros(1 , snake_case_)) __lowerCAmelCase =nn.Parameter(torch.zeros(1 , snake_case_)) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase ( self : Optional[int])-> Dict[str, AttentionProcessor]: __lowerCAmelCase ={} def fn_recursive_add_processors(snake_case_ : str , snake_case_ : torch.nn.Module , snake_case_ : Dict[str, AttentionProcessor]): if hasattr(snake_case_ , """set_processor"""): __lowerCAmelCase =module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , snake_case_ , snake_case_) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case_ , snake_case_ , snake_case_) return processors def UpperCamelCase ( self : Union[str, Any] , snake_case_ : Union[AttentionProcessor, Dict[str, AttentionProcessor]])-> Optional[Any]: __lowerCAmelCase =len(self.attn_processors.keys()) if isinstance(snake_case_ , snake_case_) and len(snake_case_) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(snake_case_)} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""") def fn_recursive_attn_processor(snake_case_ : str , snake_case_ : torch.nn.Module , snake_case_ : Optional[int]): if hasattr(snake_case_ , """set_processor"""): if not isinstance(snake_case_ , snake_case_): module.set_processor(snake_case_) else: module.set_processor(processor.pop(F"""{name}.processor""")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , snake_case_ , snake_case_) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case_ , snake_case_ , snake_case_) def UpperCamelCase ( self : str)-> List[Any]: self.set_attn_processor(AttnProcessor()) def UpperCamelCase ( self : str , snake_case_ : str , snake_case_ : Union[torch.Tensor, float, int] , snake_case_ : torch.FloatTensor , snake_case_ : Optional[torch.FloatTensor] = None , snake_case_ : Optional[torch.BoolTensor] = None , snake_case_ : bool = True , )-> Any: __lowerCAmelCase =hidden_states.shape[0] __lowerCAmelCase =timestep if not torch.is_tensor(snake_case_): __lowerCAmelCase =torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device) elif torch.is_tensor(snake_case_) and len(timesteps.shape) == 0: __lowerCAmelCase =timesteps[None].to(hidden_states.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCAmelCase =timesteps * torch.ones(snake_case_ , dtype=timesteps.dtype , device=timesteps.device) __lowerCAmelCase =self.time_proj(snake_case_) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __lowerCAmelCase =timesteps_projected.to(dtype=self.dtype) __lowerCAmelCase =self.time_embedding(snake_case_) if self.embedding_proj_norm is not None: __lowerCAmelCase =self.embedding_proj_norm(snake_case_) __lowerCAmelCase =self.embedding_proj(snake_case_) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __lowerCAmelCase =self.encoder_hidden_states_proj(snake_case_) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""") __lowerCAmelCase =self.proj_in(snake_case_) __lowerCAmelCase =self.positional_embedding.to(hidden_states.dtype) __lowerCAmelCase =[] __lowerCAmelCase =0 if encoder_hidden_states is not None: additional_embeds.append(snake_case_) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape) == 2: __lowerCAmelCase =proj_embeddings[:, None, :] if len(hidden_states.shape) == 2: __lowerCAmelCase =hidden_states[:, None, :] __lowerCAmelCase =additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __lowerCAmelCase =self.prd_embedding.to(hidden_states.dtype).expand(snake_case_ , -1 , -1) additional_embeds.append(snake_case_) __lowerCAmelCase =torch.cat( snake_case_ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __lowerCAmelCase =additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __lowerCAmelCase =F.pad( snake_case_ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __lowerCAmelCase =hidden_states + positional_embeddings if attention_mask is not None: __lowerCAmelCase =(1 - attention_mask.to(hidden_states.dtype)) * -1_0_0_0_0.0 __lowerCAmelCase =F.pad(snake_case_ , (0, self.additional_embeddings) , value=0.0) __lowerCAmelCase =(attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype) __lowerCAmelCase =attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0) if self.norm_in is not None: __lowerCAmelCase =self.norm_in(snake_case_) for block in self.transformer_blocks: __lowerCAmelCase =block(snake_case_ , attention_mask=snake_case_) __lowerCAmelCase =self.norm_out(snake_case_) if self.prd_embedding is not None: __lowerCAmelCase =hidden_states[:, -1] else: __lowerCAmelCase =hidden_states[:, additional_embeddings_len:] __lowerCAmelCase =self.proj_to_clip_embeddings(snake_case_) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=snake_case_) def UpperCamelCase ( self : List[str] , snake_case_ : List[Any])-> int: __lowerCAmelCase =(prior_latents * self.clip_std) + self.clip_mean return prior_latents
456
def __lowerCAmelCase ( __lowerCamelCase : int ) -> None: __lowerCAmelCase =generate_pascal_triangle(__lowerCamelCase ) for row_idx in range(__lowerCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def __lowerCAmelCase ( __lowerCamelCase : int ) -> list[list[int]]: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) __lowerCAmelCase =[] for current_row_idx in range(__lowerCamelCase ): __lowerCAmelCase =populate_current_row(__lowerCamelCase , __lowerCamelCase ) triangle.append(__lowerCamelCase ) return triangle def __lowerCAmelCase ( __lowerCamelCase : list[list[int]] , __lowerCamelCase : int ) -> list[int]: __lowerCAmelCase =[-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __lowerCAmelCase , __lowerCAmelCase =1, 1 for current_col_idx in range(1 , __lowerCamelCase ): calculate_current_element( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return current_row def __lowerCAmelCase ( __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[int] , __lowerCamelCase : int , __lowerCamelCase : int , ) -> None: __lowerCAmelCase =triangle[current_row_idx - 1][current_col_idx - 1] __lowerCAmelCase =triangle[current_row_idx - 1][current_col_idx] __lowerCAmelCase =above_to_left_elt + above_to_right_elt def __lowerCAmelCase ( __lowerCamelCase : int ) -> list[list[int]]: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) __lowerCAmelCase =[[1]] for row_index in range(1 , __lowerCamelCase ): __lowerCAmelCase =[0] + result[-1] + [0] __lowerCAmelCase =row_index + 1 # Calculate the number of distinct elements in a row __lowerCAmelCase =sum(divmod(__lowerCamelCase , 2 ) ) __lowerCAmelCase =[ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __lowerCAmelCase =row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __lowerCAmelCase =row_first_half + row_second_half result.append(__lowerCamelCase ) return result def __lowerCAmelCase ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCamelCase : Callable , __lowerCamelCase : int ) -> None: __lowerCAmelCase =f"""{func.__name__}({value})""" __lowerCAmelCase =timeit(f"""__main__.{call}""" , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCamelCase , __lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
456
1
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = RoFormerTokenizer UpperCamelCase = RoFormerTokenizerFast UpperCamelCase = True UpperCamelCase = True def a__ ( self : str ) -> List[Any]: """simple docstring""" super().setUp() def a__ ( self : int , **A_ : List[str] ) -> Optional[int]: """simple docstring""" return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **A_ ) def a__ ( self : List[str] , **A_ : Optional[int] ) -> Any: """simple docstring""" return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **A_ ) def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = '永和服装饰品有限公司,今天天气非常好' lowerCamelCase_ = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好' return input_text, output_text def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ , lowerCamelCase_ = self.get_chinese_input_output_texts() lowerCamelCase_ = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , output_text.split() ) lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ , lowerCamelCase_ = self.get_chinese_input_output_texts() lowerCamelCase_ = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , output_text.split() ) lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> int: """simple docstring""" pass def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass
70
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = BertTokenizer UpperCamelCase = BertTokenizerFast UpperCamelCase = True UpperCamelCase = True UpperCamelCase = filter_non_english def a__ ( self : List[Any] ) -> int: """simple docstring""" super().setUp() lowerCamelCase_ = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : Tuple , A_ : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(A_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" if not self.test_rust_tokenizer: return lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = tokenizer.tokenize(A_ ) lowerCamelCase_ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) # With lower casing lowerCamelCase_ = self.get_tokenizer(do_lower_case=A_ ) lowerCamelCase_ = self.get_rust_tokenizer(do_lower_case=A_ ) lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = tokenizer.tokenize(A_ ) lowerCamelCase_ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" lowerCamelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Tuple ) -> str: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : int ) -> List[Any]: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> List[str]: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Dict ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : int ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" lowerCamelCase_ = BasicTokenizer() lowerCamelCase_ = 'a\n\'ll !!to?\'d of, can\'t.' lowerCamelCase_ = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(A_ ) , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowerCamelCase_ = {} for i, token in enumerate(A_ ): lowerCamelCase_ = i lowerCamelCase_ = WordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : List[Any] ) -> int: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained('bert-base-uncased' ) lowerCamelCase_ = tokenizer.encode('sequence builders' , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer.encode('multi-sequence build' , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def a__ ( self : str ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowerCamelCase_ = tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = ['的', '人', '有'] lowerCamelCase_ = ''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = tokenizer_p.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(A_ ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = tokenizer_r.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_p.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(A_ ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ )
70
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) def _lowerCAmelCase ( _a : Optional[Any] , _a : Optional[Any]=False ) -> Optional[Any]: lowerCAmelCase_ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _lowerCAmelCase ( _a : str , _a : Dict , _a : Optional[Any]=False ) -> int: for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : Optional[int] = '' else: lowerCAmelCase_ : List[str] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : List[str] = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Union[str, Any] = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Any = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : Tuple = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Optional[int] = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( _a : str ) -> Tuple: lowerCAmelCase_ : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_a , _a ) def _lowerCAmelCase ( _a : Tuple , _a : str , _a : Optional[Any] ) -> List[Any]: lowerCAmelCase_ : List[str] = dct.pop(_a ) lowerCAmelCase_ : List[str] = val def _lowerCAmelCase ( ) -> Union[str, Any]: lowerCAmelCase_ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase_ : Optional[Any] = Image.open(requests.get(_a , stream=_a ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( _a : Tuple , _a : Union[str, Any] , _a : Dict=True ) -> int: lowerCAmelCase_ : Optional[int] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Optional[int] = 8 # set labels if required if not base_model: lowerCAmelCase_ : Any = 10_00 lowerCAmelCase_ : Tuple = 'huggingface/label-files' lowerCAmelCase_ : str = 'imagenet-1k-id2label.json' lowerCAmelCase_ : int = json.load(open(hf_hub_download(_a , _a , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Any = {int(_a ): v for k, v in idalabel.items()} lowerCAmelCase_ : Tuple = idalabel lowerCAmelCase_ : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : str = 3_84 lowerCAmelCase_ : Dict = 15_36 lowerCAmelCase_ : Tuple = 12 lowerCAmelCase_ : Dict = 6 # load original model from torch hub lowerCAmelCase_ : List[str] = torch.hub.load("""facebookresearch/dino:main""" , _a ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : List[Any] = original_model.state_dict() if base_model: remove_classification_head_(_a ) lowerCAmelCase_ : Any = create_rename_keys(_a , base_model=_a ) for src, dest in rename_keys: rename_key(_a , _a , _a ) read_in_q_k_v(_a , _a , _a ) # load HuggingFace model if base_model: lowerCAmelCase_ : Union[str, Any] = ViTModel(_a , add_pooling_layer=_a ).eval() else: lowerCAmelCase_ : Optional[Any] = ViTForImageClassification(_a ).eval() model.load_state_dict(_a ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : Tuple = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[Any] = encoding['pixel_values'] lowerCAmelCase_ : Optional[Any] = model(_a ) if base_model: lowerCAmelCase_ : List[Any] = original_model(_a ) assert torch.allclose(_a , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : str = original_model(_a ) assert logits.shape == outputs.logits.shape assert torch.allclose(_a , outputs.logits , atol=1E-3 ) Path(_a ).mkdir(exist_ok=_a ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_a ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_a ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) UpperCAmelCase_ : Any = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
717
from collections import namedtuple UpperCAmelCase_ : Union[str, Any] = namedtuple("""from_to""", """from_ to""") UpperCAmelCase_ : int = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.0_01, 10_00), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.0_04_54, 2_64.1_72), """cubicyard""": from_to(0.7_64_55, 1.3_07_95), """cubicfoot""": from_to(0.0_28, 35.31_47), """cup""": from_to(0.0_00_23_65_88, 42_26.75), } def _lowerCAmelCase ( _a : float , _a : str , _a : str ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + """, """.join(_a ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + """, """.join(_a ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
440
0
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case : Dict = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''), ('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) def __lowercase ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ): a__ = state_dict.pop(_SCREAMING_SNAKE_CASE ) a__ = val def __lowercase ( __lowerCAmelCase : Optional[Any] ): a__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: a__ = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) a__ = value else: a__ = value return new_state_dict def __lowercase ( __lowerCAmelCase : Union[str, Any] ): a__ = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a__ = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) a__ = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a__ = in_proj_weight[:2_5_6, :] a__ = in_proj_bias[:2_5_6] a__ = in_proj_weight[2_5_6:5_1_2, :] a__ = in_proj_bias[2_5_6:5_1_2] a__ = in_proj_weight[-2_5_6:, :] a__ = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a__ = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) a__ = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict a__ = in_proj_weight[:2_5_6, :] a__ = in_proj_bias[:2_5_6] a__ = in_proj_weight[2_5_6:5_1_2, :] a__ = in_proj_bias[2_5_6:5_1_2] a__ = in_proj_weight[-2_5_6:, :] a__ = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention a__ = state_dict.pop( F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) a__ = state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict a__ = in_proj_weight_cross_attn[:2_5_6, :] a__ = in_proj_bias_cross_attn[:2_5_6] a__ = in_proj_weight_cross_attn[2_5_6:5_1_2, :] a__ = in_proj_bias_cross_attn[2_5_6:5_1_2] a__ = in_proj_weight_cross_attn[-2_5_6:, :] a__ = in_proj_bias_cross_attn[-2_5_6:] def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] ): a__ , a__ = image.size a__ = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__ = 8_0_0 if 'detection' in checkpoint_url else 1_0_0_0 a__ = target_max_size / current_max_size a__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __lowercase ( __lowerCAmelCase : Tuple ): a__ = F.to_tensor(_SCREAMING_SNAKE_CASE ) a__ = F.normalize(_SCREAMING_SNAKE_CASE , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict ): logger.info('Converting model...' ) # load original state dict a__ = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__ = rename_backbone_keys(_SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(_SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a__ = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): a__ = state_dict.pop(_SCREAMING_SNAKE_CASE ) a__ = val # create HuggingFace model and load state dict a__ = TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: a__ = 1_5 a__ = 2 a__ = {0: 'table', 1: 'table rotated'} a__ = idalabel a__ = {v: k for k, v in idalabel.items()} else: a__ = 1_2_5 a__ = 6 a__ = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } a__ = idalabel a__ = {v: k for k, v in idalabel.items()} a__ = DetrImageProcessor( format='coco_detection' , max_size=8_0_0 if 'detection' in checkpoint_url else 1_0_0_0 ) a__ = TableTransformerForObjectDetection(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # verify our conversion a__ = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' a__ = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=_SCREAMING_SNAKE_CASE ) a__ = Image.open(_SCREAMING_SNAKE_CASE ).convert('RGB' ) a__ = normalize(resize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ).unsqueeze(0 ) a__ = model(_SCREAMING_SNAKE_CASE ) if "detection" in checkpoint_url: a__ = (1, 1_5, 3) a__ = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) a__ = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: a__ = (1, 1_2_5, 7) a__ = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) a__ = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) a__ = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', type=str, choices=[ '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''', ], help='''URL of the Table Transformer checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case : Dict = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
335
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCAmelCase = logging.get_logger(__name__) class __snake_case( _lowerCAmelCase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , A_ , ) super().__init__(*A_ , **A_ )
433
0
'''simple docstring''' from math import pow, sqrt def __lowerCAmelCase (*__lowerCAmelCase ): _UpperCAmelCase : str = len(__A ) > 0 and all(value > 0.0 for value in values ) return result def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__A , __A ) else ValueError("Input Error: Molar mass values must greater than 0." ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__A , __A , __A ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__A , __A , __A ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(__A , __A , __A ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(__A , __A , __A ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) )
701
'''simple docstring''' from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase : int = "pixel_values" lowerCAmelCase : Dict = False lowerCAmelCase : Union[str, Any] = TimmBackboneConfig def __init__( self : List[str] , lowerCamelCase__ : Dict , **lowerCamelCase__ : str ) ->Dict: '''simple docstring''' requires_backends(self , "timm" ) super().__init__(lowerCamelCase__ ) _UpperCAmelCase : Any = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name." ) if config.backbone not in timm.list_models(): raise ValueError(F"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCamelCase__ , "out_features" ) and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead." ) _UpperCAmelCase : Optional[Any] = getattr(lowerCamelCase__ , "use_pretrained_backbone" , lowerCamelCase__ ) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False." ) # We just take the final layer by default. This matches the default for the transformers models. _UpperCAmelCase : int = config.out_indices if getattr(lowerCamelCase__ , "out_indices" , lowerCamelCase__ ) is not None else (-1,) _UpperCAmelCase : List[Any] = timm.create_model( config.backbone , pretrained=lowerCamelCase__ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCamelCase__ , **lowerCamelCase__ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. _UpperCAmelCase : List[str] = self._backbone.return_layers _UpperCAmelCase : Optional[int] = {layer["module"]: str(lowerCamelCase__ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCamelCase__ ) @classmethod def lowerCAmelCase__ ( cls : List[str] , lowerCamelCase__ : str , *lowerCamelCase__ : Tuple , **lowerCamelCase__ : Optional[Any] ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ["vision", "timm"] ) from ...models.timm_backbone import TimmBackboneConfig _UpperCAmelCase : Any = kwargs.pop("config" , TimmBackboneConfig() ) _UpperCAmelCase : Dict = kwargs.pop("use_timm_backbone" , lowerCamelCase__ ) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones" ) _UpperCAmelCase : str = kwargs.pop("num_channels" , config.num_channels ) _UpperCAmelCase : Dict = kwargs.pop("features_only" , config.features_only ) _UpperCAmelCase : str = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone ) _UpperCAmelCase : Optional[Any] = kwargs.pop("out_indices" , config.out_indices ) _UpperCAmelCase : Dict = TimmBackboneConfig( backbone=lowerCamelCase__ , num_channels=lowerCamelCase__ , features_only=lowerCamelCase__ , use_pretrained_backbone=lowerCamelCase__ , out_indices=lowerCamelCase__ , ) return super()._from_config(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : str ) ->Optional[int]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Union[str, Any]=None , **lowerCamelCase__ : Dict ) ->Union[BackboneOutput, Tuple[Tensor, ...]]: '''simple docstring''' _UpperCAmelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Dict = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone _UpperCAmelCase : Optional[int] = self._all_layers _UpperCAmelCase : List[str] = self._backbone(lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : List[Any] = self._return_layers _UpperCAmelCase : Tuple = tuple(hidden_states[i] for i in self.out_indices ) else: _UpperCAmelCase : Any = self._backbone(lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Tuple = None _UpperCAmelCase : Dict = tuple(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = tuple(lowerCamelCase__ ) if hidden_states is not None else None if not return_dict: _UpperCAmelCase : Dict = (feature_maps,) if output_hidden_states: _UpperCAmelCase : List[str] = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCamelCase__ , hidden_states=lowerCamelCase__ , attentions=lowerCamelCase__ )
40
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowercase__ = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
638
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def UpperCAmelCase_ ( _UpperCAmelCase :str , _UpperCAmelCase :Optional[Any] ) -> Optional[int]: '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer A_ = flax_key_tuple[:-1] + ('''weight''',) A_ = torch.permute(_UpperCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCAmelCase ): # linear layer A_ = flax_key_tuple[:-1] + ('''weight''',) A_ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A_ = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def UpperCAmelCase_ ( _UpperCAmelCase :Optional[int] , _UpperCAmelCase :str , _UpperCAmelCase :Any ) -> Dict: '''simple docstring''' if "metadata" in layer: A_ = layer.split('''metadata''' ) A_ = ''''''.join(split_layer[0] )[:-1] A_ = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: A_ = layer.split('''kvstore''' ) A_ = ''''''.join(split_layer[0] )[:-1] A_ = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: A_ = layer.split('''/''' ) A_ = '''/'''.join(split_layer[:-1] ) A_ = (split_layer[-1],) if "kvstore/path" in layer: A_ = f'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: A_ = '''file''' else: A_ = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def UpperCAmelCase_ ( _UpperCAmelCase :int , _UpperCAmelCase :Union[str, Any] ) -> Any: '''simple docstring''' A_ = rename_keys(_UpperCAmelCase ) A_ = {} for k, v in current_block.items(): A_ = v A_ = new_current_block torch.save(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( _UpperCAmelCase :Union[str, Any] , _UpperCAmelCase :str , _UpperCAmelCase :List[Any] , _UpperCAmelCase :str , _UpperCAmelCase :str = WEIGHTS_NAME ) -> Optional[int]: '''simple docstring''' A_ = convert_file_size_to_int(_UpperCAmelCase ) A_ = [] A_ = {} A_ = 0 A_ = 0 os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: A_ = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] A_ = flatten_dict(_UpperCAmelCase , sep='''/''' ) A_ = {} for layer in checkpoint_info.keys(): A_ , A_ , A_ = get_key_and_tensorstore_dict( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if curr_real_layer_name in all_layers: A_ = content else: A_ = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file A_ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() A_ = torch.tensor(_UpperCAmelCase ) A_ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts A_ , A_ = rename_base_flax_keys(tuple(key.split('''/''' ) ) , _UpperCAmelCase ) A_ = '''/'''.join(_UpperCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: A_ = os.path.join( _UpperCAmelCase , weights_name.replace('''.bin''' , f'-{len(_UpperCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_UpperCAmelCase , _UpperCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block A_ = {} A_ = 0 A_ = raw_weights.to(getattr(_UpperCAmelCase , _UpperCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block A_ = os.path.join(_UpperCAmelCase , weights_name.replace('''.bin''' , f'-{len(_UpperCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_UpperCAmelCase , _UpperCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_UpperCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index A_ = {} A_ = {} for idx, shard in enumerate(_UpperCAmelCase ): A_ = weights_name.replace( '''.bin''' , f'-{idx+1:05d}-of-{len(_UpperCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} A_ = os.path.join(_UpperCAmelCase , weights_name.replace('''.bin''' , f'-{idx+1:05d}-of-???.bin' ) ) os.rename(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) A_ = shard for key in shard: A_ = shard_file # Add the metadata A_ = {'''total_size''': total_size} A_ = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , '''w''' , encoding='''utf-8''' ) as f: A_ = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase ) + '''\n''' f.write(_UpperCAmelCase ) return metadata, index if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) a__ : Tuple = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def UpperCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer A_ = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) A_ = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) A_ = TaTokenizer.from_pretrained('''t5-small''' ) A_ = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' A_ = tokenizer(_UpperCAmelCase , return_tensors='''pt''' ).input_ids A_ = model.generate(_UpperCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
188
0
'''simple docstring''' from __future__ import annotations def __a ( A__ ) -> list[int]: if len(lowerCamelCase__ ) == 0: return array lowerCAmelCase = min(lowerCamelCase__ ), max(lowerCamelCase__ ) # Compute the variables lowerCAmelCase = _max - _min + 1 lowerCAmelCase = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: lowerCAmelCase = i - _min lowerCAmelCase = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. lowerCAmelCase = 0 for i in range(lowerCamelCase__ ): while holes_repeat[i] > 0: lowerCAmelCase = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() lowercase : Optional[int] = input('Enter numbers separated by comma:\n') lowercase : str = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
710
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : List[str] = { 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = 'transfo-xl' lowerCAmelCase = ['mems'] lowerCAmelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any]=2_6_7_7_3_5 , SCREAMING_SNAKE_CASE : Dict=[2_0_0_0_0, 4_0_0_0_0, 2_0_0_0_0_0] , SCREAMING_SNAKE_CASE : Tuple=1_0_2_4 , SCREAMING_SNAKE_CASE : Tuple=1_0_2_4 , SCREAMING_SNAKE_CASE : Any=1_6 , SCREAMING_SNAKE_CASE : List[str]=6_4 , SCREAMING_SNAKE_CASE : int=4_0_9_6 , SCREAMING_SNAKE_CASE : Union[str, Any]=4 , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : int=1_8 , SCREAMING_SNAKE_CASE : Dict=1_6_0_0 , SCREAMING_SNAKE_CASE : Any=1_0_0_0 , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Optional[Any]=0 , SCREAMING_SNAKE_CASE : Optional[Any]=-1 , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Dict=0.1 , SCREAMING_SNAKE_CASE : Tuple=0.0 , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : int="normal" , SCREAMING_SNAKE_CASE : Optional[int]=0.0_1 , SCREAMING_SNAKE_CASE : List[str]=0.0_1 , SCREAMING_SNAKE_CASE : List[str]=0.0_2 , SCREAMING_SNAKE_CASE : Union[str, Any]=1E-5 , SCREAMING_SNAKE_CASE : List[str]=0 , **SCREAMING_SNAKE_CASE : Tuple , ) -> Tuple: """simple docstring""" lowerCAmelCase = vocab_size lowerCAmelCase = [] self.cutoffs.extend(SCREAMING_SNAKE_CASE ) if proj_share_all_but_first: lowerCAmelCase = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase = [False] + [False] * len(self.cutoffs ) lowerCAmelCase = d_model lowerCAmelCase = d_embed lowerCAmelCase = d_head lowerCAmelCase = d_inner lowerCAmelCase = div_val lowerCAmelCase = pre_lnorm lowerCAmelCase = n_layer lowerCAmelCase = n_head lowerCAmelCase = mem_len lowerCAmelCase = same_length lowerCAmelCase = attn_type lowerCAmelCase = clamp_len lowerCAmelCase = sample_softmax lowerCAmelCase = adaptive lowerCAmelCase = dropout lowerCAmelCase = dropatt lowerCAmelCase = untie_r lowerCAmelCase = init lowerCAmelCase = init_range lowerCAmelCase = proj_init_std lowerCAmelCase = init_std lowerCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @property def __A ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def __A ( self : Any , SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
159
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : int ): return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1, number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
131
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __snake_case : Dict = open # noqa: we just need to have a builtin inside this module to test it properly
131
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _a ( metaclass=SCREAMING_SNAKE_CASE_ ): a_ : int = ['keras_nlp'] def __init__( self : str , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Optional[int] ): requires_backends(self , ['keras_nlp'] )
706
"""simple docstring""" def snake_case ( _a: int = 4000000 )-> int: '''simple docstring''' lowerCamelCase__ = [0, 1] lowerCamelCase__ = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 lowerCamelCase__ = 0 for j in range(len(_a ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
659
0
