code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _A : int = FunnelTokenizer _A : Optional[Any] = FunnelTokenizerFast _A : Optional[int] = True _A : List[str] = True def A_ ( self : List[str] ): '''simple docstring''' super().setUp() __UpperCAmelCase : int = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def A_ ( self : Union[str, Any] , **__lowercase : Optional[int] ): '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def A_ ( self : Any , **__lowercase : Tuple ): '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def A_ ( self : Dict , __lowercase : Any ): '''simple docstring''' __UpperCAmelCase : int = '''UNwant\u00E9d,running''' __UpperCAmelCase : Tuple = '''unwanted, running''' return input_text, output_text def A_ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : int = self.tokenizer_class(self.vocab_file ) __UpperCAmelCase : int = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__lowercase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , [7, 4, 5, 10, 8, 9] ) def A_ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: __UpperCAmelCase : Dict = tokenizer('''UNwant\u00E9d,running''' ) __UpperCAmelCase : Optional[Any] = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) __UpperCAmelCase : List[Any] = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
522
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def lowerCamelCase_ ( *UpperCAmelCase_ ) ->Optional[int]: """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = list(UpperCAmelCase_ ) for i in range(len(UpperCAmelCase_ ) ): __UpperCAmelCase : Optional[Any] = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def lowerCamelCase_ ( UpperCAmelCase_ ) ->bool: """simple docstring""" __UpperCAmelCase : Optional[int] = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def lowerCamelCase_ ( UpperCAmelCase_ = None , UpperCAmelCase_ = 1_28 ) ->str: """simple docstring""" if function is None: return functools.partial(UpperCAmelCase_ , starting_batch_size=UpperCAmelCase_ ) __UpperCAmelCase : List[str] = starting_batch_size def decorator(*UpperCAmelCase_ , **UpperCAmelCase_ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __UpperCAmelCase : Optional[int] = list(inspect.signature(UpperCAmelCase_ ).parameters.keys() ) # Guard against user error if len(UpperCAmelCase_ ) < (len(UpperCAmelCase_ ) + 1): __UpperCAmelCase : Dict = ''', '''.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) except Exception as e: if should_reduce_batch_size(UpperCAmelCase_ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
522
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : str = """speech_to_text_2""" a__ : List[Any] = ["""past_key_values"""] a__ : Optional[int] = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __lowercase=10_000 , __lowercase=6 , __lowercase=2_048 , __lowercase=4 , __lowercase=0.0 , __lowercase=True , __lowercase="relu" , __lowercase=256 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.02 , __lowercase=2 , __lowercase=True , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase=1_024 , **__lowercase , ) -> List[str]: __UpperCamelCase :Optional[int] = vocab_size __UpperCamelCase :Dict = d_model __UpperCamelCase :List[str] = decoder_ffn_dim __UpperCamelCase :Union[str, Any] = decoder_layers __UpperCamelCase :List[Any] = decoder_attention_heads __UpperCamelCase :List[Any] = dropout __UpperCamelCase :Optional[int] = attention_dropout __UpperCamelCase :Any = activation_dropout __UpperCamelCase :Tuple = activation_function __UpperCamelCase :Optional[int] = init_std __UpperCamelCase :Optional[int] = decoder_layerdrop __UpperCamelCase :List[Any] = use_cache __UpperCamelCase :List[str] = decoder_layers __UpperCamelCase :List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase :Dict = max_target_positions super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , decoder_start_token_id=__lowercase , **__lowercase , )
704
import qiskit def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Dict = qiskit.Aer.get_backend('''aer_simulator''' ) __UpperCamelCase :Tuple = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __UpperCamelCase :Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = half_adder(1, 1) print(F'Half Adder Output Qubit Counts: {counts}')
452
0
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a : int = logging.get_logger(__name__) a : str = {'vocab_file': 'vocab.txt'} a : Any = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } a : str = { 'facebook/esm2_t6_8M_UR50D': 1_024, 'facebook/esm2_t12_35M_UR50D': 1_024, } def lowerCAmelCase_ (lowerCAmelCase__: List[str] ): """simple docstring""" with open(lowerCAmelCase__ , """r""" ) as f: UpperCAmelCase_: Tuple = f.read().splitlines() return [l.strip() for l in lines] class _a ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['''input_ids''', '''attention_mask'''] def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<cls>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_="<mask>", SCREAMING_SNAKE_CASE_="<eos>", **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = load_vocab_file(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = dict(enumerate(self.all_tokens ) ) UpperCAmelCase_: Union[str, Any] = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCAmelCase_: str = unk_token UpperCAmelCase_: List[str] = cls_token UpperCAmelCase_: Dict = pad_token UpperCAmelCase_: Optional[int] = mask_token UpperCAmelCase_: Dict = eos_token UpperCAmelCase_: Tuple = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> str: return self._id_to_token.get(SCREAMING_SNAKE_CASE_, self.unk_token ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> int: return self._token_to_id.get(SCREAMING_SNAKE_CASE_, self._token_to_id.get(self.unk_token ) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> List[str]: return text.split() def __snake_case (self, SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]: return len(self._id_to_token ) def __snake_case (self ) -> Optional[Any]: return {token: i for i, token in enumerate(self.all_tokens )} def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> int: return self._token_to_id.get(SCREAMING_SNAKE_CASE_, self._token_to_id.get(self.unk_token ) ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> str: return self._id_to_token.get(SCREAMING_SNAKE_CASE_, self.unk_token ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCAmelCase_: int = [self.cls_token_id] UpperCAmelCase_: str = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("""Cannot tokenize multiple sequences when EOS token is not set!""" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase_: List[Any] = [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] if token_ids_a is not None: mask += [0] * len(SCREAMING_SNAKE_CASE_ ) + [1] return mask def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: Tuple = os.path.join(SCREAMING_SNAKE_CASE_, (filename_prefix + """-""" if filename_prefix else """""") + """vocab.txt""" ) with open(SCREAMING_SNAKE_CASE_, """w""" ) as f: f.write("""\n""".join(self.all_tokens ) ) return (vocab_file,) @property def __snake_case (self ) -> int: return self.get_vocab_size(with_added_tokens=SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = False ) -> int: return super()._add_tokens(SCREAMING_SNAKE_CASE_, special_tokens=SCREAMING_SNAKE_CASE_ )
556
import numpy as np def lowerCAmelCase_ (lowerCAmelCase__: np.ndarray , lowerCAmelCase__: float ): """simple docstring""" return np.where(vector > 0 , lowerCAmelCase__ , (alpha * (np.exp(lowerCAmelCase__ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
556
1
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="resnet50" , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , ): __lowerCAmelCase : List[str] = parent __lowerCAmelCase : Union[str, Any] = out_indices if out_indices is not None else [4] __lowerCAmelCase : Optional[int] = stage_names __lowerCAmelCase : Dict = out_features __lowerCAmelCase : Optional[Any] = backbone __lowerCAmelCase : Union[str, Any] = batch_size __lowerCAmelCase : List[str] = image_size __lowerCAmelCase : List[str] = num_channels __lowerCAmelCase : int = use_pretrained_backbone __lowerCAmelCase : Dict = is_training def __lowerCamelCase ( self ): __lowerCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values def __lowerCamelCase ( self ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = TimmBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __lowerCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __lowerCamelCase ( self ): __lowerCAmelCase : int = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = config_and_inputs __lowerCAmelCase : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class A__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase): A_ : List[str] = (TimmBackbone,) if is_torch_available() else () A_ : List[Any] = {'feature-extraction': TimmBackbone} if is_torch_available() else {} A_ : Tuple = False A_ : List[str] = False A_ : int = False A_ : List[Any] = False def __lowerCamelCase ( self ): __lowerCAmelCase : int = TimmBackboneModelTester(self ) __lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): __lowerCAmelCase : int = 'resnet18' __lowerCAmelCase : Optional[Any] = 'microsoft/resnet-18' __lowerCAmelCase : Optional[int] = AutoBackbone.from_pretrained(_SCREAMING_SNAKE_CASE , use_timm_backbone=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = AutoBackbone.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase : Dict = AutoBackbone.from_pretrained(_SCREAMING_SNAKE_CASE , use_timm_backbone=_SCREAMING_SNAKE_CASE , out_indices=[1, 2, 3] ) __lowerCAmelCase : Optional[Any] = AutoBackbone.from_pretrained(_SCREAMING_SNAKE_CASE , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def __lowerCamelCase ( self ): pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def __lowerCamelCase ( self ): pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def __lowerCamelCase ( self ): pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __lowerCamelCase ( self ): pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __lowerCamelCase ( self ): pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def __lowerCamelCase ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __lowerCamelCase ( self ): pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __lowerCamelCase ( self ): pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __lowerCamelCase ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __lowerCamelCase ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __lowerCamelCase ( self ): pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def __lowerCamelCase ( self ): pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def __lowerCamelCase ( self ): pass @unittest.skip('Safetensors is not supported by timm.' ) def __lowerCamelCase ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : int = model_class(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] __lowerCAmelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : Dict = True __lowerCAmelCase : Optional[int] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase : Union[str, Any] = self.all_model_classes[0] __lowerCAmelCase : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = model(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase : Dict = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Tuple = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : List[Any] = model(**_SCREAMING_SNAKE_CASE ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase : List[Any] = copy.deepcopy(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = None __lowerCAmelCase : List[str] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Optional[int] = model(**_SCREAMING_SNAKE_CASE ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase : List[str] = copy.deepcopy(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = False __lowerCAmelCase : str = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Dict = model(**_SCREAMING_SNAKE_CASE )
549
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase = False ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : str = F"Expected string as input, found {type(_UpperCamelCase )}" raise ValueError(_UpperCamelCase ) if not isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = F"Expected boolean as use_pascal parameter, found {type(_UpperCamelCase )}" raise ValueError(_UpperCamelCase ) __lowerCAmelCase : Tuple = input_str.split('_' ) __lowerCAmelCase : int = 0 if use_pascal else 1 __lowerCAmelCase : Any = words[start_index:] __lowerCAmelCase : Any = [word[0].upper() + word[1:] for word in words_to_capitalize] __lowerCAmelCase : Any = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
549
1
"""simple docstring""" def _UpperCamelCase ( A = 1_000_000 ): UpperCamelCase_ =limit + 1 UpperCamelCase_ =[0] * limit for first_term in range(1 , A ): for n in range(A , A , A ): UpperCamelCase_ =first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCamelCase_ =sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f'''{solution() = }''')
391
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __lowerCAmelCase ( UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = BertJapaneseTokenizer __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Optional[int] = True def UpperCamelCase__ ( self: int ): super().setUp() UpperCamelCase_ =[ "[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは", "世界", "##世界", "、", "##、", "。", "##。", ] UpperCamelCase_ =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase__ ( self: Optional[int] , UpperCamelCase_: Tuple ): UpperCamelCase_ ="こんにちは、世界。 \nこんばんは、世界。" UpperCamelCase_ ="こんにちは 、 世界 。 こんばんは 、 世界 。" return input_text, output_text def UpperCamelCase__ ( self: Tuple , UpperCamelCase_: Any ): UpperCamelCase_ , UpperCamelCase_ =self.get_input_output_texts(UpperCamelCase_ ) UpperCamelCase_ =tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) UpperCamelCase_ =tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) return text, ids def UpperCamelCase__ ( self: Optional[int] ): pass # TODO add if relevant def UpperCamelCase__ ( self: int ): pass # TODO add if relevant def UpperCamelCase__ ( self: Union[str, Any] ): pass # TODO add if relevant def UpperCamelCase__ ( self: Union[str, Any] ): UpperCamelCase_ =self.tokenizer_class(self.vocab_file ) UpperCamelCase_ =tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。" ) self.assertListEqual(UpperCamelCase_ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def UpperCamelCase__ ( self: Dict ): UpperCamelCase_ =self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab" ) self.assertIsNotNone(UpperCamelCase_ ) UpperCamelCase_ ="こんにちは、世界。\nこんばんは、世界。" UpperCamelCase_ =tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) UpperCamelCase_ =os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(UpperCamelCase_ , "wb" ) as handle: pickle.dump(UpperCamelCase_ , UpperCamelCase_ ) with open(UpperCamelCase_ , "rb" ) as handle: UpperCamelCase_ =pickle.load(UpperCamelCase_ ) UpperCamelCase_ =tokenizer_new.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def UpperCamelCase__ ( self: int ): UpperCamelCase_ =MecabTokenizer(mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def UpperCamelCase__ ( self: Optional[Any] ): try: UpperCamelCase_ =MecabTokenizer(mecab_dic="unidic_lite" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def UpperCamelCase__ ( self: List[str] ): try: UpperCamelCase_ =MecabTokenizer(mecab_dic="unidic" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def UpperCamelCase__ ( self: Tuple ): UpperCamelCase_ =MecabTokenizer(do_lower_case=UpperCamelCase_ , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def UpperCamelCase__ ( self: Dict ): try: UpperCamelCase_ =MecabTokenizer( do_lower_case=UpperCamelCase_ , normalize_text=UpperCamelCase_ , mecab_option="-d /usr/local/lib/mecab/dic/jumandic" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , ) def UpperCamelCase__ ( self: Optional[int] ): UpperCamelCase_ =MecabTokenizer(normalize_text=UpperCamelCase_ , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , ) @require_sudachi def UpperCamelCase__ ( self: List[Any] ): UpperCamelCase_ =self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi" ) self.assertIsNotNone(UpperCamelCase_ ) UpperCamelCase_ ="こんにちは、世界。\nこんばんは、世界。" UpperCamelCase_ =tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) UpperCamelCase_ =os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(UpperCamelCase_ , "wb" ) as handle: pickle.dump(UpperCamelCase_ , UpperCamelCase_ ) with open(UpperCamelCase_ , "rb" ) as handle: UpperCamelCase_ =pickle.load(UpperCamelCase_ ) UpperCamelCase_ =tokenizer_new.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) @require_sudachi def UpperCamelCase__ ( self: Union[str, Any] ): UpperCamelCase_ =SudachiTokenizer(sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def UpperCamelCase__ ( self: Tuple ): UpperCamelCase_ =SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国", "人", "参政", "権"] ) @require_sudachi def UpperCamelCase__ ( self: List[str] ): UpperCamelCase_ =SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人", "参政権"] ) @require_sudachi def UpperCamelCase__ ( self: Tuple ): UpperCamelCase_ =SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人参政権"] ) @require_sudachi def UpperCamelCase__ ( self: int ): UpperCamelCase_ =SudachiTokenizer(do_lower_case=UpperCamelCase_ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def UpperCamelCase__ ( self: Optional[int] ): UpperCamelCase_ =SudachiTokenizer(normalize_text=UpperCamelCase_ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , ) @require_sudachi def UpperCamelCase__ ( self: List[Any] ): UpperCamelCase_ =SudachiTokenizer(trim_whitespace=UpperCamelCase_ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) @require_jumanpp def UpperCamelCase__ ( self: Union[str, Any] ): UpperCamelCase_ =self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp" ) self.assertIsNotNone(UpperCamelCase_ ) UpperCamelCase_ ="こんにちは、世界。\nこんばんは、世界。" UpperCamelCase_ =tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) UpperCamelCase_ =os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(UpperCamelCase_ , "wb" ) as handle: pickle.dump(UpperCamelCase_ , UpperCamelCase_ ) with open(UpperCamelCase_ , "rb" ) as handle: UpperCamelCase_ =pickle.load(UpperCamelCase_ ) UpperCamelCase_ =tokenizer_new.