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : int = logging.get_logger(__name__) # TODO Update this _snake_case : Tuple = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = "esm" def __init__( self : Dict , lowerCamelCase : Dict=None , lowerCamelCase : List[Any]=None , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : Optional[int]=768 , lowerCamelCase : Dict=12 , lowerCamelCase : str=12 , lowerCamelCase : List[Any]=3072 , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : str=0.1 , lowerCamelCase : Dict=1026 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : Optional[Any]=1E-12 , lowerCamelCase : Optional[int]="absolute" , lowerCamelCase : str=True , lowerCamelCase : Any=None , lowerCamelCase : List[Any]=False , lowerCamelCase : int=False , lowerCamelCase : Dict=None , lowerCamelCase : Any=None , **lowerCamelCase : Any , ) -> int: super().__init__(pad_token_id=lowerCamelCase , mask_token_id=lowerCamelCase , **lowerCamelCase ) __snake_case : Optional[int] = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : List[Any] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : str = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : Dict = max_position_embeddings __snake_case : Any = initializer_range __snake_case : int = layer_norm_eps __snake_case : str = position_embedding_type __snake_case : List[str] = use_cache __snake_case : Tuple = emb_layer_norm_before __snake_case : str = token_dropout __snake_case : Any = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) __snake_case : int = EsmFoldConfig() elif isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : Union[str, Any] = EsmFoldConfig(**lowerCamelCase ) __snake_case : List[str] = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) __snake_case : int = get_default_vocab_list() else: __snake_case : int = vocab_list else: __snake_case : List[Any] = None __snake_case : List[str] = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , lowerCamelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def __snake_case ( self : Dict ) -> List[Any]: __snake_case : Any = super().to_dict() if isinstance(self.esmfold_config , lowerCamelCase ): __snake_case : int = self.esmfold_config.to_dict() return output @dataclass class a : """simple docstring""" __UpperCAmelCase : str = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = False __UpperCAmelCase : bool = False __UpperCAmelCase : float = 0 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : int = 128 __UpperCAmelCase : "TrunkConfig" = None def __snake_case ( self : Union[str, Any] ) -> Union[str, Any]: if self.trunk is None: __snake_case : Optional[Any] = TrunkConfig() elif isinstance(self.trunk , lowerCamelCase ): __snake_case : Any = TrunkConfig(**self.trunk ) def __snake_case ( self : Optional[Any] ) -> Optional[Any]: __snake_case : Optional[Any] = asdict(self ) __snake_case : Tuple = self.trunk.to_dict() return output @dataclass class a : """simple docstring""" __UpperCAmelCase : int = 48 __UpperCAmelCase : int = 1024 __UpperCAmelCase : int = 128 __UpperCAmelCase : int = 32 __UpperCAmelCase : int = 32 __UpperCAmelCase : int = 32 __UpperCAmelCase : float = 0 __UpperCAmelCase : float = 0 __UpperCAmelCase : bool = False __UpperCAmelCase : int = 4 __UpperCAmelCase : Optional[int] = 128 __UpperCAmelCase : "StructureModuleConfig" = None def __snake_case ( self : List[Any] ) -> Any: if self.structure_module is None: __snake_case : Union[str, Any] = StructureModuleConfig() elif isinstance(self.structure_module , lowerCamelCase ): __snake_case : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) __snake_case : List[Any] = self.sequence_state_dim // self.sequence_head_width __snake_case : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(F'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def __snake_case ( self : int ) -> Dict: __snake_case : str = asdict(self ) __snake_case : Any = self.structure_module.to_dict() return output @dataclass class a : """simple docstring""" __UpperCAmelCase : int = 384 __UpperCAmelCase : int = 128 __UpperCAmelCase : int = 16 __UpperCAmelCase : int = 128 __UpperCAmelCase : int = 12 __UpperCAmelCase : int = 4 __UpperCAmelCase : int = 8 __UpperCAmelCase : float = 0.1 __UpperCAmelCase : int = 8 __UpperCAmelCase : int = 1 __UpperCAmelCase : int = 2 __UpperCAmelCase : int = 7 __UpperCAmelCase : int = 10 __UpperCAmelCase : float = 1e-8 __UpperCAmelCase : float = 1e5 def __snake_case ( self : Dict ) -> Any: return asdict(self ) def lowerCAmelCase_ ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
81
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration __a : Optional[Any] = """facebook/wmt19-en-de""" __a : Union[str, Any] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model __a : Optional[int] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) __a : Union[str, Any] = FSMTForConditionalGeneration(config) print(F'num of params {tiny_model.num_parameters()}') # Test __a : Optional[Any] = tokenizer(["""Making tiny model"""], return_tensors="""pt""") __a : Optional[Any] = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save __a : Union[str, Any] = """tiny-wmt19-en-de""" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-de
606
0
"""simple docstring""" from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) A__ = b * b - 4 * a * c A__ = (-b + sqrt(UpperCamelCase__ )) / (2 * a) A__ = (-b - sqrt(UpperCamelCase__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ): """simple docstring""" A__ , A__ = quadratic_roots(a=5 , b=6 , c=1 ) print(F'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
536
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __lowerCamelCase = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __lowerCamelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if "://" in dataset_path: A__ = dataset_path.split('://' )[1] return dataset_path def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = not is_remote_filesystem(UpperCamelCase__ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(UpperCamelCase__ ) , fs._strip_protocol(UpperCamelCase__ ) ) else: fs.mv(UpperCamelCase__ , UpperCamelCase__ , recursive=UpperCamelCase__ ) def UpperCAmelCase ( ): """simple docstring""" if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: A__ = None A__ = None A__ = threading.Lock()
536
1
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __magic_name__ : Any = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ (_a ): def __init__( self : Tuple , **__lowerCamelCase : Optional[int] ): """simple docstring""" requires_backends(self , ['''bs4'''] ) super().__init__(**__lowerCamelCase ) def A__ ( self : Optional[int] , __lowerCamelCase : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag lowerCAmelCase__ = parent.find_all(child.name , recursive=__lowerCamelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__lowerCamelCase ) else next(i for i, s in enumerate(__lowerCamelCase , 1 ) if s is child ) ) lowerCAmelCase__ = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def A__ ( self : int , __lowerCamelCase : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = BeautifulSoup(__lowerCamelCase , '''html.parser''' ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] for element in html_code.descendants: if type(__lowerCamelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue lowerCAmelCase__ = html.unescape(__lowerCamelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(__lowerCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ = self.xpath_soup(__lowerCamelCase ) stringaxtag_seq.append(__lowerCamelCase ) stringaxsubs_seq.append(__lowerCamelCase ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def A__ ( self : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] ): """simple docstring""" lowerCAmelCase__ = '''''' for tagname, subs in zip(__lowerCamelCase , __lowerCamelCase ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self : int , __lowerCamelCase : Dict ): """simple docstring""" lowerCAmelCase__ = False # Check that strings has a valid type if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCAmelCase__ = True elif isinstance(__lowerCamelCase , (list, tuple) ): if len(__lowerCamelCase ) == 0 or isinstance(html_strings[0] , __lowerCamelCase ): lowerCAmelCase__ = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F"""but is of type {type(__lowerCamelCase )}.""" ) lowerCAmelCase__ = bool(isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(html_strings[0] , __lowerCamelCase )) ) if not is_batched: lowerCAmelCase__ = [html_strings] # Get nodes + xpaths lowerCAmelCase__ = [] lowerCAmelCase__ = [] for html_string in html_strings: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.get_three_from_single(__lowerCamelCase ) nodes.append(__lowerCamelCase ) lowerCAmelCase__ = [] for node, tag_list, sub_list in zip(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): lowerCAmelCase__ = self.construct_xpath(__lowerCamelCase , __lowerCamelCase ) xpath_strings.append(__lowerCamelCase ) xpaths.append(__lowerCamelCase ) # return as Dict lowerCAmelCase__ = {'''nodes''': nodes, '''xpaths''': xpaths} lowerCAmelCase__ = BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase ) return encoded_inputs
615
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("""0.8.3"""): raise Exception("""requires gluonnlp == 0.8.3""") if version.parse(mx.__version__) != version.parse("""1.5.0"""): raise Exception("""requires mxnet == 1.5.0""") logging.set_verbosity_info() __magic_name__ : Tuple = logging.get_logger(__name__) __magic_name__ : Optional[Any] = """The Nymphenburg Palace is a beautiful palace in Munich!""" def a_ ( __lowerCAmelCase , __lowerCAmelCase ): lowerCAmelCase__ = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 10_24, '''hidden_size''': 7_68, '''max_length''': 5_12, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 10_24, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } lowerCAmelCase__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase__ = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=__lowerCAmelCase , output_all_encodings=__lowerCAmelCase , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , __lowerCAmelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase__ = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab lowerCAmelCase__ = os.path.join(get_home_dir() , '''models''' ) lowerCAmelCase__ = _load_vocab(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , cls=__lowerCAmelCase ) lowerCAmelCase__ = nlp.model.BERTModel( __lowerCAmelCase , len(__lowerCAmelCase ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=__lowerCAmelCase , use_token_type_embed=__lowerCAmelCase , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=__lowerCAmelCase , use_decoder=__lowerCAmelCase , ) original_bort.load_parameters(__lowerCAmelCase , cast_dtype=__lowerCAmelCase , ignore_extra=__lowerCAmelCase ) lowerCAmelCase__ = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCAmelCase__ = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(__lowerCAmelCase ), } lowerCAmelCase__ = BertConfig.from_dict(__lowerCAmelCase ) lowerCAmelCase__ = BertForMaskedLM(__lowerCAmelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__lowerCAmelCase ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__lowerCAmelCase , __lowerCAmelCase ): lowerCAmelCase__ = hf_param.shape lowerCAmelCase__ = to_torch(params[gluon_param] ) lowerCAmelCase__ = gluon_param.shape assert ( shape_hf == shape_gluon ), F"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase__ = layer.attention.self lowerCAmelCase__ = check_and_map_params( self_attn.key.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.key.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.bias.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.weight.data , F"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output lowerCAmelCase__ = layer.attention.output lowerCAmelCase__ = check_and_map_params( self_output.dense.bias , F"""encoder.transformer_cells.{i}.proj.bias""" ) lowerCAmelCase__ = check_and_map_params( self_output.dense.weight , F"""encoder.transformer_cells.{i}.proj.weight""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate lowerCAmelCase__ = layer.intermediate lowerCAmelCase__ = check_and_map_params( intermediate.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) lowerCAmelCase__ = check_and_map_params( intermediate.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output lowerCAmelCase__ = layer.output lowerCAmelCase__ = check_and_map_params( bert_output.dense.bias , F"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) lowerCAmelCase__ = check_and_map_params( bert_output.dense.weight , F"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.bias , F"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.weight , F"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCAmelCase__ = RobertaTokenizer.from_pretrained('''roberta-base''' ) lowerCAmelCase__ = tokenizer.encode_plus(__lowerCAmelCase )['''input_ids'''] # Get gluon output lowerCAmelCase__ = mx.nd.array([input_ids] ) lowerCAmelCase__ = original_bort(inputs=__lowerCAmelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__lowerCAmelCase ) lowerCAmelCase__ = BertModel.from_pretrained(__lowerCAmelCase ) hf_bort_model.eval() lowerCAmelCase__ = tokenizer.encode_plus(__lowerCAmelCase , return_tensors='''pt''' ) lowerCAmelCase__ = hf_bort_model(**__lowerCAmelCase )[0] lowerCAmelCase__ = output_gluon[0].asnumpy() lowerCAmelCase__ = output_hf[0].detach().numpy() lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase__ = np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , __lowerCAmelCase ) if __name__ == "__main__": __magic_name__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __magic_name__ : int = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
615
1
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowercase ( _lowercase ): def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__ , """tf_padding""" ) ) self.parent.assertTrue(hasattr(UpperCamelCase__ , """depth_multiplier""" ) ) class _lowercase : def __init__( self: Tuple , UpperCamelCase__: str , UpperCamelCase__: List[str]=13 , UpperCamelCase__: Optional[Any]=3 , UpperCamelCase__: str=32 , UpperCamelCase__: int=0.25 , UpperCamelCase__: Dict=8 , UpperCamelCase__: List[Any]=True , UpperCamelCase__: Optional[int]=1_024 , UpperCamelCase__: Tuple=32 , UpperCamelCase__: Union[str, Any]="relu6" , UpperCamelCase__: List[str]=0.1 , UpperCamelCase__: str=0.02 , UpperCamelCase__: Optional[int]=True , UpperCamelCase__: int=True , UpperCamelCase__: Dict=10 , UpperCamelCase__: Dict=None , ): lowerCamelCase__ : int = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Optional[Any] = num_channels lowerCamelCase__ : Union[str, Any] = image_size lowerCamelCase__ : Optional[Any] = depth_multiplier lowerCamelCase__ : Tuple = min_depth lowerCamelCase__ : int = tf_padding lowerCamelCase__ : Union[str, Any] = int(last_hidden_size * depth_multiplier ) lowerCamelCase__ : Any = output_stride lowerCamelCase__ : Optional[int] = hidden_act lowerCamelCase__ : str = classifier_dropout_prob lowerCamelCase__ : List[str] = use_labels lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Any = scope def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__ : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase_ ( self: Union[str, Any] ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self: int , UpperCamelCase__: Tuple , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] ): lowerCamelCase__ : Optional[int] = MobileNetVaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Union[str, Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Optional[Any] ): lowerCamelCase__ : Any = self.num_labels lowerCamelCase__ : List[Any] = MobileNetVaForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Any = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Optional[int] = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = config_and_inputs lowerCamelCase__ : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowercase ( _lowercase , _lowercase , unittest.TestCase ): a = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () a = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) a = False a = False a = False a = False def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Any = MobileNetVaModelTester(self ) lowerCamelCase__ : Union[str, Any] = MobileNetVaConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def lowerCamelCase_ ( self: List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" ) def lowerCamelCase_ ( self: List[str] ): pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" ) def lowerCamelCase_ ( self: Union[str, Any] ): pass @unittest.skip(reason="""MobileNetV1 does not output attentions""" ) def lowerCamelCase_ ( self: Tuple ): pass def lowerCamelCase_ ( self: Any ): lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : List[str] = [*signature.parameters.keys()] lowerCamelCase__ : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase_ ( self: str ): def check_hidden_states_output(UpperCamelCase__: str , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[Any] ): lowerCamelCase__ : Dict = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCamelCase__ : List[Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCamelCase__ : Any = outputs.hidden_states lowerCamelCase__ : Dict = 26 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Any = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : List[str] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def lowerCamelCase_ ( self: Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Optional[Any] = MobileNetVaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ () -> Optional[Any]: lowerCamelCase__ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Optional[Any] ): return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self: str ): lowerCamelCase__ : List[str] = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = self.default_image_processor lowerCamelCase__ : List[Any] = prepare_img() lowerCamelCase__ : Optional[Any] = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Optional[int] = model(**UpperCamelCase__ ) # verify the logits lowerCamelCase__ : Tuple = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCamelCase__ : Tuple = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
631
'''simple docstring''' import sys import turtle def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(UpperCamelCase , get_mid(UpperCamelCase , UpperCamelCase ) , get_mid(UpperCamelCase , UpperCamelCase ) , depth - 1 ) triangle(UpperCamelCase , get_mid(UpperCamelCase , UpperCamelCase ) , get_mid(UpperCamelCase , UpperCamelCase ) , depth - 1 ) triangle(UpperCamelCase , get_mid(UpperCamelCase , UpperCamelCase ) , get_mid(UpperCamelCase , UpperCamelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) _A : Any =turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') _A : Dict =[(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
631
1
"""simple docstring""" import os from pathlib import Path def __A () ->List[str]: """simple docstring""" from torch.utils.cpp_extension import load lowerCAmelCase__ :List[Any] = Path(_SCREAMING_SNAKE_CASE ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr' lowerCAmelCase__ :int = [ root / filename for filename in [ 'vision.cpp', os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ), os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ), ] ] load( 'MultiScaleDeformableAttention' , _SCREAMING_SNAKE_CASE , with_cuda=_SCREAMING_SNAKE_CASE , extra_include_paths=[str(_SCREAMING_SNAKE_CASE )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[ '-DCUDA_HAS_FP16=1', '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
93
'''simple docstring''' from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class UpperCAmelCase ( lowercase_ , lowercase_): """simple docstring""" lowerCAmelCase_ = """pixel_values""" lowerCAmelCase_ = False lowerCAmelCase_ = TimmBackboneConfig def __init__( self : List[Any] , UpperCamelCase__ : Union[str, Any] , **UpperCamelCase__ : Optional[Any] ) -> List[str]: requires_backends(self , '''timm''' ) super().__init__(UpperCamelCase__ ) _UpperCamelCase =config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(F'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(UpperCamelCase__ , '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) _UpperCamelCase =getattr(UpperCamelCase__ , '''use_pretrained_backbone''' , UpperCamelCase__ ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. _UpperCamelCase =config.out_indices if getattr(UpperCamelCase__ , '''out_indices''' , UpperCamelCase__ ) is not None else (-1,) _UpperCamelCase =timm.create_model( config.backbone , pretrained=UpperCamelCase__ , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCamelCase__ , **UpperCamelCase__ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. _UpperCamelCase =self._backbone.return_layers _UpperCamelCase ={layer['''module''']: str(UpperCamelCase__ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCamelCase__ ) @classmethod def UpperCamelCase__ ( cls : List[Any] , UpperCamelCase__ : Tuple , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : Any ) -> Optional[int]: requires_backends(cls , ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig _UpperCamelCase =kwargs.pop('''config''' , TimmBackboneConfig() ) _UpperCamelCase =kwargs.pop('''use_timm_backbone''' , UpperCamelCase__ ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) _UpperCamelCase =kwargs.pop('''num_channels''' , config.num_channels ) _UpperCamelCase =kwargs.pop('''features_only''' , config.features_only ) _UpperCamelCase =kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone ) _UpperCamelCase =kwargs.pop('''out_indices''' , config.out_indices ) _UpperCamelCase =TimmBackboneConfig( backbone=UpperCamelCase__ , num_channels=UpperCamelCase__ , features_only=UpperCamelCase__ , use_pretrained_backbone=UpperCamelCase__ , out_indices=UpperCamelCase__ , ) return super()._from_config(UpperCamelCase__ , **UpperCamelCase__ ) def UpperCamelCase__ ( self : str , UpperCamelCase__ : List[str] ) -> List[str]: pass def UpperCamelCase__ ( self : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Union[str, Any]=None , **UpperCamelCase__ : str ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: _UpperCamelCase =return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCamelCase =output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone _UpperCamelCase =self._all_layers _UpperCamelCase =self._backbone(UpperCamelCase__ , **UpperCamelCase__ ) _UpperCamelCase =self._return_layers _UpperCamelCase =tuple(hidden_states[i] for i in self.out_indices ) else: _UpperCamelCase =self._backbone(UpperCamelCase__ , **UpperCamelCase__ ) _UpperCamelCase =None _UpperCamelCase =tuple(UpperCamelCase__ ) _UpperCamelCase =tuple(UpperCamelCase__ ) if hidden_states is not None else None if not return_dict: _UpperCamelCase =(feature_maps,) if output_hidden_states: _UpperCamelCase =output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCamelCase__ , hidden_states=UpperCamelCase__ , attentions=UpperCamelCase__ )
404
0
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModel.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModel.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForPreTraining.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForPreTraining.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForCausalLM.from_pretrained(__lowercase , from_pt=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = TFAutoModelForCausalLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained(__lowercase , from_tf=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForMaskedLM.from_pretrained(__lowercase , from_pt=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = TFAutoModelForMaskedLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForMaskedLM.from_pretrained(__lowercase , from_tf=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = AutoModelForMaskedLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(__lowercase , from_pt=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained(__lowercase , from_tf=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForSequenceClassification.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForQuestionAnswering.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) UpperCAmelCase_ = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) UpperCAmelCase_ = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 )
486
from math import factorial UpperCamelCase__ : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def A_( A ): if not isinstance(A , A ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(A ) ) def A_( A = 60 , A = 1000000 ): if not isinstance(A , A ) or not isinstance(A , A ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length UpperCAmelCase_ = 0 # the cached sizes of the previous chains UpperCAmelCase_ = {} for start_chain_element in range(1 , A ): # The temporary set will contain the elements of the chain UpperCAmelCase_ = set() UpperCAmelCase_ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. UpperCAmelCase_ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(A ) chain_set_length += 1 UpperCAmelCase_ = digit_factorial_sum(A ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] UpperCAmelCase_ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution()}")
486
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _a : List[str] = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[int] = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
213
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = BlenderbotSmallTokenizer UpperCamelCase_ : int = False def _A ( self : Union[str, Any] ): super().setUp() SCREAMING_SNAKE_CASE : List[Any] = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] SCREAMING_SNAKE_CASE : int = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase_ ) ) def _A ( self : List[Any] , **UpperCAmelCase_ : str ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def _A ( self : Optional[int] , UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE : Tuple = "adapt act apte" SCREAMING_SNAKE_CASE : int = "adapt act apte" return input_text, output_text def _A ( self : str ): SCREAMING_SNAKE_CASE : int = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE : Tuple = "adapt act apte" SCREAMING_SNAKE_CASE : List[str] = ["adapt", "act", "ap@@", "te"] SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] SCREAMING_SNAKE_CASE : Tuple = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Union[str, Any] = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1384] SCREAMING_SNAKE_CASE : str = "I am a small frog." SCREAMING_SNAKE_CASE : List[Any] = tok([src_text] , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ )["input_ids"] SCREAMING_SNAKE_CASE : int = tok.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : List[str] = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) SCREAMING_SNAKE_CASE : Tuple = "I am a small frog ." SCREAMING_SNAKE_CASE : Optional[int] = "." SCREAMING_SNAKE_CASE : Dict = tok(UpperCAmelCase_ )["input_ids"] SCREAMING_SNAKE_CASE : Optional[Any] = tok(UpperCAmelCase_ )["input_ids"] assert encoded[-1] == encoded_dot[0]
62
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __a: Any = random.Random() def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case=1.0 , __snake_case=None , __snake_case=None ) -> List[Any]: if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : str=7 , lowerCamelCase : str=400 , lowerCamelCase : Optional[int]=2000 , lowerCamelCase : str=10 , lowerCamelCase : List[str]=160 , lowerCamelCase : Optional[Any]=8 , lowerCamelCase : Tuple=0.0 , lowerCamelCase : Tuple=4000 , lowerCamelCase : List[str]=False , lowerCamelCase : Tuple=True , ) -> int: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = return_attention_mask _UpperCAmelCase = do_normalize _UpperCAmelCase = feature_size _UpperCAmelCase = chunk_length _UpperCAmelCase = hop_length def lowerCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase ( self : Dict , lowerCamelCase : int=False , lowerCamelCase : List[Any]=False ) -> int: """simple docstring""" def _flatten(lowerCamelCase : Any ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: _UpperCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _UpperCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = WhisperFeatureExtractor if is_speech_available() else None def lowerCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase = WhisperFeatureExtractionTester(self ) def lowerCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = feat_extract_first.save_pretrained(lowerCamelCase )[0] check_json_file_has_correct_format(lowerCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_pretrained(lowerCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def lowerCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(lowerCamelCase , """feat_extract.json""" ) feat_extract_first.to_json_file(lowerCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_json_file(lowerCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def lowerCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCAmelCase = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test feature size _UpperCAmelCase = feature_extractor(lowerCamelCase , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features _UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched _UpperCAmelCase = feature_extractor(lowerCamelCase , return_tensors="""np""" ).input_features _UpperCAmelCase = feature_extractor(lowerCamelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCAmelCase = np.asarray(lowerCamelCase ) _UpperCAmelCase = feature_extractor(lowerCamelCase , return_tensors="""np""" ).input_features _UpperCAmelCase = feature_extractor(lowerCamelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test truncation required _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _UpperCAmelCase = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] _UpperCAmelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] _UpperCAmelCase = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs_truncated] _UpperCAmelCase = feature_extractor(lowerCamelCase , return_tensors="""np""" ).input_features _UpperCAmelCase = feature_extractor(lowerCamelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def lowerCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" import torch _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = np.random.rand(100 , 32 ).astype(np.floataa ) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _UpperCAmelCase = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _UpperCAmelCase = ds.sort("""id""" ).select(range(lowerCamelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowerCamelCase ( self : str ) -> int: """simple docstring""" # fmt: off _UpperCAmelCase = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _UpperCAmelCase = self._load_datasamples(1 ) _UpperCAmelCase = WhisperFeatureExtractor() _UpperCAmelCase = feature_extractor(lowerCamelCase , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , lowerCamelCase , atol=1E-4 ) ) def lowerCamelCase ( self : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = self._load_datasamples(1 )[0] _UpperCAmelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _UpperCAmelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowerCamelCase )[0] self.assertTrue(np.all(np.mean(lowerCamelCase ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase ) - 1 ) < 1E-3 ) )
402
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' @register_to_config def __init__( self : Any , lowerCamelCase : int = 128 , lowerCamelCase : int = 256 , lowerCamelCase : float = 2000.0 , lowerCamelCase : int = 768 , lowerCamelCase : int = 12 , lowerCamelCase : int = 12 , lowerCamelCase : int = 64 , lowerCamelCase : int = 2048 , lowerCamelCase : float = 0.1 , ) -> str: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Sequential( nn.Linear(lowerCamelCase , d_model * 4 , bias=lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowerCamelCase ) , nn.SiLU() , ) _UpperCAmelCase = nn.Embedding(lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = False _UpperCAmelCase = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) _UpperCAmelCase = nn.Dropout(p=lowerCamelCase ) _UpperCAmelCase = nn.ModuleList() for lyr_num in range(lowerCamelCase ): # FiLM conditional T5 decoder _UpperCAmelCase = DecoderLayer(d_model=lowerCamelCase , d_kv=lowerCamelCase , num_heads=lowerCamelCase , d_ff=lowerCamelCase , dropout_rate=lowerCamelCase ) self.decoders.append(lowerCamelCase ) _UpperCAmelCase = TaLayerNorm(lowerCamelCase ) _UpperCAmelCase = nn.Dropout(p=lowerCamelCase ) _UpperCAmelCase = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) def lowerCamelCase ( self : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : str ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowerCamelCase ( self : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : str ) -> Tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _UpperCAmelCase = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _UpperCAmelCase = self.conditioning_emb(lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _UpperCAmelCase = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _UpperCAmelCase = torch.broadcast_to( torch.arange(lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _UpperCAmelCase = self.position_encoding(lowerCamelCase ) _UpperCAmelCase = self.continuous_inputs_projection(lowerCamelCase ) inputs += position_encodings _UpperCAmelCase = self.dropout(lowerCamelCase ) # decoder: No padding present. _UpperCAmelCase = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _UpperCAmelCase = [(x, self.encoder_decoder_mask(lowerCamelCase , lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings _UpperCAmelCase = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _UpperCAmelCase = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _UpperCAmelCase = lyr( lowerCamelCase , conditioning_emb=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , )[0] _UpperCAmelCase = self.decoder_norm(lowerCamelCase ) _UpperCAmelCase = self.post_dropout(lowerCamelCase ) _UpperCAmelCase = self.spec_out(lowerCamelCase ) return spec_out class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Any=1E-6 ) -> int: """simple docstring""" super().__init__() _UpperCAmelCase = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowerCamelCase , d_kv=lowerCamelCase , num_heads=lowerCamelCase , dropout_rate=lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowerCamelCase , d_kv=lowerCamelCase , num_heads=lowerCamelCase , dropout_rate=lowerCamelCase , layer_norm_epsilon=lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowerCamelCase , d_ff=lowerCamelCase , dropout_rate=lowerCamelCase , layer_norm_epsilon=lowerCamelCase ) ) def lowerCamelCase ( self : str , lowerCamelCase : Tuple , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[Any]=None , lowerCamelCase : Optional[int]=None , lowerCamelCase : Any=None , lowerCamelCase : Optional[int]=None , ) -> str: """simple docstring""" _UpperCAmelCase = self.layer[0]( lowerCamelCase , conditioning_emb=lowerCamelCase , attention_mask=lowerCamelCase , ) if encoder_hidden_states is not None: _UpperCAmelCase = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _UpperCAmelCase = self.layer[1]( lowerCamelCase , key_value_states=lowerCamelCase , attention_mask=lowerCamelCase , ) # Apply Film Conditional Feed Forward layer _UpperCAmelCase = self.layer[-1](lowerCamelCase , lowerCamelCase ) return (hidden_states,) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : int ) -> Union[str, Any]: """simple docstring""" super().__init__() _UpperCAmelCase = TaLayerNorm(lowerCamelCase ) _UpperCAmelCase = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCamelCase ) _UpperCAmelCase = Attention(query_dim=lowerCamelCase , heads=lowerCamelCase , dim_head=lowerCamelCase , out_bias=lowerCamelCase , scale_qk=lowerCamelCase ) _UpperCAmelCase = nn.Dropout(lowerCamelCase ) def lowerCamelCase ( self : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any]=None , lowerCamelCase : Dict=None , ) -> List[Any]: """simple docstring""" # pre_self_attention_layer_norm _UpperCAmelCase = self.layer_norm(lowerCamelCase ) if conditioning_emb is not None: _UpperCAmelCase = self.FiLMLayer(lowerCamelCase , lowerCamelCase ) # Self-attention block _UpperCAmelCase = self.attention(lowerCamelCase ) _UpperCAmelCase = hidden_states + self.dropout(lowerCamelCase ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] ) -> Dict: """simple docstring""" super().__init__() _UpperCAmelCase = Attention(query_dim=lowerCamelCase , heads=lowerCamelCase , dim_head=lowerCamelCase , out_bias=lowerCamelCase , scale_qk=lowerCamelCase ) _UpperCAmelCase = TaLayerNorm(lowerCamelCase , eps=lowerCamelCase ) _UpperCAmelCase = nn.Dropout(lowerCamelCase ) def lowerCamelCase ( self : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : int=None , lowerCamelCase : Optional[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.layer_norm(lowerCamelCase ) _UpperCAmelCase = self.attention( lowerCamelCase , encoder_hidden_states=lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) _UpperCAmelCase = hidden_states + self.dropout(lowerCamelCase ) return layer_output class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : Any , lowerCamelCase : int ) -> Optional[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = TaDenseGatedActDense(d_model=lowerCamelCase , d_ff=lowerCamelCase , dropout_rate=lowerCamelCase ) _UpperCAmelCase = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCamelCase ) _UpperCAmelCase = TaLayerNorm(lowerCamelCase , eps=lowerCamelCase ) _UpperCAmelCase = nn.Dropout(lowerCamelCase ) def lowerCamelCase ( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : str=None ) -> Dict: """simple docstring""" _UpperCAmelCase = self.layer_norm(lowerCamelCase ) if conditioning_emb is not None: _UpperCAmelCase = self.film(lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = self.DenseReluDense(lowerCamelCase ) _UpperCAmelCase = hidden_states + self.dropout(lowerCamelCase ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : List[str] ) -> Any: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) _UpperCAmelCase = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) _UpperCAmelCase = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) _UpperCAmelCase = nn.Dropout(lowerCamelCase ) _UpperCAmelCase = NewGELUActivation() def lowerCamelCase ( self : Tuple , lowerCamelCase : Dict ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.act(self.wi_a(lowerCamelCase ) ) _UpperCAmelCase = self.wi_a(lowerCamelCase ) _UpperCAmelCase = hidden_gelu * hidden_linear _UpperCAmelCase = self.dropout(lowerCamelCase ) _UpperCAmelCase = self.wo(lowerCamelCase ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : str , lowerCamelCase : Tuple , lowerCamelCase : str=1E-6 ) -> Optional[int]: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Parameter(torch.ones(lowerCamelCase ) ) _UpperCAmelCase = eps def lowerCamelCase ( self : List[str] , lowerCamelCase : int ) -> Union[str, Any]: """simple docstring""" # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _UpperCAmelCase = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowerCamelCase ) _UpperCAmelCase = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _UpperCAmelCase = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : torch.Tensor ) -> torch.Tensor: """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(lowerCamelCase , 3.0 )) )) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCamelCase : Any , lowerCamelCase : Any ) -> Optional[int]: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Linear(lowerCamelCase , out_features * 2 , bias=lowerCamelCase ) def lowerCamelCase ( self : int , lowerCamelCase : str , lowerCamelCase : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.scale_bias(lowerCamelCase ) _UpperCAmelCase , _UpperCAmelCase = torch.chunk(lowerCamelCase , 2 , -1 ) _UpperCAmelCase = x * (1 + scale) + shift return x
402
1
def lowercase_ (A : int ): if not isinstance(A , A ): raise ValueError('check_bouncy() accepts only integer arguments' ) snake_case__ : List[str] = str(A ) snake_case__ : Tuple = ''.join(sorted(A ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def lowercase_ (A : float = 9_9 ): if not 0 < percent < 1_0_0: raise ValueError('solution() only accepts values from 0 to 100' ) snake_case__ : List[Any] = 0 snake_case__ : Optional[int] = 1 while True: if check_bouncy(A ): bouncy_num += 1 if (bouncy_num / num) * 1_0_0 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
478
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging a_ :Tuple = "\\n\n" a_ :Optional[int] = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" a_ :str = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__ ( datasets.Metric ): """simple docstring""" def lowercase_ ( self : str ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ), reference_urls=['https://huggingface.co/docs/transformers/perplexity'], ) def lowercase_ ( self : int, _snake_case : Optional[Any], _snake_case : Tuple, _snake_case : int = 1_6, _snake_case : bool = True, _snake_case : Any=None ) ->Any: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": snake_case__ : Any = 'cuda' else: snake_case__ : Any = 'cuda' if torch.cuda.is_available() else 'cpu' snake_case__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(_snake_case ) snake_case__ : List[str] = model.to(_snake_case ) snake_case__ : Dict = AutoTokenizer.from_pretrained(_snake_case ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: snake_case__ : str = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_snake_case ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" snake_case__ : List[Any] = model.config.max_length - 1 else: snake_case__ : str = model.config.max_length snake_case__ : Union[str, Any] = tokenizer( _snake_case, add_special_tokens=_snake_case, padding=_snake_case, truncation=_snake_case, max_length=_snake_case, return_tensors='pt', return_attention_mask=_snake_case, ).to(_snake_case ) snake_case__ : Union[str, Any] = encodings['input_ids'] snake_case__ : str = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ), 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ), 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." snake_case__ : int = [] snake_case__ : Tuple = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0, len(_snake_case ), _snake_case ) ): snake_case__ : Tuple = min(start_index + batch_size, len(_snake_case ) ) snake_case__ : Tuple = encoded_texts[start_index:end_index] snake_case__ : Dict = attn_masks[start_index:end_index] if add_start_token: snake_case__ : Any = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_snake_case ) snake_case__ : Optional[Any] = torch.cat([bos_tokens_tensor, encoded_batch], dim=1 ) snake_case__ : Optional[Any] = torch.cat( [torch.ones(bos_tokens_tensor.size(), dtype=torch.intaa ).to(_snake_case ), attn_mask], dim=1 ) snake_case__ : Union[str, Any] = encoded_batch with torch.no_grad(): snake_case__ : int = model(_snake_case, attention_mask=_snake_case ).logits snake_case__ : Tuple = out_logits[..., :-1, :].contiguous() snake_case__ : Optional[int] = labels[..., 1:].contiguous() snake_case__ : Dict = attn_mask[..., 1:].contiguous() snake_case__ : Dict = torch.expa( (loss_fct(shift_logits.transpose(1, 2 ), _snake_case ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_snake_case )}
478
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : Optional[Any] = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
290
def __lowerCAmelCase ( __snake_case , __snake_case ): if not isinstance(__snake_case , __snake_case ): raise ValueError("iterations must be defined as integers" ) if not isinstance(__snake_case , __snake_case ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __lowerCAmelCase = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__snake_case ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
290
1
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=13 , UpperCAmelCase__=7 , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=99 , UpperCAmelCase__=24 , UpperCAmelCase__=2 , UpperCAmelCase__=6 , UpperCAmelCase__=37 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=512 , UpperCAmelCase__=16 , UpperCAmelCase__=2 , UpperCAmelCase__=0.02 , UpperCAmelCase__=3 , UpperCAmelCase__=None , UpperCAmelCase__=1_000 , ): A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = scope A__ = range_bbox def __A ( self ): A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A__ = bbox[i, j, 3] A__ = bbox[i, j, 1] A__ = t if bbox[i, j, 2] < bbox[i, j, 0]: A__ = bbox[i, j, 2] A__ = bbox[i, j, 0] A__ = t A__ = None if self.use_input_mask: A__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __A ( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): A__ = LiltModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() A__ = model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) A__ = model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) A__ = model(UpperCAmelCase__ , bbox=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): A__ = self.num_labels A__ = LiltForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() A__ = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): A__ = LiltForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() A__ = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self ): A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase : Optional[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase : Union[str, Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase : Dict = False lowerCAmelCase : Any = False def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): return True def __A ( self ): A__ = LiltModelTester(self ) A__ = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __A ( self ): A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __A ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) def __A ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) @slow def __A ( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = LiltModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @require_torch @slow class UpperCamelCase ( unittest.TestCase ): def __A ( self ): A__ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(UpperCAmelCase__ ) A__ = torch.tensor([[1, 2]] , device=UpperCAmelCase__ ) A__ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase__ ) # forward pass with torch.no_grad(): A__ = model(input_ids=UpperCAmelCase__ , bbox=UpperCAmelCase__ ) A__ = torch.Size([1, 2, 768] ) A__ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase__ , ) self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase__ , atol=1e-3 ) )
491
from __future__ import annotations class UpperCamelCase : def __init__( self , UpperCAmelCase__ ): A__ = TypeError( "Matrices must be formed from a list of zero or more lists containing at " "least one and the same number of values, each of which must be of type " "int or float." ) if len(UpperCAmelCase__ ) != 0: A__ = len(rows[0] ) if cols == 0: raise error for row in rows: if len(UpperCAmelCase__ ) != cols: raise error for value in row: if not isinstance(UpperCAmelCase__ , (int, float) ): raise error A__ = rows else: A__ = [] def __A ( self ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def __A ( self ): return len(self.rows ) @property def __A ( self ): return len(self.rows[0] ) @property def __A ( self ): return (self.num_rows, self.num_columns) @property def __A ( self ): return self.order[0] == self.order[1] def __A ( self ): A__ = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(UpperCAmelCase__ ) def __A ( self ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def __A ( self ): return bool(self.determinant() ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(UpperCAmelCase__ ).determinant() def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase__ , UpperCAmelCase__ ) return -1 * self.get_minor(UpperCAmelCase__ , UpperCAmelCase__ ) def __A ( self ): return Matrix( [ [self.get_minor(UpperCAmelCase__ , UpperCAmelCase__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def __A ( self ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def __A ( self ): A__ = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(UpperCAmelCase__ ) def __A ( self ): A__ = self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse" ) return self.adjugate() * (1 / determinant) def __repr__( self ): return str(self.rows ) def __str__( self ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(UpperCAmelCase__ ) for value in row] ) + ".]" for row in self.rows ] ) + "]" ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): A__ = TypeError("Row must be a list containing all ints and/or floats" ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise type_error for value in row: if not isinstance(UpperCAmelCase__ , (int, float) ): raise type_error if len(UpperCAmelCase__ ) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix" ) if position is None: self.rows.append(UpperCAmelCase__ ) else: A__ = self.rows[0:position] + [row] + self.rows[position:] def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): A__ = TypeError( "Column must be a list containing all ints and/or floats" ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise type_error for value in column: if not isinstance(UpperCAmelCase__ , (int, float) ): raise type_error if len(UpperCAmelCase__ ) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix" ) if position is None: A__ = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: A__ = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , UpperCAmelCase__ ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return NotImplemented return self.rows == other.rows def __ne__( self , UpperCAmelCase__ ): return not self == other def __neg__( self ): return self * -1 def __add__( self , UpperCAmelCase__ ): if self.order != other.order: raise ValueError("Addition requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , UpperCAmelCase__ ): if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , UpperCAmelCase__ ): if isinstance(UpperCAmelCase__ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second" ) return Matrix( [ [Matrix.dot_product(UpperCAmelCase__ , UpperCAmelCase__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix" ) def __pow__( self , UpperCAmelCase__ ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("A Matrix can only be raised to the power of an int" ) if not self.is_square: raise ValueError("Only square matrices can be raised to a power" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power" ) A__ = self for _ in range(other - 1 ): result *= self return result @classmethod def __A ( cls , UpperCAmelCase__ , UpperCAmelCase__ ): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
491
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder a_ = logging.get_logger(__name__) # pylint: disable=invalid-name a_ = 2_56 class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ : Any = ["""melgan"""] def __init__( self , A , A , A , A , A , ): super().__init__() # From MELGAN _lowerCamelCase : Dict = math.log(1E-5 ) # Matches MelGAN training. _lowerCamelCase : Optional[Any] = 4.0 # Largest value for most examples _lowerCamelCase : int = 128 self.register_modules( notes_encoder=A , continuous_encoder=A , decoder=A , scheduler=A , melgan=A , ) def _lowerCAmelCase ( self , A , A=(-1.0, 1.0) , A=False ): _lowerCamelCase : Optional[Any] = output_range if clip: _lowerCamelCase : Optional[Any] = torch.clip(A , self.min_value , self.max_value ) # Scale to [0, 1]. _lowerCamelCase : List[Any] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def _lowerCAmelCase ( self , A , A=(-1.0, 1.0) , A=False ): _lowerCamelCase : Union[str, Any] = input_range _lowerCamelCase : Any = torch.clip(A , A , A ) if clip else outputs # Scale to [0, 1]. _lowerCamelCase : List[Any] = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def _lowerCAmelCase ( self , A , A , A ): _lowerCamelCase : int = input_tokens > 0 _lowerCamelCase : int = self.notes_encoder( encoder_input_tokens=A , encoder_inputs_mask=A ) _lowerCamelCase : Any = self.continuous_encoder( encoder_inputs=A , encoder_inputs_mask=A ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def _lowerCAmelCase ( self , A , A , A ): _lowerCamelCase : Optional[int] = noise_time if not torch.is_tensor(A ): _lowerCamelCase : Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(A ) and len(timesteps.shape ) == 0: _lowerCamelCase : Any = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCamelCase : Union[str, Any] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) _lowerCamelCase : Any = self.decoder( encodings_and_masks=A , decoder_input_tokens=A , decoder_noise_time=A ) return logits @torch.no_grad() def __call__( self , A , A = None , A = 100 , A = True , A = "numpy" , A = None , A = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(A )}." ) _lowerCamelCase : List[str] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) _lowerCamelCase : Optional[Any] = np.zeros([1, 0, self.n_dims] , np.floataa ) _lowerCamelCase : Any = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) for i, encoder_input_tokens in enumerate(A ): if i == 0: _lowerCamelCase : Dict = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. _lowerCamelCase : Tuple = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=A , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. _lowerCamelCase : Tuple = ones _lowerCamelCase : List[str] = self.scale_features( A , output_range=[-1.0, 1.0] , clip=A ) _lowerCamelCase : Optional[int] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=A , continuous_mask=A , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop _lowerCamelCase : Union[str, Any] = randn_tensor( shape=encoder_continuous_inputs.shape , generator=A , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(A ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _lowerCamelCase : Dict = self.decode( encodings_and_masks=A , input_tokens=A , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 _lowerCamelCase : Optional[Any] = self.scheduler.step(A , A , A , generator=A ).prev_sample _lowerCamelCase : int = self.scale_to_features(A , input_range=[-1.0, 1.0] ) _lowerCamelCase : Union[str, Any] = mel[:1] _lowerCamelCase : List[str] = mel.cpu().float().numpy() _lowerCamelCase : Any = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A ) logger.info('Generated segment' , A ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": _lowerCamelCase : Dict = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: _lowerCamelCase : List[Any] = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=A )
712
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A , 'tf_padding' ) ) self.parent.assertTrue(hasattr(A , 'depth_multiplier' ) ) class A_: """simple docstring""" def __init__( self , A , A=13 , A=3 , A=32 , A=0.2_5 , A=8 , A=8 , A=6 , A=32 , A=True , A=True , A=True , A="relu6" , A=1280 , A=0.1 , A=0.0_2 , A=True , A=True , A=10 , A=None , ): _lowerCamelCase : Dict = parent _lowerCamelCase : Optional[int] = batch_size _lowerCamelCase : Optional[int] = num_channels _lowerCamelCase : Tuple = image_size _lowerCamelCase : Tuple = depth_multiplier _lowerCamelCase : List[Any] = depth_divisible_by _lowerCamelCase : Tuple = min_depth _lowerCamelCase : Union[str, Any] = expand_ratio _lowerCamelCase : Any = tf_padding _lowerCamelCase : List[Any] = output_stride _lowerCamelCase : str = first_layer_is_expansion _lowerCamelCase : Any = finegrained_output _lowerCamelCase : Dict = hidden_act _lowerCamelCase : str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) _lowerCamelCase : int = classifier_dropout_prob _lowerCamelCase : Dict = use_labels _lowerCamelCase : Optional[Any] = is_training _lowerCamelCase : Dict = num_labels _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : Any = scope def _lowerCAmelCase ( self ): _lowerCamelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : str = None _lowerCamelCase : str = None if self.use_labels: _lowerCamelCase : str = ids_tensor([self.batch_size] , self.num_labels ) _lowerCamelCase : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowerCamelCase : Any = self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase ( self ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self , A , A , A , A ): _lowerCamelCase : List[Any] = MobileNetVaModel(config=A ) model.to(A ) model.eval() _lowerCamelCase : Optional[Any] = model(A ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def _lowerCAmelCase ( self , A , A , A , A ): _lowerCamelCase : List[str] = self.num_labels _lowerCamelCase : List[str] = MobileNetVaForImageClassification(A ) model.to(A ) model.eval() _lowerCamelCase : Optional[int] = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self , A , A , A , A ): _lowerCamelCase : int = self.num_labels _lowerCamelCase : List[Any] = MobileNetVaForSemanticSegmentation(A ) model.to(A ) model.eval() _lowerCamelCase : Optional[int] = model(A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _lowerCamelCase : Dict = model(A , labels=A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCAmelCase ( self ): _lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = config_and_inputs _lowerCamelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ : Optional[Any] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) a_ : Dict = ( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) a_ : Dict = False a_ : List[str] = False a_ : str = False a_ : Any = False def _lowerCAmelCase ( self ): _lowerCamelCase : List[Any] = MobileNetVaModelTester(self ) _lowerCamelCase : Union[str, Any] = MobileNetVaConfigTester(self , config_class=A , has_text_modality=A ) def _lowerCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def _lowerCAmelCase ( self ): pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def _lowerCAmelCase ( self ): pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def _lowerCAmelCase ( self ): pass def _lowerCAmelCase ( self ): _lowerCamelCase , _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : str = model_class(A ) _lowerCamelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Dict = [*signature.parameters.keys()] _lowerCamelCase : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowerCAmelCase ( self ): def check_hidden_states_output(A , A , A ): _lowerCamelCase : Dict = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _lowerCamelCase : str = model(**self._prepare_for_class(A , A ) ) _lowerCamelCase : Any = outputs.hidden_states _lowerCamelCase : Any = 16 self.assertEqual(len(A ) , A ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[Any] = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : int = True check_hidden_states_output(A , A , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def _lowerCAmelCase ( self ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @slow def _lowerCAmelCase ( self ): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : int = MobileNetVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase_ ( ): '''simple docstring''' _lowerCamelCase : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A_(unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self ): return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[Any] = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(A ) _lowerCamelCase : Dict = self.default_image_processor _lowerCamelCase : Tuple = prepare_img() _lowerCamelCase : Any = image_processor(images=A , return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): _lowerCamelCase : List[Any] = model(**A ) # verify the logits _lowerCamelCase : Any = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , A ) _lowerCamelCase : Any = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) ) @slow def _lowerCAmelCase ( self ): _lowerCamelCase : List[Any] = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) _lowerCamelCase : Any = model.to(A ) _lowerCamelCase : Optional[Any] = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) _lowerCamelCase : Any = prepare_img() _lowerCamelCase : str = image_processor(images=A , return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**A ) _lowerCamelCase : Optional[int] = outputs.logits # verify the logits _lowerCamelCase : Optional[Any] = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , A ) _lowerCamelCase : Optional[Any] = torch.tensor( [ [[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]], [[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]], [[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]], ] , device=A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A , atol=1E-4 ) )
349
0
def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[str] ) -> int: _lowercase = len(snake_case__ ) while cur > 1: # Find the maximum number in arr _lowercase = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _lowercase = arr[mi::-1] + arr[mi + 1 : len(snake_case__ )] # Reverse whole list _lowercase = arr[cur - 1 :: -1] + arr[cur : len(snake_case__ )] cur -= 1 return arr if __name__ == "__main__": snake_case = input("""Enter numbers separated by a comma:\n""").strip() snake_case = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
67
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _lowerCamelCase = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
674
0
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def _A ( _lowerCAmelCase , _lowerCAmelCase=False ): """simple docstring""" __lowercase =OmegaConf.load(_lowerCAmelCase ) if display: print(yaml.dump(OmegaConf.to_container(_lowerCAmelCase ) ) ) return config def _A ( _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None ): """simple docstring""" if conf_path is None: __lowercase ='./model_checkpoints/vqgan_only.yaml' __lowercase =load_config(_lowerCAmelCase , display=_lowerCAmelCase ) __lowercase =VQModel(**config.model.params ) if ckpt_path is None: __lowercase ='./model_checkpoints/vqgan_only.pt' __lowercase =torch.load(_lowerCAmelCase , map_location=_lowerCAmelCase ) if ".ckpt" in ckpt_path: __lowercase =sd['state_dict'] model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) model.to(_lowerCAmelCase ) del sd return model def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase , __lowercase , __lowercase =model.encode(_lowerCAmelCase ) print(f"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) __lowercase =model.decode(_lowerCAmelCase ) return xrec def _A ( _lowerCAmelCase , _lowerCAmelCase=False ): """simple docstring""" __lowercase , __lowercase =string.rsplit('.' , 1 ) if reload: __lowercase =importlib.import_module(_lowerCAmelCase ) importlib.reload(_lowerCAmelCase ) return getattr(importlib.import_module(_lowerCAmelCase , package=_lowerCAmelCase ) , cls ) def _A ( _lowerCAmelCase ): """simple docstring""" if "target" not in config: raise KeyError('Expected key `target` to instantiate.' ) return get_obj_from_str(config['target'] )(**config.get('params' , {} ) ) def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=True , _lowerCAmelCase=True ): """simple docstring""" __lowercase =instantiate_from_config(_lowerCAmelCase ) if sd is not None: model.load_state_dict(_lowerCAmelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if ckpt: __lowercase =torch.load(_lowerCAmelCase , map_location='cpu' ) __lowercase =pl_sd['global_step'] print(f"""loaded model from global step {global_step}.""" ) else: __lowercase ={'state_dict': None} __lowercase =None __lowercase =load_model_from_config(config.model , pl_sd['state_dict'] , gpu=_lowerCAmelCase , eval_mode=_lowerCAmelCase )['model'] return model, global_step
454
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCamelCase = {"""tokenization_bertweet""": ["""BertweetTokenizer"""]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
454
1
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : str=2 , _UpperCamelCase : Dict=8 , _UpperCamelCase : str=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Any=True , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[int]=9_9 , _UpperCamelCase : Any=1_6 , _UpperCamelCase : List[str]=5 , _UpperCamelCase : Optional[Any]=2 , _UpperCamelCase : str=3_6 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : str=0.0 , _UpperCamelCase : Any=5_1_2 , _UpperCamelCase : int=1_6 , _UpperCamelCase : List[Any]=2 , _UpperCamelCase : Tuple=0.02 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=4 , _UpperCamelCase : Dict=None , ) ->Optional[Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def snake_case__( self : List[Any] ) ->List[Any]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : Optional[int] ) ->Optional[Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def snake_case__( self : List[Any] ) ->str: snake_case_ = self.get_config() snake_case_ = 3_0_0 return config def snake_case__( self : List[str] ) ->Optional[Any]: ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = self.prepare_config_and_inputs() snake_case_ = True snake_case_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case__( self : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : int , _UpperCamelCase : Dict ) ->Dict: snake_case_ = MraModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase , token_type_ids=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Any , ) ->Optional[Any]: snake_case_ = True snake_case_ = MraModel(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , ) snake_case_ = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , ) snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] ) ->str: snake_case_ = MraForMaskedLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] ) ->Any: snake_case_ = MraForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : List[str] ) ->Optional[Any]: snake_case_ = self.num_labels snake_case_ = MraForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : str , _UpperCamelCase : Optional[int] ) ->int: snake_case_ = self.num_labels snake_case_ = MraForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Any ) ->Any: snake_case_ = self.num_choices snake_case_ = MraForMultipleChoice(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__( self : str ) ->List[str]: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : List[str] = () def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = MraModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : Dict ) ->Optional[int]: self.config_tester.run_common_tests() def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : int ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Union[str, Any] ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase ) def snake_case__( self : List[str] ) ->Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCamelCase ) def snake_case__( self : Any ) ->Optional[int]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) def snake_case__( self : str ) ->List[str]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase ) def snake_case__( self : int ) ->Any: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : int ) ->str: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = MraModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def snake_case__( self : Union[str, Any] ) ->Tuple: return @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : List[Any] ) ->Optional[Any]: snake_case_ = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) snake_case_ = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(_UpperCamelCase )[0] snake_case_ = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : List[str] ) ->int: snake_case_ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) snake_case_ = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 5_0_2_6_5 snake_case_ = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) snake_case_ = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(_UpperCamelCase )[0] snake_case_ = 5_0_2_6_5 snake_case_ = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) )
39