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) @require_jumanpp def UpperCamelCase__ ( self: Any ): UpperCamelCase_ =JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def UpperCamelCase__ ( self: Any ): UpperCamelCase_ =JumanppTokenizer(do_lower_case=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def UpperCamelCase__ ( self: int ): UpperCamelCase_ =JumanppTokenizer(normalize_text=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def UpperCamelCase__ ( self: List[Any] ): UpperCamelCase_ =JumanppTokenizer(trim_whitespace=UpperCamelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , ) @require_jumanpp def UpperCamelCase__ ( self: List[Any] ): UpperCamelCase_ =JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。" ) , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , ) def UpperCamelCase__ ( self: Optional[Any] ): UpperCamelCase_ =["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは"] UpperCamelCase_ ={} for i, token in enumerate(UpperCamelCase_ ): UpperCamelCase_ =i UpperCamelCase_ =WordpieceTokenizer(vocab=UpperCamelCase_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こんにちは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは" ) , ["こん", "##ばんは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは" ) , ["こん", "##ばんは", "[UNK]", "こんにちは"] ) def UpperCamelCase__ ( self: List[Any] ): UpperCamelCase_ =BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp" ) UpperCamelCase_ =tokenizer.subword_tokenizer UpperCamelCase_ =subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。" ) self.assertListEqual(UpperCamelCase_ , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"] ) UpperCamelCase_ =subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは" ) self.assertListEqual(UpperCamelCase_ , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"] ) def UpperCamelCase__ ( self: str ): UpperCamelCase_ =self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese" ) UpperCamelCase_ =tokenizer.encode("ありがとう。" , add_special_tokens=UpperCamelCase_ ) UpperCamelCase_ =tokenizer.encode("どういたしまして。" , add_special_tokens=UpperCamelCase_ ) UpperCamelCase_ =tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) UpperCamelCase_ =tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __lowerCAmelCase ( UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = BertJapaneseTokenizer __lowerCamelCase : Optional[int] = False def UpperCamelCase__ ( self: Any ): super().setUp() UpperCamelCase_ =["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] UpperCamelCase_ =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase__ ( self: Dict , **UpperCamelCase_: List[Any] ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **UpperCamelCase_ ) def UpperCamelCase__ ( self: Optional[int] , UpperCamelCase_: Dict ): UpperCamelCase_ ="こんにちは、世界。 \nこんばんは、世界。" UpperCamelCase_ ="こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。" return input_text, output_text def UpperCamelCase__ ( self: int ): pass # TODO add if relevant def UpperCamelCase__ ( self: Tuple ): pass # TODO add if relevant def UpperCamelCase__ ( self: Dict ): pass # TODO add if relevant def UpperCamelCase__ ( self: Optional[int] ): UpperCamelCase_ =self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character" ) UpperCamelCase_ =tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。" ) self.assertListEqual( UpperCamelCase_ , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def UpperCamelCase__ ( self: Tuple ): UpperCamelCase_ =["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] UpperCamelCase_ ={} for i, token in enumerate(UpperCamelCase_ ): UpperCamelCase_ =i UpperCamelCase_ =CharacterTokenizer(vocab=UpperCamelCase_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こ", "ん", "に", "ち", "は"] ) self.assertListEqual(tokenizer.tokenize("こんにちほ" ) , ["こ", "ん", "に", "ち", "[UNK]"] ) def UpperCamelCase__ ( self: Optional[Any] ): UpperCamelCase_ =self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char" ) UpperCamelCase_ =tokenizer.encode("ありがとう。" , add_special_tokens=UpperCamelCase_ ) UpperCamelCase_ =tokenizer.encode("どういたしまして。" , add_special_tokens=UpperCamelCase_ ) UpperCamelCase_ =tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) UpperCamelCase_ =tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self: Dict ): UpperCamelCase_ ="cl-tohoku/bert-base-japanese" UpperCamelCase_ =AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self: List[str] ): UpperCamelCase_ ="cl-tohoku/bert-base-japanese" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertTokenizer.from_pretrained(UpperCamelCase_ ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) ) UpperCamelCase_ ="bert-base-cased" with self.assertLogs("transformers" , level="WARNING" ) as cm: BertJapaneseTokenizer.from_pretrained(UpperCamelCase_ ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) )
391
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase=3 , _lowerCAmelCase=32 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=[10, 20, 30, 40] , _lowerCAmelCase=[1, 1, 2, 1] , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="relu" , _lowerCAmelCase=3 , _lowerCAmelCase=None , ): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = num_channels lowerCamelCase__ = embeddings_size lowerCamelCase__ = hidden_sizes lowerCamelCase__ = depths lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = hidden_act lowerCamelCase__ = num_labels lowerCamelCase__ = scope lowerCamelCase__ = len(_lowerCAmelCase ) def __magic_name__ ( self ): lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__ = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = TFResNetModel(config=_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = TFResNetForImageClassification(_lowerCAmelCase ) lowerCamelCase__ = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" A__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () A__ = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) A__ = False A__ = False A__ = False A__ = False A__ = False def __magic_name__ ( self ): lowerCamelCase__ = TFResNetModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def __magic_name__ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ): return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def __magic_name__ ( self ): pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def __magic_name__ ( self ): pass def __magic_name__ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def __magic_name__ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __magic_name__ ( self ): def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowerCamelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ = self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase__ = layer_type lowerCamelCase__ = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __magic_name__ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def __magic_name__ ( self ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = TFResNetModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __UpperCamelCase ( ) ->Any: lowerCamelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @cached_property def __magic_name__ ( self ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ): lowerCamelCase__ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass lowerCamelCase__ = model(**_lowerCAmelCase ) # verify the logits lowerCamelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowerCamelCase__ = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowerCAmelCase , atol=1E-4 ) )
360
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() A_ = logging.get_logger(__name__) A_ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } A_ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __UpperCamelCase ( a, a, a, a, a) ->Dict: for attribute in key.split("."): lowerCamelCase__ = getattr(a, a) if weight_type is not None: lowerCamelCase__ = getattr(a, a).shape else: lowerCamelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}") if weight_type == "weight": lowerCamelCase__ = value elif weight_type == "weight_g": lowerCamelCase__ = value elif weight_type == "weight_v": lowerCamelCase__ = value elif weight_type == "bias": lowerCamelCase__ = value elif weight_type == "running_mean": lowerCamelCase__ = value elif weight_type == "running_var": lowerCamelCase__ = value elif weight_type == "num_batches_tracked": lowerCamelCase__ = value elif weight_type == "inv_freq": lowerCamelCase__ = value else: lowerCamelCase__ = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def __UpperCamelCase ( a, a, a) ->Optional[int]: lowerCamelCase__ = [] lowerCamelCase__ = fairseq_model.state_dict() lowerCamelCase__ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__ = False if "conv_layers" in name: load_conv_layer( a, a, a, a, hf_model.config.feat_extract_norm == "group", ) lowerCamelCase__ = True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: lowerCamelCase__ = True if "*" in mapped_key: lowerCamelCase__ = name.split(a)[0].split(".")[-2] lowerCamelCase__ = mapped_key.replace("*", a) if "pos_bias_u" in name: lowerCamelCase__ = None elif "pos_bias_v" in name: lowerCamelCase__ = None elif "weight_g" in name: lowerCamelCase__ = "weight_g" elif "weight_v" in name: lowerCamelCase__ = "weight_v" elif "bias" in name: lowerCamelCase__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__ = "weight" elif "running_mean" in name: lowerCamelCase__ = "running_mean" elif "inv_freq" in name: lowerCamelCase__ = "inv_freq" elif "running_var" in name: lowerCamelCase__ = "running_var" elif "num_batches_tracked" in name: lowerCamelCase__ = "num_batches_tracked" else: lowerCamelCase__ = None set_recursively(a, a, a, a, a) continue if not is_used: unused_weights.append(a) logger.warning(f"Unused weights: {unused_weights}") def __UpperCamelCase ( a, a, a, a, a) ->str: lowerCamelCase__ = full_name.split("conv_layers.")[-1] lowerCamelCase__ = name.split(".") lowerCamelCase__ = int(items[0]) lowerCamelCase__ = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.") lowerCamelCase__ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.") lowerCamelCase__ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.") lowerCamelCase__ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.") lowerCamelCase__ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(a) @torch.no_grad() def __UpperCamelCase ( a, a, a=None, a=None, a=True) ->Optional[Any]: if config_path is not None: lowerCamelCase__ = WavaVecaConformerConfig.from_pretrained(a, hidden_act="swish") else: lowerCamelCase__ = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowerCamelCase__ = "rotary" if is_finetuned: if dict_path: lowerCamelCase__ = Dictionary.load(a) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__ = target_dict.pad_index lowerCamelCase__ = target_dict.bos_index lowerCamelCase__ = target_dict.eos_index lowerCamelCase__ = len(target_dict.symbols) lowerCamelCase__ = os.path.join(a, "vocab.json") if not os.path.isdir(a): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(a)) return os.makedirs(a, exist_ok=a) lowerCamelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__ = 0 lowerCamelCase__ = 1 with open(a, "w", encoding="utf-8") as vocab_handle: json.dump(a, a) lowerCamelCase__ = WavaVecaCTCTokenizer( a, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=a, ) lowerCamelCase__ = True if config.feat_extract_norm == "layer" else False lowerCamelCase__ = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=a, return_attention_mask=a, ) lowerCamelCase__ = WavaVecaProcessor(feature_extractor=a, tokenizer=a) processor.save_pretrained(a) lowerCamelCase__ = WavaVecaConformerForCTC(a) else: lowerCamelCase__ = WavaVecaConformerForPreTraining(a) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])}) else: lowerCamelCase__ = argparse.Namespace(task="audio_pretraining") lowerCamelCase__ = fairseq.tasks.setup_task(a) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=a) lowerCamelCase__ = model[0].eval() recursively_load_weights(a, a, not is_finetuned) hf_wavavec.save_pretrained(a) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) A_ = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
360
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> List[str]: __lowerCamelCase : List[Any] = 0 def lowercase_ ( self ) -> Dict: __lowerCamelCase : Dict = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowercase_ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase : Union[str, Any] = Path(UpperCamelCase_ ) / 'preprocessor_config.json' __lowerCamelCase : Optional[int] = Path(UpperCamelCase_ ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase_ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(UpperCamelCase_ , 'w' ) ) __lowerCamelCase : Optional[int] = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowercase_ ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase : Optional[Any] = Path(UpperCamelCase_ ) / 'preprocessor_config.json' __lowerCamelCase : str = Path(UpperCamelCase_ ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase_ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(UpperCamelCase_ , 'w' ) ) __lowerCamelCase : List[Any] = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowercase_ ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase : Tuple = CLIPConfig() # Create a dummy config file with image_proceesor_type __lowerCamelCase : str = Path(UpperCamelCase_ ) / 'preprocessor_config.json' __lowerCamelCase : Tuple = Path(UpperCamelCase_ ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase_ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(UpperCamelCase_ , 'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __lowerCamelCase : int = AutoImageProcessor.from_pretrained(UpperCamelCase_ ).to_dict() config_dict.pop('image_processor_type' ) __lowerCamelCase : Optional[Any] = CLIPImageProcessor(**UpperCamelCase_ ) # save in new folder model_config.save_pretrained(UpperCamelCase_ ) config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase : Any = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) # make sure private variable is not incorrectly saved __lowerCamelCase : Dict = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowercase_ ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase : List[str] = Path(UpperCamelCase_ ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase_ , 'w' ) , ) __lowerCamelCase : Tuple = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowercase_ ( self ) -> Any: with self.assertRaisesRegex( UpperCamelCase_ , 'clip-base is not a local folder and is not a valid model identifier' ): __lowerCamelCase : Optional[Any] = AutoImageProcessor.from_pretrained('clip-base' ) def lowercase_ ( self ) -> int: with self.assertRaisesRegex( UpperCamelCase_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __lowerCamelCase : Optional[int] = AutoImageProcessor.from_pretrained(UpperCamelCase_ , revision='aaaaaa' ) def lowercase_ ( self ) -> str: with self.assertRaisesRegex( UpperCamelCase_ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): __lowerCamelCase : Tuple = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def lowercase_ ( self ) -> str: with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase : Tuple = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase : Dict = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase_ ) __lowerCamelCase : Optional[int] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase : List[Any] = AutoImageProcessor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' ) def lowercase_ ( self ) -> str: try: AutoConfig.register('custom' , UpperCamelCase_ ) AutoImageProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoImageProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase : Tuple = Path(UpperCamelCase_ ) / 'preprocessor_config.json' __lowerCamelCase : List[Any] = Path(UpperCamelCase_ ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(UpperCamelCase_ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(UpperCamelCase_ , 'w' ) ) __lowerCamelCase : Optional[int] = CustomImageProcessor.from_pretrained(UpperCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase : Any = AutoImageProcessor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase_ ( self ) -> Dict: class UpperCAmelCase_ (a_ ): """simple docstring""" lowerCamelCase : List[str] = True try: AutoConfig.register('custom' , UpperCamelCase_ ) AutoImageProcessor.register(UpperCamelCase_ , UpperCamelCase_ ) # If remote code is not set, the default is to use local __lowerCamelCase : List[Any] = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __lowerCamelCase : Optional[int] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __lowerCamelCase : str = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(not hasattr(UpperCamelCase_ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
13
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : str = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys snake_case : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
545
0
'''simple docstring''' def __magic_name__( lowerCamelCase): try: __lowerCAmelCase = float(lowerCamelCase) except ValueError: raise ValueError('''Please enter a valid number''') __lowerCAmelCase = decimal - int(lowerCamelCase) if fractional_part == 0: return int(lowerCamelCase), 1 else: __lowerCAmelCase = len(str(lowerCamelCase).split('''.''')[1]) __lowerCAmelCase = int(decimal * (1_0**number_of_frac_digits)) __lowerCAmelCase = 1_0**number_of_frac_digits __lowerCAmelCase , __lowerCAmelCase = denominator, numerator while True: __lowerCAmelCase = dividend % divisor if remainder == 0: break __lowerCAmelCase , __lowerCAmelCase = divisor, remainder __lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor return int(lowerCamelCase), int(lowerCamelCase) if __name__ == "__main__": print(f"""{decimal_to_fraction(2) = }""") print(f"""{decimal_to_fraction(89.0) = }""") print(f"""{decimal_to_fraction('67') = }""") print(f"""{decimal_to_fraction('45.0') = }""") print(f"""{decimal_to_fraction(1.5) = }""") print(f"""{decimal_to_fraction('6.25') = }""") print(f"""{decimal_to_fraction('78td') = }""")
474