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowerCAmelCase__ = '''hf-internal-testing/tiny-random-bert''' lowerCAmelCase__ = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowerCAmelCase__ = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Optional[Any] = cached_file(__lowerCAmelCase , __lowerCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__lowerCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) ) with open(os.path.join(__lowerCAmelCase , '''refs''' , '''main''' ) ) as f: _lowerCamelCase : Optional[int] = f.read() self.assertEqual(__lowerCAmelCase , os.path.join(__lowerCAmelCase , '''snapshots''' , __lowerCAmelCase , __lowerCAmelCase ) ) self.assertTrue(os.path.isfile(__lowerCAmelCase ) ) # File is cached at the same place the second time. _lowerCamelCase : Tuple = cached_file(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) # Using a specific revision to test the full commit hash. _lowerCamelCase : Dict = cached_file(__lowerCAmelCase , __lowerCAmelCase , revision='''9b8c223''' ) self.assertEqual(__lowerCAmelCase , os.path.join(__lowerCAmelCase , '''snapshots''' , __lowerCAmelCase , __lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" with self.assertRaisesRegex(__lowerCAmelCase , '''is not a valid model identifier''' ): _lowerCamelCase : Optional[int] = cached_file('''tiny-random-bert''' , __lowerCAmelCase ) with self.assertRaisesRegex(__lowerCAmelCase , '''is not a valid git identifier''' ): _lowerCamelCase : str = cached_file(__lowerCAmelCase , __lowerCAmelCase , revision='''aaaa''' ) with self.assertRaisesRegex(__lowerCAmelCase , '''does not appear to have a file named''' ): _lowerCamelCase : int = cached_file(__lowerCAmelCase , '''conf''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" with self.assertRaisesRegex(__lowerCAmelCase , '''does not appear to have a file named''' ): _lowerCamelCase : Dict = cached_file(__lowerCAmelCase , '''conf''' ) with open(os.path.join(__lowerCAmelCase , '''refs''' , '''main''' ) ) as f: _lowerCamelCase : List[Any] = f.read() self.assertTrue(os.path.isfile(os.path.join(__lowerCAmelCase , '''.no_exist''' , __lowerCAmelCase , '''conf''' ) ) ) _lowerCamelCase : str = cached_file(__lowerCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=__lowerCAmelCase ) self.assertIsNone(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = cached_file(__lowerCAmelCase , '''conf''' , local_files_only=__lowerCAmelCase , _raise_exceptions_for_missing_entries=__lowerCAmelCase ) self.assertIsNone(__lowerCAmelCase ) _lowerCamelCase : Any = mock.Mock() _lowerCamelCase : Optional[Any] = 5_0_0 _lowerCamelCase : Dict = {} _lowerCamelCase : List[Any] = HTTPError _lowerCamelCase : int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=__lowerCAmelCase ) as mock_head: _lowerCamelCase : Union[str, Any] = cached_file(__lowerCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=__lowerCAmelCase ) self.assertIsNone(__lowerCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __lowerCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __lowerCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__lowerCAmelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , __lowerCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__lowerCAmelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , __lowerCAmelCase , revision='''ahaha''' ) _lowerCamelCase : Dict = get_file_from_repo('''bert-base-cased''' , __lowerCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. _lowerCamelCase : Dict = json.loads(open(__lowerCAmelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 7_6_8 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Any = Path(__lowerCAmelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(__lowerCAmelCase , '''a.txt''' ) , str(__lowerCAmelCase ) ) self.assertIsNone(get_file_from_repo(__lowerCAmelCase , '''b.txt''' ) )
83
0
'''simple docstring''' def _A ( A__ ): """simple docstring""" __lowercase = [1] __lowercase , __lowercase , __lowercase = 0, 0, 0 __lowercase = ugly_nums[ia] * 2 __lowercase = ugly_nums[ia] * 3 __lowercase = ugly_nums[ia] * 5 for _ in range(1 , UpperCamelCase__ ): __lowercase = min(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ugly_nums.append(UpperCamelCase__ ) if next_num == next_a: ia += 1 __lowercase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __lowercase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __lowercase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'{ugly_numbers(200) = }')
715
'''simple docstring''' from __future__ import annotations from typing import Any class lowercase_ : """simple docstring""" def __init__( self : Any ,lowercase__ : int ,lowercase__ : int ,lowercase__ : float = 0 ): __lowercase , __lowercase = row, column __lowercase = [[default_value for c in range(lowercase__ )] for r in range(lowercase__ )] def __str__( self : List[str] ): __lowercase = F"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier __lowercase = 0 for row_vector in self.array: for obj in row_vector: __lowercase = max(lowercase__ ,len(str(lowercase__ ) ) ) __lowercase = F"%{max_element_length}s" # Make string and return def single_line(lowercase__ : list[float] ) -> str: nonlocal string_format_identifier __lowercase = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(lowercase__ ) for row_vector in self.array ) return s def __repr__( self : List[str] ): return str(self ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : tuple[int, int] ): if not (isinstance(lowercase__ ,(list, tuple) ) and len(lowercase__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Tuple ,lowercase__ : tuple[int, int] ): assert self.validate_indicies(lowercase__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Tuple ,lowercase__ : tuple[int, int] ,lowercase__ : float ): assert self.validate_indicies(lowercase__ ) __lowercase = value def __add__( self : List[Any] ,lowercase__ : Matrix ): assert isinstance(lowercase__ ,lowercase__ ) assert self.row == another.row and self.column == another.column # Add __lowercase = Matrix(self.row ,self.column ) for r in range(self.row ): for c in range(self.column ): __lowercase = self[r, c] + another[r, c] return result def __neg__( self : List[str] ): __lowercase = Matrix(self.row ,self.column ) for r in range(self.row ): for c in range(self.column ): __lowercase = -self[r, c] return result def __sub__( self : str ,lowercase__ : Matrix ): return self + (-another) def __mul__( self : Dict ,lowercase__ : int | float | Matrix ): if isinstance(lowercase__ ,(int, float) ): # Scalar multiplication __lowercase = Matrix(self.row ,self.column ) for r in range(self.row ): for c in range(self.column ): __lowercase = self[r, c] * another return result elif isinstance(lowercase__ ,lowercase__ ): # Matrix multiplication assert self.column == another.row __lowercase = Matrix(self.row ,another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __lowercase = F"Unsupported type given for another ({type(lowercase__ )})" raise TypeError(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = Matrix(self.column ,self.row ) for r in range(self.row ): for c in range(self.column ): __lowercase = self[r, c] return result def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Matrix ,lowercase__ : Matrix ): assert isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __lowercase = v.transpose() __lowercase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _A ( ): """simple docstring""" __lowercase = Matrix(3 , 3 , 0 ) for i in range(3 ): __lowercase = 1 print(F"a^(-1) is {ainv}" ) # u, v __lowercase = Matrix(3 , 1 , 0 ) __lowercase , __lowercase , __lowercase = 1, 2, -3 __lowercase = Matrix(3 , 1 , 0 ) __lowercase , __lowercase , __lowercase = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(A__ , A__ )}" ) def _A ( ): """simple docstring""" import doctest doctest.testmod() testa()
624
0
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCAmelCase = 16 __UpperCAmelCase = 32 def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase = 16 ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCAmelCase__ : int = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ : Optional[Any] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ : Tuple = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ : List[Any] = 8 else: UpperCAmelCase__ : Union[str, Any] = None return tokenizer.pad( __UpperCamelCase , padding="""longest""" , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCAmelCase__ : int = DataLoader( tokenized_datasets["""train"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) UpperCAmelCase__ : Dict = DataLoader( tokenized_datasets["""validation"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCAmelCase = mocked_dataloaders # noqa: F811 def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __UpperCamelCase ) == "1": UpperCAmelCase__ : Optional[Any] = 2 # Initialize accelerator UpperCAmelCase__ : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ : Tuple = config["""lr"""] UpperCAmelCase__ : Dict = int(config["""num_epochs"""] ) UpperCAmelCase__ : Union[str, Any] = int(config["""seed"""] ) UpperCAmelCase__ : Any = int(config["""batch_size"""] ) UpperCAmelCase__ : Dict = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__UpperCamelCase ) def inner_training_loop(__UpperCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ : str = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ : Tuple = AdamW(params=model.parameters() , lr=__UpperCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ : Any = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate scheduler UpperCAmelCase__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ : Dict = model(**__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = outputs.loss accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : Dict = model(**__UpperCamelCase ) UpperCAmelCase__ : List[Any] = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) UpperCAmelCase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__UpperCamelCase , default=__UpperCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) UpperCAmelCase__ : Optional[Any] = parser.parse_args() UpperCAmelCase__ : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
65
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Dict = "efficientnet" def __init__( self : Optional[Any] ,_snake_case : int = 3 ,_snake_case : int = 600 ,_snake_case : float = 2.0 ,_snake_case : float = 3.1 ,_snake_case : int = 8 ,_snake_case : List[int] = [3, 3, 5, 3, 5, 5, 3] ,_snake_case : List[int] = [32, 16, 24, 40, 80, 112, 192] ,_snake_case : List[int] = [16, 24, 40, 80, 112, 192, 320] ,_snake_case : List[int] = [] ,_snake_case : List[int] = [1, 2, 2, 2, 1, 2, 1] ,_snake_case : List[int] = [1, 2, 2, 3, 3, 4, 1] ,_snake_case : List[int] = [1, 6, 6, 6, 6, 6, 6] ,_snake_case : float = 0.25 ,_snake_case : str = "swish" ,_snake_case : int = 2_560 ,_snake_case : str = "mean" ,_snake_case : float = 0.02 ,_snake_case : float = 0.001 ,_snake_case : float = 0.99 ,_snake_case : float = 0.5 ,_snake_case : float = 0.2 ,**_snake_case : List[str] ,) -> Optional[Any]: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : Optional[Any] = num_channels lowercase__ : Any = image_size lowercase__ : Optional[Any] = width_coefficient lowercase__ : Dict = depth_coefficient lowercase__ : Optional[int] = depth_divisor lowercase__ : Optional[int] = kernel_sizes lowercase__ : str = in_channels lowercase__ : Any = out_channels lowercase__ : Union[str, Any] = depthwise_padding lowercase__ : str = strides lowercase__ : List[str] = num_block_repeats lowercase__ : List[str] = expand_ratios lowercase__ : List[str] = squeeze_expansion_ratio lowercase__ : Optional[Any] = hidden_act lowercase__ : Any = hidden_dim lowercase__ : Optional[int] = pooling_type lowercase__ : List[str] = initializer_range lowercase__ : List[Any] = batch_norm_eps lowercase__ : List[Any] = batch_norm_momentum lowercase__ : Tuple = dropout_rate lowercase__ : Tuple = drop_connect_rate lowercase__ : Union[str, Any] = sum(_snake_case ) * 4 class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[str] = version.parse("1.11" ) @property def UpperCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase ( self : Optional[int] ) -> float: """simple docstring""" return 1e-5
560
0
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType __lowerCamelCase : Union[str, Any] = get_logger(__name__) def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): _UpperCamelCase =model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _UpperCamelCase =f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' _UpperCamelCase =os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if accelerator.process_index == 0: logger.info(f'''Saving model to {output_model_file}''' ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _UpperCamelCase =( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) _UpperCamelCase =os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(f'''Saving model to {output_model_file}''' ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _UpperCamelCase =os.path.join(SCREAMING_SNAKE_CASE_ , f'''{MODEL_NAME}_{model_index}''' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) logger.info(f'''Saving model to {ckpt_dir}''' ) _UpperCamelCase ={'''model''': state_dict} dist_cp.save_state_dict( state_dict=SCREAMING_SNAKE_CASE_ , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE_ ) , planner=DefaultSavePlanner() , ) logger.info(f'''Model saved to {ckpt_dir}''' ) def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(SCREAMING_SNAKE_CASE_ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return _UpperCamelCase =f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' _UpperCamelCase =os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(f'''Loading model from {input_model_file}''' ) _UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: _UpperCamelCase =( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) _UpperCamelCase =os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(f'''Loading model from {input_model_file}''' ) _UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: _UpperCamelCase =( os.path.join(SCREAMING_SNAKE_CASE_ , f'''{MODEL_NAME}_{model_index}''' ) if f'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading model from {ckpt_dir}''' ) _UpperCamelCase ={'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=SCREAMING_SNAKE_CASE_ , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE_ ) , planner=DefaultLoadPlanner() , ) _UpperCamelCase =state_dict['''model'''] logger.info(f'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): _UpperCamelCase =FSDP.optim_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: _UpperCamelCase =( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) _UpperCamelCase =os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(f'''Optimizer state saved in {output_optimizer_file}''' ) else: _UpperCamelCase =os.path.join(SCREAMING_SNAKE_CASE_ , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) logger.info(f'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE_ ) , planner=DefaultSavePlanner() , ) logger.info(f'''Optimizer state saved in {ckpt_dir}''' ) def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: _UpperCamelCase =None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: _UpperCamelCase =( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) _UpperCamelCase =os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' ) _UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' ) else: _UpperCamelCase =( os.path.join(SCREAMING_SNAKE_CASE_ , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if f'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading Optimizer from {ckpt_dir}''' ) _UpperCamelCase =load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE_ ) , ) _UpperCamelCase =optim_state['''optimizer'''] logger.info(f'''Optimizer loaded from {ckpt_dir}''' ) _UpperCamelCase =FSDP.optim_state_dict_to_load(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) optimizer.load_state_dict(SCREAMING_SNAKE_CASE_ )
700
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: _UpperCamelCase =1024 _UpperCamelCase =4096 _UpperCamelCase =24 _UpperCamelCase =16 _UpperCamelCase =[5, 11, 17, 23] _UpperCamelCase =[256, 512, 1024, 1024] _UpperCamelCase =(1, 384, 384) if "nyu" or "midas" in checkpoint_url: _UpperCamelCase =768 _UpperCamelCase =[1, 1, 1, 0.5] _UpperCamelCase =[256, 512, 768, 768] _UpperCamelCase =150 _UpperCamelCase =16 _UpperCamelCase =(1, 384, 384) _UpperCamelCase =False _UpperCamelCase ='''project''' if "ade" in checkpoint_url: _UpperCamelCase =True _UpperCamelCase =768 _UpperCamelCase =[1, 1, 1, 0.5] _UpperCamelCase =150 _UpperCamelCase =16 _UpperCamelCase ='''huggingface/label-files''' _UpperCamelCase ='''ade20k-id2label.json''' _UpperCamelCase =json.load(open(cached_download(hf_hub_url(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) ) , '''r''' ) ) _UpperCamelCase ={int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _UpperCamelCase =idalabel _UpperCamelCase ={v: k for k, v in idalabel.items()} _UpperCamelCase =[1, 150, 480, 480] return config, expected_shape def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _UpperCamelCase =name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: _UpperCamelCase =name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: _UpperCamelCase =name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: _UpperCamelCase =name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: _UpperCamelCase =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: _UpperCamelCase =name.replace('''proj''' , '''projection''' ) if "blocks" in name: _UpperCamelCase =name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: _UpperCamelCase =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _UpperCamelCase =name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: _UpperCamelCase =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: _UpperCamelCase =name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: _UpperCamelCase =name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: _UpperCamelCase =name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: _UpperCamelCase =name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: _UpperCamelCase =name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: _UpperCamelCase =name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: _UpperCamelCase =name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: _UpperCamelCase =int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _UpperCamelCase =name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: _UpperCamelCase =name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: _UpperCamelCase =name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: _UpperCamelCase =name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: _UpperCamelCase =name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: _UpperCamelCase =name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: _UpperCamelCase =name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: _UpperCamelCase =name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: _UpperCamelCase =name.replace('''bn''' , '''batch_norm''' ) if "head" in name: _UpperCamelCase =name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: _UpperCamelCase =name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: _UpperCamelCase =name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: _UpperCamelCase =name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: _UpperCamelCase =name.replace('''..''' , '''.''' ) if "stem.conv" in name: _UpperCamelCase =name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: _UpperCamelCase =name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: _UpperCamelCase =name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: _UpperCamelCase =name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: _UpperCamelCase =name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: _UpperCamelCase =name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: _UpperCamelCase =name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCamelCase =state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) _UpperCamelCase =state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase =in_proj_weight[: config.hidden_size, :] _UpperCamelCase =in_proj_bias[: config.hidden_size] _UpperCamelCase =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCamelCase =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCamelCase =in_proj_weight[ -config.hidden_size :, : ] _UpperCamelCase =in_proj_bias[-config.hidden_size :] def _a (): """simple docstring""" _UpperCamelCase ='''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase =Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase , _UpperCamelCase =get_dpt_config(__SCREAMING_SNAKE_CASE ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _UpperCamelCase =torch.load(__SCREAMING_SNAKE_CASE , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(__SCREAMING_SNAKE_CASE ) # rename keys for key in state_dict.copy().keys(): _UpperCamelCase =state_dict.pop(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =val # read in qkv matrices read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load HuggingFace model _UpperCamelCase =DPTForSemanticSegmentation(__SCREAMING_SNAKE_CASE ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) model.eval() # Check outputs on an image _UpperCamelCase =480 if '''ade''' in checkpoint_url else 384 _UpperCamelCase =DPTImageProcessor(size=__SCREAMING_SNAKE_CASE ) _UpperCamelCase =prepare_img() _UpperCamelCase =image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) # forward pass _UpperCamelCase =model(**__SCREAMING_SNAKE_CASE ).logits if '''ade''' in checkpoint_url else model(**__SCREAMING_SNAKE_CASE ).predicted_depth if show_prediction: _UpperCamelCase =( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=__SCREAMING_SNAKE_CASE , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) __lowerCamelCase : Dict = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
271
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: Optional[int] ) -> List[Any]: __UpperCAmelCase : List[str] = "ZinengTang/tvlt-base" __UpperCAmelCase : List[str] = tempfile.mkdtemp() def _lowerCamelCase ( self: Optional[Any] , **__lowerCamelCase: int ) -> List[Any]: return TvltImageProcessor.from_pretrained(self.checkpoint , **__lowerCamelCase ) def _lowerCamelCase ( self: int , **__lowerCamelCase: List[str] ) -> List[str]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> List[str]: shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self: List[str] ) -> str: __UpperCAmelCase : Optional[int] = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_feature_extractor() __UpperCAmelCase : str = TvltProcessor(image_processor=__lowerCamelCase , feature_extractor=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : str = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , __lowerCamelCase ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : str = self.get_feature_extractor() __UpperCAmelCase : int = TvltProcessor(image_processor=__lowerCamelCase , feature_extractor=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = np.ones([1_20_00] ) __UpperCAmelCase : Dict = feature_extractor(__lowerCamelCase , return_tensors="np" ) __UpperCAmelCase : int = processor(audio=__lowerCamelCase , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : int = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_feature_extractor() __UpperCAmelCase : Union[str, Any] = TvltProcessor(image_processor=__lowerCamelCase , feature_extractor=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.ones([3, 2_24, 2_24] ) __UpperCAmelCase : Dict = image_processor(__lowerCamelCase , return_tensors="np" ) __UpperCAmelCase : str = processor(images=__lowerCamelCase , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowerCamelCase ( self: Optional[Any] ) -> int: __UpperCAmelCase : Union[str, Any] = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_feature_extractor() __UpperCAmelCase : Union[str, Any] = TvltProcessor(image_processor=__lowerCamelCase , feature_extractor=__lowerCamelCase ) __UpperCAmelCase : int = np.ones([1_20_00] ) __UpperCAmelCase : Optional[int] = np.ones([3, 2_24, 2_24] ) __UpperCAmelCase : Any = processor(audio=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def _lowerCamelCase ( self: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = self.get_image_processor() __UpperCAmelCase : Any = self.get_feature_extractor() __UpperCAmelCase : Union[str, Any] = TvltProcessor(image_processor=__lowerCamelCase , feature_extractor=__lowerCamelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
382
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _snake_case = logging.get_logger(__name__) _snake_case = {'''vocab_file''': '''spiece.model'''} _snake_case = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class _snake_case ( _lowercase ): def __init__( self: List[str] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any]=False , __lowerCamelCase: Tuple=True , __lowerCamelCase: Union[str, Any]=False , __lowerCamelCase: str="<s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<unk>" , __lowerCamelCase: str="<sep>" , __lowerCamelCase: Optional[int]="<pad>" , __lowerCamelCase: List[Any]="<cls>" , __lowerCamelCase: List[Any]="<mask>" , __lowerCamelCase: int=["<eop>", "<eod>"] , __lowerCamelCase: Optional[Dict[str, Any]] = None , **__lowerCamelCase: Any , ) -> None: __UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token __UpperCAmelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : str = do_lower_case __UpperCAmelCase : int = remove_space __UpperCAmelCase : str = keep_accents __UpperCAmelCase : List[str] = vocab_file __UpperCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) __UpperCAmelCase : int = jieba __UpperCAmelCase : Optional[int] = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowerCamelCase ( self: List[str] ) -> List[Any]: return len(self.sp_model ) def _lowerCamelCase ( self: Tuple ) -> int: __UpperCAmelCase : Tuple = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[Any] ) -> int: __UpperCAmelCase : Dict = self.__dict__.copy() __UpperCAmelCase : Union[str, Any] = None return state def __setstate__( self: List[Any] , __lowerCamelCase: int ) -> Dict: __UpperCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> List[str]: if self.remove_space: __UpperCAmelCase : List[str] = " ".join(inputs.strip().split() ) else: __UpperCAmelCase : Tuple = inputs __UpperCAmelCase : str = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: __UpperCAmelCase : Optional[Any] = unicodedata.normalize("NFKD" , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase )] ) if self.do_lower_case: __UpperCAmelCase : Optional[int] = outputs.lower() return outputs def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: str ) -> List[str]: __UpperCAmelCase : Union[str, Any] = self.preprocess_text(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) __UpperCAmelCase : int = [] for piece in pieces: if len(__lowerCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): __UpperCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __UpperCAmelCase : Optional[int] = cur_pieces[1:] else: __UpperCAmelCase : Optional[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCamelCase ) else: new_pieces.append(__lowerCamelCase ) return new_pieces def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Optional[int] ) -> List[Any]: return self.sp_model.PieceToId(__lowerCamelCase ) def _lowerCamelCase ( self: str , __lowerCamelCase: int ) -> Optional[Any]: return self.sp_model.IdToPiece(__lowerCamelCase ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Any ) -> Optional[int]: __UpperCAmelCase : List[Any] = "".join(__lowerCamelCase ).replace(__lowerCamelCase , " " ).strip() return out_string def _lowerCamelCase ( self: Any , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : Any = [self.sep_token_id] __UpperCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is not None: return ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1, 1] return ([0] * len(__lowerCamelCase )) + [1, 1] def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : str = [self.sep_token_id] __UpperCAmelCase : str = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Optional[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: __UpperCAmelCase : Any = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,) def _lowerCamelCase ( self: Any , *__lowerCamelCase: List[Any] , **__lowerCamelCase: Optional[Any] ) -> Any: __UpperCAmelCase : Dict = super()._decode(*__lowerCamelCase , **__lowerCamelCase ) __UpperCAmelCase : Tuple = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
382
1
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _A : Optional[int] = ["""image_processor""", """tokenizer"""] _A : str = """AutoImageProcessor""" _A : Union[str, Any] = """AutoTokenizer""" def __init__(self , lowerCAmelCase_ , lowerCAmelCase_ ): super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) A_ : Union[str, Any] = self.image_processor def __call__(self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: A_ : Optional[int] = self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if images is not None: A_ : List[Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None and images is not None: A_ : int = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def lowerCamelCase(self , *lowerCAmelCase_ , **lowerCAmelCase_ ): return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase(self , *lowerCAmelCase_ , **lowerCAmelCase_ ): return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowerCamelCase(self ): return ["input_ids", "attention_mask", "pixel_values"]
480
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _A : Optional[int] = ["""image_processor""", """tokenizer"""] _A : List[Any] = """ViTImageProcessor""" _A : Optional[Any] = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__(self , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ): A_ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCAmelCase_ , ) A_ : Union[str, Any] = kwargs.pop("""feature_extractor""" ) A_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__(self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ): if text is None and visual_prompt is None and images is None: raise ValueError("""You have to specify either text, visual prompt or images.""" ) if text is not None and visual_prompt is not None: raise ValueError("""You have to specify exactly one type of prompt. Either text or visual prompt.""" ) if text is not None: A_ : Tuple = self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if visual_prompt is not None: A_ : Union[str, Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if images is not None: A_ : Any = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if visual_prompt is not None and images is not None: A_ : List[str] = { """pixel_values""": image_features.pixel_values, """conditional_pixel_values""": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: A_ : str = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: A_ : Any = { """conditional_pixel_values""": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def lowerCamelCase(self , *lowerCAmelCase_ , **lowerCAmelCase_ ): return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase(self , *lowerCAmelCase_ , **lowerCAmelCase_ ): return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowerCamelCase(self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCAmelCase_ , ) return self.image_processor_class @property def lowerCamelCase(self ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCAmelCase_ , ) return self.image_processor
480
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[str] = """philschmid/bart-large-cnn-samsum""" _SCREAMING_SNAKE_CASE :Union[str, Any] = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) _SCREAMING_SNAKE_CASE :List[Any] = """summarizer""" _SCREAMING_SNAKE_CASE :Optional[Any] = AutoTokenizer _SCREAMING_SNAKE_CASE :List[str] = AutoModelForSeqaSeqLM _SCREAMING_SNAKE_CASE :List[Any] = ["""text"""] _SCREAMING_SNAKE_CASE :str = ["""text"""] def _a ( self , _a ) -> Dict: """simple docstring""" return self.pre_processor(_a , return_tensors="""pt""" , truncation=_a ) def _a ( self , _a ) -> List[Any]: """simple docstring""" return self.model.generate(**_a )[0] def _a ( self , _a ) -> List[Any]: """simple docstring""" return self.pre_processor.decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a )
680
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> int: assert ( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = 1, 1 for _ in range(number_of_steps - 1 ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
680
1