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) _UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) class a__ ( __A ): """simple docstring""" def _snake_case (self , __lowercase , __lowercase , __lowercase=None , __lowercase=None ): __lowerCAmelCase = self.layer[current_layer](__lowercase , __lowercase , head_mask[current_layer] ) __lowerCAmelCase = layer_outputs[0] return hidden_states @add_start_docstrings( 'The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.' , __A , ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase ): super().__init__(__lowercase ) __lowerCAmelCase = BertEncoderWithPabee(__lowercase ) self.init_weights() __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 def _snake_case (self , __lowercase ): __lowerCAmelCase = threshold def _snake_case (self , __lowercase ): __lowerCAmelCase = patience def _snake_case (self ): __lowerCAmelCase = 0 __lowerCAmelCase = 0 def _snake_case (self ): __lowerCAmelCase = self.inference_layers_num / self.inference_instances_num __lowerCAmelCase = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(__lowercase ) @add_start_docstrings_to_model_forward(__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: __lowerCAmelCase = input_ids.size() elif inputs_embeds is not None: __lowerCAmelCase = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) __lowerCAmelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __lowerCAmelCase = torch.ones(__lowercase , device=__lowercase ) if token_type_ids is None: __lowerCAmelCase = torch.zeros(__lowercase , dtype=torch.long , device=__lowercase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __lowerCAmelCase = self.get_extended_attention_mask(__lowercase , __lowercase , __lowercase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = encoder_hidden_states.size() __lowerCAmelCase = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __lowerCAmelCase = torch.ones(__lowercase , device=__lowercase ) __lowerCAmelCase = self.invert_attention_mask(__lowercase ) else: __lowerCAmelCase = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __lowerCAmelCase = self.get_head_mask(__lowercase , self.config.num_hidden_layers ) __lowerCAmelCase = self.embeddings( input_ids=__lowercase , position_ids=__lowercase , token_type_ids=__lowercase , inputs_embeds=__lowercase ) __lowerCAmelCase = embedding_output if self.training: __lowerCAmelCase = [] for i in range(self.config.num_hidden_layers ): __lowerCAmelCase = self.encoder.adaptive_forward( __lowercase , current_layer=__lowercase , attention_mask=__lowercase , head_mask=__lowercase ) __lowerCAmelCase = self.pooler(__lowercase ) __lowerCAmelCase = output_layers[i](output_dropout(__lowercase ) ) res.append(__lowercase ) elif self.patience == 0: # Use all layers for inference __lowerCAmelCase = self.encoder( __lowercase , attention_mask=__lowercase , head_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , ) __lowerCAmelCase = self.pooler(encoder_outputs[0] ) __lowerCAmelCase = [output_layers[self.config.num_hidden_layers - 1](__lowercase )] else: __lowerCAmelCase = 0 __lowerCAmelCase = None __lowerCAmelCase = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __lowerCAmelCase = self.encoder.adaptive_forward( __lowercase , current_layer=__lowercase , attention_mask=__lowercase , head_mask=__lowercase ) __lowerCAmelCase = self.pooler(__lowercase ) __lowerCAmelCase = output_layers[i](__lowercase ) if regression: __lowerCAmelCase = logits.detach() if patient_result is not None: __lowerCAmelCase = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __lowerCAmelCase = 0 else: __lowerCAmelCase = logits.detach().argmax(dim=1 ) if patient_result is not None: __lowerCAmelCase = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(__lowercase ) ): patient_counter += 1 else: __lowerCAmelCase = 0 __lowerCAmelCase = logits if patient_counter == self.patience: break __lowerCAmelCase = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( 'Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ' , __A , ) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase ): super().__init__(__lowercase ) __lowerCAmelCase = config.num_labels __lowerCAmelCase = BertModelWithPabee(__lowercase ) __lowerCAmelCase = nn.Dropout(config.hidden_dropout_prob ) __lowerCAmelCase = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ): __lowerCAmelCase = self.bert( input_ids=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , position_ids=__lowercase , head_mask=__lowercase , inputs_embeds=__lowercase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __lowerCAmelCase = (logits[-1],) if labels is not None: __lowerCAmelCase = None __lowerCAmelCase = 0 for ix, logits_item in enumerate(__lowercase ): if self.num_labels == 1: # We are doing regression __lowerCAmelCase = MSELoss() __lowerCAmelCase = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __lowerCAmelCase = CrossEntropyLoss() __lowerCAmelCase = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __lowerCAmelCase = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __lowerCAmelCase = (total_loss / total_weights,) + outputs return outputs
474
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_) -> list[int]: UpperCamelCase__ : Any = [0 for i in range(len(lowerCamelCase_))] # initialize interval's left pointer and right pointer UpperCamelCase__, UpperCamelCase__ : List[str] = 0, 0 for i in range(1 , len(lowerCamelCase_)): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase__ : Tuple = min(right_pointer - i + 1 , z_result[i - left_pointer]) UpperCamelCase__ : Tuple = min_edge while go_next(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase__, UpperCamelCase__ : Dict = i, i + z_result[i] - 1 return z_result def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> bool: return i + z_result[i] < len(lowerCamelCase_) and s[z_result[i]] == s[i + z_result[i]] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase__ : List[Any] = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase__ : Dict = z_function(pattern + input_str) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(lowerCamelCase_): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
596
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''dpr''' def __init__( self : Tuple , UpperCAmelCase_ : List[Any]=30_522 , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Any=3_072 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Dict=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Tuple=1e-12 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : Union[str, Any]="absolute" , UpperCAmelCase_ : int = 0 , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) UpperCamelCase__ : List[Any] = vocab_size UpperCamelCase__ : Dict = hidden_size UpperCamelCase__ : Optional[Any] = num_hidden_layers UpperCamelCase__ : Optional[Any] = num_attention_heads UpperCamelCase__ : Optional[int] = hidden_act UpperCamelCase__ : Union[str, Any] = intermediate_size UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Optional[int] = attention_probs_dropout_prob UpperCamelCase__ : Tuple = max_position_embeddings UpperCamelCase__ : List[Any] = type_vocab_size UpperCamelCase__ : Dict = initializer_range UpperCamelCase__ : Any = layer_norm_eps UpperCamelCase__ : Tuple = projection_dim UpperCamelCase__ : List[str] = position_embedding_type
596
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : List[Any]=7 , _snake_case : List[str]=3 , _snake_case : Union[str, Any]=18 , _snake_case : List[str]=30 , _snake_case : Tuple=400 , _snake_case : Optional[Any]=True , _snake_case : int=None , _snake_case : Optional[int]=True , _snake_case : Dict=None , _snake_case : str=True , _snake_case : List[str]=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _snake_case : str=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _snake_case : int=True , ): """simple docstring""" UpperCAmelCase_ = size if size is not None else {'height': 224, 'width': 224} UpperCAmelCase_ = crop_size if crop_size is not None else {'height': 18, 'width': 18} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_convert_rgb def lowerCamelCase ( self : List[str]): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def lowerCamelCase ( self : Tuple , _snake_case : List[str]=False , _snake_case : Tuple=False , _snake_case : Any=False): """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: UpperCAmelCase_ = [] for i in range(self.batch_size): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta)) else: UpperCAmelCase_ = [] for i in range(self.batch_size): UpperCAmelCase_ = np.random.choice(np.arange(self.min_resolution , self.max_resolution) , 2) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta)) if not numpify and not torchify: # PIL expects the channel dimension as last dimension UpperCAmelCase_ = [Image.fromarray(np.moveaxis(__a , 0 , -1)) for x in image_inputs] if torchify: UpperCAmelCase_ = [torch.from_numpy(__a) for x in image_inputs] return image_inputs @require_torch @require_vision class __snake_case ( UpperCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Dict = ChineseCLIPImageProcessor if is_vision_available() else None def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = ChineseCLIPImageProcessingTester(self , do_center_crop=__a) @property def lowerCamelCase ( self : Tuple): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a , '''do_resize''')) self.assertTrue(hasattr(__a , '''size''')) self.assertTrue(hasattr(__a , '''do_center_crop''')) self.assertTrue(hasattr(__a , '''center_crop''')) self.assertTrue(hasattr(__a , '''do_normalize''')) self.assertTrue(hasattr(__a , '''image_mean''')) self.assertTrue(hasattr(__a , '''image_std''')) self.assertTrue(hasattr(__a , '''do_convert_rgb''')) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 224, '''width''': 224}) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18}) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {'''shortest_edge''': 42}) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84}) def lowerCamelCase ( self : List[Any]): """simple docstring""" pass def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(__a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=__a , numpify=__a) for image in image_inputs: self.assertIsInstance(__a , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(__a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=__a , torchify=__a) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(__a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) @require_torch @require_vision class __snake_case ( UpperCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : str = ChineseCLIPImageProcessor if is_vision_available() else None def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=__a) UpperCAmelCase_ = 3 @property def lowerCamelCase ( self : Dict): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a , '''do_resize''')) self.assertTrue(hasattr(__a , '''size''')) self.assertTrue(hasattr(__a , '''do_center_crop''')) self.assertTrue(hasattr(__a , '''center_crop''')) self.assertTrue(hasattr(__a , '''do_normalize''')) self.assertTrue(hasattr(__a , '''image_mean''')) self.assertTrue(hasattr(__a , '''image_std''')) self.assertTrue(hasattr(__a , '''do_convert_rgb''')) def lowerCamelCase ( self : Tuple): """simple docstring""" pass def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(__a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
717
import math from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Dict = logging.get_logger(__name__) snake_case_ : List[Any] = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __snake_case ( a ): UpperCAmelCase__ : List[Any] = '''data2vec-audio''' def __init__( self : str , _snake_case : List[str]=32 , _snake_case : Any=768 , _snake_case : Any=12 , _snake_case : Dict=12 , _snake_case : Any=3072 , _snake_case : int="gelu" , _snake_case : List[Any]=0.1 , _snake_case : Union[str, Any]=0.1 , _snake_case : Optional[int]=0.1 , _snake_case : int=0.0 , _snake_case : int=0.1 , _snake_case : Dict=0.1 , _snake_case : str=0.0_2 , _snake_case : Dict=1e-5 , _snake_case : Union[str, Any]="gelu" , _snake_case : Optional[Any]=(512, 512, 512, 512, 512, 512, 512) , _snake_case : Dict=(5, 2, 2, 2, 2, 2, 2) , _snake_case : str=(10, 3, 3, 3, 3, 2, 2) , _snake_case : Optional[Any]=False , _snake_case : List[Any]=16 , _snake_case : int=19 , _snake_case : Optional[int]=5 , _snake_case : List[Any]=0.0_5 , _snake_case : Any=10 , _snake_case : Optional[Any]=2 , _snake_case : List[str]=0.0 , _snake_case : List[Any]=10 , _snake_case : Tuple=0 , _snake_case : List[Any]="sum" , _snake_case : List[Any]=False , _snake_case : List[str]=False , _snake_case : List[Any]=256 , _snake_case : str=(512, 512, 512, 512, 1500) , _snake_case : Tuple=(5, 3, 3, 1, 1) , _snake_case : List[Any]=(1, 2, 3, 1, 1) , _snake_case : Optional[Any]=512 , _snake_case : Optional[int]=0 , _snake_case : List[Any]=1 , _snake_case : List[str]=2 , _snake_case : Tuple=False , _snake_case : str=3 , _snake_case : Tuple=2 , _snake_case : List[str]=3 , _snake_case : Dict=None , **_snake_case : Tuple , ): """simple docstring""" super().__init__(**_snake_case , pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = feat_extract_activation UpperCAmelCase_ = list(_snake_case) UpperCAmelCase_ = list(_snake_case) UpperCAmelCase_ = list(_snake_case) UpperCAmelCase_ = conv_bias UpperCAmelCase_ = num_conv_pos_embeddings UpperCAmelCase_ = num_conv_pos_embedding_groups UpperCAmelCase_ = conv_pos_kernel_size UpperCAmelCase_ = len(self.conv_dim) UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = feat_proj_dropout UpperCAmelCase_ = final_dropout UpperCAmelCase_ = layerdrop UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range UpperCAmelCase_ = vocab_size UpperCAmelCase_ = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ = mask_time_prob UpperCAmelCase_ = mask_time_length UpperCAmelCase_ = mask_time_min_masks UpperCAmelCase_ = mask_feature_prob UpperCAmelCase_ = mask_feature_length UpperCAmelCase_ = mask_feature_min_masks # ctc loss UpperCAmelCase_ = ctc_loss_reduction UpperCAmelCase_ = ctc_zero_infinity # adapter UpperCAmelCase_ = add_adapter UpperCAmelCase_ = adapter_kernel_size UpperCAmelCase_ = adapter_stride UpperCAmelCase_ = num_adapter_layers UpperCAmelCase_ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ = list(_snake_case) UpperCAmelCase_ = list(_snake_case) UpperCAmelCase_ = list(_snake_case) UpperCAmelCase_ = xvector_output_dim @property def lowerCamelCase ( self : List[Any]): """simple docstring""" return math.prod(self.conv_stride)
169
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _lowerCamelCase (__lowerCamelCase : str , __lowerCamelCase : float | Decimal , __lowerCamelCase : float = 10**-10 ) -> float: a__ = a while True: a__ = Decimal(snake_case_ ) - ( Decimal(eval(snake_case_ ) ) / Decimal(eval(str(diff(snake_case_ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(snake_case_ ) ) < precision: # noqa: S307 return float(snake_case_ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial print(f"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}""") # Find Square Root of 5 print(f"""The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}""") # Exponential Roots print(f"""The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}""")
489
"""simple docstring""" def __lowercase ( snake_case_ : str ,snake_case_ : str ) ->float: '''simple docstring''' def get_matched_characters(snake_case_ : str ,snake_case_ : str ) -> str: __A : Any = [] __A : Any = min(len(_stra ) ,len(_stra ) ) // 2 for i, l in enumerate(_stra ): __A : Dict = int(max(0 ,i - limit ) ) __A : Tuple = int(min(i + limit + 1 ,len(_stra ) ) ) if l in _stra[left:right]: matched.append(snake_case_ ) __A : Any = F"""{_stra[0:_stra.index(snake_case_ )]} {_stra[_stra.index(snake_case_ ) + 1:]}""" return "".join(snake_case_ ) # matching characters __A : int = get_matched_characters(snake_case_ ,snake_case_ ) __A : Tuple = get_matched_characters(snake_case_ ,snake_case_ ) __A : str = len(snake_case_ ) # transposition __A : Dict = ( len([(ca, ca) for ca, ca in zip(snake_case_ ,snake_case_ ) if ca != ca] ) // 2 ) if not match_count: __A : List[str] = 0.0 else: __A : Tuple = ( 1 / 3 * ( match_count / len(snake_case_ ) + match_count / len(snake_case_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __A : Tuple = 0 for ca, ca in zip(stra[:4] ,stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
177
0
def __A ( UpperCAmelCase ,UpperCAmelCase ) -> int: '''simple docstring''' if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError("String lengths must match!" ) _UpperCamelCase : int = 0 for chara, chara in zip(UpperCAmelCase ,UpperCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
712
'''simple docstring''' import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : int = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. """ class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @add_start_docstrings(lowercase__ ) def __call__( self : str , lowercase__ : torch.LongTensor , lowercase__ : torch.FloatTensor , **lowercase__ : Tuple ) ->bool: '''simple docstring''' raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase__ : int , lowercase__ : Optional[int] = None ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = max_length _UpperCamelCase : str = max_position_embeddings @add_start_docstrings(lowercase__ ) def __call__( self : Optional[int] , lowercase__ : torch.LongTensor , lowercase__ : torch.FloatTensor , **lowercase__ : Optional[Any] ) ->bool: '''simple docstring''' _UpperCamelCase : List[Any] = input_ids.shape[-1] _UpperCamelCase : Optional[int] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " f'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' "exceptions, performance degradation, or nothing at all." ) return is_done class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , lowercase__ : int , lowercase__ : int ) ->int: '''simple docstring''' warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " f'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' "with `max_length = start_length + max_new_tokens` instead." , lowercase__ , ) _UpperCamelCase : Dict = start_length _UpperCamelCase : Optional[Any] = max_new_tokens _UpperCamelCase : List[Any] = start_length + max_new_tokens @add_start_docstrings(lowercase__ ) def __call__( self : Dict , lowercase__ : torch.LongTensor , lowercase__ : torch.FloatTensor , **lowercase__ : Dict ) ->bool: '''simple docstring''' return input_ids.shape[-1] >= self.max_length class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase__ : float , lowercase__ : Optional[float] = None ) ->Dict: '''simple docstring''' _UpperCamelCase : Dict = max_time _UpperCamelCase : int = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(lowercase__ ) def __call__( self : Dict , lowercase__ : torch.LongTensor , lowercase__ : torch.FloatTensor , **lowercase__ : Tuple ) ->bool: '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @add_start_docstrings(lowercase__ ) def __call__( self : Optional[int] , lowercase__ : torch.LongTensor , lowercase__ : torch.FloatTensor , **lowercase__ : List[Any] ) ->bool: '''simple docstring''' return any(criteria(lowercase__ , lowercase__ ) for criteria in self ) @property def snake_case__ ( self : Tuple ) ->Optional[int]: '''simple docstring''' for stopping_criterium in self: if isinstance(lowercase__ , lowercase__ ): return stopping_criterium.max_length elif isinstance(lowercase__ , lowercase__ ): return stopping_criterium.max_length return None def __A ( UpperCAmelCase ,UpperCAmelCase ) -> StoppingCriteriaList: '''simple docstring''' _UpperCamelCase : Optional[int] = stopping_criteria.max_length _UpperCamelCase : Optional[Any] = deepcopy(UpperCAmelCase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" ,UpperCAmelCase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=UpperCAmelCase ) ) return new_stopping_criteria