"""simple docstring""" from __future__ import annotations from random import choice def __UpperCAmelCase ( __UpperCamelCase ): return choice(__UpperCamelCase ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): __lowercase : int = random_pivot(__UpperCamelCase ) # partition based on pivot # linear time __lowercase : Tuple = [e for e in lst if e < pivot] __lowercase : List[Any] = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(__UpperCamelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(__UpperCamelCase ) < k - 1: return kth_number(__UpperCamelCase , k - len(__UpperCamelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="markuplm" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=0 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=2_56 , UpperCamelCase_=10_24 , UpperCamelCase_=2_16 , UpperCamelCase_=10_01 , UpperCamelCase_=32 , UpperCamelCase_=50 , UpperCamelCase_="absolute" , UpperCamelCase_=True , UpperCamelCase_=None , **UpperCamelCase_ , ) -> List[str]: super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) __lowercase : Optional[int] = vocab_size __lowercase : Optional[int] = hidden_size __lowercase : Tuple = num_hidden_layers __lowercase : Optional[int] = num_attention_heads __lowercase : Tuple = hidden_act __lowercase : Optional[Any] = intermediate_size __lowercase : str = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : Optional[int] = max_position_embeddings __lowercase : List[str] = type_vocab_size __lowercase : Dict = initializer_range __lowercase : Dict = layer_norm_eps __lowercase : Any = position_embedding_type __lowercase : int = use_cache __lowercase : str = classifier_dropout # additional properties __lowercase : List[Any] = max_depth __lowercase : List[Any] = max_xpath_tag_unit_embeddings __lowercase : List[str] = max_xpath_subs_unit_embeddings __lowercase : List[Any] = tag_pad_id __lowercase : Tuple = subs_pad_id __lowercase : Optional[int] = xpath_unit_hidden_size
523
0
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase=10_00 ): if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd __lowercase : Any = n - 1 __lowercase : Optional[int] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) __lowercase : List[str] = 0 while count < prec: __lowercase : int = random.randint(2 , n - 1 ) __lowercase : Dict = bin_exp_mod(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if b != 1: __lowercase : Tuple = True for _ in range(__UpperCamelCase ): if b == n - 1: __lowercase : Tuple = False break __lowercase : int = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": a_ = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
76
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
132
0
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() A_ = logging.get_logger("transformers.models.speecht5") A_ = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } A_ = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } A_ = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } A_ = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } A_ = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } A_ = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } A_ = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } A_ = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } A_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } A_ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } A_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } A_ = [] A_ = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] A_ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] A_ = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] A_ = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> Optional[int]: """simple docstring""" for attribute in key.split('''.''' ): lowercase = getattr(UpperCAmelCase, UpperCAmelCase ) if weight_type is not None: lowercase = getattr(UpperCAmelCase, UpperCAmelCase ).shape else: lowercase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase = value elif weight_type == "weight_g": lowercase = value elif weight_type == "weight_v": lowercase = value elif weight_type == "bias": lowercase = value elif weight_type == "running_mean": lowercase = value elif weight_type == "running_var": lowercase = value elif weight_type == "num_batches_tracked": lowercase = value else: lowercase = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase )-> List[Any]: """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowercase ,lowercase = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> Optional[int]: """simple docstring""" lowercase = [] if task == "s2t": lowercase = hf_model.speechta.encoder.prenet.feature_encoder lowercase = MAPPING_S2T lowercase = IGNORE_KEYS_S2T elif task == "t2s": lowercase = None lowercase = MAPPING_T2S lowercase = IGNORE_KEYS_T2S elif task == "s2s": lowercase = hf_model.speechta.encoder.prenet.feature_encoder lowercase = MAPPING_S2S lowercase = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(UpperCAmelCase, UpperCAmelCase ): logger.info(f'{name} was ignored' ) continue lowercase = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, hf_model.config.feat_extract_norm == '''group''', ) lowercase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: lowercase ,lowercase = key.split('''.*.''' ) if prefix in name and suffix in name: lowercase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: lowercase = True if "*" in mapped_key: lowercase = name.split(UpperCAmelCase )[0].split('''.''' )[-2] lowercase = mapped_key.replace('''*''', UpperCAmelCase ) if "weight_g" in name: lowercase = '''weight_g''' elif "weight_v" in name: lowercase = '''weight_v''' elif "bias" in name: lowercase = '''bias''' elif "weight" in name: lowercase = '''weight''' elif "running_mean" in name: lowercase = '''running_mean''' elif "running_var" in name: lowercase = '''running_var''' elif "num_batches_tracked" in name: lowercase = '''num_batches_tracked''' else: lowercase = None set_recursively(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) continue if not is_used: unused_weights.append(UpperCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> Optional[Any]: """simple docstring""" lowercase = full_name.split('''conv_layers.''' )[-1] lowercase = name.split('''.''' ) lowercase = int(items[0] ) lowercase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) lowercase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCAmelCase ) @torch.no_grad() def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase=None, UpperCAmelCase=None, UpperCAmelCase=None, )-> Optional[int]: """simple docstring""" if config_path is not None: lowercase = SpeechTaConfig.from_pretrained(UpperCAmelCase ) else: lowercase = SpeechTaConfig() if task == "s2t": lowercase = config.max_text_positions lowercase = SpeechTaForSpeechToText(UpperCAmelCase ) elif task == "t2s": lowercase = 1876 lowercase = 600 lowercase = config.max_speech_positions lowercase = SpeechTaForTextToSpeech(UpperCAmelCase ) elif task == "s2s": lowercase = 1876 lowercase = config.max_speech_positions lowercase = SpeechTaForSpeechToSpeech(UpperCAmelCase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: lowercase = SpeechTaTokenizer(UpperCAmelCase, model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it lowercase = AddedToken('''<mask>''', lstrip=UpperCAmelCase, rstrip=UpperCAmelCase ) lowercase = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) lowercase = SpeechTaFeatureExtractor() lowercase = SpeechTaProcessor(tokenizer=UpperCAmelCase, feature_extractor=UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) lowercase = torch.load(UpperCAmelCase ) recursively_load_weights(fairseq_checkpoint['''model'''], UpperCAmelCase, UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(UpperCAmelCase ) model.push_to_hub(UpperCAmelCase ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) A_ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
703
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __lowercase : lowercase = LEDConfig lowercase = {} lowercase = 'gelu' def __init__( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=13 , __lowerCamelCase : Optional[Any]=7 , __lowerCamelCase : Any=True , __lowerCamelCase : List[str]=False , __lowerCamelCase : Any=99 , __lowerCamelCase : Any=32 , __lowerCamelCase : str=2 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Union[str, Any]=37 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[int]=20 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Any=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Any=4 , ) -> str: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = eos_token_id lowercase = pad_token_id lowercase = bos_token_id lowercase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after lowercase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests lowercase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __a ( self : Optional[int] ) -> Tuple: '''simple docstring''' lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) lowercase = prepare_led_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase = tf.concat( [tf.zeros_like(__lowerCamelCase )[:, :-1], tf.ones_like(__lowerCamelCase )[:, -1:]] , axis=-1 , ) lowercase = global_attention_mask return config, inputs_dict def __a ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Dict ) -> Optional[Any]: '''simple docstring''' lowercase = TFLEDModel(config=__lowerCamelCase ).get_decoder() lowercase = inputs_dict['''input_ids'''] lowercase = input_ids[:1, :] lowercase = inputs_dict['''attention_mask'''][:1, :] lowercase = 1 # first forward pass lowercase = model(__lowerCamelCase , attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) lowercase ,lowercase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowercase = tf.concat([input_ids, next_tokens] , axis=-1 ) lowercase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowercase = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] lowercase = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowercase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowercase = output_from_no_past[:, -3:, random_slice_idx] lowercase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1E-3 ) def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase=None, UpperCAmelCase=None, UpperCAmelCase=None, UpperCAmelCase=None, )-> str: """simple docstring""" if attention_mask is None: lowercase = tf.cast(tf.math.not_equal(UpperCAmelCase, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: lowercase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __lowercase ( _A , _A , unittest.TestCase ): lowercase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowercase = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False lowercase = False def __a ( self : Dict ) -> int: '''simple docstring''' lowercase = TFLEDModelTester(self ) lowercase = ConfigTester(self , config_class=__lowerCamelCase ) def __a ( self : Optional[Any] ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : List[str] ) -> Any: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) def __a ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase ,lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = tf.zeros_like(inputs_dict['''attention_mask'''] ) lowercase = 2 lowercase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) lowercase = True lowercase = self.model_tester.seq_length lowercase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__lowerCamelCase : int ): lowercase = outputs.decoder_attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__lowerCamelCase : Optional[Any] ): lowercase = [t.numpy() for t in outputs.encoder_attentions] lowercase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: lowercase = True lowercase = False lowercase = False lowercase = model_class(__lowerCamelCase ) lowercase = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) lowercase = len(__lowerCamelCase ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) if self.is_encoder_decoder: lowercase = model_class(__lowerCamelCase ) lowercase = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_decoder_attentions_output(__lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase = True lowercase = model_class(__lowerCamelCase ) lowercase = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) # Check attention is always last and order is fine lowercase = True lowercase = True lowercase = model_class(__lowerCamelCase ) lowercase = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def __a ( self : Dict ) -> str: '''simple docstring''' pass def __a ( self : List[Any] ) -> Optional[int]: '''simple docstring''' pass def __UpperCAmelCase ( UpperCAmelCase )-> Optional[Any]: """simple docstring""" return tf.constant(UpperCAmelCase, dtype=tf.intaa ) A_ = 1e-4 @slow @require_tf class __lowercase ( unittest.TestCase ): def __a ( self : List[Any] ) -> str: '''simple docstring''' lowercase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here lowercase = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowercase = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowercase = prepare_led_inputs_dict(model.config , __lowerCamelCase , __lowerCamelCase ) lowercase = model(**__lowerCamelCase )[0] lowercase = (1, 10_24, 7_68) self.assertEqual(output.shape , __lowerCamelCase ) # change to expected output here lowercase = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1E-3 ) def __a ( self : str ) -> Optional[Any]: '''simple docstring''' lowercase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here lowercase = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowercase = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) lowercase = prepare_led_inputs_dict(model.config , __lowerCamelCase , __lowerCamelCase ) lowercase = model(**__lowerCamelCase )[0] lowercase = (1, 10_24, model.config.vocab_size) self.assertEqual(output.shape , __lowerCamelCase ) # change to expected output here lowercase = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1E-3 , rtol=1E-3 )
479
0
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available __a = logging.getLogger(__name__) @dataclass class __lowercase : UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 @dataclass class __lowercase : UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None class __lowercase ( __snake_case ): UpperCamelCase = '''train''' UpperCamelCase = '''dev''' UpperCamelCase = '''test''' class __lowercase : @staticmethod def _lowercase ( __lowerCamelCase : Tuple , __lowerCamelCase : Union[Split, str] ) -> List[InputExample]: """simple docstring""" raise NotImplementedError @staticmethod def _lowercase ( __lowerCamelCase : str ) -> List[str]: """simple docstring""" raise NotImplementedError @staticmethod def _lowercase ( __lowerCamelCase : List[InputExample] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Tuple=False , __lowerCamelCase : List[str]="[CLS]" , __lowerCamelCase : Any=1 , __lowerCamelCase : Any="[SEP]" , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : str=False , __lowerCamelCase : List[str]=0 , __lowerCamelCase : str=0 , __lowerCamelCase : Optional[int]=-1_0_0 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : Any=True , ) -> List[InputFeatures]: """simple docstring""" UpperCAmelCase = {label: i for i, label in enumerate(__lowerCamelCase )} UpperCAmelCase = [] for ex_index, example in enumerate(__lowerCamelCase ): if ex_index % 1_0_0_0_0 == 0: logger.info("""Writing example %d of %d""" , __lowerCamelCase , len(__lowerCamelCase ) ) UpperCAmelCase = [] UpperCAmelCase = [] for word, label in zip(example.words , example.labels ): UpperCAmelCase = tokenizer.tokenize(__lowerCamelCase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(__lowerCamelCase ) > 0: tokens.extend(__lowerCamelCase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__lowerCamelCase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. UpperCAmelCase = tokenizer.num_special_tokens_to_add() if len(__lowerCamelCase ) > max_seq_length - special_tokens_count: UpperCAmelCase = tokens[: (max_seq_length - special_tokens_count)] UpperCAmelCase = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] UpperCAmelCase = [sequence_a_segment_id] * len(__lowerCamelCase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: UpperCAmelCase = [cls_token] + tokens UpperCAmelCase = [pad_token_label_id] + label_ids UpperCAmelCase = [cls_token_segment_id] + segment_ids UpperCAmelCase = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. UpperCAmelCase = [1 if mask_padding_with_zero else 0] * len(__lowerCamelCase ) # Zero-pad up to the sequence length. UpperCAmelCase = max_seq_length - len(__lowerCamelCase ) if pad_on_left: UpperCAmelCase = ([pad_token] * padding_length) + input_ids UpperCAmelCase = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask UpperCAmelCase = ([pad_token_segment_id] * padding_length) + segment_ids UpperCAmelCase = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(__lowerCamelCase ) == max_seq_length assert len(__lowerCamelCase ) == max_seq_length assert len(__lowerCamelCase ) == max_seq_length assert len(__lowerCamelCase ) == max_seq_length if ex_index < 5: logger.info("""*** Example ***""" ) logger.info("""guid: %s""" , example.guid ) logger.info("""tokens: %s""" , """ """.join([str(__lowerCamelCase ) for x in tokens] ) ) logger.info("""input_ids: %s""" , """ """.join([str(__lowerCamelCase ) for x in input_ids] ) ) logger.info("""input_mask: %s""" , """ """.join([str(__lowerCamelCase ) for x in input_mask] ) ) logger.info("""segment_ids: %s""" , """ """.join([str(__lowerCamelCase ) for x in segment_ids] ) ) logger.info("""label_ids: %s""" , """ """.join([str(__lowerCamelCase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: UpperCAmelCase = None features.append( InputFeatures( input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , label_ids=__lowerCamelCase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class __lowercase ( __snake_case ): UpperCamelCase = 42 UpperCamelCase = nn.CrossEntropyLoss().ignore_index def __init__( self : List[Any] , __lowerCamelCase : TokenClassificationTask , __lowerCamelCase : str , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Tuple=False , __lowerCamelCase : Split = Split.train , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = os.path.join( __lowerCamelCase , """cached_{}_{}_{}""".format(mode.value , tokenizer.__class__.__name__ , str(__lowerCamelCase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase = cached_features_file + """.lock""" with FileLock(__lowerCamelCase ): if os.path.exists(__lowerCamelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase = torch.load(__lowerCamelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase = token_classification_task.read_examples_from_file(__lowerCamelCase , __lowerCamelCase ) # TODO clean up all this to leverage built-in features of tokenizers UpperCAmelCase = token_classification_task.convert_examples_to_features( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__lowerCamelCase , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , __lowerCamelCase ) def __len__( self : List[str] ) -> List[str]: """simple docstring""" return len(self.features ) def __getitem__( self : str , __lowerCamelCase : str ) -> InputFeatures: """simple docstring""" return self.features[i] if is_tf_available(): import tensorflow as tf class __lowercase : UpperCamelCase = 42 UpperCamelCase = -1_00 def __init__( self : str , __lowerCamelCase : TokenClassificationTask , __lowerCamelCase : str , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Any=False , __lowerCamelCase : Split = Split.train , ) -> str: """simple docstring""" UpperCAmelCase = token_classification_task.read_examples_from_file(__lowerCamelCase , __lowerCamelCase ) # TODO clean up all this to leverage built-in features of tokenizers UpperCAmelCase = token_classification_task.convert_examples_to_features( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__lowerCamelCase , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: UpperCAmelCase = tf.data.Dataset.from_generator( __lowerCamelCase , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) , ( {"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: UpperCAmelCase = tf.data.Dataset.from_generator( __lowerCamelCase , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) , ( { """input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] ), """token_type_ids""": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def _lowercase ( self : List[Any] ) -> int: """simple docstring""" UpperCAmelCase = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : int ) -> List[Any]: """simple docstring""" return len(self.features ) def __getitem__( self : List[Any] , __lowerCamelCase : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i]
377
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __a = re.compile("""[^A-Za-z_0-9]""") # parameters used in DuplicationIndex __a = 10 __a = 256 def _UpperCamelCase ( lowerCAmelCase_ ) ->Optional[MinHash]: if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None UpperCAmelCase = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def _UpperCamelCase ( lowerCAmelCase_ ) ->Set[str]: return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class __lowercase : def __init__( self : List[str] , *, __lowerCamelCase : float = 0.85 , ) -> Any: """simple docstring""" UpperCAmelCase = duplication_jaccard_threshold UpperCAmelCase = NUM_PERM UpperCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) UpperCAmelCase = defaultdict(__lowerCamelCase ) def _lowercase ( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : MinHash ) -> None: """simple docstring""" UpperCAmelCase = self._index.query(__lowerCamelCase ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__lowerCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__lowerCamelCase ) def _lowercase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" UpperCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): UpperCAmelCase = [base] + list(__lowerCamelCase ) # reformat the cluster to be a list of dict UpperCAmelCase = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__lowerCamelCase ) return duplicate_clusters def _lowercase ( self : Tuple , __lowerCamelCase : Optional[int] ) -> None: """simple docstring""" UpperCAmelCase = self.get_duplicate_clusters() with open(__lowerCamelCase , """w""" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def _UpperCamelCase ( lowerCAmelCase_ ) ->Tuple: UpperCAmelCase , UpperCAmelCase = element UpperCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _UpperCamelCase ( lowerCAmelCase_ ) ->int: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->Any: UpperCAmelCase = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=1_0_0 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->float: UpperCAmelCase = get_tokens(lowerCAmelCase_ ) UpperCAmelCase = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __a = None def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->Dict: UpperCAmelCase = [] for elementa in cluster: UpperCAmelCase = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: UpperCAmelCase = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: UpperCAmelCase = 1 extremes.append(lowerCAmelCase_ ) return extremes def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ->Optional[int]: global _shared_dataset UpperCAmelCase = dataset UpperCAmelCase = [] UpperCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ = 0.85 ) ->Tuple[Type[Dataset], List[List[Dict]]]: UpperCAmelCase = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} UpperCAmelCase = {} UpperCAmelCase = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: UpperCAmelCase = element UpperCAmelCase = duplicate_indices - set(extreme_dict.keys() ) UpperCAmelCase = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: UpperCAmelCase = element["""base_index"""] in extreme_dict if element["is_extreme"]: UpperCAmelCase = extreme_dict[element["""base_index"""]]["""copies"""] print(F"""Original dataset size: {len(lowerCAmelCase_ )}""" ) print(F"""Number of duplicate clusters: {len(lowerCAmelCase_ )}""" ) print(F"""Files in duplicate cluster: {len(lowerCAmelCase_ )}""" ) print(F"""Unique files in duplicate cluster: {len(lowerCAmelCase_ )}""" ) print(F"""Filtered dataset size: {len(lowerCAmelCase_ )}""" ) return ds_filter, duplicate_clusters
377
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case : Any = logging.get_logger(__name__) _snake_case : Optional[Any] = {'vocab_file': 'vocab.json'} _snake_case : Any = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _snake_case : Optional[int] = {'mgp-str': 27} class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, _a, _a="[GO]", _a="[GO]", _a="[s]", _a="[GO]", **_a ) -> Dict: super().__init__( unk_token=_a, bos_token=_a, eos_token=_a, pad_token=_a, **_a, ) with open(_a, encoding="utf-8" ) as vocab_handle: __SCREAMING_SNAKE_CASE = json.load(_a ) __SCREAMING_SNAKE_CASE = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self ) -> List[str]: return len(self.vocab ) def __lowerCAmelCase ( self ) -> Tuple: return dict(self.vocab, **self.added_tokens_encoder ) def __lowerCAmelCase ( self, _a ) -> int: __SCREAMING_SNAKE_CASE = [] for s in text: char_tokens.extend(_a ) return char_tokens def __lowerCAmelCase ( self, _a ) -> List[Any]: return self.vocab.get(_a, self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self, _a ) -> Tuple: return self.decoder.get(_a ) def __lowerCAmelCase ( self, _a, _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error("Vocabulary path ({}) should be a directory".format(_a ) ) return __SCREAMING_SNAKE_CASE = os.path.join( _a, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(_a, "w", encoding="utf-8" ) as f: f.write(json.dumps(self.vocab, indent=2, sort_keys=_a, ensure_ascii=_a ) + "\n" ) return (vocab_file,)
214
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ) -> Optional[int]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __SCREAMING_SNAKE_CASE = "__test_patch_submodule_mock__" with patch_submodule(_test_patching , "os.path.join" , __snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ) -> Any: """simple docstring""" assert _test_patching.open is open __SCREAMING_SNAKE_CASE = "__test_patch_submodule_builtin_mock__" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , "open" , __snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = "__test_patch_submodule_missing_mock__" with patch_submodule(_test_patching , "pandas.read_csv" , __snake_case ): pass def _A ( ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = "__test_patch_submodule_missing_builtin_mock__" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , "len" , __snake_case ) is None with patch_submodule(_test_patching , "len" , __snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = "__test_patch_submodule_start_and_stop_mock__" __SCREAMING_SNAKE_CASE = patch_submodule(_test_patching , "open" , __snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ) -> str: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __SCREAMING_SNAKE_CASE = "__test_patch_submodule_successive_join__" __SCREAMING_SNAKE_CASE = "__test_patch_submodule_successive_dirname__" __SCREAMING_SNAKE_CASE = "__test_patch_submodule_successive_rename__" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , "os.path.join" , __snake_case ): with patch_submodule(_test_patching , "os.rename" , __snake_case ): with patch_submodule(_test_patching , "os.path.dirname" , __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , "os.rename" , __snake_case ): with patch_submodule(_test_patching , "os.path.join" , __snake_case ): with patch_submodule(_test_patching , "os.path.dirname" , __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = "__test_patch_submodule_doesnt_exist_mock__" with patch_submodule(_test_patching , "__module_that_doesn_exist__.__attribute_that_doesn_exist__" , __snake_case ): pass with patch_submodule(_test_patching , "os.__attribute_that_doesn_exist__" , __snake_case ): pass
214
1
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def lowercase__ ( lowerCamelCase : Dict ) -> Dict: lowerCAmelCase__ : Dict = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) lowerCAmelCase__ : Any = MaskFormerConfig(backbone_config=_lowerCAmelCase ) lowerCAmelCase__ : str = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok lowerCAmelCase__ : Dict = 8_4_7 lowerCAmelCase__ : int = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok lowerCAmelCase__ : List[Any] = 1_5_0 lowerCAmelCase__ : List[str] = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok lowerCAmelCase__ : Union[str, Any] = 1_7_1 lowerCAmelCase__ : Any = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO lowerCAmelCase__ : Tuple = 1_3_3 lowerCAmelCase__ : Dict = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok lowerCAmelCase__ : List[str] = 1_9 lowerCAmelCase__ : int = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok lowerCAmelCase__ : Optional[int] = 6_5 lowerCAmelCase__ : Union[str, Any] = "mapillary-vistas-id2label.json" lowerCAmelCase__ : int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) lowerCAmelCase__ : Tuple = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} return config def lowercase__ ( lowerCamelCase : str ) -> str: lowerCAmelCase__ : Optional[int] = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.layers.{i}.downsample.reduction.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.layers.{i}.downsample.norm.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.layers.{i}.downsample.norm.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((F"backbone.norm{i}.weight", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight") ) rename_keys.append((F"backbone.norm{i}.bias", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F"sem_seg_head.adapter_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight") ) rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight") ) rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias") ) # cross-attention out projection rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias") ) # MLP 1 rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", F"model.transformer_module.decoder.layers.{idx}.fc1.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", F"model.transformer_module.decoder.layers.{idx}.fc1.bias") ) # MLP 2 rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", F"model.transformer_module.decoder.layers.{idx}.fc2.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", F"model.transformer_module.decoder.layers.{idx}.fc2.bias") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias") ) # layernorm 3 (final layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.weight", F"mask_embedder.{i}.0.weight") ) rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.bias", F"mask_embedder.{i}.0.bias") ) # fmt: on return rename_keys def lowercase__ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] ) -> int: lowerCAmelCase__ : Optional[Any] = dct.pop(_lowerCAmelCase ) lowerCAmelCase__ : Optional[Any] = val def lowercase__ ( lowerCamelCase : List[Any] , lowerCamelCase : Any ) -> Tuple: lowerCAmelCase__ : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCAmelCase__ : Dict = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCAmelCase__ : List[str] = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.weight" ) lowerCAmelCase__ : Optional[int] = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : str = in_proj_weight[:dim, :] lowerCAmelCase__ : List[Any] = in_proj_bias[: dim] lowerCAmelCase__ : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] lowerCAmelCase__ : str = in_proj_bias[ dim : dim * 2 ] lowerCAmelCase__ : Dict = in_proj_weight[ -dim :, : ] lowerCAmelCase__ : int = in_proj_bias[-dim :] # fmt: on def lowercase__ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] ) -> List[Any]: # fmt: off lowerCAmelCase__ : Optional[Any] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCAmelCase__ : List[Any] = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight" ) lowerCAmelCase__ : Union[str, Any] = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : str = in_proj_weight[: hidden_size, :] lowerCAmelCase__ : Any = in_proj_bias[:config.hidden_size] lowerCAmelCase__ : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCAmelCase__ : Any = in_proj_bias[hidden_size : hidden_size * 2] lowerCAmelCase__ : int = in_proj_weight[-hidden_size :, :] lowerCAmelCase__ : Dict = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCAmelCase__ : str = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight" ) lowerCAmelCase__ : List[Any] = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : List[Any] = in_proj_weight[: hidden_size, :] lowerCAmelCase__ : Tuple = in_proj_bias[:config.hidden_size] lowerCAmelCase__ : Any = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCAmelCase__ : Union[str, Any] = in_proj_bias[hidden_size : hidden_size * 2] lowerCAmelCase__ : int = in_proj_weight[-hidden_size :, :] lowerCAmelCase__ : Optional[int] = in_proj_bias[-hidden_size :] # fmt: on def lowercase__ ( ) -> Optional[int]: lowerCAmelCase__ : str = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ : int = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def lowercase__ ( lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : List[Any] = False ) -> List[str]: lowerCAmelCase__ : int = get_maskformer_config(_lowerCAmelCase ) # load original state_dict with open(_lowerCAmelCase , "rb" ) as f: lowerCAmelCase__ : Any = pickle.load(_lowerCAmelCase ) lowerCAmelCase__ : int = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys lowerCAmelCase__ : Union[str, Any] = create_rename_keys(_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_swin_q_k_v(_lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): lowerCAmelCase__ : Any = torch.from_numpy(_lowerCAmelCase ) # load 🤗 model lowerCAmelCase__ : List[Any] = MaskFormerForInstanceSegmentation(_lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_lowerCAmelCase , param.shape ) lowerCAmelCase__ , lowerCAmelCase__ : Any = model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_lowerCAmelCase ) == 0, F"Unexpected keys: {unexpected_keys}" # verify results lowerCAmelCase__ : List[Any] = prepare_img() if "vistas" in model_name: lowerCAmelCase__ : Optional[int] = 6_5 elif "cityscapes" in model_name: lowerCAmelCase__ : str = 6_5_5_3_5 else: lowerCAmelCase__ : Any = 2_5_5 lowerCAmelCase__ : int = True if "ade" in model_name else False lowerCAmelCase__ : Optional[Any] = MaskFormerImageProcessor(ignore_index=_lowerCAmelCase , reduce_labels=_lowerCAmelCase ) lowerCAmelCase__ : int = image_processor(_lowerCAmelCase , return_tensors="pt" ) lowerCAmelCase__ : Dict = model(**_lowerCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": lowerCAmelCase__ : List[Any] = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"Saving model and image processor to {pytorch_dump_folder_path}" ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F"nielsr/{model_name}" ) image_processor.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __UpperCAmelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
308
class __magic_name__ : '''simple docstring''' def __init__( self: Optional[int] ): SCREAMING_SNAKE_CASE_ = {} def _A ( self: Optional[Any] ): print(self.vertex ) for i in self.vertex: print(_lowerCamelCase , ''' -> ''' , ''' -> '''.join([str(_lowerCamelCase ) for j in self.vertex[i]] ) ) def _A ( self: Optional[int] , _lowerCamelCase: int , _lowerCamelCase: int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCamelCase ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def _A ( self: int ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCamelCase , _lowerCamelCase ) def _A ( self: Dict , _lowerCamelCase: int , _lowerCamelCase: list ): # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(_lowerCamelCase , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
234
0
from __future__ import annotations def __UpperCamelCase ( lowerCAmelCase__ : int ): __a : Union[str, Any] = str(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) == 9 and set(lowerCAmelCase__ ) == set('''123456789''' ) def __UpperCamelCase ( ): for base_num in range(9_9_9_9 , 4_9_9_9 , -1 ): __a : List[str] = 1_0_0_0_0_2 * base_num if is_9_pandigital(lowerCAmelCase__ ): return candidate for base_num in range(3_3_3 , 9_9 , -1 ): __a : Optional[Any] = 1_0_0_2_0_0_3 * base_num if is_9_pandigital(lowerCAmelCase__ ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
714
from collections.abc import Callable import numpy as np def __UpperCamelCase ( lowerCAmelCase__ : Callable , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ): __a : List[Any] = int(np.ceil((x_end - xa) / step_size ) ) __a : str = np.zeros((n + 1,) ) __a : List[Any] = ya __a : str = xa for k in range(lowerCAmelCase__ ): __a : int = y[k] + step_size * ode_func(lowerCAmelCase__ , y[k] ) __a : List[str] = y[k] + ( (step_size / 2) * (ode_func(lowerCAmelCase__ , y[k] ) + ode_func(x + step_size , lowerCAmelCase__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
326
0
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase ( self ): UpperCAmelCase__: str = FlaxXLMRobertaModel.from_pretrained("xlm-roberta-base" ) UpperCAmelCase__: Any = AutoTokenizer.from_pretrained("xlm-roberta-base" ) UpperCAmelCase__: int = "The dog is cute and lives in the garden house" UpperCAmelCase__: List[str] = jnp.array([tokenizer.encode(lowerCamelCase__ )] ) UpperCAmelCase__: str = (1, 1_2, 7_6_8) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase__: Any = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) UpperCAmelCase__: Any = model(lowerCamelCase__ )["last_hidden_state"] self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , lowerCamelCase__ , atol=1e-3 ) )
113
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) @dataclass class __UpperCamelCase : '''simple docstring''' __magic_name__ = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) __magic_name__ = field( default=_a ,metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __magic_name__ = field( default=_a ,metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } ,) __magic_name__ = field( default=_a ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } ,) __magic_name__ = field( default=_a ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } ,) __magic_name__ = field( default=_a ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } ,) @dataclass class __UpperCamelCase : '''simple docstring''' __magic_name__ = field( default=_a ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __magic_name__ = field( default=_a ,metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) __magic_name__ = field( default=_a ,metadata={"help": "Train language if it is different from the evaluation language."} ) __magic_name__ = field( default=_a ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __magic_name__ = field( default=_a ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __magic_name__ = field( default=_a ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) __magic_name__ = field( default=_a ,metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} ,) __magic_name__ = field( default=_a ,metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} ,) __magic_name__ = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) __magic_name__ = field( default=_a ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) __magic_name__ = field( default=_a ,metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} ,) def _A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase__: Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__: List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" ,SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase__: int = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE ) datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. UpperCAmelCase__: Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase__: Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: UpperCAmelCase__: Optional[int] = load_dataset( "xnli" ,model_args.language ,split="train" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) else: UpperCAmelCase__: Optional[Any] = load_dataset( "xnli" ,model_args.train_language ,split="train" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) UpperCAmelCase__: List[Any] = train_dataset.features["label"].names if training_args.do_eval: UpperCAmelCase__: List[Any] = load_dataset( "xnli" ,model_args.language ,split="validation" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) UpperCAmelCase__: Tuple = eval_dataset.features["label"].names if training_args.do_predict: UpperCAmelCase__: Optional[Any] = load_dataset( "xnli" ,model_args.language ,split="test" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) UpperCAmelCase__: List[Any] = predict_dataset.features["label"].names # Labels UpperCAmelCase__: Union[str, Any] = len(SCREAMING_SNAKE_CASE ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase__: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=SCREAMING_SNAKE_CASE ,idalabel={str(SCREAMING_SNAKE_CASE ): label for i, label in enumerate(SCREAMING_SNAKE_CASE )} ,labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE )} ,finetuning_task="xnli" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) UpperCAmelCase__: Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,do_lower_case=model_args.do_lower_case ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) UpperCAmelCase__: Optional[Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(".ckpt" in model_args.model_name_or_path ) ,config=SCREAMING_SNAKE_CASE ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: UpperCAmelCase__: Union[str, Any] = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch UpperCAmelCase__: Union[str, Any] = False def preprocess_function(SCREAMING_SNAKE_CASE ): # Tokenize the texts return tokenizer( examples["premise"] ,examples["hypothesis"] ,padding=SCREAMING_SNAKE_CASE ,max_length=data_args.max_seq_length ,truncation=SCREAMING_SNAKE_CASE ,) if training_args.do_train: if data_args.max_train_samples is not None: UpperCAmelCase__: Optional[Any] = min(len(SCREAMING_SNAKE_CASE ) ,data_args.max_train_samples ) UpperCAmelCase__: Optional[Any] = train_dataset.select(range(SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): UpperCAmelCase__: Dict = train_dataset.map( SCREAMING_SNAKE_CASE ,batched=SCREAMING_SNAKE_CASE ,load_from_cache_file=not data_args.overwrite_cache ,desc="Running tokenizer on train dataset" ,) # Log a few random samples from the training set: for index in random.sample(range(len(SCREAMING_SNAKE_CASE ) ) ,3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCAmelCase__: Optional[int] = min(len(SCREAMING_SNAKE_CASE ) ,data_args.max_eval_samples ) UpperCAmelCase__: List[Any] = eval_dataset.select(range(SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): UpperCAmelCase__: Optional[Any] = eval_dataset.map( SCREAMING_SNAKE_CASE ,batched=SCREAMING_SNAKE_CASE ,load_from_cache_file=not data_args.overwrite_cache ,desc="Running tokenizer on validation dataset" ,) if training_args.do_predict: if data_args.max_predict_samples is not None: UpperCAmelCase__: Dict = min(len(SCREAMING_SNAKE_CASE ) ,data_args.max_predict_samples ) UpperCAmelCase__: Optional[Any] = predict_dataset.select(range(SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): UpperCAmelCase__: int = predict_dataset.map( SCREAMING_SNAKE_CASE ,batched=SCREAMING_SNAKE_CASE ,load_from_cache_file=not data_args.overwrite_cache ,desc="Running tokenizer on prediction dataset" ,) # Get the metric function UpperCAmelCase__: str = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE ): UpperCAmelCase__: str = p.predictions[0] if isinstance(p.predictions ,SCREAMING_SNAKE_CASE ) else p.predictions UpperCAmelCase__: Union[str, Any] = np.argmax(SCREAMING_SNAKE_CASE ,axis=1 ) return metric.compute(predictions=SCREAMING_SNAKE_CASE ,references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: UpperCAmelCase__: Any = default_data_collator elif training_args.fpaa: UpperCAmelCase__: Any = DataCollatorWithPadding(SCREAMING_SNAKE_CASE ,pad_to_multiple_of=8 ) else: UpperCAmelCase__: Tuple = None # Initialize our Trainer UpperCAmelCase__: Dict = Trainer( model=SCREAMING_SNAKE_CASE ,args=SCREAMING_SNAKE_CASE ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=SCREAMING_SNAKE_CASE ,tokenizer=SCREAMING_SNAKE_CASE ,data_collator=SCREAMING_SNAKE_CASE ,) # Training if training_args.do_train: UpperCAmelCase__: Any = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase__: str = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase__: Any = last_checkpoint UpperCAmelCase__: Dict = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE ) UpperCAmelCase__: List[Any] = train_result.metrics UpperCAmelCase__: Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE ) ) UpperCAmelCase__: Tuple = min(SCREAMING_SNAKE_CASE ,len(SCREAMING_SNAKE_CASE ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" ,SCREAMING_SNAKE_CASE ) trainer.save_metrics("train" ,SCREAMING_SNAKE_CASE ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCAmelCase__: Any = trainer.evaluate(eval_dataset=SCREAMING_SNAKE_CASE ) UpperCAmelCase__: Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: int = min(SCREAMING_SNAKE_CASE ,len(SCREAMING_SNAKE_CASE ) ) trainer.log_metrics("eval" ,SCREAMING_SNAKE_CASE ) trainer.save_metrics("eval" ,SCREAMING_SNAKE_CASE ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__: Union[str, Any] = trainer.predict(SCREAMING_SNAKE_CASE ,metric_key_prefix="predict" ) UpperCAmelCase__: Optional[Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(SCREAMING_SNAKE_CASE ) ) UpperCAmelCase__: Union[str, Any] = min(SCREAMING_SNAKE_CASE ,len(SCREAMING_SNAKE_CASE ) ) trainer.log_metrics("predict" ,SCREAMING_SNAKE_CASE ) trainer.save_metrics("predict" ,SCREAMING_SNAKE_CASE ) UpperCAmelCase__: Any = np.argmax(SCREAMING_SNAKE_CASE ,axis=1 ) UpperCAmelCase__: Optional[int] = os.path.join(training_args.output_dir ,"predictions.txt" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE ,"w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(SCREAMING_SNAKE_CASE ): UpperCAmelCase__: int = label_list[item] writer.write(f"{index}\t{item}\n" ) if __name__ == "__main__": main()
113
1
"""simple docstring""" _snake_case = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
659
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
659
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase = 16 UpperCamelCase = 32 def _A ( lowerCAmelCase_ : Accelerator , lowerCAmelCase_ : int = 16 ): """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCAmelCase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCAmelCase_ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCAmelCase_ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ = 8 else: lowerCAmelCase__ = None return tokenizer.pad( lowerCAmelCase_ , padding="longest" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="pt" , ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader( tokenized_datasets["train"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) lowerCAmelCase__ = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase = mocked_dataloaders # noqa: F811 def _A ( lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCAmelCase_ ) == "1": lowerCAmelCase__ = 2 # New Code # lowerCAmelCase__ = int(args.gradient_accumulation_steps ) lowerCAmelCase__ = int(args.local_sgd_steps ) # Initialize accelerator lowerCAmelCase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCAmelCase_ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ = config["lr"] lowerCAmelCase__ = int(config["num_epochs"] ) lowerCAmelCase__ = int(config["seed"] ) lowerCAmelCase__ = int(config["batch_size"] ) lowerCAmelCase__ = evaluate.load("glue" , "mrpc" ) set_seed(lowerCAmelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler lowerCAmelCase__ = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() with LocalSGD( accelerator=lowerCAmelCase_ , model=lowerCAmelCase_ , local_sgd_steps=lowerCAmelCase_ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowerCAmelCase_ ): lowerCAmelCase__ = model(**lowerCAmelCase_ ) lowerCAmelCase__ = output.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ = model(**lowerCAmelCase_ ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) lowerCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowerCAmelCase_ ) def _A ( ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=lowerCAmelCase_ , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument( "--local_sgd_steps" , type=lowerCAmelCase_ , default=8 , help="Number of local SGD steps or None to disable local SGD" ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
61
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""")) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""") @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ]) class _snake_case ( unittest.TestCase): def A__ ( self : Dict ): if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split(), encoding="utf-8", check=__lowercase, ) assert hasattr(self, "env" ) def A__ ( self : Tuple, __lowercase : Tuple ): # configuration for running training on smdistributed Model Parallel lowercase__ = { "enabled": True, "processes_per_host": 8, } lowercase__ = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } lowercase__ = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} lowercase__ = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''', instance_count=__lowercase, instance_type=self.instance_type, debugger_hook_config=__lowercase, hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, }, metric_definitions=self.env.metric_definitions, distribution=__lowercase, py_version="py36", ) def A__ ( self : Union[str, Any], __lowercase : List[Any] ): TrainingJobAnalytics(__lowercase ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def A__ ( self : Dict, __lowercase : Optional[int] ): # create estimator lowercase__ = self.create_estimator(__lowercase ) # run training estimator.fit() # result dataframe lowercase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowercase__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowercase__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowercase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''', "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, __lowercase )
413
0
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( snake_case : int )-> List[str]: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def SCREAMING_SNAKE_CASE_ ( snake_case : dict[int, list[int]] )-> list[tuple[int, int]]: _lowerCamelCase = 0 _lowerCamelCase = len(snake_case ) # No of vertices in graph _lowerCamelCase = [0] * n _lowerCamelCase = [False] * n def dfs(snake_case : Dict , snake_case : Optional[Any] , snake_case : int , snake_case : Tuple ): _lowerCamelCase = True _lowerCamelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(snake_case , snake_case , snake_case , id_ ) _lowerCamelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge _lowerCamelCase = min(low[at] , low[to] ) _lowerCamelCase = [] for i in range(snake_case ): if not visited[i]: dfs(snake_case , -1 , snake_case , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration A_ : Optional[int] =[ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] A_ : List[Any] =[ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] A_ : Union[str, Any] =( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) A_ : int =( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) A_ : Dict =[ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def SCREAMING_SNAKE_CASE_ ( snake_case : Any , snake_case : Dict )-> Optional[int]: for tf_name, hf_name in patterns: _lowerCamelCase = k.replace(snake_case , snake_case ) return k def SCREAMING_SNAKE_CASE_ ( snake_case : dict , snake_case : dict )-> BigBirdPegasusForConditionalGeneration: _lowerCamelCase = BigBirdPegasusConfig(**snake_case ) _lowerCamelCase = BigBirdPegasusForConditionalGeneration(snake_case ) _lowerCamelCase = torch_model.state_dict() _lowerCamelCase = {} # separating decoder weights _lowerCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} _lowerCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): _lowerCamelCase = [k.endswith(snake_case ) for ending in KEYS_TO_IGNORE] if any(snake_case ): continue _lowerCamelCase = DECODER_PATTERNS _lowerCamelCase = rename_state_dict_key(snake_case , snake_case ) if new_k not in state_dict: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): _lowerCamelCase = v.T _lowerCamelCase = torch.from_numpy(snake_case ) assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): _lowerCamelCase = [k.endswith(snake_case ) for ending in KEYS_TO_IGNORE] if any(snake_case ): continue _lowerCamelCase = REMAINING_PATTERNS _lowerCamelCase = rename_state_dict_key(snake_case , snake_case ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): _lowerCamelCase = v.T _lowerCamelCase = torch.from_numpy(snake_case ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _lowerCamelCase = mapping['model.embed_positions.weight'] _lowerCamelCase = mapping.pop('model.embed_positions.weight' ) _lowerCamelCase , _lowerCamelCase = torch_model.load_state_dict(snake_case , strict=snake_case ) _lowerCamelCase = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[int] )-> Dict: _lowerCamelCase = tf.train.list_variables(snake_case ) _lowerCamelCase = {} _lowerCamelCase = ['global_step'] for name, shape in tqdm(snake_case , desc='converting tf checkpoint to dict' ): _lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue _lowerCamelCase = tf.train.load_variable(snake_case , snake_case ) _lowerCamelCase = array return tf_weights def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : str , snake_case : dict )-> List[str]: _lowerCamelCase = get_tf_weights_as_numpy(snake_case ) _lowerCamelCase = convert_bigbird_pegasus(snake_case , snake_case ) torch_model.save_pretrained(snake_case ) if __name__ == "__main__": A_ : Union[str, Any] =argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") A_ : Union[str, Any] =parser.parse_args() A_ : List[str] ={} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
222
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Union[str, Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ , lowercase_ : Any = emb.weight.shape lowercase_ : int = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) lowercase_ : List[str] = emb.weight.data return lin_layer def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Tuple = torch.load(_UpperCamelCase , map_location="cpu" ) lowercase_ : Optional[int] = mam_aaa["args"] or mam_aaa["cfg"]["model"] lowercase_ : int = mam_aaa["model"] remove_ignore_keys_(_UpperCamelCase ) lowercase_ : int = state_dict["encoder.embed_tokens.weight"].shape[0] lowercase_ : Optional[Any] = MaMaaaConfig( vocab_size=_UpperCamelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) lowercase_ : Optional[int] = state_dict["decoder.embed_tokens.weight"] lowercase_ : List[str] = MaMaaaForConditionalGeneration(_UpperCamelCase ) model.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) lowercase_ : List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
620
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Union[str, Any] , snake_case__ : int , snake_case__ : List[str]=2 , snake_case__ : List[str]=3 , snake_case__ : Tuple=4 , snake_case__ : Optional[Any]=2 , snake_case__ : int=7 , snake_case__ : Optional[Any]=True , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : int=True , snake_case__ : Optional[Any]=9_9 , snake_case__ : Optional[Any]=3_6 , snake_case__ : Tuple=3 , snake_case__ : int=4 , snake_case__ : Tuple=3_7 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Any=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Dict=5_1_2 , snake_case__ : Optional[int]=1_6 , snake_case__ : Dict=2 , snake_case__ : Dict=0.02 , snake_case__ : List[Any]=6 , snake_case__ : int=6 , snake_case__ : Tuple=3 , snake_case__ : List[Any]=4 , snake_case__ : List[str]=None , snake_case__ : Optional[Any]=1_0_0_0 , ) -> Optional[int]: _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = image_size _lowerCamelCase = patch_size _lowerCamelCase = text_seq_length _lowerCamelCase = is_training _lowerCamelCase = use_input_mask _lowerCamelCase = use_token_type_ids _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = type_vocab_size _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = coordinate_size _lowerCamelCase = shape_size _lowerCamelCase = num_labels _lowerCamelCase = num_choices _lowerCamelCase = scope _lowerCamelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowerCamelCase = text_seq_length _lowerCamelCase = (image_size // patch_size) ** 2 + 1 _lowerCamelCase = self.text_seq_length + self.image_seq_length def _snake_case ( self : int ) -> Any: _lowerCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _lowerCamelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCamelCase = bbox[i, j, 3] _lowerCamelCase = bbox[i, j, 1] _lowerCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCamelCase = bbox[i, j, 2] _lowerCamelCase = bbox[i, j, 0] _lowerCamelCase = t _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = None if self.use_input_mask: _lowerCamelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) _lowerCamelCase = None if self.use_token_type_ids: _lowerCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _lowerCamelCase = None _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _lowerCamelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _snake_case ( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : str , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : Optional[Any] ) -> Any: _lowerCamelCase = LayoutLMvaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() # text + image _lowerCamelCase = model(snake_case__ , pixel_values=snake_case__ ) _lowerCamelCase = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) _lowerCamelCase = model(snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , token_type_ids=snake_case__ ) _lowerCamelCase = model(snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _lowerCamelCase = model(snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _lowerCamelCase = model(pixel_values=snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _snake_case ( self : Any , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : str , snake_case__ : str , snake_case__ : int ) -> List[Any]: _lowerCamelCase = self.num_labels _lowerCamelCase = LayoutLMvaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCamelCase = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Dict , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Dict ) -> Optional[Any]: _lowerCamelCase = self.num_labels _lowerCamelCase = LayoutLMvaForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCamelCase = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _snake_case ( self : str , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Any ) -> Dict: _lowerCamelCase = LayoutLMvaForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCamelCase = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : str ) -> List[str]: _lowerCamelCase = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) = config_and_inputs _lowerCamelCase = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def _snake_case ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Union[str, Any] ) -> str: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def _snake_case ( self : str ) -> Any: _lowerCamelCase = LayoutLMvaModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def _snake_case ( self : List[str] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Dict=False ) -> str: _lowerCamelCase = copy.deepcopy(snake_case__ ) if model_class in get_values(snake_case__ ): _lowerCamelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(snake_case__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(snake_case__ ): _lowerCamelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) elif model_class in get_values(snake_case__ ): _lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) _lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) elif model_class in [ *get_values(snake_case__ ), ]: _lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) elif model_class in [ *get_values(snake_case__ ), ]: _lowerCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=snake_case__ , ) return inputs_dict def _snake_case ( self : Any ) -> List[str]: self.config_tester.run_common_tests() def _snake_case ( self : int ) -> Optional[int]: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _snake_case ( self : int ) -> Any: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase = type self.model_tester.create_and_check_model(*snake_case__ ) def _snake_case ( self : int ) -> Any: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def _snake_case ( self : Any ) -> Any: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) def _snake_case ( self : int ) -> List[Any]: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) @slow def _snake_case ( self : Optional[int] ) -> List[Any]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = LayoutLMvaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowerCamelCase ( ) -> List[Any]: _lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : int ) -> Any: return LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) if is_vision_available() else None @slow def _snake_case ( self : List[str] ) -> Tuple: _lowerCamelCase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(snake_case__ ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=snake_case__ , return_tensors='pt' ).pixel_values.to(snake_case__ ) _lowerCamelCase = torch.tensor([[1, 2]] ) _lowerCamelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _lowerCamelCase = model( input_ids=input_ids.to(snake_case__ ) , bbox=bbox.to(snake_case__ ) , pixel_values=pixel_values.to(snake_case__ ) , ) # verify the logits _lowerCamelCase = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , snake_case__ ) _lowerCamelCase = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case__ , atol=1e-4 ) )
544
0
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance _lowercase : Optional[int] = 6_378_137.0 _lowercase : Any = 6_356_752.314_245 _lowercase : Any = 6_3_7_8_1_3_7 def snake_case__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =(AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude lowerCamelCase__ : str =atan((1 - flattening) * tan(radians(__lowerCamelCase ) ) ) lowerCamelCase__ : List[Any] =atan((1 - flattening) * tan(radians(__lowerCamelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius lowerCamelCase__ : List[str] =haversine_distance(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values lowerCamelCase__ : Any =(b_lata + b_lata) / 2 lowerCamelCase__ : List[Any] =(b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) lowerCamelCase__ : List[Any] =(sin(__lowerCamelCase ) ** 2) * (cos(__lowerCamelCase ) ** 2) lowerCamelCase__ : Any =cos(sigma / 2 ) ** 2 lowerCamelCase__ : List[str] =(sigma - sin(__lowerCamelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) lowerCamelCase__ : List[str] =(cos(__lowerCamelCase ) ** 2) * (sin(__lowerCamelCase ) ** 2) lowerCamelCase__ : Dict =sin(sigma / 2 ) ** 2 lowerCamelCase__ : List[str] =(sigma + sin(__lowerCamelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
625
"""simple docstring""" _lowercase : Optional[Any] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
625
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _a : Any = logging.get_logger(__name__) class _lowercase ( __lowercase ): def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : List[str] ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
56
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = KandinskyInpaintPipeline UpperCAmelCase__ : Optional[int] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCAmelCase__ : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCAmelCase__ : Optional[int] = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ : Any = False @property def __lowercase ( self ) -> Optional[int]: return 3_2 @property def __lowercase ( self ) -> int: return 3_2 @property def __lowercase ( self ) -> List[str]: return self.time_input_dim @property def __lowercase ( self ) -> List[str]: return self.time_input_dim * 4 @property def __lowercase ( self ) -> Optional[Any]: return 1_0_0 @property def __lowercase ( self ) -> Optional[Any]: _a : Any = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _a : Optional[int] = MultilingualCLIP(_a ) _a : Tuple = text_encoder.eval() return text_encoder @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[str] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a : Dict = UNetaDConditionModel(**_a ) return model @property def __lowercase ( self ) -> Optional[int]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _a : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self ) -> Any: _a : List[Any] = self.dummy_text_encoder _a : Optional[Any] = self.dummy_tokenizer _a : Optional[Any] = self.dummy_unet _a : Union[str, Any] = self.dummy_movq _a : Tuple = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) _a : str = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowercase ( self , _a , _a=0 ) -> int: _a : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _a : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _a : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_a ) ).to(_a ) _a : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : Optional[int] = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask _a : Union[str, Any] = np.ones((6_4, 6_4) , dtype=np.floataa ) _a : List[str] = 0 if str(_a ).startswith('''mps''' ): _a : Tuple = torch.manual_seed(_a ) else: _a : Any = torch.Generator(device=_a ).manual_seed(_a ) _a : Any = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowercase ( self ) -> Optional[Any]: _a : Optional[Any] = '''cpu''' _a : List[Any] = self.get_dummy_components() _a : Tuple = self.pipeline_class(**_a ) _a : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Any = pipe(**self.get_dummy_inputs(_a ) ) _a : str = output.images _a : Tuple = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : Tuple = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) _a : str = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowercase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a : Tuple = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) _a : Any = 0 _a : Optional[Any] = '''a hat''' _a : Optional[Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _a : Tuple = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _a : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a : Dict = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a : Optional[int] = pipeline( _a , image=_a , mask_image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) _a : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_a , _a )
14