204
0
"""simple docstring""" import random from typing import Any def lowerCamelCase_ ( __lowerCAmelCase ) -> Dict: '''simple docstring''' for _ in range(len(__lowerCAmelCase ) ): lowerCamelCase__ =random.randint(0 , len(__lowerCAmelCase ) - 1 ) lowerCamelCase__ =random.randint(0 , len(__lowerCAmelCase ) - 1 ) lowerCamelCase__ , lowerCamelCase__ =data[b], data[a] return data if __name__ == "__main__": a =[0, 1, 2, 3, 4, 5, 6, 7] a =["""python""", """says""", """hello""", """!"""] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
530
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCamelCase ( _UpperCAmelCase ,_UpperCAmelCase ): """simple docstring""" @register_to_config def __init__( self , *, lowerCAmelCase__ = 4 , lowerCAmelCase__ = 7_68 , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Dict: '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.zeros(lowerCAmelCase__ ) ) # parameters for additional clip time embeddings __lowercase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) # parameters for encoder hidden states __lowercase = clip_extra_context_tokens __lowercase = nn.Linear( lowerCAmelCase__ , self.clip_extra_context_tokens * cross_attention_dim ) __lowercase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = nn.LayerNorm(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , *, lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowercase = image_embeddings.shape[0] __lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowercase = classifier_free_guidance_embeddings.expand( lowerCAmelCase__ , -1 ) __lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowercase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowercase = self.embedding_proj(lowerCAmelCase__ ) __lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCAmelCase__ ) __lowercase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowercase = self.clip_extra_context_tokens_proj(lowerCAmelCase__ ) __lowercase = clip_extra_context_tokens.reshape(lowerCAmelCase__ , -1 , self.clip_extra_context_tokens ) __lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowercase = self.encoder_hidden_states_proj(lowerCAmelCase__ ) __lowercase = self.text_encoder_hidden_states_norm(lowerCAmelCase__ ) __lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
534
0
'''simple docstring''' def A__ ( A : str): '''simple docstring''' assert column_title.isupper() UpperCamelCase : Optional[Any] = 0 UpperCamelCase : Tuple = len(A) - 1 UpperCamelCase : Union[str, Any] = 0 while index >= 0: UpperCamelCase : Optional[Any] = (ord(column_title[index]) - 64) * pow(26 , A) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
435
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = '''timesformer''' def __init__( self , lowerCamelCase=2_24 , lowerCamelCase=16 , lowerCamelCase=3 , lowerCamelCase=8 , lowerCamelCase=7_68 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=30_72 , lowerCamelCase="gelu" , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.02 , lowerCamelCase=1e-6 , lowerCamelCase=True , lowerCamelCase="divided_space_time" , lowerCamelCase=0 , **lowerCamelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**lowerCamelCase ) UpperCamelCase : Union[str, Any] = image_size UpperCamelCase : Optional[Any] = patch_size UpperCamelCase : Dict = num_channels UpperCamelCase : int = num_frames UpperCamelCase : Tuple = hidden_size UpperCamelCase : int = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : Optional[Any] = intermediate_size UpperCamelCase : List[Any] = hidden_act UpperCamelCase : int = hidden_dropout_prob UpperCamelCase : List[str] = attention_probs_dropout_prob UpperCamelCase : Tuple = initializer_range UpperCamelCase : List[Any] = layer_norm_eps UpperCamelCase : Any = qkv_bias UpperCamelCase : int = attention_type UpperCamelCase : int = drop_path_rate
435
1
SCREAMING_SNAKE_CASE = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 1_0: 'a', 1_1: 'b', 1_2: 'c', 1_3: 'd', 1_4: 'e', 1_5: 'f', } def a (lowerCAmelCase__ ): assert type(lowerCAmelCase__ ) in (int, float) and decimal == int(lowerCAmelCase__ ) __a = int(lowerCAmelCase__ ) __a = """""" __a = False if decimal < 0: __a = True decimal *= -1 while decimal > 0: __a , __a = divmod(lowerCAmelCase__ , 16 ) __a = values[remainder] + hexadecimal __a = """0x""" + hexadecimal if negative: __a = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
99
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCamelCase : """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=[3_0, 3_0] , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1_0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=1_0 , ) -> List[str]: """simple docstring""" UpperCamelCase__ : Any = parent UpperCamelCase__ : Optional[Any] = batch_size UpperCamelCase__ : str = image_size UpperCamelCase__ : Union[str, Any] = patch_size UpperCamelCase__ : Union[str, Any] = num_channels UpperCamelCase__ : Tuple = is_training UpperCamelCase__ : Optional[int] = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : Optional[Any] = num_attention_heads UpperCamelCase__ : int = intermediate_size UpperCamelCase__ : Tuple = hidden_act UpperCamelCase__ : int = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : str = type_sequence_label_size UpperCamelCase__ : str = initializer_range UpperCamelCase__ : Dict = num_labels UpperCamelCase__ : List[Any] = scope UpperCamelCase__ : str = n_targets UpperCamelCase__ : int = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens UpperCamelCase__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) UpperCamelCase__ : Any = num_patches + 1 + self.num_detection_tokens def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) UpperCamelCase__ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) UpperCamelCase__ : Union[str, Any] = [] for i in range(self.batch_size ): UpperCamelCase__ : Optional[Any] = {} UpperCamelCase__ : str = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = torch.rand(self.n_targets , 4 , device=__SCREAMING_SNAKE_CASE ) labels.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: """simple docstring""" return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Dict = YolosModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase__ : Optional[int] = YolosForObjectDetection(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : str = model(pixel_values=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) UpperCamelCase__ : Optional[Any] = model(pixel_values=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : str = self.prepare_config_and_inputs() UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = config_and_inputs UpperCamelCase__ : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = (YolosModel, YolosForObjectDetection) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> List[str]: """simple docstring""" UpperCamelCase__ : int = super()._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": UpperCamelCase__ : List[Any] = [] for i in range(self.model_tester.batch_size ): UpperCamelCase__ : Optional[int] = {} UpperCamelCase__ : Union[str, Any] = torch.ones( size=(self.model_tester.n_targets,) , device=__SCREAMING_SNAKE_CASE , dtype=torch.long ) UpperCamelCase__ : Tuple = torch.ones( self.model_tester.n_targets , 4 , device=__SCREAMING_SNAKE_CASE , dtype=torch.float ) labels.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = labels return inputs_dict def __SCREAMING_SNAKE_CASE ( self ) -> int: """simple docstring""" UpperCamelCase__ : Any = YolosModelTester(self ) UpperCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" pass def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Dict = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Any = model_class(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : List[Any] = [*signature.parameters.keys()] UpperCamelCase__ : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : List[str] = True # in YOLOS, the seq_len is different UpperCamelCase__ : List[str] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = True UpperCamelCase__ : int = False UpperCamelCase__ : Union[str, Any] = True UpperCamelCase__ : str = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : Tuple = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase__ : str = True UpperCamelCase__ : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : List[Any] = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) UpperCamelCase__ : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine UpperCamelCase__ : Optional[Any] = True UpperCamelCase__ : List[Any] = True UpperCamelCase__ : List[Any] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : Optional[int] = 1 self.assertEqual(out_len + added_hidden_states , len(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : int = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase__ : str = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : Tuple = outputs.hidden_states UpperCamelCase__ : Tuple = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # YOLOS has a different seq_length UpperCamelCase__ : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) UpperCamelCase__ ,UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ : Any = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__SCREAMING_SNAKE_CASE ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: """simple docstring""" for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Dict = YolosModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( ): UpperCamelCase__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : List[Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = self.default_image_processor UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase__ : int = model(inputs.pixel_values ) # verify outputs UpperCamelCase__ : Dict = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=__SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Dict = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify postprocessing UpperCamelCase__ : Any = image_processor.post_process_object_detection( __SCREAMING_SNAKE_CASE , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] UpperCamelCase__ : List[Any] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = [7_5, 7_5, 1_7, 6_3, 1_7] UpperCamelCase__ : List[str] = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __SCREAMING_SNAKE_CASE ) )
285
0
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : NDArray[floataa] , SCREAMING_SNAKE_CASE_ : NDArray[floataa] , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int , ) -> list[float]: """simple docstring""" SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : str = coefficient_matrix.shape SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : List[Any] = constant_matrix.shape if rowsa != colsa: SCREAMING_SNAKE_CASE_ : Union[str, Any] = F"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}" raise ValueError(SCREAMING_SNAKE_CASE_ ) if colsa != 1: SCREAMING_SNAKE_CASE_ : List[Any] = F"Constant matrix must be nx1 but received {rowsa}x{colsa}" raise ValueError(SCREAMING_SNAKE_CASE_ ) if rowsa != rowsa: SCREAMING_SNAKE_CASE_ : Any = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " F"received {rowsa}x{colsa} and {rowsa}x{colsa}" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) != rowsa: SCREAMING_SNAKE_CASE_ : int = ( "Number of initial values must be equal to number of rows in coefficient " F"matrix but received {len(SCREAMING_SNAKE_CASE_ )} and {rowsa}" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) SCREAMING_SNAKE_CASE_ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Any = table.shape strictly_diagonally_dominant(SCREAMING_SNAKE_CASE_ ) # Iterates the whole matrix for given number of times for _ in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ : Tuple = [] for row in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ : Any = 0 for col in range(SCREAMING_SNAKE_CASE_ ): if col == row: SCREAMING_SNAKE_CASE_ : Any = table[row][col] elif col == cols - 1: SCREAMING_SNAKE_CASE_ : Dict = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] SCREAMING_SNAKE_CASE_ : Optional[Any] = (temp + val) / denom new_val.append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = new_val return [float(SCREAMING_SNAKE_CASE_ ) for i in new_val] def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : NDArray[floataa] ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = table.shape SCREAMING_SNAKE_CASE_ : Tuple = True for i in range(0 , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ : int = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
68
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE_ : Any = DisjunctiveConstraint(lowercase__ ) self.assertTrue(isinstance(dc.token_ids , lowercase__ ) ) with self.assertRaises(lowercase__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowercase__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowercase__ ): DisjunctiveConstraint(lowercase__ ) # fails here def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE_ : Optional[Any] = DisjunctiveConstraint(lowercase__ ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = dc.update(1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(lowercase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Tuple = dc.update(2 ) SCREAMING_SNAKE_CASE_ : Tuple = stepped is True and completed is False and reset is False self.assertTrue(lowercase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Any = dc.update(3 ) SCREAMING_SNAKE_CASE_ : Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowercase__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE_ : Dict = DisjunctiveConstraint(lowercase__ ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : List[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Tuple = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : str = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : str = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
68
1
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class UpperCamelCase_ (__A ): __magic_name__ = '''''' __magic_name__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __magic_name__ = None # compression type in fsspec. ex: "gzip" __magic_name__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[Any] , lowerCAmelCase_ : str = "" , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[dict] = None , **lowerCAmelCase_ : List[str] ) -> List[Any]: super().__init__(self , **lowerCAmelCase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCAmelCase_ : Dict = fsspec.open( lowerCAmelCase_ , mode="rb" , protocol=lowerCAmelCase_ , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCAmelCase_ : Optional[int] = os.path.basename(self.file.path.split("::" )[0] ) UpperCAmelCase_ : Any = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) UpperCAmelCase_ : Any = None @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] , lowerCAmelCase_ : List[str] ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowerCAmelCase_ ).lstrip("/" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: if self.dir_cache is None: UpperCAmelCase_ : Optional[Any] = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} UpperCAmelCase_ : str = {f["name"]: f} def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : str ) -> Any: return self.file.open().read() def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str = "rb" , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : Tuple , ) -> Tuple: UpperCAmelCase_ : List[str] = self._strip_protocol(lowerCAmelCase_ ) if mode != "rb": raise ValueError(f"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class UpperCamelCase_ (__A ): __magic_name__ = '''bz2''' __magic_name__ = '''bz2''' __magic_name__ = '''.bz2''' class UpperCamelCase_ (__A ): __magic_name__ = '''gzip''' __magic_name__ = '''gzip''' __magic_name__ = '''.gz''' class UpperCamelCase_ (__A ): __magic_name__ = '''lz4''' __magic_name__ = '''lz4''' __magic_name__ = '''.lz4''' class UpperCamelCase_ (__A ): __magic_name__ = '''xz''' __magic_name__ = '''xz''' __magic_name__ = '''.xz''' class UpperCamelCase_ (__A ): __magic_name__ = '''zstd''' __magic_name__ = '''zstd''' __magic_name__ = '''.zst''' def __init__( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : str = "rb" , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[dict] = None , lowerCAmelCase_ : int = DEFAULT_BLOCK_SIZE , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( fo=lowerCAmelCase_ , mode=lowerCAmelCase_ , target_protocol=lowerCAmelCase_ , target_options=lowerCAmelCase_ , block_size=lowerCAmelCase_ , **lowerCAmelCase_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCAmelCase_ : Optional[Any] = self.file.__enter__ class UpperCamelCase_ : def __init__( self : Tuple , lowerCAmelCase_ : List[Any] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = file_ def __enter__( self : Tuple ) -> List[Any]: self._file.__enter__() return self def __exit__( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : int ) -> Optional[int]: self._file.__exit__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __iter__( self : Optional[int] ) -> int: return iter(self._file ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return next(self._file ) def __getattr__( self : Optional[int] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: return getattr(self._file , lowerCAmelCase_ ) def fixed_enter(*lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[Any] ): return WrappedFile(_enter(*lowerCAmelCase_ , **lowerCAmelCase_ ) ) UpperCAmelCase_ : List[Any] = fixed_enter