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy lowerCAmelCase: int = logging.get_logger(__name__) class a__( lowerCamelCase__ ): def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : int , __snake_case : float , **__snake_case : Optional[int] ): a : Optional[Any] = feature_size a : Tuple = sampling_rate a : str = padding_value a : Any = kwargs.pop('padding_side' , 'right' ) a : Tuple = kwargs.pop('return_attention_mask' , __snake_case ) super().__init__(**__snake_case ) def lowercase_ ( self : Tuple , __snake_case : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case : Union[bool, str, PaddingStrategy] = True , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Union[str, TensorType]] = None , ): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): a : Union[str, Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) a : Tuple = processed_features[self.model_input_names[0]] a : str = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: a : Dict = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch a : Optional[int] = required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. a : Dict = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): a : Tuple = required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): a : Any = 'tf' elif is_torch_tensor(__snake_case ): a : Optional[Any] = 'pt' elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): a : List[Any] = 'np' else: raise ValueError( F"""type of {first_element} unknown: {type(__snake_case )}. """ 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): a : List[Any] = to_numpy(__snake_case ) else: a : Tuple = [to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy a : Any = self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) a : int = processed_features[self.model_input_names[0]] a : Dict = len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) a : Optional[int] = [] for i in range(__snake_case ): a : int = {k: v[i] for k, v in processed_features.items()} # truncation a : List[str] = self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length a : List[str] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) a : Tuple = PaddingStrategy.MAX_LENGTH a : int = {} for i in range(__snake_case ): # padding a : int = self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: a : int = [] if value.dtype is np.dtype(np.floataa ): a : List[str] = value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def lowercase_ ( self : List[str] , __snake_case : Union[Dict[str, np.ndarray], BatchFeature] , __snake_case : Optional[int] = None , __snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ): a : List[str] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: a : Any = len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): a : Dict = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of a : List[Any] = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: a : Union[str, Any] = np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: a : Tuple = max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: a : Any = np.pad( processed_features['attention_mask'] , (0, difference) ) a : Optional[Any] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) a : Optional[int] = np.pad( __snake_case , __snake_case , 'constant' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: a : Optional[int] = np.pad( processed_features['attention_mask'] , (difference, 0) ) a : Optional[Any] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) a : List[Any] = np.pad( __snake_case , __snake_case , 'constant' , constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def lowercase_ ( self : List[str] , __snake_case : Union[Dict[str, np.ndarray], BatchFeature] , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) a : Dict = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): a : Optional[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of a : str = len(__snake_case ) > max_length if needs_to_be_truncated: a : str = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: a : List[str] = processed_features['attention_mask'][:max_length] return processed_features def lowercase_ ( self : Dict , __snake_case : Optional[Any]=False , __snake_case : Optional[int]=None ): # Get padding strategy if padding is not False: if padding is True: a : Union[str, Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): a : List[Any] = PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): a : List[str] = padding else: a : Dict = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
195
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowerCAmelCase: List[str] = TypeVar('T') def lowerCamelCase__ ( _A ): return (position - 1) // 2 def lowerCamelCase__ ( _A ): return (2 * position) + 1 def lowerCamelCase__ ( _A ): return (2 * position) + 2 class a__( Generic[T] ): def __init__( self : Optional[Any] ): a : list[tuple[T, int]] = [] a : dict[T, int] = {} a : int = 0 def __len__( self : Union[str, Any] ): return self.elements def __repr__( self : Any ): return str(self.heap ) def lowercase_ ( self : Optional[int] ): # Check if the priority queue is empty return self.elements == 0 def lowercase_ ( self : Union[str, Any] , __snake_case : T , __snake_case : int ): # Add an element with given priority to the queue self.heap.append((elem, weight) ) a : int = self.elements self.elements += 1 self._bubble_up(__snake_case ) def lowercase_ ( self : Union[str, Any] ): # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) a , a : str = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: a , a : List[Any] = self.heap[0] self._bubble_down(__snake_case ) return elem def lowercase_ ( self : List[str] , __snake_case : T , __snake_case : int ): # Update the weight of the given key a : Any = self.position_map[elem] a : Union[str, Any] = (elem, weight) if position > 0: a : Optional[Any] = get_parent_position(__snake_case ) a , a : Union[str, Any] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__snake_case ) else: self._bubble_down(__snake_case ) else: self._bubble_down(__snake_case ) def lowercase_ ( self : int , __snake_case : T ): # Place a node at the proper position (upward movement) [to be used internally # only] a : Union[str, Any] = self.position_map[elem] if curr_pos == 0: return None a : Union[str, Any] = get_parent_position(__snake_case ) a , a : Tuple = self.heap[curr_pos] a , a : List[Any] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__snake_case , __snake_case ) return self._bubble_up(__snake_case ) return None def lowercase_ ( self : Tuple , __snake_case : T ): # Place a node at the proper position (downward movement) [to be used # internally only] a : str = self.position_map[elem] a , a : List[Any] = self.heap[curr_pos] a : int = get_child_left_position(__snake_case ) a : Dict = get_child_right_position(__snake_case ) if child_left_position < self.elements and child_right_position < self.elements: a , a : int = self.heap[child_left_position] a , a : Optional[Any] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__snake_case , __snake_case ) return self._bubble_down(__snake_case ) if child_left_position < self.elements: a , a : Dict = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__snake_case , __snake_case ) return self._bubble_down(__snake_case ) else: return None if child_right_position < self.elements: a , a : List[Any] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__snake_case , __snake_case ) return self._bubble_down(__snake_case ) return None def lowercase_ ( self : List[Any] , __snake_case : int , __snake_case : int ): # Swap the nodes at the given positions a : Optional[int] = self.heap[nodea_pos][0] a : int = self.heap[nodea_pos][0] a , a : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) a : Tuple = nodea_pos a : Any = nodea_pos class a__( Generic[T] ): def __init__( self : Optional[int] ): a : dict[T, dict[T, int]] = {} a : int = 0 def __repr__( self : List[str] ): return str(self.connections ) def __len__( self : str ): return self.nodes def lowercase_ ( self : int , __snake_case : T ): # Add a node in the graph if it is not in the graph if node not in self.connections: a : Optional[int] = {} self.nodes += 1 def lowercase_ ( self : Dict , __snake_case : T , __snake_case : T , __snake_case : int ): # Add an edge between 2 nodes in the graph self.add_node(__snake_case ) self.add_node(__snake_case ) a : Any = weight a : Dict = weight def lowerCamelCase__ ( _A , ): a : dict[T, int] = {node: maxsize for node in graph.connections} a : dict[T, T | None] = {node: None for node in graph.connections} a : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_A , _A ) if priority_queue.is_empty(): return dist, parent # initialization a : int = priority_queue.extract_min() a : Dict = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: a : Tuple = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_A , dist[neighbour] ) a : Dict = node # running prim's algorithm while not priority_queue.is_empty(): a : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: a : int = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_A , dist[neighbour] ) a : Optional[int] = node return dist, parent
195
1
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Any , a_ : Union[str, Any]=13 , a_ : Any=7 , a_ : Any=True , a_ : Dict=True , a_ : Union[str, Any]=False , a_ : Tuple=True , a_ : str=99 , a_ : Tuple=64 , a_ : Tuple=5 , a_ : Union[str, Any]=4 , a_ : Dict=64 , a_ : Union[str, Any]="gelu" , a_ : Dict=0.1 , a_ : List[str]=0.1 , a_ : Dict=512 , a_ : Tuple=16 , a_ : str=2 , a_ : Any=0.02 , a_ : List[Any]=3 , a_ : Tuple=4 , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def A ( self : int ): """simple docstring""" return MPNetConfig.from_pretrained("microsoft/mpnet-base" ) def A ( self : str ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = ids_tensor([self.batch_size] , self.num_choices ) __snake_case = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : List[str] ): """simple docstring""" return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A ( self : Tuple , a_ : int , a_ : str , a_ : Optional[int] , a_ : List[Any] , a_ : str , a_ : Optional[Any] ): """simple docstring""" __snake_case = MPNetModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , a_ ) __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : Any , a_ : int , a_ : Tuple , a_ : str , a_ : int , a_ : str , a_ : List[Any] ): """simple docstring""" __snake_case = MPNetForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Any , a_ : Any , a_ : int , a_ : Union[str, Any] , a_ : Dict , a_ : Optional[Any] , a_ : Any ): """simple docstring""" __snake_case = self.num_labels __snake_case = MPNetForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Optional[Any] , a_ : Any , a_ : Union[str, Any] , a_ : Union[str, Any] , a_ : Union[str, Any] , a_ : List[Any] , a_ : List[Any] ): """simple docstring""" __snake_case = self.num_choices __snake_case = MPNetForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() __snake_case = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Dict , a_ : List[str] , a_ : str , a_ : Union[str, Any] , a_ : str , a_ : Optional[int] , a_ : Optional[Any] ): """simple docstring""" __snake_case = self.num_labels __snake_case = MPNetForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) = config_and_inputs __snake_case = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": MPNetModel, """fill-mask""": MPNetForMaskedLM, """question-answering""": MPNetForQuestionAnswering, """text-classification""": MPNetForSequenceClassification, """token-classification""": MPNetForTokenClassification, """zero-shot""": MPNetForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True def A ( self : List[Any] ): """simple docstring""" __snake_case = MPNetModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , hidden_size=37 ) def A ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*a_ ) def A ( self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*a_ ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*a_ ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def A ( self : Optional[Any] ): """simple docstring""" __snake_case = MPNetModel.from_pretrained("microsoft/mpnet-base" ) __snake_case = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) __snake_case = model(a_ )[0] __snake_case = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a_ ) __snake_case = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , a_ , atol=1e-4 ) )
69
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Any =logging.get_logger(__name__) __lowerCAmelCase : int ="https://openaipublic.azureedge.net/jukebox/models/" __lowerCAmelCase : Any ={ "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def UpperCamelCase ( _lowerCamelCase : str ): if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: A__ = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: A__ = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: A__ = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: A__ = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: A__ = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: A__ = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: A__ = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: A__ = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def UpperCamelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : str ): A__ = {} import re A__ = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) A__ = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) A__ = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) A__ = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) A__ = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCamelCase ): A__ = re_encoder_block_conv_in.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) A__ = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" A__ = re_encoder_block_conv_in.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCamelCase ): A__ = re_encoder_block_resnet.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) A__ = {"1": 1, "3": 2}[groups[-2]] A__ = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." A__ = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" A__ = prefix + resnet_block A__ = re_encoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCamelCase ): A__ = re_encoder_block_proj_out.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" A__ = re_encoder_block_proj_out.sub(_lowerCamelCase , _lowerCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCamelCase ): A__ = re_decoder_block_conv_out.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 A__ = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" A__ = re_decoder_block_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCamelCase ): A__ = re_decoder_block_resnet.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 A__ = {"1": 1, "3": 2}[groups[-2]] A__ = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." A__ = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" A__ = prefix + resnet_block A__ = re_decoder_block_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCamelCase ): A__ = re_decoder_block_proj_in.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" A__ = re_decoder_block_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCamelCase ): A__ = re_prior_cond_conv_out.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 A__ = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" A__ = re_prior_cond_conv_out.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCamelCase ): A__ = re_prior_cond_resnet.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 A__ = {"1": 1, "3": 2}[groups[-2]] A__ = F"conditioner_blocks.upsampler.upsample_block.{block_index}." A__ = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" A__ = prefix + resnet_block A__ = re_prior_cond_resnet.sub(_lowerCamelCase , _lowerCamelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCamelCase ): A__ = re_prior_cond_proj_in.match(_lowerCamelCase ) A__ = regex_match.groups() A__ = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" A__ = re_prior_cond_proj_in.sub(_lowerCamelCase , _lowerCamelCase ) # keep original key else: A__ = original_key A__ = replace_key(_lowerCamelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: A__ = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) A__ = original_key A__ = original_key A__ = value return new_dict @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : str=None , _lowerCamelCase : Dict=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): A__ = requests.get(F"{PREFIX}{file}" , allow_redirects=_lowerCamelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_lowerCamelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) A__ = MODEL_MAPPING[model_name.split("/" )[-1]] A__ = JukeboxConfig.from_pretrained(_lowerCamelCase ) A__ = JukeboxModel(_lowerCamelCase ) A__ = [] A__ = {} for i, dict_name in enumerate(_lowerCamelCase ): A__ = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] A__ = {} for k in old_dic.keys(): if k.endswith(".b" ): A__ = old_dic[k] elif k.endswith(".w" ): A__ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: A__ = old_dic[k] else: A__ = old_dic[k] A__ = "vqvae" if i == 0 else F"priors.{3 - i}" A__ = fix_jukebox_keys(_lowerCamelCase , model.state_dict() , _lowerCamelCase , _lowerCamelCase ) weight_dict.append(_lowerCamelCase ) A__ = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_lowerCamelCase , _lowerCamelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) return weight_dict if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) __lowerCAmelCase : int =parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
440
0
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path lowerCamelCase :Optional[int] = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def a ( lowerCamelCase__=True ): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__UpperCAmelCase ) ) class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : int = None __SCREAMING_SNAKE_CASE : Dict = None def _a (self , lowercase , lowercase ): with TemporaryDirectory() as tmp_dir: A_ : Optional[Any] = dataset_module_factory(lowercase , cache_dir=lowercase ) A_ : Optional[Any] = import_main_class(dataset_module.module_path , dataset=lowercase ) A_ : DatasetBuilder = builder_cls( cache_dir=lowercase , config_name=lowercase , hash=dataset_module.hash , ) A_ : int = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowercase ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) A_ : Optional[int] = cached_path(lowercase , cache_dir=lowercase ) self.assertTrue(os.path.exists(lowercase ) ) @pytest.mark.integration def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[int] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" A_ : Union[str, Any] = dataset_module_factory("""wikipedia""" , cache_dir=lowerCamelCase__ ) A_ : List[str] = import_main_class(dataset_module.module_path ) A_ : DatasetBuilder = builder_cls( cache_dir=lowerCamelCase__ , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam A_ : List[str] = None builder_instance.download_and_prepare() A_ : Dict = builder_instance.as_dataset() assert ds @pytest.mark.integration def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = dataset_module_factory("""wikipedia""" , cache_dir=lowerCamelCase__ ) A_ : List[Any] = import_main_class(dataset_module.module_path , dataset=lowerCamelCase__ ) A_ : DatasetBuilder = builder_cls( cache_dir=lowerCamelCase__ , config_name="""20220301.frr""" , hash=dataset_module.hash , ) A_ : Optional[int] = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert "train" in ds assert isinstance(ds["""train"""] , lowerCamelCase__ ) assert next(iter(ds["""train"""] ) )
686
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowerCamelCase :int = logging.get_logger('''transformers.models.encodec''') lowerCamelCase :int = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } lowerCamelCase :List[str] = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } lowerCamelCase :Union[str, Any] = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } lowerCamelCase :Dict = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } lowerCamelCase :int = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } lowerCamelCase :str = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowerCamelCase :List[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowerCamelCase :Tuple = [] lowerCamelCase :Dict = [] def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' for attribute in key.split(""".""" ): A_ : Optional[Any] = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: A_ : Optional[int] = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: A_ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": A_ : Optional[int] = value elif weight_type == "weight_g": A_ : Optional[int] = value elif weight_type == "weight_v": A_ : Dict = value elif weight_type == "bias": A_ : Dict = value elif weight_type == "running_mean": A_ : Optional[Any] = value elif weight_type == "running_var": A_ : int = value elif weight_type == "num_batches_tracked": A_ : Optional[Any] = value elif weight_type == "weight_ih_l0": A_ : Optional[int] = value elif weight_type == "weight_hh_l0": A_ : Union[str, Any] = value elif weight_type == "bias_ih_l0": A_ : Optional[int] = value elif weight_type == "bias_hh_l0": A_ : Tuple = value elif weight_type == "weight_ih_l1": A_ : Optional[int] = value elif weight_type == "weight_hh_l1": A_ : Dict = value elif weight_type == "bias_ih_l1": A_ : Optional[int] = value elif weight_type == "bias_hh_l1": A_ : Tuple = value else: A_ : Any = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: A_, A_ : List[str] = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = [] if model_name == "encodec_24khz" or "encodec_32khz": A_ : List[str] = MAPPING_24K elif model_name == "encodec_48khz": A_ : str = MAPPING_48K else: raise ValueError(f'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase__ , lowerCamelCase__ ): logger.info(f'{name} was ignored' ) continue A_ : str = False for key, mapped_key in MAPPING.items(): if "*" in key: A_, A_ : List[Any] = key.split(""".*.""" ) if prefix in name and suffix in name: A_ : Optional[Any] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue A_ : Union[str, Any] = True if "*" in mapped_key: A_ : int = name.split(lowerCamelCase__ )[0].split(""".""" )[-2] A_ : Optional[Any] = mapped_key.replace("""*""" , lowerCamelCase__ ) if "weight_g" in name: A_ : Any = """weight_g""" elif "weight_v" in name: A_ : Tuple = """weight_v""" elif "weight_ih_l0" in name: A_ : Union[str, Any] = """weight_ih_l0""" elif "weight_hh_l0" in name: A_ : Tuple = """weight_hh_l0""" elif "bias_ih_l0" in name: A_ : str = """bias_ih_l0""" elif "bias_hh_l0" in name: A_ : List[Any] = """bias_hh_l0""" elif "weight_ih_l1" in name: A_ : Dict = """weight_ih_l1""" elif "weight_hh_l1" in name: A_ : Any = """weight_hh_l1""" elif "bias_ih_l1" in name: A_ : Optional[int] = """bias_ih_l1""" elif "bias_hh_l1" in name: A_ : List[Any] = """bias_hh_l1""" elif "bias" in name: A_ : List[str] = """bias""" elif "weight" in name: A_ : Optional[int] = """weight""" elif "running_mean" in name: A_ : Union[str, Any] = """running_mean""" elif "running_var" in name: A_ : Optional[int] = """running_var""" elif "num_batches_tracked" in name: A_ : List[Any] = """num_batches_tracked""" else: A_ : str = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(f'Unused weights: {unused_weights}' ) @torch.no_grad() def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , ): '''simple docstring''' if config_path is not None: A_ : Any = EncodecConfig.from_pretrained(lowerCamelCase__ ) else: A_ : Optional[int] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": A_ : Dict = [8, 5, 4, 4] A_ : Optional[Any] = [2.2] A_ : Tuple = 64 A_ : Tuple = 3_20_00 A_ : List[Any] = 20_48 A_ : Optional[Any] = False A_ : str = False A_ : Optional[int] = False elif model_name == "encodec_48khz": A_ : Dict = [8, 5, 4, 2] A_ : Tuple = [3.0, 6.0, 12.0, 24.0] A_ : List[Any] = 4_80_00 A_ : Dict = 2 A_ : Dict = False A_ : Dict = """time_group_norm""" A_ : Optional[Any] = True A_ : str = 1.0 A_ : Any = 0.01 else: raise ValueError(f'Unknown model name: {model_name}' ) A_ : Dict = EncodecModel(lowerCamelCase__ ) A_ : Any = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCamelCase__ ) A_ : int = torch.load(lowerCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights A_ : Tuple = original_checkpoint["""best_state"""] recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": lowerCamelCase :Any = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) lowerCamelCase :Dict = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
686
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple def lowerCAmelCase_ ( _lowerCamelCase: float , _lowerCamelCase: float , _lowerCamelCase: float ): __SCREAMING_SNAKE_CASE : Union[str, Any] = namedtuple("""result""" , """name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""" , power / current ) elif current == 0: return result("""current""" , power / voltage ) elif power == 0: return result("""power""" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
578
'''simple docstring''' import pytest UpperCamelCase__ : Tuple = '''__dummy_dataset1__''' UpperCamelCase__ : Dict = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def lowerCAmelCase_ ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowerCAmelCase_ ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: Any , _lowerCamelCase: Optional[Any] ): __SCREAMING_SNAKE_CASE : Any = dataset_loading_script_name __SCREAMING_SNAKE_CASE : List[Any] = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = script_dir / F"{script_name}.py" with open(_lowerCamelCase , """w""" ) as f: f.write(_lowerCamelCase ) return str(_lowerCamelCase )
578
1
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _A = logging.get_logger(__name__) _A = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class _lowerCAmelCase ( snake_case__ ): _lowercase ='''conditional_detr''' _lowercase =['''past_key_values'''] _lowercase ={ '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=3 , _UpperCamelCase=300 , _UpperCamelCase=6 , _UpperCamelCase=2_048 , _UpperCamelCase=8 , _UpperCamelCase=6 , _UpperCamelCase=2_048 , _UpperCamelCase=8 , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=True , _UpperCamelCase="relu" , _UpperCamelCase=256 , _UpperCamelCase=0.1 , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=0.02 , _UpperCamelCase=1.0 , _UpperCamelCase=False , _UpperCamelCase="sine" , _UpperCamelCase="resnet50" , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=2 , _UpperCamelCase=5 , _UpperCamelCase=2 , _UpperCamelCase=1 , _UpperCamelCase=1 , _UpperCamelCase=2 , _UpperCamelCase=5 , _UpperCamelCase=2 , _UpperCamelCase=0.25 , **_UpperCamelCase , ) -> Any: if backbone_config is not None and use_timm_backbone: raise ValueError("You can\'t specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) lowerCAmelCase_ = CONFIG_MAPPING['resnet'](out_features=["stage4"] ) elif isinstance(_A , _A ): lowerCAmelCase_ = backbone_config.get("model_type" ) lowerCAmelCase_ = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ = config_class.from_dict(_A ) lowerCAmelCase_ = use_timm_backbone lowerCAmelCase_ = backbone_config lowerCAmelCase_ = num_channels lowerCAmelCase_ = num_queries lowerCAmelCase_ = d_model lowerCAmelCase_ = encoder_ffn_dim lowerCAmelCase_ = encoder_layers lowerCAmelCase_ = encoder_attention_heads lowerCAmelCase_ = decoder_ffn_dim lowerCAmelCase_ = decoder_layers lowerCAmelCase_ = decoder_attention_heads lowerCAmelCase_ = dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = activation_dropout lowerCAmelCase_ = activation_function lowerCAmelCase_ = init_std lowerCAmelCase_ = init_xavier_std lowerCAmelCase_ = encoder_layerdrop lowerCAmelCase_ = decoder_layerdrop lowerCAmelCase_ = encoder_layers lowerCAmelCase_ = auxiliary_loss lowerCAmelCase_ = position_embedding_type lowerCAmelCase_ = backbone lowerCAmelCase_ = use_pretrained_backbone lowerCAmelCase_ = dilation # Hungarian matcher lowerCAmelCase_ = class_cost lowerCAmelCase_ = bbox_cost lowerCAmelCase_ = giou_cost # Loss coefficients lowerCAmelCase_ = mask_loss_coefficient lowerCAmelCase_ = dice_loss_coefficient lowerCAmelCase_ = cls_loss_coefficient lowerCAmelCase_ = bbox_loss_coefficient lowerCAmelCase_ = giou_loss_coefficient lowerCAmelCase_ = focal_alpha super().__init__(is_encoder_decoder=_A , **_A ) @property def __a ( self ) -> int: return self.encoder_attention_heads @property def __a ( self ) -> int: return self.d_model def __a ( self ) -> int: lowerCAmelCase_ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase_ = self.backbone_config.to_dict() lowerCAmelCase_ = self.__class__.model_type return output class _lowerCAmelCase ( snake_case__ ): _lowercase =version.parse('''1.11''' ) @property def __a ( self ) -> str: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def __a ( self ) -> Optional[Any]: return 1e-5 @property def __a ( self ) -> Optional[Any]: return 12
711
def lowerCamelCase__ ( __lowerCAmelCase : int ): """simple docstring""" if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0" ) lowerCAmelCase_ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowerCAmelCase_ = 1 if upper_limit > 0: lowerCAmelCase_ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(__lowerCAmelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("\n********* Catalan Numbers Using Dynamic Programming ************\n") print("\n*** Enter -1 at any time to quit ***") print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="") try: while True: _A = int(input().strip()) if N < 0: print("\n********* Goodbye!! ************") break else: print(f"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("Try another upper limit for the sequence: ", end="") except (NameError, ValueError): print("\n********* Invalid input, goodbye! ************\n") import doctest doctest.testmod()
279
0
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class SCREAMING_SNAKE_CASE ( __a , unittest.TestCase ): """simple docstring""" __A = MvpTokenizer __A = MvpTokenizerFast __A = True __A = filter_roberta_detectors def a ( self : List[str] ): """simple docstring""" super().setUp() _lowerCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _lowerCAmelCase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _lowerCAmelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowerCAmelCase = {'unk_token': '<unk>'} _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__lowerCAmelCase ) ) def a ( self : Tuple , **__lowerCAmelCase : Dict ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a ( self : Any , **__lowerCAmelCase : Any ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a ( self : Dict , __lowerCAmelCase : Any ): """simple docstring""" return "lower newer", "lower newer" @cached_property def a ( self : Optional[int] ): """simple docstring""" return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def a ( self : int ): """simple docstring""" return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def a ( self : Any ): """simple docstring""" _lowerCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowerCAmelCase = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase = tokenizer(__lowerCAmelCase , max_length=len(__lowerCAmelCase ) , padding=__lowerCAmelCase , return_tensors='pt' ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Test that special tokens are reset @require_torch def a ( self : Optional[int] ): """simple docstring""" _lowerCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids' , __lowerCAmelCase ) self.assertIn('attention_mask' , __lowerCAmelCase ) self.assertNotIn('labels' , __lowerCAmelCase ) self.assertNotIn('decoder_attention_mask' , __lowerCAmelCase ) @require_torch def a ( self : Optional[Any] ): """simple docstring""" _lowerCAmelCase = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase = tokenizer(text_target=__lowerCAmelCase , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def a ( self : Optional[Any] ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors='pt' ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def a ( self : Union[str, Any] ): """simple docstring""" _lowerCAmelCase = ['A long paragraph for summarization.'] _lowerCAmelCase = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase = tokenizer(__lowerCAmelCase , text_target=__lowerCAmelCase , return_tensors='pt' ) _lowerCAmelCase = inputs['input_ids'] _lowerCAmelCase = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def a ( self : int ): """simple docstring""" pass def a ( self : Any ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) _lowerCAmelCase = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) _lowerCAmelCase = 'A, <mask> AllenNLP sentence.' _lowerCAmelCase = tokenizer_r.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) _lowerCAmelCase = tokenizer_p.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __lowerCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( __lowerCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
309
'''simple docstring''' from __future__ import annotations import numpy as np def A_ ( _lowerCamelCase : list[float] ): return np.maximum(0 , _lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
309
1
"""simple docstring""" def _lowerCAmelCase ( __lowerCamelCase:Optional[Any] ): '''simple docstring''' if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __magic_name__ = gray_code_sequence_string(_lowerCAmelCase ) # # convert them to integers for i in range(len(_lowerCAmelCase ) ): __magic_name__ = int(sequence[i] , 2 ) return sequence def _lowerCAmelCase ( __lowerCamelCase:Optional[int] ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __magic_name__ = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __magic_name__ = gray_code_sequence_string(bit_count - 1 ) __magic_name__ = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __magic_name__ = "0" + smaller_sequence[i] sequence.append(_lowerCAmelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __magic_name__ = "1" + smaller_sequence[i] sequence.append(_lowerCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