95
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = torch.device('''cpu''') def snake_case ( ): UpperCAmelCase_ : str = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : str = Image.open(requests.get(A__ ,stream=A__ ).raw ) return im def snake_case ( A__ ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : Tuple = dct.pop(A__ ) UpperCAmelCase_ : Optional[Any] = val def snake_case ( A__ ): UpperCAmelCase_ : List[str] = [] for k in state_dict.keys(): UpperCAmelCase_ : Union[str, Any] = k if ".pwconv" in k: UpperCAmelCase_ : Dict = k_new.replace(".pwconv" ,".point_wise_conv" ) if ".dwconv" in k: UpperCAmelCase_ : Any = k_new.replace(".dwconv" ,".depth_wise_conv" ) if ".Proj." in k: UpperCAmelCase_ : Dict = k_new.replace(".Proj." ,".proj." ) if "patch_embed" in k_new: UpperCAmelCase_ : Tuple = k_new.replace("patch_embed" ,"swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: UpperCAmelCase_ : List[Any] = k_new.split("." ) if ls[2].isdigit(): UpperCAmelCase_ : Tuple = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: UpperCAmelCase_ : Optional[Any] = k_new.replace("network" ,"swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : Optional[int] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ : Optional[Any] = 10_00 UpperCAmelCase_ : str = "huggingface/label-files" UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : List[str] = json.load(open(hf_hub_download(A__ ,A__ ,repo_type="dataset" ) ,"r" ) ) UpperCAmelCase_ : Tuple = {int(A__ ): v for k, v in idalabel.items()} UpperCAmelCase_ : List[Any] = idalabel UpperCAmelCase_ : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCAmelCase_ : Tuple = [3, 3, 6, 4] UpperCAmelCase_ : str = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": UpperCAmelCase_ : Optional[Any] = [3, 3, 9, 6] UpperCAmelCase_ : Optional[Any] = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": UpperCAmelCase_ : int = [4, 3, 10, 5] UpperCAmelCase_ : Union[str, Any] = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": UpperCAmelCase_ : Dict = [4, 4, 12, 6] UpperCAmelCase_ : Optional[int] = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): UpperCAmelCase_ : List[Any] = torch.hub.load_state_dict_from_url(A__ ,map_location="cpu" ,check_hash=A__ ) else: UpperCAmelCase_ : Any = torch.load(A__ ,map_location="cpu" ) UpperCAmelCase_ : List[str] = checkpoint UpperCAmelCase_ : Dict = create_rename_keys(A__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(A__ ,A__ ,A__ ) # load HuggingFace model UpperCAmelCase_ : Optional[int] = SwiftFormerForImageClassification(A__ ).eval() hf_model.load_state_dict(A__ ) # prepare test inputs UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : int = ViTImageProcessor.from_pretrained("preprocessor_config" ) UpperCAmelCase_ : int = processor(images=A__ ,return_tensors="pt" ) # compare outputs from both models UpperCAmelCase_ : List[Any] = get_expected_output(A__ ) UpperCAmelCase_ : int = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] ,A__ ,atol=1e-3 ) Path(A__ ).mkdir(exist_ok=A__ ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(A__ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') lowerCamelCase_ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
95
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase ={ "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase =[ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase =[ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
255
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } UpperCAmelCase =[ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _A ( _a : Tuple , _a : str , _a : int , _a : Dict , _a : Union[str, Any] ): """simple docstring""" for attribute in key.split(""".""" ): A = getattr(_a , _a ) if weight_type is not None: A = getattr(_a , _a ).shape else: A = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value else: A = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _A ( _a : Union[str, Any] , _a : str ): """simple docstring""" A = [] A = fairseq_model.state_dict() A = hf_model.feature_extractor A = hf_model.adapter for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( _a , _a , _a , _a , hf_model.config.feat_extract_norm == """group""" , ) A = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(_a , _a , _a , _a ) A = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: A = True if "*" in mapped_key: A = name.split(_a )[0].split(""".""" )[-2] A = mapped_key.replace("""*""" , _a ) if "weight_g" in name: A = """weight_g""" elif "weight_v" in name: A = """weight_v""" elif "bias" in name: A = """bias""" elif "weight" in name: A = """weight""" else: A = None set_recursively(_a , _a , _a , _a , _a ) continue if not is_used: unused_weights.append(_a ) logger.warning(f'Unused weights: {unused_weights}' ) def _A ( _a : int , _a : Optional[int] , _a : Any , _a : Union[str, Any] , _a : Tuple ): """simple docstring""" A = full_name.split("""conv_layers.""" )[-1] A = name.split(""".""" ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) A = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) A = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) A = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) A = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_a ) def _A ( _a : List[str] , _a : Any , _a : Union[str, Any] , _a : Optional[int] ): """simple docstring""" A = full_name.split("""adaptor.""" )[-1] A = name.split(""".""" ) if items[1].isdigit(): A = int(items[1] ) else: A = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' A = value logger.info(f'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' A = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' A = value logger.info(f'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' A = value logger.info(f'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(_a , _a ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' A = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' A = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(_a ) def _A ( _a : List[Any] ): """simple docstring""" A , A = emb.weight.shape A = nn.Linear(_a , _a , bias=_a ) A = emb.weight.data return lin_layer @torch.no_grad() def _A ( _a : List[str] , _a : Tuple , _a : Dict , _a : Optional[Any] , _a : str , _a : Dict , _a : Optional[int] , _a : Optional[Any] , _a : Tuple , _a : int , _a : Tuple , ): """simple docstring""" A = WavaVecaConfig.from_pretrained( _a , add_adapter=_a , adapter_stride=_a , adapter_kernel_size=_a , use_auth_token=_a , output_hidden_size=_a , ) A = MBartConfig.from_pretrained(_a ) # load model A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) A = model[0].eval() # load feature extractor A = WavaVecaFeatureExtractor.from_pretrained(_a , use_auth_token=_a ) # set weights for wav2vec2 encoder A = WavaVecaModel(_a ) recursively_load_weights_wavaveca(model.encoder , _a ) # load decoder weights A = MBartForCausalLM(_a ) A , A = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_a ) logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) A = SpeechEncoderDecoderModel(encoder=_a , decoder=_a ) A = False A = MBartaaTokenizer(_a ) tokenizer.save_pretrained(_a ) A = hf_wavavec.config.to_dict() A = tokenizer.pad_token_id A = tokenizer.bos_token_id A = tokenizer.eos_token_id A = """mbart50""" A = """wav2vec2""" A = tokenizer.eos_token_id A = 2_5_0_0_0_4 A = tokenizer.eos_token_id A = SpeechEncoderDecoderConfig.from_dict(_a ) hf_wavavec.save_pretrained(_a ) feature_extractor.save_pretrained(_a ) if __name__ == "__main__": UpperCAmelCase =argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1_024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250_004, type=int, help="`decoder_start_token_id` of model config") UpperCAmelCase =parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
255
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {'vocab_file': 'sentencepiece.model'} UpperCAmelCase = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } UpperCAmelCase = { 'google/rembert': 2_5_6, } class snake_case__ ( __UpperCamelCase ): _SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : str , A__ : Dict , A__ : Any=False , A__ : Optional[Any]=True , A__ : List[str]=True , A__ : Optional[Any]="[CLS]" , A__ : Optional[int]="[SEP]" , A__ : Optional[Any]="[UNK]" , A__ : Optional[Any]="[SEP]" , A__ : int="[PAD]" , A__ : str="[CLS]" , A__ : Optional[Any]="[MASK]" , **A__ : Optional[Any] , ) -> List[Any]: '''simple docstring''' super().__init__( do_lower_case=A__ , remove_space=A__ , keep_accents=A__ , bos_token=A__ , eos_token=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , **A__ , ) snake_case_ : Dict = do_lower_case snake_case_ : Tuple = remove_space snake_case_ : List[Any] = keep_accents snake_case_ : Union[str, Any] = vocab_file snake_case_ : Optional[Any] = spm.SentencePieceProcessor() self.sp_model.Load(A__ ) @property def UpperCAmelCase__ ( self : List[str] ) -> int: '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[Any] = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> str: '''simple docstring''' snake_case_ : Tuple = self.__dict__.copy() snake_case_ : List[Any] = None return state def __setstate__( self : Any , A__ : int ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = d snake_case_ : Dict = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self : str , A__ : List[Any] , A__ : str=False ) -> Union[str, Any]: '''simple docstring''' snake_case_ : str = self.sp_model.EncodeAsPieces(A__ ) return pieces def UpperCAmelCase__ ( self : int , A__ : Optional[int] ) -> List[Any]: '''simple docstring''' return self.sp_model.PieceToId(A__ ) def UpperCAmelCase__ ( self : List[Any] , A__ : Optional[int] ) -> Dict: '''simple docstring''' return self.sp_model.IdToPiece(A__ ) def UpperCAmelCase__ ( self : Union[str, Any] , A__ : Any ) -> int: '''simple docstring''' snake_case_ : int = self.sp_model.decode_pieces(A__ ) return out_string def UpperCAmelCase__ ( self : Any , A__ : Any , A__ : str = None ) -> str: '''simple docstring''' snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self : Tuple , A__ : Dict , A__ : str = None , A__ : Any = False ) -> Optional[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A__ )) + [1] + ([0] * len(A__ )) + [1] return [1] + ([0] * len(A__ )) + [1] def UpperCAmelCase__ ( self : str , A__ : str , A__ : Dict = None ) -> int: '''simple docstring''' snake_case_ : Any = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : Tuple , A__ : List[Any] , A__ : List[str] = None ) -> Tuple: '''simple docstring''' if not os.path.isdir(A__ ): logger.error("Vocabulary path ({}) should be a directory".format(A__ ) ) return snake_case_ : str = os.path.join( A__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ): copyfile(self.vocab_file , A__ ) return (out_vocab_file,)
666
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def A ( _A, _A ): """simple docstring""" snake_case_ :List[str] = list(_A ) snake_case_ :Any = list(_A ) snake_case_ :Optional[Any] = 0 for i in range(len(_A ) ): if lista[i] != lista[i]: count += 1 snake_case_ :Optional[int] = "_" if count > 1: return False else: return "".join(_A ) def A ( _A ): """simple docstring""" snake_case_ :Tuple = [] while True: snake_case_ :int = ["$"] * len(_A ) snake_case_ :Union[str, Any] = [] for i in range(len(_A ) ): for j in range(i + 1, len(_A ) ): snake_case_ :Dict = compare_string(binary[i], binary[j] ) if k is False: snake_case_ :Tuple = "*" snake_case_ :List[str] = "*" temp.append("X" ) for i in range(len(_A ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_A ) == 0: return pi snake_case_ :Dict = list(set(_A ) ) def A ( _A, _A ): """simple docstring""" snake_case_ :Optional[int] = [] for minterm in minterms: snake_case_ :Tuple = "" for _ in range(_A ): snake_case_ :Optional[int] = str(minterm % 2 ) + string minterm //= 2 temp.append(_A ) return temp def A ( _A, _A, _A ): """simple docstring""" snake_case_ :Tuple = list(_A ) snake_case_ :List[str] = list(_A ) snake_case_ :Dict = 0 for i in range(len(_A ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def A ( _A, _A ): """simple docstring""" snake_case_ :List[Any] = [] snake_case_ :List[Any] = [0] * len(_A ) for i in range(len(chart[0] ) ): snake_case_ :List[Any] = 0 snake_case_ :Optional[Any] = -1 for j in range(len(_A ) ): if chart[j][i] == 1: count += 1 snake_case_ :Dict = j if count == 1: snake_case_ :str = 1 for i in range(len(_A ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_A ) ): snake_case_ :str = 0 temp.append(prime_implicants[i] ) while True: snake_case_ :Any = 0 snake_case_ :Optional[int] = -1 snake_case_ :List[Any] = 0 for i in range(len(_A ) ): snake_case_ :str = chart[i].count(1 ) if count_n > max_n: snake_case_ :Optional[Any] = count_n snake_case_ :List[str] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_A ) ): snake_case_ :Any = 0 def A ( _A, _A ): """simple docstring""" snake_case_ :Optional[Any] = [[0 for x in range(len(_A ) )] for x in range(len(_A ) )] for i in range(len(_A ) ): snake_case_ :Dict = prime_implicants[i].count("_" ) for j in range(len(_A ) ): if is_for_table(prime_implicants[i], binary[j], _A ): snake_case_ :Optional[int] = 1 return chart def A ( ): """simple docstring""" snake_case_ :str = int(input("Enter the no. of variables\n" ) ) snake_case_ :Dict = [ float(_A ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] snake_case_ :Tuple = decimal_to_binary(_A, _A ) snake_case_ :Tuple = check(_A ) print("Prime Implicants are:" ) print(_A ) snake_case_ :List[Any] = prime_implicant_chart(_A, _A ) snake_case_ :int = selection(_A, _A ) print("Essential Prime Implicants are:" ) print(_A ) if __name__ == "__main__": import doctest doctest.testmod() main()
584
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class a_ ( UpperCamelCase_ ): _snake_case = """vit_msn""" def __init__(self , __a=7_6_8 , __a=1_2 , __a=1_2 , __a=3_0_7_2 , __a="gelu" , __a=0.0 , __a=0.0 , __a=0.02 , __a=1E-06 , __a=2_2_4 , __a=1_6 , __a=3 , __a=True , **__a , ) -> Any: """simple docstring""" super().__init__(**__a) __snake_case : List[str] = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : Optional[Any] = num_attention_heads __snake_case : str = intermediate_size __snake_case : List[str] = hidden_act __snake_case : List[Any] = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : List[str] = initializer_range __snake_case : Optional[int] = layer_norm_eps __snake_case : Dict = image_size __snake_case : int = patch_size __snake_case : Dict = num_channels __snake_case : Tuple = qkv_bias
61
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( A : float , A : list[float] ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) __snake_case : List[str] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(A ) ) return round(A , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
61
1
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' UpperCamelCase : List[Any] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=__UpperCamelCase , dtype=jnp.bfloataa ) UpperCamelCase : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=__UpperCamelCase , from_pt=__UpperCamelCase , dtype=jnp.bfloataa ) UpperCamelCase : str = controlnet_params UpperCamelCase : Dict = 'bird' UpperCamelCase : List[str] = jax.device_count() UpperCamelCase : Union[str, Any] = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCamelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) UpperCamelCase : List[Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) UpperCamelCase : Dict = jax.random.PRNGKey(0 ) UpperCamelCase : Dict = jax.random.split(__UpperCamelCase , jax.device_count() ) UpperCamelCase : int = replicate(__UpperCamelCase ) UpperCamelCase : Union[str, Any] = shard(__UpperCamelCase ) UpperCamelCase : Union[str, Any] = shard(__UpperCamelCase ) UpperCamelCase : List[Any] = pipe( prompt_ids=__UpperCamelCase , image=__UpperCamelCase , params=__UpperCamelCase , prng_seed=__UpperCamelCase , num_inference_steps=50 , jit=__UpperCamelCase , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) UpperCamelCase : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase : Optional[int] = images[0, 2_53:2_56, 2_53:2_56, -1] UpperCamelCase : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase : str = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' UpperCamelCase : str = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=__UpperCamelCase , dtype=jnp.bfloataa ) UpperCamelCase : Dict = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=__UpperCamelCase , from_pt=__UpperCamelCase , dtype=jnp.bfloataa ) UpperCamelCase : List[str] = controlnet_params UpperCamelCase : int = 'Chef in the kitchen' UpperCamelCase : Any = jax.device_count() UpperCamelCase : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCamelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) UpperCamelCase : int = pipe.prepare_image_inputs([pose_image] * num_samples ) UpperCamelCase : List[str] = jax.random.PRNGKey(0 ) UpperCamelCase : Any = jax.random.split(__UpperCamelCase , jax.device_count() ) UpperCamelCase : List[str] = replicate(__UpperCamelCase ) UpperCamelCase : Optional[Any] = shard(__UpperCamelCase ) UpperCamelCase : Any = shard(__UpperCamelCase ) UpperCamelCase : Optional[Any] = pipe( prompt_ids=__UpperCamelCase , image=__UpperCamelCase , params=__UpperCamelCase , prng_seed=__UpperCamelCase , num_inference_steps=50 , jit=__UpperCamelCase , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) UpperCamelCase : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase : str = images[0, 2_53:2_56, 2_53:2_56, -1] UpperCamelCase : List[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase : Union[str, Any] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
173
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class UpperCamelCase ( lowercase_ , lowercase_ ): @register_to_config def __init__( self ,__UpperCamelCase = 768 ,) -> str: '''simple docstring''' super().__init__() lowercase_ : Union[str, Any] = nn.Parameter(torch.zeros(1 ,__UpperCamelCase ) ) lowercase_ : Optional[Any] = nn.Parameter(torch.ones(1 ,__UpperCamelCase ) ) def _UpperCAmelCase ( self ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> Tuple: '''simple docstring''' lowercase_ : Tuple = nn.Parameter(self.mean.to(__UpperCamelCase ).to(__UpperCamelCase ) ) lowercase_ : str = nn.Parameter(self.std.to(__UpperCamelCase ).to(__UpperCamelCase ) ) return self def _UpperCAmelCase ( self ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Dict = (embeds - self.mean) * 1.0 / self.std return embeds def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Any = (embeds * self.std) + self.mean return embeds
425
0
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCAmelCase : '''simple docstring''' @staticmethod def lowerCamelCase__ ( *lowerCamelCase_ :List[Any] , **lowerCamelCase_ :Optional[int] ) -> Dict: """simple docstring""" pass def snake_case__ ( _snake_case : str ): """simple docstring""" UpperCamelCase__ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def snake_case__ ( _snake_case : Optional[int] ): """simple docstring""" UpperCamelCase__ = np.array(lowercase_ ) UpperCamelCase__ = npimg.shape return {"hash": hashimage(lowercase_ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' A = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) A = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase__ ( self :Optional[Any] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = MaskGenerationPipeline(model=__a , image_processor=__a ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase__ ( self :Any , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Dict ) -> Union[str, Any]: """simple docstring""" pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def lowerCamelCase__ ( self :int ) -> str: """simple docstring""" pass @slow @require_torch def lowerCamelCase__ ( self :List[str] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) UpperCamelCase__ = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=2_5_6 ) # Shortening by hashing UpperCamelCase__ = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(__a ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.021}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_053}, {"mask": {"hash": "e2d0b7a0b7", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_967}, {"mask": {"hash": "453c7844bd", "shape": (4_8_0, 6_4_0)}, "scores": 0.993}, {"mask": {"hash": "3d44f2926d", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_909}, {"mask": {"hash": "64033ddc3f", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_879}, {"mask": {"hash": "801064ff79", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_834}, {"mask": {"hash": "6172f276ef", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_716}, {"mask": {"hash": "b49e60e084", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_612}, {"mask": {"hash": "a811e775fd", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_599}, {"mask": {"hash": "a6a8ebcf4b", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_552}, {"mask": {"hash": "9d8257e080", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_532}, {"mask": {"hash": "32de6454a8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_516}, {"mask": {"hash": "af3d4af2c8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_499}, {"mask": {"hash": "3c6db475fb", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_483}, {"mask": {"hash": "c290813fb9", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_464}, {"mask": {"hash": "b6f0b8f606", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "92ce16bfdf", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "c749b25868", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_408}, {"mask": {"hash": "efb6cab859", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_335}, {"mask": {"hash": "1ff2eafb30", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_326}, {"mask": {"hash": "788b798e24", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_262}, {"mask": {"hash": "abea804f0e", "shape": (4_8_0, 6_4_0)}, "scores": 0.8_999}, {"mask": {"hash": "7b9e8ddb73", "shape": (4_8_0, 6_4_0)}, "scores": 0.8_986}, {"mask": {"hash": "cd24047c8a", "shape": (4_8_0, 6_4_0)}, "scores": 0.8_984}, {"mask": {"hash": "6943e6bcbd", "shape": (4_8_0, 6_4_0)}, "scores": 0.8_873}, {"mask": {"hash": "b5f47c9191", "shape": (4_8_0, 6_4_0)}, "scores": 0.8_871} ] , ) # fmt: on @require_torch @slow def lowerCamelCase__ ( self :Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = "facebook/sam-vit-huge" UpperCamelCase__ = pipeline("mask-generation" , model=__a ) UpperCamelCase__ = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=2_5_6 ) # Shortening by hashing UpperCamelCase__ = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(__a ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_210}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_053}, ] , )
707
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def snake_case__ ( _snake_case : Any ): """simple docstring""" UpperCamelCase__ = [ "decoder.version", "decoder.output_projection.weight", "_float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def snake_case__ ( _snake_case : Optional[Any] ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = emb.weight.shape UpperCamelCase__ = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) UpperCamelCase__ = emb.weight.data return lin_layer def snake_case__ ( _snake_case : int ): """simple docstring""" UpperCamelCase__ = torch.load(_snake_case , map_location="cpu" ) UpperCamelCase__ = Namespace(**checkpoint["cfg"]["model"] ) UpperCamelCase__ = checkpoint["model"] remove_ignore_keys_(_snake_case ) UpperCamelCase__ = state_dict["decoder.embed_tokens.weight"].shape[0] UpperCamelCase__ = {key.replace("decoder" , "model" ): val for key, val in state_dict.items()} UpperCamelCase__ = XGLMConfig( vocab_size=_snake_case , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="gelu" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) UpperCamelCase__ = XGLMForCausalLM(_snake_case ) UpperCamelCase__ = model.load_state_dict(_snake_case , strict=_snake_case ) print(_snake_case ) UpperCamelCase__ = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": A : int = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') A : Dict = parser.parse_args() A : Any = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
304
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _snake_case (): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT): with pytest.raises(__lowercase): requests.request('GET' , 'https://huggingface.co') with pytest.raises(requests.exceptions.ConnectTimeout): requests.request('GET' , 'https://huggingface.co' , timeout=1.0) @pytest.mark.integration def _snake_case (): with offline(OfflineSimulationMode.CONNECTION_FAILS): with pytest.raises(requests.exceptions.ConnectionError): requests.request('GET' , 'https://huggingface.co') def _snake_case (): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1): with pytest.raises(__lowercase): http_head('https://huggingface.co')
23
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any = 'https://openaipublic.azureedge.net/jukebox/models/' SCREAMING_SNAKE_CASE__ : Union[str, Any] = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def a__ ( snake_case__ : Union[str, Any] ): if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: _UpperCAmelCase : Dict = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: _UpperCAmelCase : List[str] = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: _UpperCAmelCase : Union[str, Any] = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: _UpperCAmelCase : Optional[Any] = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: _UpperCAmelCase : int = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: _UpperCAmelCase : Union[str, Any] = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase : Union[str, Any] = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: _UpperCAmelCase : List[Any] = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def a__ ( snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : str ): _UpperCAmelCase : int = {} import re _UpperCAmelCase : Tuple = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) _UpperCAmelCase : Union[str, Any] = re.compile( r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) _UpperCAmelCase : Any = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) _UpperCAmelCase : List[str] = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) _UpperCAmelCase : Optional[Any] = re.compile( r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) _UpperCAmelCase : Optional[Any] = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) _UpperCAmelCase : Union[str, Any] = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) _UpperCAmelCase : Optional[int] = re.compile( r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) _UpperCAmelCase : Optional[Any] = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(snake_case__ ): _UpperCAmelCase : str = re_encoder_block_conv_in.match(snake_case__ ) _UpperCAmelCase : Tuple = regex_match.groups() _UpperCAmelCase : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase : int = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' _UpperCAmelCase : Union[str, Any] = re_encoder_block_conv_in.sub(snake_case__ , snake_case__ ) elif re_encoder_block_resnet.fullmatch(snake_case__ ): _UpperCAmelCase : Tuple = re_encoder_block_resnet.match(snake_case__ ) _UpperCAmelCase : Optional[Any] = regex_match.groups() _UpperCAmelCase : int = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase : List[Any] = {"""1""": 1, """3""": 2}[groups[-2]] _UpperCAmelCase : str = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' _UpperCAmelCase : Dict = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _UpperCAmelCase : Optional[int] = prefix + resnet_block _UpperCAmelCase : Any = re_encoder_block_resnet.sub(snake_case__ , snake_case__ ) elif re_encoder_block_proj_out.fullmatch(snake_case__ ): _UpperCAmelCase : List[str] = re_encoder_block_proj_out.match(snake_case__ ) _UpperCAmelCase : Optional[Any] = regex_match.groups() _UpperCAmelCase : List[Any] = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' _UpperCAmelCase : Tuple = re_encoder_block_proj_out.sub(snake_case__ , snake_case__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(snake_case__ ): _UpperCAmelCase : Any = re_decoder_block_conv_out.match(snake_case__ ) _UpperCAmelCase : Optional[Any] = regex_match.groups() _UpperCAmelCase : Union[str, Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase : Any = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' _UpperCAmelCase : Optional[Any] = re_decoder_block_conv_out.sub(snake_case__ , snake_case__ ) elif re_decoder_block_resnet.fullmatch(snake_case__ ): _UpperCAmelCase : str = re_decoder_block_resnet.match(snake_case__ ) _UpperCAmelCase : Optional[int] = regex_match.groups() _UpperCAmelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase : Tuple = {"""1""": 1, """3""": 2}[groups[-2]] _UpperCAmelCase : List[str] = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' _UpperCAmelCase : Dict = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _UpperCAmelCase : List[Any] = prefix + resnet_block _UpperCAmelCase : Union[str, Any] = re_decoder_block_resnet.sub(snake_case__ , snake_case__ ) elif re_decoder_block_proj_in.fullmatch(snake_case__ ): _UpperCAmelCase : str = re_decoder_block_proj_in.match(snake_case__ ) _UpperCAmelCase : int = regex_match.groups() _UpperCAmelCase : Union[str, Any] = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' _UpperCAmelCase : Optional[Any] = re_decoder_block_proj_in.sub(snake_case__ , snake_case__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(snake_case__ ): _UpperCAmelCase : Any = re_prior_cond_conv_out.match(snake_case__ ) _UpperCAmelCase : Optional[Any] = regex_match.groups() _UpperCAmelCase : int = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase : Optional[int] = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' _UpperCAmelCase : str = re_prior_cond_conv_out.sub(snake_case__ , snake_case__ ) elif re_prior_cond_resnet.fullmatch(snake_case__ ): _UpperCAmelCase : str = re_prior_cond_resnet.match(snake_case__ ) _UpperCAmelCase : str = regex_match.groups() _UpperCAmelCase : List[str] = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase : str = {"""1""": 1, """3""": 2}[groups[-2]] _UpperCAmelCase : Any = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' _UpperCAmelCase : Union[str, Any] = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _UpperCAmelCase : int = prefix + resnet_block _UpperCAmelCase : str = re_prior_cond_resnet.sub(snake_case__ , snake_case__ ) elif re_prior_cond_proj_in.fullmatch(snake_case__ ): _UpperCAmelCase : Union[str, Any] = re_prior_cond_proj_in.match(snake_case__ ) _UpperCAmelCase : Optional[int] = regex_match.groups() _UpperCAmelCase : Optional[Any] = f'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' _UpperCAmelCase : Tuple = re_prior_cond_proj_in.sub(snake_case__ , snake_case__ ) # keep original key else: _UpperCAmelCase : Tuple = original_key _UpperCAmelCase : List[Any] = replace_key(snake_case__ ) if f'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(f'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[f'''{key_prefix}.{key}'''].shape: _UpperCAmelCase : List[str] = model_state_dict[f'''{key_prefix}.{key}'''] print(f'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) _UpperCAmelCase : Tuple = original_key _UpperCAmelCase : List[Any] = original_key _UpperCAmelCase : int = value return new_dict @torch.no_grad() def a__ ( snake_case__ : Any=None , snake_case__ : Optional[Any]=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ): _UpperCAmelCase : Dict = requests.get(f'''{PREFIX}{file}''' , allow_redirects=snake_case__ ) os.makedirs(f'''{pytorch_dump_folder_path}/''' , exist_ok=snake_case__ ) open(f'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' , """wb""" ).write(r.content ) _UpperCAmelCase : str = MODEL_MAPPING[model_name.split("""/""" )[-1]] _UpperCAmelCase : Optional[Any] = JukeboxConfig.from_pretrained(snake_case__ ) _UpperCAmelCase : int = JukeboxModel(snake_case__ ) _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Any = {} for i, dict_name in enumerate(snake_case__ ): _UpperCAmelCase : Any = torch.load(f'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )["""model"""] _UpperCAmelCase : Dict = {} for k in old_dic.keys(): if k.endswith(""".b""" ): _UpperCAmelCase : Any = old_dic[k] elif k.endswith(""".w""" ): _UpperCAmelCase : Dict = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase : str = old_dic[k] else: _UpperCAmelCase : Dict = old_dic[k] _UpperCAmelCase : Tuple = """vqvae""" if i == 0 else f'''priors.{3 - i}''' _UpperCAmelCase : str = fix_jukebox_keys(snake_case__ , model.state_dict() , snake_case__ , snake_case__ ) weight_dict.append(snake_case__ ) _UpperCAmelCase : Optional[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(snake_case__ ) for i in range(len(snake_case__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) with open(f'''{pytorch_dump_folder_path}/mapping.json''' , """w""" ) as txtfile: json.dump(snake_case__ , snake_case__ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) return weight_dict if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
643
0
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A ( unittest.TestCase ): """simple docstring""" @property def _UpperCAmelCase ( self ): torch.manual_seed(0 ) UpperCamelCase_ : Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def _UpperCAmelCase ( self ): torch.manual_seed(0 ) UpperCamelCase_ : Optional[int] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def _UpperCAmelCase ( self ): torch.manual_seed(0 ) UpperCamelCase_ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(__lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[Any] = self.dummy_uncond_unet UpperCamelCase_ : Union[str, Any] = DDIMScheduler() UpperCamelCase_ : List[str] = self.dummy_vq_model UpperCamelCase_ : Union[str, Any] = LDMPipeline(unet=__lowerCAmelCase , vqvae=__lowerCAmelCase , scheduler=__lowerCAmelCase ) ldm.to(__lowerCAmelCase ) ldm.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCamelCase_ : str = torch.manual_seed(0 ) UpperCamelCase_ : Tuple = ldm(generator=__lowerCAmelCase , num_inference_steps=2 , output_type="""numpy""" ).images UpperCamelCase_ : Dict = torch.manual_seed(0 ) UpperCamelCase_ : Optional[int] = ldm(generator=__lowerCAmelCase , num_inference_steps=2 , output_type="""numpy""" , return_dict=__lowerCAmelCase )[0] UpperCamelCase_ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase_ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ : List[Any] = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] ) UpperCamelCase_ : Optional[int] = 1E-2 if torch_device != """mps""" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ): UpperCamelCase_ : Tuple = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(__lowerCAmelCase ) ldm.set_progress_bar_config(disable=__lowerCAmelCase ) UpperCamelCase_ : List[str] = torch.manual_seed(0 ) UpperCamelCase_ : Union[str, Any] = ldm(generator=__lowerCAmelCase , num_inference_steps=5 , output_type="""numpy""" ).images UpperCamelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) UpperCamelCase_ : Tuple = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] ) UpperCamelCase_ : Optional[int] = 1E-2 if torch_device != """mps""" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
543
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests UpperCamelCase ="https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user UpperCamelCase =BASE_URL + "/user" # https://github.com/settings/tokens UpperCamelCase =os.environ.get("USER_TOKEN", "") def snake_case ( a_ : str ) -> dict[Any, Any]: """simple docstring""" UpperCamelCase_ : Tuple = { """Authorization""": f"token {auth_token}", """Accept""": """application/vnd.github.v3+json""", } return requests.get(a_ , headers=a_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"{key}: {value}") else: raise ValueError("'USER_TOKEN' field cannot be empty.")