716
"""simple docstring""" def _lowerCAmelCase ( __lowerCamelCase:list , __lowerCamelCase:list ): '''simple docstring''' _validate_point(__lowerCamelCase ) _validate_point(__lowerCamelCase ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(__lowerCamelCase , __lowerCamelCase ) ) ) def _lowerCAmelCase ( __lowerCamelCase:list[float] ): '''simple docstring''' if point: if isinstance(__lowerCamelCase , __lowerCamelCase ): for item in point: if not isinstance(__lowerCamelCase , (int, float) ): __magic_name__ = ( "Expected a list of numbers as input, found " f'''{type(__lowerCamelCase ).__name__}''' ) raise TypeError(__lowerCamelCase ) else: __magic_name__ = f'''Expected a list of numbers as input, found {type(__lowerCamelCase ).__name__}''' raise TypeError(__lowerCamelCase ) else: raise ValueError("Missing an input" ) def _lowerCAmelCase ( __lowerCamelCase:list , __lowerCamelCase:list ): '''simple docstring''' _validate_point(__lowerCamelCase ) _validate_point(__lowerCamelCase ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(__lowerCamelCase , __lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
468
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class a_ ( _UpperCAmelCase ): a : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) a : ClassVar[Features] = Features({'audio': Audio()} ) a : ClassVar[Features] = Features({'labels': ClassLabel} ) a : str = "audio" a : str = "labels" def _snake_case ( self : Tuple , __UpperCamelCase : Dict ) ->List[str]: '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , __UpperCamelCase ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) _UpperCAmelCase = copy.deepcopy(self ) _UpperCAmelCase = self.label_schema.copy() _UpperCAmelCase = features[self.label_column] _UpperCAmelCase = label_schema return task_template @property def _snake_case ( self : Any ) ->Dict[str, str]: '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
555
"""simple docstring""" import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput a : int = '''scheduler_config.json''' class a_ ( _UpperCAmelCase ): a : List[Any] = 1 a : Tuple = 2 a : Dict = 3 a : str = 4 a : Optional[int] = 5 a : Any = 6 a : int = 7 a : Any = 8 a : List[Any] = 9 a : Any = 10 a : List[str] = 11 a : Optional[int] = 12 a : Any = 13 a : Dict = 14 @dataclass class a_ ( _UpperCAmelCase ): a : torch.FloatTensor class a_ : a : Dict = SCHEDULER_CONFIG_NAME a : List[str] = [] a : Optional[int] = True @classmethod def _snake_case ( cls : List[str] , __UpperCamelCase : Dict[str, Any] = None , __UpperCamelCase : Optional[str] = None , __UpperCamelCase : List[str]=False , **__UpperCamelCase : int , ) ->Dict: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = cls.load_config( pretrained_model_name_or_path=__UpperCamelCase , subfolder=__UpperCamelCase , return_unused_kwargs=__UpperCamelCase , return_commit_hash=__UpperCamelCase , **__UpperCamelCase , ) return cls.from_config(__UpperCamelCase , return_unused_kwargs=__UpperCamelCase , **__UpperCamelCase ) def _snake_case ( self : Tuple , __UpperCamelCase : Union[str, os.PathLike] , __UpperCamelCase : bool = False , **__UpperCamelCase : List[str] ) ->Any: '''simple docstring''' self.save_config(save_directory=__UpperCamelCase , push_to_hub=__UpperCamelCase , **__UpperCamelCase ) @property def _snake_case ( self : Optional[int] ) ->List[Any]: '''simple docstring''' return self._get_compatibles() @classmethod def _snake_case ( cls : List[str] ) ->Dict: '''simple docstring''' _UpperCAmelCase = list(set([cls.__name__] + cls._compatibles ) ) _UpperCAmelCase = importlib.import_module(__name__.split(""".""" )[0] ) _UpperCAmelCase = [ getattr(__UpperCamelCase , __UpperCamelCase ) for c in compatible_classes_str if hasattr(__UpperCamelCase , __UpperCamelCase ) ] return compatible_classes
555
1
"""simple docstring""" import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : def __init__( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str]=13 , lowerCamelCase_ : Tuple=32 , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : int=3 , lowerCamelCase_ : Union[str, Any]=16 , lowerCamelCase_ : List[str]=[32, 64, 1_28] , lowerCamelCase_ : Any=[1, 2, 1] , lowerCamelCase_ : Optional[Any]=[2, 2, 4] , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : List[str]=2.0 , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : Dict=0.0 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : Tuple=False , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : Any=0.02 , lowerCamelCase_ : int=1E-5 , lowerCamelCase_ : str=True , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : Any=10 , lowerCamelCase_ : Optional[Any]=8 , lowerCamelCase_ : Any=["stage1", "stage2"] , lowerCamelCase_ : Tuple=[1, 2] , ) -> Optional[int]: __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = embed_dim __a = hidden_sizes __a = depths __a = num_heads __a = window_size __a = mlp_ratio __a = qkv_bias __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = drop_path_rate __a = hidden_act __a = use_absolute_embeddings __a = patch_norm __a = layer_norm_eps __a = initializer_range __a = is_training __a = scope __a = use_labels __a = type_sequence_label_size __a = encoder_stride __a = out_features __a = out_indices def lowerCAmelCase_ ( self : int ) -> Union[str, Any]: __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : List[Any] ) -> Any: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowerCAmelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any ) -> Tuple: __a = FocalNetModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __a = model(lowerCamelCase_ ) __a = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __a = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase_ ( self : List[str] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ) -> Union[str, Any]: __a = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __a = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __a = None __a = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __a = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase_ ( self : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[Any] ) -> List[str]: __a = FocalNetForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __a = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __a = 1 __a = FocalNetForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ) -> Tuple: __a = self.type_sequence_label_size __a = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __a = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __a = 1 __a = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : Tuple ) -> Dict: __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( A_ , A_ , unittest.TestCase ): A_ : List[str] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) A_ : List[Any] = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) A_ : int = False A_ : str = False A_ : Any = False A_ : Optional[Any] = False A_ : Union[str, Any] = False def lowerCAmelCase_ ( self : Any ) -> Optional[Any]: __a = FocalNetModelTester(self ) __a = ConfigTester(self , config_class=lowerCamelCase_ , embed_dim=37 , has_text_modality=lowerCamelCase_ ) def lowerCAmelCase_ ( self : Any ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase_ ( self : Optional[Any] ) -> List[Any]: return def lowerCAmelCase_ ( self : List[Any] ) -> Optional[int]: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCAmelCase_ ( self : str ) -> List[str]: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def lowerCAmelCase_ ( self : int ) -> Optional[int]: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def lowerCAmelCase_ ( self : str ) -> Dict: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def lowerCAmelCase_ ( self : List[Any] ) -> Dict: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def lowerCAmelCase_ ( self : List[str] ) -> Optional[Any]: pass def lowerCAmelCase_ ( self : Optional[Any] ) -> Any: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __a = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , nn.Linear ) ) def lowerCAmelCase_ ( self : int ) -> Optional[int]: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __a = model_class(lowerCamelCase_ ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCAmelCase_ ( self : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : Any ) -> List[Any]: __a = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) __a = outputs.hidden_states __a = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) # FocalNet has a different seq_length __a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __a = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) __a , __a , __a , __a = reshaped_hidden_states[0].shape __a = ( reshaped_hidden_states[0].view(lowerCamelCase_ , lowerCamelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCAmelCase_ ( self : str ) -> Optional[int]: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __a = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCAmelCase_ ( self : Any ) -> List[str]: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __a = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __a = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __a = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , (padded_height, padded_width) ) @slow def lowerCAmelCase_ ( self : Tuple ) -> Tuple: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = FocalNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCAmelCase_ ( self : int ) -> Union[str, Any]: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: __a = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class a ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self : Tuple ) -> int: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def lowerCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: __a = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCamelCase_ ) __a = self.default_image_processor __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __a = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): __a = model(**lowerCamelCase_ ) # verify the logits __a = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) __a = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class a ( A_ , unittest.TestCase ): A_ : Dict = (FocalNetBackbone,) if is_torch_available() else () A_ : Dict = FocalNetConfig A_ : Any = False def lowerCAmelCase_ ( self : Dict ) -> int: __a = FocalNetModelTester(self )
173
"""simple docstring""" __A = 6_55_21 def UpperCamelCase ( _lowerCAmelCase : str ): __a = 1 __a = 0 for plain_chr in plain_text: __a = (a + ord(_lowerCAmelCase )) % MOD_ADLER __a = (b + a) % MOD_ADLER return (b << 16) | a
173
1
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _snake_case = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCAmelCase : __lowerCamelCase = PegasusConfig __lowerCamelCase = {} __lowerCamelCase = 'gelu' def __init__( self :Any , _lowercase :List[Any] , _lowercase :int=13 , _lowercase :str=7 , _lowercase :Optional[Any]=True , _lowercase :Tuple=False , _lowercase :int=99 , _lowercase :Optional[Any]=32 , _lowercase :Any=5 , _lowercase :Any=4 , _lowercase :List[Any]=37 , _lowercase :Union[str, Any]=0.1 , _lowercase :Optional[Any]=0.1 , _lowercase :str=20 , _lowercase :List[str]=2 , _lowercase :str=1 , _lowercase :List[str]=0 , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = eos_token_id lowercase__ = pad_token_id lowercase__ = bos_token_id def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) lowercase__ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) lowercase__ = np.concatenate([input_ids, eos_tensor] , axis=1 ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase__ = prepare_pegasus_inputs_dict(_lowercase , _lowercase , _lowercase ) return config, inputs_dict def UpperCAmelCase ( self :Tuple , _lowercase :List[Any] , _lowercase :Any , _lowercase :List[str] ): '''simple docstring''' lowercase__ = 20 lowercase__ = model_class_name(_lowercase ) lowercase__ = model.encode(inputs_dict["input_ids"] ) lowercase__ , lowercase__ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowercase__ = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) lowercase__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) lowercase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase__ = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) lowercase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowercase__ = model.decode( decoder_input_ids[:, -1:] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowercase , ) lowercase__ = model.decode(_lowercase , _lowercase ) lowercase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def UpperCAmelCase ( self :Optional[int] , _lowercase :Optional[Any] , _lowercase :List[Any] , _lowercase :List[Any] ): '''simple docstring''' lowercase__ = 20 lowercase__ = model_class_name(_lowercase ) lowercase__ = model.encode(inputs_dict["input_ids"] ) lowercase__ , lowercase__ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowercase__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowercase__ = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) lowercase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase__ = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) lowercase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowercase__ = model.decode( decoder_input_ids[:, -1:] , _lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowercase , decoder_position_ids=_lowercase , ) lowercase__ = model.decode(_lowercase , _lowercase , decoder_attention_mask=_lowercase ) lowercase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None , ): if attention_mask is None: lowercase__ = np.not_equal(__magic_name__ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowercase__ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCAmelCase ( lowercase_ , unittest.TestCase ): __lowerCamelCase = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __lowerCamelCase = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = FlaxPegasusModelTester(self ) lowercase__ = ConfigTester(self , config_class=_lowercase ) def UpperCAmelCase ( self :Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase ( self :Any ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase ( self :List[str] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ = self._prepare_for_class(_lowercase , _lowercase ) lowercase__ = model_class(_lowercase ) @jax.jit def encode_jitted(_lowercase :Union[str, Any] , _lowercase :int=None , **_lowercase :str ): return model.encode(input_ids=_lowercase , attention_mask=_lowercase ) with self.subTest("JIT Enabled" ): lowercase__ = encode_jitted(**_lowercase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowercase__ = encode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ = model_class(_lowercase ) lowercase__ = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) lowercase__ = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(_lowercase :List[str] , _lowercase :List[str] , _lowercase :Any ): return model.decode( decoder_input_ids=_lowercase , decoder_attention_mask=_lowercase , encoder_outputs=_lowercase , ) with self.subTest("JIT Enabled" ): lowercase__ = decode_jitted(**_lowercase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowercase__ = decode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase ( self :Dict ): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained("google/pegasus-large" , from_pt=_lowercase ) lowercase__ = np.ones((1, 1) ) lowercase__ = model(_lowercase ) self.assertIsNotNone(_lowercase ) @slow def UpperCAmelCase ( self :List[str] ): '''simple docstring''' lowercase__ = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) lowercase__ = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) lowercase__ = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] lowercase__ = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] lowercase__ = tokenizer(_lowercase , return_tensors="np" , truncation=_lowercase , max_length=5_12 , padding=_lowercase ) lowercase__ = model.generate(**_lowercase , num_beams=2 ).sequences lowercase__ = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) assert tgt_text == decoded
655
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 'git_vision_model' def __init__( self :Dict , _lowercase :Dict=7_68 , _lowercase :Dict=30_72 , _lowercase :Tuple=12 , _lowercase :List[str]=12 , _lowercase :Tuple=3 , _lowercase :Dict=2_24 , _lowercase :Tuple=16 , _lowercase :Optional[int]="quick_gelu" , _lowercase :Union[str, Any]=1e-5 , _lowercase :Tuple=0.0 , _lowercase :Tuple=0.02 , **_lowercase :Optional[Any] , ): '''simple docstring''' super().__init__(**_lowercase ) lowercase__ = hidden_size lowercase__ = intermediate_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_channels lowercase__ = patch_size lowercase__ = image_size lowercase__ = initializer_range lowercase__ = attention_dropout lowercase__ = layer_norm_eps lowercase__ = hidden_act @classmethod def UpperCAmelCase ( cls :List[str] , _lowercase :Union[str, os.PathLike] , **_lowercase :Optional[int] ): '''simple docstring''' cls._set_token_in_kwargs(_lowercase ) lowercase__ , lowercase__ = cls.get_config_dict(_lowercase , **_lowercase ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": lowercase__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowercase , **_lowercase ) class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 'git' def __init__( self :Union[str, Any] , _lowercase :Dict=None , _lowercase :List[str]=3_05_22 , _lowercase :Tuple=7_68 , _lowercase :Any=6 , _lowercase :Dict=12 , _lowercase :Any=30_72 , _lowercase :List[Any]="gelu" , _lowercase :Tuple=0.1 , _lowercase :Optional[int]=0.1 , _lowercase :Optional[Any]=10_24 , _lowercase :Any=0.02 , _lowercase :int=1e-12 , _lowercase :List[Any]=0 , _lowercase :int="absolute" , _lowercase :List[str]=True , _lowercase :Any=False , _lowercase :int=1_01 , _lowercase :str=1_02 , _lowercase :Dict=None , **_lowercase :List[str] , ): '''simple docstring''' super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , pad_token_id=_lowercase , **_lowercase ) if vision_config is None: lowercase__ = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) lowercase__ = GitVisionConfig(**_lowercase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = tie_word_embeddings lowercase__ = num_image_with_embedding lowercase__ = bos_token_id lowercase__ = eos_token_id def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.vision_config.to_dict() lowercase__ = self.__class__.model_type return output
655
1
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = LongformerTokenizer lowerCAmelCase_ = True lowerCAmelCase_ = LongformerTokenizerFast lowerCAmelCase_ = True def lowerCAmelCase ( self ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase_ ) ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> str: _snake_case = 'lower newer' _snake_case = 'lower newer' return input_text, output_text def lowerCAmelCase ( self ) -> Dict: _snake_case = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case = 'lower newer' _snake_case = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) # , add_prefix_space=True) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokens + [tokenizer.unk_token] _snake_case = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=lowerCAmelCase_ ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=lowerCAmelCase_ ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) _snake_case = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.encode( 'sequence builders' , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) _snake_case = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase ( self ) -> int: _snake_case = self.get_tokenizer() _snake_case = 'Encode this sequence.' _snake_case = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing spaces after special tokens _snake_case = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ )} ) # mask token has a left space _snake_case = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) _snake_case = 'Encode <mask> sequence' _snake_case = 'Encode <mask>sequence' _snake_case = tokenizer.encode(lowerCAmelCase_ ) _snake_case = encoded.index(lowerCAmelCase_ ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ ) _snake_case = encoded.index(lowerCAmelCase_ ) _snake_case = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[Any]: pass def lowerCAmelCase ( self ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = 'A, <mask> AllenNLP sentence.' _snake_case = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _snake_case = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def lowerCAmelCase ( self ) -> Optional[int]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _snake_case = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) _snake_case = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _snake_case = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , lowerCAmelCase_ ) self.assertEqual(post_processor_state['add_prefix_space'] , lowerCAmelCase_ ) self.assertEqual(post_processor_state['trim_offsets'] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _snake_case = F'''{text_of_1_token} {text_of_1_token}''' _snake_case = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) _snake_case = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase_ ) + 1, len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) _snake_case = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase_ ) + 1, len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) _snake_case = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase_ ), len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) _snake_case = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase_ ), len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) _snake_case = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) _snake_case = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase_ ) + 1, 1 + len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) _snake_case = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase_ ), 1 + len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) _snake_case = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , trim_offsets=lowerCAmelCase_ ) _snake_case = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase_ ), 1 + len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , )
710
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''vit_msn''' def __init__( self , lowerCAmelCase_=768 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=3072 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-06 , lowerCAmelCase_=224 , lowerCAmelCase_=16 , lowerCAmelCase_=3 , lowerCAmelCase_=True , **lowerCAmelCase_ , ) -> str: super().__init__(**lowerCAmelCase_ ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias
541
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } __lowerCAmelCase = { 'junnyu/roformer_chinese_small': 1_536, 'junnyu/roformer_chinese_base': 1_536, 'junnyu/roformer_chinese_char_small': 512, 'junnyu/roformer_chinese_char_base': 512, 'junnyu/roformer_small_discriminator': 128, 'junnyu/roformer_small_generator': 128, } __lowerCAmelCase = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = RoFormerTokenizer def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase="[UNK]" , UpperCAmelCase="[SEP]" , UpperCAmelCase="[PAD]" , UpperCAmelCase="[CLS]" , UpperCAmelCase="[MASK]" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) _snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case or pre_tok_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents ): _snake_case = getattr(UpperCAmelCase , pre_tok_state.pop("""type""" ) ) _snake_case = do_lower_case _snake_case = strip_accents _snake_case = pre_tok_class(**UpperCAmelCase ) _snake_case = do_lower_case def __getstate__(self ) -> Any: _snake_case = self.__dict__.copy() _snake_case = BertPreTokenizer() return state def __setstate__(self , UpperCAmelCase ) -> List[str]: _snake_case = d _snake_case = self.__dict__["""_tokenizer"""].get_vocab() _snake_case = PreTokenizer.custom(JiebaPreTokenizer(UpperCAmelCase ) ) def lowercase (self , UpperCAmelCase , UpperCAmelCase=None ) -> int: _snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase (self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: _snake_case = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False , **UpperCAmelCase , ) -> List[str]: _snake_case = BertPreTokenizer() return super().save_pretrained(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
585
'''simple docstring''' import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): __lowerCAmelCase = True from torch.cuda.amp import autocast __lowerCAmelCase = logging.getLogger(__name__) @dataclass class _lowerCAmelCase : '''simple docstring''' lowerCAmelCase_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase_ = field( default=__snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCAmelCase_ = field( default=__snake_case , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) lowerCAmelCase_ = field( default=__snake_case , metadata={"help": "Whether to log verbose messages or not."} , ) lowerCAmelCase_ = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) lowerCAmelCase_ = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) lowerCAmelCase_ = field( default=0.999995 , metadata={"help": "Decay of gumbel temperature during training."} ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) _snake_case = logging.WARNING if model_args.verbose_logging: _snake_case = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _snake_case = logging.INFO logger.setLevel(_SCREAMING_SNAKE_CASE ) @dataclass class _lowerCAmelCase : '''simple docstring''' lowerCAmelCase_ = field( default=__snake_case , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) lowerCAmelCase_ = field( default=__snake_case , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase_ = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) lowerCAmelCase_ = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) lowerCAmelCase_ = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"} , ) lowerCAmelCase_ = field( default=__snake_case , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) lowerCAmelCase_ = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) lowerCAmelCase_ = field( default=__snake_case , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCAmelCase_ = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class _lowerCAmelCase : '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = "longest" lowerCAmelCase_ = None lowerCAmelCase_ = None def __call__(self , UpperCAmelCase ) -> Dict[str, torch.Tensor]: # reformat list to dict and set to pytorch format _snake_case = self.feature_extractor.pad( UpperCAmelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) _snake_case = self.model._get_feat_extract_output_lengths(batch["""input_values"""].shape[-1] ) _snake_case = batch["""input_values"""].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _snake_case = self.model._get_feat_extract_output_lengths(batch["""attention_mask"""].sum(-1 ) ).to( torch.long ) _snake_case = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["""input_values"""].device ) # these two operations makes sure that all values # before the output lengths indices are attended to _snake_case = 1 _snake_case = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices _snake_case = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=UpperCAmelCase , min_masks=2 , ) return batch class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , *UpperCAmelCase , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=1.0 , **UpperCAmelCase ) -> Optional[int]: super().__init__(*UpperCAmelCase , **UpperCAmelCase ) _snake_case = 0 _snake_case = max_gumbel_temp _snake_case = min_gumbel_temp _snake_case = gumbel_temp_decay def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> torch.Tensor: model.train() _snake_case = self._prepare_inputs(UpperCAmelCase ) if self.use_amp: with autocast(): _snake_case = self.compute_loss(UpperCAmelCase , UpperCAmelCase ) else: _snake_case = self.compute_loss(UpperCAmelCase , UpperCAmelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _snake_case = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _snake_case = loss.sum() / (inputs["""mask_time_indices"""]).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _snake_case = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCAmelCase ).backward() elif self.use_apex: with amp.scale_loss(UpperCAmelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCAmelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def __SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _snake_case, _snake_case, _snake_case = parser.parse_args_into_dataclasses() configure_logger(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Downloading and loading a dataset from the hub. _snake_case = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _snake_case = DatasetDict() _snake_case = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" , cache_dir=model_args.cache_dir , ) _snake_case = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _snake_case = DatasetDict() _snake_case = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="""validation""" , cache_dir=model_args.cache_dir , ) _snake_case = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""{data_args.train_split_name}""" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _snake_case = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_SCREAMING_SNAKE_CASE ) def prepare_dataset(_SCREAMING_SNAKE_CASE ): # check that all files have the correct sampling rate _snake_case, _snake_case = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _snake_case = datasets.map( _SCREAMING_SNAKE_CASE , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["""train"""].column_names ) # filter audio files that are too long _snake_case = vectorized_datasets.filter( lambda _SCREAMING_SNAKE_CASE : len(data["""speech"""] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_SCREAMING_SNAKE_CASE ): return feature_extractor(batch["""speech"""] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _snake_case = vectorized_datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["""train"""].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _snake_case = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( """PreTraining is only supported for ``config.do_stable_layer_norm=True`` and""" """ ``config.feat_extract_norm='layer'""" ) _snake_case = WavaVecaForPreTraining(_SCREAMING_SNAKE_CASE ) _snake_case = DataCollatorForWavaVecaPretraining(model=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) _snake_case = WavaVecaPreTrainer( model=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=vectorized_datasets["""train"""] , eval_dataset=vectorized_datasets["""validation"""] , tokenizer=_SCREAMING_SNAKE_CASE , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
585
1
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC lowerCamelCase__ = parse(importlib.metadata.version("torch")) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> str: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' ) _UpperCamelCase : Optional[Any] = STR_OPERATION_TO_FUNC[operation] if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : Tuple = parse(importlib.metadata.version(lowercase_ ) ) return operation(lowercase_ ,parse(lowercase_ ) ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple: """simple docstring""" return compare_versions(lowercase_ ,lowercase_ ,lowercase_ )
708
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowerCamelCase__ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowerCamelCase__ = [ord(letter) for letter in string.ascii_lowercase] lowerCamelCase__ = {ord(char) for char in VALID_CHARS} lowerCamelCase__ = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase__ ( lowercase_ ,lowercase_ ) -> str | None: """simple docstring""" _UpperCamelCase : str = "" _UpperCamelCase : int _UpperCamelCase : int _UpperCamelCase : int for keychar, cipherchar in zip(cycle(lowercase_ ) ,lowercase_ ): _UpperCamelCase : Dict = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowercase_ ) return decoded def lowercase__ ( lowercase_ ) -> list[str]: """simple docstring""" _UpperCamelCase : list[str] = [] for key in product(lowercase_ ,repeat=3 ): _UpperCamelCase : int = try_key(lowercase_ ,lowercase_ ) if encoded is not None: possibles.append(lowercase_ ) return possibles def lowercase__ ( lowercase_ ,lowercase_ ) -> list[str]: """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def lowercase__ ( lowercase_ = "p059_cipher.txt" ) -> int: """simple docstring""" _UpperCamelCase : list[int] _UpperCamelCase : list[str] _UpperCamelCase : str _UpperCamelCase : str _UpperCamelCase : str = Path(lowercase_ ).parent.joinpath(lowercase_ ).read_text(encoding="utf-8" ) _UpperCamelCase : Optional[Any] = [int(lowercase_ ) for number in data.strip().split("," )] _UpperCamelCase : List[str] = filter_valid_chars(lowercase_ ) for common_word in COMMON_WORDS: _UpperCamelCase : Union[str, Any] = filter_common_word(lowercase_ ,lowercase_ ) if len(lowercase_ ) == 1: break _UpperCamelCase : Union[str, Any] = possibles[0] return sum(ord(lowercase_ ) for char in decoded_text ) if __name__ == "__main__": print(f"""{solution() = }""")
51
0