543
1
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowercase : Optional[Any] = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def UpperCAmelCase_ (_lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict=None ): require_version(deps[pkg] , A_ )
327
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowerCAmelCase ( A_ : Union[str, Any] , A_ : Optional[Any]=10 ) -> Optional[int]: __UpperCAmelCase = [] for _ in range(A_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowerCAmelCase ( A_ : str , A_ : List[Any]=10 ) -> List[Any]: __UpperCAmelCase = [] for step in range(A_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase = os.path.join(A_ , "schedule.bin" ) torch.save(scheduler.state_dict() , A_ ) __UpperCAmelCase = torch.load(A_ ) scheduler.load_state_dict(A_ ) return lrs @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self: List[str] , __lowerCAmelCase: List[str] , __lowerCAmelCase: Optional[Any] , __lowerCAmelCase: Dict ) -> str: '''simple docstring''' self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for a, b in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertAlmostEqual(__lowerCAmelCase , __lowerCAmelCase , delta=__lowerCAmelCase ) def _UpperCAmelCase ( self: Optional[int] ) -> str: '''simple docstring''' __UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCAmelCase ) __UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) __UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __UpperCAmelCase = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): __UpperCAmelCase = criterion(__lowerCAmelCase , __lowerCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def _UpperCAmelCase ( self: Optional[int] ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCAmelCase ) __UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) __UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __UpperCAmelCase = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__lowerCAmelCase , weight_decay=0.0 , relative_step=__lowerCAmelCase , scale_parameter=__lowerCAmelCase , warmup_init=__lowerCAmelCase , ) for _ in range(1_000 ): __UpperCAmelCase = criterion(__lowerCAmelCase , __lowerCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : Tuple = nn.Linear(50 , 50 ) if is_torch_available() else None lowerCAmelCase__ : Optional[int] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None lowerCAmelCase__ : Optional[int] = 10 def _UpperCAmelCase ( self: Optional[int] , __lowerCAmelCase: List[str] , __lowerCAmelCase: Any , __lowerCAmelCase: List[Any] , __lowerCAmelCase: int=None ) -> List[Any]: '''simple docstring''' self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for a, b in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertAlmostEqual(__lowerCAmelCase , __lowerCAmelCase , delta=__lowerCAmelCase , msg=__lowerCAmelCase ) def _UpperCAmelCase ( self: Union[str, Any] ) -> Any: '''simple docstring''' __UpperCAmelCase = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) __UpperCAmelCase = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): __UpperCAmelCase , __UpperCAmelCase = data __UpperCAmelCase = scheduler_func(self.optimizer , **__lowerCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) __UpperCAmelCase = unwrap_schedule(__lowerCAmelCase , self.num_steps ) self.assertListAlmostEqual( __lowerCAmelCase , __lowerCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) __UpperCAmelCase = scheduler_func(self.optimizer , **__lowerCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__lowerCAmelCase ) # wrap to test picklability of the schedule __UpperCAmelCase = unwrap_and_save_reload_schedule(__lowerCAmelCase , self.num_steps ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' ) class UpperCAmelCase__ : """simple docstring""" def __init__( self: Union[str, Any] , __lowerCAmelCase: Tuple ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = fn def __call__( self: int , *__lowerCAmelCase: List[str] , **__lowerCAmelCase: Any ) -> List[Any]: '''simple docstring''' return self.fn(*__lowerCAmelCase , **__lowerCAmelCase ) @classmethod def _UpperCAmelCase ( self: Optional[Any] , __lowerCAmelCase: List[Any] ) -> List[str]: '''simple docstring''' __UpperCAmelCase = list(map(self , scheduler.lr_lambdas ) )
221
0
import requests def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: _lowercase : Union[str, Any] = {'Content-Type': 'application/json'} _lowercase : Dict = requests.post(SCREAMING_SNAKE_CASE , json={'text': message_body} , headers=SCREAMING_SNAKE_CASE ) if response.status_code != 200: _lowercase : Union[str, Any] = ( 'Request to slack returned an error ' F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
SCREAMING_SNAKE_CASE :Optional[Any] = range(2, 20 + 1) SCREAMING_SNAKE_CASE :Optional[int] = [10**k for k in range(ks[-1] + 1)] SCREAMING_SNAKE_CASE :dict[int, dict[int, list[list[int]]]] = {} def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> Union[str, Any]: """simple docstring""" __A = sum(a_i[j] for j in range(a_ , len(a_ ) ) ) __A = sum(a_i[j] * base[j] for j in range(min(len(a_ ) , a_ ) ) ) __A , __A = 0, 0 __A = n - i __A = memo.get(a_ ) if sub_memo is not None: __A = sub_memo.get(a_ ) if jumps is not None and len(a_ ) > 0: # find and make the largest jump without going over __A = -1 for _k in range(len(a_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __A = _k break if max_jump >= 0: __A , __A , __A = jumps[max_jump] # since the difference between jumps is cached, add c __A = diff + c for j in range(min(a_ , len(a_ ) ) ): __A , __A = divmod(a_ , 1_0 ) if new_c > 0: add(a_ , a_ , a_ ) else: __A = [] else: __A = {c: []} __A = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __A , __A = next_term(a_ , k - 1 , i + dn , a_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __A , __A = compute(a_ , a_ , i + dn , a_ ) diff += _diff dn += terms_jumped __A = sub_memo[c] # keep jumps sorted by # of terms skipped __A = 0 while j < len(a_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(a_ , (diff, dn, k) ) return (diff, dn) def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> Union[str, Any]: """simple docstring""" if i >= n: return 0, i if k > len(a_ ): a_i.extend([0 for _ in range(k - len(a_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __A = i __A , __A , __A = 0, 0, 0 for j in range(len(a_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __A = ds_c + ds_b diff += addend __A = 0 for j in range(a_ ): __A = a_i[j] + addend __A , __A = divmod(a_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(a_ , a_ , a_ ) return diff, i - start_i def UpperCAmelCase ( a_ , a_ , a_ ) -> Any: """simple docstring""" for j in range(a_ , len(a_ ) ): __A = digits[j] + addend if s >= 1_0: __A , __A = divmod(a_ , 1_0 ) __A = addend // 1_0 + quotient else: __A = s __A = addend // 1_0 if addend == 0: break while addend > 0: __A , __A = divmod(a_ , 1_0 ) digits.append(a_ ) def UpperCAmelCase ( a_ = 1_0**1_5 ) -> int: """simple docstring""" __A = [1] __A = 1 __A = 0 while True: __A , __A = next_term(a_ , 2_0 , i + dn , a_ ) dn += terms_jumped if dn == n - i: break __A = 0 for j in range(len(a_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
55
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase_ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } lowerCamelCase_ = {'''facebook/blenderbot_small-90M''': 512} def snake_case ( A__ ): UpperCAmelCase_ : str = set() UpperCAmelCase_ : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : Dict = char UpperCAmelCase_ : List[Any] = set(A__ ) return pairs class UpperCamelCase_ (__A ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int]="__start__" , lowerCAmelCase_ : str="__end__" , lowerCAmelCase_ : Union[str, Any]="__unk__" , lowerCAmelCase_ : Union[str, Any]="__null__" , **lowerCAmelCase_ : List[Any] , ) -> str: super().__init__(unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ : str = json.load(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding="utf-8" ) as merges_handle: UpperCAmelCase_ : Optional[Any] = merges_handle.read().split("\n" )[1:-1] UpperCAmelCase_ : str = [tuple(merge.split() ) for merge in merges] UpperCAmelCase_ : Any = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) UpperCAmelCase_ : Any = {} @property def _SCREAMING_SNAKE_CASE ( self : str ) -> int: return len(self.encoder ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : str ) -> str: if token in self.cache: return self.cache[token] UpperCAmelCase_ : Dict = re.sub("([.,!?()])" , R" \1" , lowerCAmelCase_ ) UpperCAmelCase_ : int = re.sub("(')" , R" \1 " , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = re.sub(R"\s{2,}" , " " , lowerCAmelCase_ ) if "\n" in token: UpperCAmelCase_ : Tuple = token.replace("\n" , " __newln__" ) UpperCAmelCase_ : Tuple = token.split(" " ) UpperCAmelCase_ : int = [] for token in tokens: if not len(lowerCAmelCase_ ): continue UpperCAmelCase_ : Any = token.lower() UpperCAmelCase_ : List[str] = tuple(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) UpperCAmelCase_ : List[Any] = get_pairs(lowerCAmelCase_ ) if not pairs: words.append(lowerCAmelCase_ ) continue while True: UpperCAmelCase_ : Union[str, Any] = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ : Dict = bigram UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Dict = 0 while i < len(lowerCAmelCase_ ): try: UpperCAmelCase_ : int = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) new_word.extend(word[i:j] ) UpperCAmelCase_ : Any = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : Dict = tuple(lowerCAmelCase_ ) UpperCAmelCase_ : Any = new_word if len(lowerCAmelCase_ ) == 1: break else: UpperCAmelCase_ : Union[str, Any] = get_pairs(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = "@@ ".join(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = word[:-4] UpperCAmelCase_ : Optional[Any] = word words.append(lowerCAmelCase_ ) return " ".join(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : str ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : List[Any] = re.findall(R"\S+\n?" , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(" " ) ) ) return split_tokens def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : str ) -> int: UpperCAmelCase_ : List[Any] = token.lower() return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : int ) -> str: return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : List[str] ) -> str: UpperCAmelCase_ : List[str] = " ".join(lowerCAmelCase_ ).replace("@@ " , "" ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : Dict = os.path.join( lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ : Union[str, Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + "\n" ) UpperCAmelCase_ : Any = 0 with open(lowerCAmelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) UpperCAmelCase_ : List[Any] = token_index writer.write(" ".join(lowerCAmelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file
95
0
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[int] ) -> Optional[Any]: if len(_lowerCAmelCase ) == 0: return [] _UpperCAmelCase , _UpperCAmelCase : List[Any] = min(_lowerCAmelCase ), max(_lowerCAmelCase ) _UpperCAmelCase : List[Any] = int(max_value - min_value ) + 1 _UpperCAmelCase : Union[str, Any] = [[] for _ in range(_lowerCAmelCase )] for i in my_list: buckets[int(i - min_value )].append(_lowerCAmelCase ) return [v for bucket in buckets for v in sorted(_lowerCAmelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
701
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class a ( UpperCAmelCase ): def __init__( self , *A_ , **A_ ): '''simple docstring''' warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , A_ , ) super().__init__(*A_ , **A_ )
467
0
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , A_ : str , A_ : List[str]=13 , A_ : List[str]=7 , A_ : Optional[int]=True , A_ : Any=True , A_ : List[str]=True , A_ : Union[str, Any]=True , A_ : str=99 , A_ : Optional[int]=32 , A_ : Optional[int]=5 , A_ : Any=4 , A_ : Optional[int]=37 , A_ : str="gelu" , A_ : Optional[int]=0.1 , A_ : Optional[Any]=0.1 , A_ : Union[str, Any]=5_12 , A_ : Any=16 , A_ : Any=2 , A_ : int=0.02 , A_ : List[str]=4 , )-> List[Any]: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_attention_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_choices def A ( self : int )-> Optional[Any]: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_attention_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A ( self : str )-> Optional[int]: __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class __UpperCAmelCase ( snake_case__ , unittest.TestCase ): """simple docstring""" _snake_case : List[Any] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def A ( self : Tuple )-> List[str]: __UpperCamelCase = FlaxAlbertModelTester(self ) @slow def A ( self : Optional[Any] )-> List[str]: for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained("albert-base-v2" ) __UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(A_ ) @require_flax class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def A ( self : Dict )-> Optional[Any]: __UpperCamelCase = FlaxAlbertModel.from_pretrained("albert-base-v2" ) __UpperCamelCase = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCamelCase = model(A_ , attention_mask=A_ )[0] __UpperCamelCase = (1, 11, 7_68) self.assertEqual(output.shape , A_ ) __UpperCamelCase = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A_ , atol=1e-4 ) )
505
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = {"configuration_vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMSNModel", "ViTMSNForImageClassification", "ViTMSNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
505
1
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase_ : def __init__( self , lowercase_ , lowercase_=13 , lowercase_=30 , lowercase_=2 , lowercase_=3 , lowercase_=True , lowercase_=True , lowercase_=32 , lowercase_=2 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=10 , lowercase_=0.02 , lowercase_=3 , lowercase_=None , ): _snake_case : Tuple = parent _snake_case : Union[str, Any] = batch_size _snake_case : Optional[int] = image_size _snake_case : Union[str, Any] = patch_size _snake_case : List[str] = num_channels _snake_case : Optional[Any] = is_training _snake_case : str = use_labels _snake_case : Dict = hidden_size _snake_case : Union[str, Any] = num_hidden_layers _snake_case : Tuple = num_attention_heads _snake_case : Dict = intermediate_size _snake_case : Dict = hidden_act _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Tuple = type_sequence_label_size _snake_case : int = initializer_range _snake_case : Optional[int] = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case : Optional[int] = (image_size // patch_size) ** 2 _snake_case : int = num_patches + 1 def UpperCamelCase ( self ): _snake_case : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : List[Any] = None if self.use_labels: _snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : List[Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ ): _snake_case : List[Any] = TFViTModel(config=lowercase_ ) _snake_case : List[Any] = model(lowercase_ , training=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. _snake_case : List[Any] = self.image_size // 2 _snake_case : List[str] = pixel_values[:, :, :image_size, :image_size] _snake_case : List[str] = model(lowercase_ , interpolate_pos_encoding=lowercase_ , training=lowercase_ ) _snake_case : Tuple = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ ): _snake_case : Tuple = self.type_sequence_label_size _snake_case : Tuple = TFViTForImageClassification(lowercase_ ) _snake_case : List[str] = model(lowercase_ , labels=lowercase_ , training=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. _snake_case : int = self.image_size // 2 _snake_case : Any = pixel_values[:, :, :image_size, :image_size] _snake_case : List[Any] = model(lowercase_ , interpolate_pos_encoding=lowercase_ , training=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case : List[str] = 1 _snake_case : Union[str, Any] = TFViTForImageClassification(lowercase_ ) _snake_case : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case : Any = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase ( self ): _snake_case : Union[str, Any] = self.prepare_config_and_inputs() _snake_case ,_snake_case ,_snake_case : str = config_and_inputs _snake_case : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowercase_ ( __snake_case , __snake_case , unittest.TestCase ): _lowerCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () _lowerCamelCase = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def UpperCamelCase ( self ): _snake_case : str = TFViTModelTester(self ) _snake_case : List[str] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def UpperCamelCase ( self ): pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): _snake_case ,_snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Tuple = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _snake_case : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , tf.keras.layers.Layer ) ) def UpperCamelCase ( self ): _snake_case ,_snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[Any] = model_class(lowercase_ ) _snake_case : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : str = [*signature.parameters.keys()] _snake_case : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCamelCase ( self ): _snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCamelCase ( self ): _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def UpperCamelCase ( self ): _snake_case : Any = TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(lowercase_ ) def snake_case () -> str: '''simple docstring''' _snake_case : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowercase_ ( unittest.TestCase ): @cached_property def UpperCamelCase ( self ): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def UpperCamelCase ( self ): _snake_case : Union[str, Any] = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) _snake_case : List[Any] = self.default_image_processor _snake_case : Union[str, Any] = prepare_img() _snake_case : List[Any] = image_processor(images=lowercase_ , return_tensors="tf" ) # forward pass _snake_case : List[Any] = model(**lowercase_ ) # verify the logits _snake_case : Union[str, Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) _snake_case : List[Any] = tf.constant([-0.2_744, 0.8_215, -0.0_836] ) tf.debugging.assert_near(outputs.logits[0, :3] , lowercase_ , atol=1e-4 )
580
from __future__ import annotations def snake_case (__lowercase , __lowercase ) -> bool: '''simple docstring''' _snake_case : int = get_failure_array(__lowercase ) # 2) Step through text searching for pattern _snake_case ,_snake_case : List[str] = 0, 0 # index into text, pattern while i < len(__lowercase ): if pattern[j] == text[i]: if j == (len(__lowercase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _snake_case : str = failure[j - 1] continue i += 1 return False def snake_case (__lowercase ) -> list[int]: '''simple docstring''' _snake_case : List[str] = [0] _snake_case : Any = 0 _snake_case : Tuple = 1 while j < len(__lowercase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _snake_case : Optional[Any] = failure[i - 1] continue j += 1 failure.append(__lowercase ) return failure if __name__ == "__main__": # Test 1) __SCREAMING_SNAKE_CASE : Union[str, Any] = 'abc1abc12' __SCREAMING_SNAKE_CASE : Dict = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __SCREAMING_SNAKE_CASE : Optional[int] = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __SCREAMING_SNAKE_CASE : Union[str, Any] = 'ABABX' __SCREAMING_SNAKE_CASE : Dict = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) __SCREAMING_SNAKE_CASE : List[Any] = 'AAAB' __SCREAMING_SNAKE_CASE : List[str] = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) __SCREAMING_SNAKE_CASE : Union[str, Any] = 'abcdabcy' __SCREAMING_SNAKE_CASE : Dict = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) __SCREAMING_SNAKE_CASE : Dict = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
580
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
467
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case = logging.get_logger(__name__) __snake_case = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class _a ( __a ): """simple docstring""" A_ = '''table-transformer''' A_ = ['''past_key_values'''] A_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : str , lowercase_ : str=True , lowercase_ : List[str]=None , lowercase_ : Dict=3 , lowercase_ : Optional[Any]=100 , lowercase_ : Optional[int]=6 , lowercase_ : Optional[Any]=2_048 , lowercase_ : List[Any]=8 , lowercase_ : Optional[Any]=6 , lowercase_ : int=2_048 , lowercase_ : Any=8 , lowercase_ : Optional[Any]=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=True , lowercase_ : int="relu" , lowercase_ : Tuple=256 , lowercase_ : Dict=0.1 , lowercase_ : List[str]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : int=0.0_2 , lowercase_ : List[str]=1.0 , lowercase_ : Optional[int]=False , lowercase_ : List[Any]="sine" , lowercase_ : Optional[int]="resnet50" , lowercase_ : Union[str, Any]=True , lowercase_ : Union[str, Any]=False , lowercase_ : List[str]=1 , lowercase_ : Any=5 , lowercase_ : Optional[int]=2 , lowercase_ : Dict=1 , lowercase_ : Optional[int]=1 , lowercase_ : Dict=5 , lowercase_ : Optional[int]=2 , lowercase_ : Optional[Any]=0.1 , **lowercase_ : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowercase_ = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowercase_ = backbone_config.get("""model_type""" ) lowercase_ = CONFIG_MAPPING[backbone_model_type] lowercase_ = config_class.from_dict(lowercase_ ) # set timm attributes to None lowercase_ , lowercase_ , lowercase_ = None, None, None lowercase_ = use_timm_backbone lowercase_ = backbone_config lowercase_ = num_channels lowercase_ = num_queries lowercase_ = d_model lowercase_ = encoder_ffn_dim lowercase_ = encoder_layers lowercase_ = encoder_attention_heads lowercase_ = decoder_ffn_dim lowercase_ = decoder_layers lowercase_ = decoder_attention_heads lowercase_ = dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = activation_function lowercase_ = init_std lowercase_ = init_xavier_std lowercase_ = encoder_layerdrop lowercase_ = decoder_layerdrop lowercase_ = encoder_layers lowercase_ = auxiliary_loss lowercase_ = position_embedding_type lowercase_ = backbone lowercase_ = use_pretrained_backbone lowercase_ = dilation # Hungarian matcher lowercase_ = class_cost lowercase_ = bbox_cost lowercase_ = giou_cost # Loss coefficients lowercase_ = mask_loss_coefficient lowercase_ = dice_loss_coefficient lowercase_ = bbox_loss_coefficient lowercase_ = giou_loss_coefficient lowercase_ = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return self.d_model class _a ( __a ): """simple docstring""" A_ = version.parse('''1.11''' ) @property def lowerCamelCase__ ( self : int ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return 1e-5 @property def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return 12
451
0
'''simple docstring''' from math import pi, sqrt, tan def __lowerCAmelCase ( snake_case__ ): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __lowerCAmelCase ( snake_case__ ): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def __lowerCAmelCase ( snake_case__ ): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def __lowerCAmelCase ( snake_case__ , snake_case__ ): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) __UpperCamelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __lowerCAmelCase ( snake_case__ , snake_case__ ): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def __lowerCAmelCase ( snake_case__ , snake_case__ ): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(snake_case__ , 2 ) * torus_radius * tube_radius def __lowerCAmelCase ( snake_case__ , snake_case__ ): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def __lowerCAmelCase ( snake_case__ ): if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def __lowerCAmelCase ( snake_case__ , snake_case__ ): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) __UpperCamelCase : Any = (sidea + sidea + sidea) / 2 __UpperCamelCase : str = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __lowerCAmelCase ( snake_case__ , snake_case__ ): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def __lowerCAmelCase ( snake_case__ ): if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def __lowerCAmelCase ( snake_case__ , snake_case__ ): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def __lowerCAmelCase ( snake_case__ , snake_case__ ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def __lowerCAmelCase ( snake_case__ , snake_case__ ): if not isinstance(snake_case__ , snake_case__ ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(f'Rectangle: {area_rectangle(10, 20) = }') print(f'Square: {area_square(10) = }') print(f'Triangle: {area_triangle(10, 10) = }') print(f'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(f'Parallelogram: {area_parallelogram(10, 20) = }') print(f'Rhombus: {area_rhombus(10, 20) = }') print(f'Trapezium: {area_trapezium(10, 20, 30) = }') print(f'Circle: {area_circle(20) = }') print(f'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(f'Cube: {surface_area_cube(20) = }') print(f'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(f'Sphere: {surface_area_sphere(20) = }') print(f'Hemisphere: {surface_area_hemisphere(20) = }') print(f'Cone: {surface_area_cone(10, 20) = }') print(f'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(f'Cylinder: {surface_area_cylinder(10, 20) = }') print(f'Torus: {surface_area_torus(20, 10) = }') print(f'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(f'Square: {area_reg_polygon(4, 10) = }') print(f'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
399
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
399
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def lowerCamelCase__ ( _lowerCamelCase ) ->List[Any]: _UpperCAmelCase =384 if "tiny" in model_name: _UpperCAmelCase =[3, 3, 9, 3] _UpperCAmelCase =[96, 192, 384, 768] if "small" in model_name: _UpperCAmelCase =[3, 3, 27, 3] _UpperCAmelCase =[96, 192, 384, 768] if "base" in model_name: _UpperCAmelCase =[3, 3, 27, 3] _UpperCAmelCase =[128, 256, 512, 1024] _UpperCAmelCase =512 if "large" in model_name: _UpperCAmelCase =[3, 3, 27, 3] _UpperCAmelCase =[192, 384, 768, 1536] _UpperCAmelCase =768 if "xlarge" in model_name: _UpperCAmelCase =[3, 3, 27, 3] _UpperCAmelCase =[256, 512, 1024, 2048] _UpperCAmelCase =1024 # set label information _UpperCAmelCase =150 _UpperCAmelCase ="huggingface/label-files" _UpperCAmelCase ="ade20k-id2label.json" _UpperCAmelCase =json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase ={int(_lowerCamelCase ): v for k, v in idalabel.items()} _UpperCAmelCase ={v: k for k, v in idalabel.items()} _UpperCAmelCase =ConvNextConfig( depths=_lowerCamelCase , hidden_sizes=_lowerCamelCase , out_features=["stage1", "stage2", "stage3", "stage4"] ) _UpperCAmelCase =UperNetConfig( backbone_config=_lowerCamelCase , auxiliary_in_channels=_lowerCamelCase , num_labels=_lowerCamelCase , idalabel=_lowerCamelCase , labelaid=_lowerCamelCase , ) return config def lowerCamelCase__ ( _lowerCamelCase ) ->Union[str, Any]: _UpperCAmelCase =[] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.stages.{i}.{j}.gamma", F"backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter") ) rename_keys.append((F"backbone.stages.{i}.{j}.depthwise_conv.weight", F"backbone.encoder.stages.{i}.layers.{j}.dwconv.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.depthwise_conv.bias", F"backbone.encoder.stages.{i}.layers.{j}.dwconv.bias") ) rename_keys.append((F"backbone.stages.{i}.{j}.norm.weight", F"backbone.encoder.stages.{i}.layers.{j}.layernorm.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.norm.bias", F"backbone.encoder.stages.{i}.layers.{j}.layernorm.bias") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv1.weight", F"backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv1.bias", F"backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv2.weight", F"backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv2.bias", F"backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias") ) if i > 0: rename_keys.append((F"backbone.downsample_layers.{i}.0.weight", F"backbone.encoder.stages.{i}.downsampling_layer.0.weight") ) rename_keys.append((F"backbone.downsample_layers.{i}.0.bias", F"backbone.encoder.stages.{i}.downsampling_layer.0.bias") ) rename_keys.append((F"backbone.downsample_layers.{i}.1.weight", F"backbone.encoder.stages.{i}.downsampling_layer.1.weight") ) rename_keys.append((F"backbone.downsample_layers.{i}.1.bias", F"backbone.encoder.stages.{i}.downsampling_layer.1.bias") ) rename_keys.append((F"backbone.norm{i}.weight", F"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((F"backbone.norm{i}.bias", F"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->str: _UpperCAmelCase =dct.pop(_lowerCamelCase ) _UpperCAmelCase =val def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]: _UpperCAmelCase ={ "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } _UpperCAmelCase =model_name_to_url[model_name] _UpperCAmelCase =torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"] _UpperCAmelCase =get_upernet_config(_lowerCamelCase ) _UpperCAmelCase =UperNetForSemanticSegmentation(_lowerCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _UpperCAmelCase =state_dict.pop(_lowerCamelCase ) if "bn" in key: _UpperCAmelCase =key.replace("bn" , "batch_norm" ) _UpperCAmelCase =val # rename keys _UpperCAmelCase =create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) # verify on image _UpperCAmelCase ="https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" _UpperCAmelCase =Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("RGB" ) _UpperCAmelCase =SegformerImageProcessor() _UpperCAmelCase =processor(_lowerCamelCase , return_tensors="pt" ).pixel_values with torch.no_grad(): _UpperCAmelCase =model(_lowerCamelCase ) if model_name == "upernet-convnext-tiny": _UpperCAmelCase =torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _UpperCAmelCase =torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _UpperCAmelCase =torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _UpperCAmelCase =torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _UpperCAmelCase =torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print(F"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(F"openmmlab/{model_name}" ) processor.push_to_hub(F"openmmlab/{model_name}" ) if __name__ == "__main__": snake_case__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[F"""upernet-convnext-{size}""" for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) snake_case__ : Optional[int] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
408
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None ) ->str: if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path _UpperCAmelCase =quote(_lowerCamelCase ) return hfh.hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" , revision=_lowerCamelCase )
408
1
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _A ( unittest.TestCase ): '''simple docstring''' _snake_case : List[Any] = JukeboxTokenizer _snake_case : Optional[int] = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n """, } @require_torch def _snake_case ( self : Tuple ): '''simple docstring''' import torch __lowercase = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __lowercase = tokenizer(**self.metas )["input_ids"] # fmt: off __lowercase = [ torch.tensor([[ 0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _snake_case ( self : Dict ): '''simple docstring''' import torch __lowercase = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __lowercase = tokenizer(**self.metas )["input_ids"] # fmt: off __lowercase = [ torch.tensor([[ 0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
705
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( _lowercase , _lowercase ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , *, lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # parameters for encoder hidden states __lowercase = clip_extra_context_tokens __lowercase = nn.Linear( lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.LayerNorm(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowercase = image_embeddings.shape[0] __lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowercase = classifier_free_guidance_embeddings.expand( lowerCamelCase , -1 ) __lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowercase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowercase = self.embedding_proj(lowerCamelCase ) __lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) __lowercase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase ) __lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens ) __lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowercase = self.encoder_hidden_states_proj(lowerCamelCase ) __lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase ) __lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
655
0
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = "The quick brown fox jumps over the lazy dog" , ): lowercase__ = set() # Replace all the whitespace in our sentence lowercase__ = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == 26 def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = "The quick brown fox jumps over the lazy dog" , ): lowercase__ = [False] * 26 for char in input_str: if char.islower(): lowercase__ = True elif char.isupper(): lowercase__ = True return all(SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def __lowerCAmelCase ( ): from timeit import timeit lowercase__ = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit("is_pangram_faster()" , setup=SCREAMING_SNAKE_CASE_ ) ) print(timeit("is_pangram_fastest()" , setup=SCREAMING_SNAKE_CASE_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
413
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _snake_case ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase): UpperCamelCase__ : List[Any] =StableUnCLIPImgaImgPipeline UpperCamelCase__ : Tuple =TEXT_GUIDED_IMAGE_VARIATION_PARAMS UpperCamelCase__ : Dict =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase__ : int =frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase__ : Optional[Any] =frozenset([]) def A__ ( self : Optional[Any] ): lowercase__ = 32 lowercase__ = embedder_hidden_size # image encoding components lowercase__ = CLIPImageProcessor(crop_size=32, size=32 ) torch.manual_seed(0 ) lowercase__ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__lowercase, projection_dim=__lowercase, num_hidden_layers=5, num_attention_heads=4, image_size=32, intermediate_size=37, patch_size=1, ) ) # regular denoising components torch.manual_seed(0 ) lowercase__ = StableUnCLIPImageNormalizer(embedding_dim=__lowercase ) lowercase__ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ = CLIPTextModel( CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=__lowercase, projection_dim=32, intermediate_size=37, layer_norm_eps=1e-0_5, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) ) torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( sample_size=32, in_channels=4, out_channels=4, down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"), block_out_channels=(32, 64), attention_head_dim=(2, 4), class_embed_type="projection", projection_class_embeddings_input_dim=embedder_projection_dim * 2, cross_attention_dim=__lowercase, layers_per_block=1, upcast_attention=__lowercase, use_linear_projection=__lowercase, ) torch.manual_seed(0 ) lowercase__ = DDIMScheduler( beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, prediction_type="v_prediction", set_alpha_to_one=__lowercase, steps_offset=1, ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL() lowercase__ = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def A__ ( self : Dict, __lowercase : Tuple, __lowercase : Union[str, Any]=0, __lowercase : Tuple=True ): if str(__lowercase ).startswith("mps" ): lowercase__ = torch.manual_seed(__lowercase ) else: lowercase__ = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) lowercase__ = floats_tensor((1, 3, 32, 32), rng=random.Random(__lowercase ) ).to(__lowercase ) if pil_image: lowercase__ = input_image * 0.5 + 0.5 lowercase__ = input_image.clamp(0, 1 ) lowercase__ = input_image.cpu().permute(0, 2, 3, 1 ).float().numpy() lowercase__ = DiffusionPipeline.numpy_to_pil(__lowercase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A__ ( self : str ): lowercase__ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableUnCLIPImgaImgPipeline(**__lowercase ) lowercase__ = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) lowercase__ = self.get_dummy_inputs(__lowercase ) inputs.update({"image_embeds": None} ) lowercase__ = sd_pipe(**__lowercase ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self : List[str] ): lowercase__ = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=__lowercase ) def A__ ( self : Optional[Any] ): lowercase__ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=__lowercase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def A__ ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__lowercase ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase): def A__ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self : List[Any] ): lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) lowercase__ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img", torch_dtype=torch.floataa ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ = pipe(__lowercase, "anime turle", generator=__lowercase, output_type="np" ) lowercase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowercase, __lowercase ) def A__ ( self : Any ): lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) lowercase__ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.floataa ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ = pipe(__lowercase, "anime turle", generator=__lowercase, output_type="np" ) lowercase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowercase, __lowercase ) def A__ ( self : Optional[int] ): lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.floataa ) lowercase__ = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ = pipe( __lowercase, "anime turtle", num_inference_steps=2, output_type="np", ) lowercase__ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
413
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE( metaclass=A__ ): """simple docstring""" lowerCamelCase__ = ["""transformers""", """torch""", """note_seq"""] def __init__( self : str , *__snake_case : Any , **__snake_case : Optional[Any] ) -> Union[str, Any]: requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def A ( cls : List[Any] , *__snake_case : Union[str, Any] , **__snake_case : Tuple ) -> Tuple: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def A ( cls : Optional[int] , *__snake_case : Any , **__snake_case : List[str] ) -> List[str]: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__: Union[str, Any] = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: List[str] = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys UpperCamelCase__: Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
528
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class snake_case ( _a ): """simple docstring""" _a = """openai-gpt""" _a = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self, _lowercase=40478, _lowercase=512, _lowercase=768, _lowercase=12, _lowercase=12, _lowercase="gelu", _lowercase=0.1, _lowercase=0.1, _lowercase=0.1, _lowercase=1E-5, _lowercase=0.02, _lowercase="cls_index", _lowercase=True, _lowercase=None, _lowercase=True, _lowercase=0.1, **_lowercase, ) -> str: SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = n_positions SCREAMING_SNAKE_CASE_ = n_embd SCREAMING_SNAKE_CASE_ = n_layer SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = afn SCREAMING_SNAKE_CASE_ = resid_pdrop SCREAMING_SNAKE_CASE_ = embd_pdrop SCREAMING_SNAKE_CASE_ = attn_pdrop SCREAMING_SNAKE_CASE_ = layer_norm_epsilon SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = summary_type SCREAMING_SNAKE_CASE_ = summary_use_proj SCREAMING_SNAKE_CASE_ = summary_activation SCREAMING_SNAKE_CASE_ = summary_first_dropout SCREAMING_SNAKE_CASE_ = summary_proj_to_labels super().__init__(**_lowercase )
294
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class UpperCamelCase( _a , unittest.TestCase ): snake_case_ : Any = PriorTransformer snake_case_ : List[str] = """hidden_states""" @property def SCREAMING_SNAKE_CASE_ ( self : str ) -> str: '''simple docstring''' __snake_case = 4 __snake_case = 8 __snake_case = 7 __snake_case = floats_tensor((batch_size, embedding_dim) ).to(SCREAMING_SNAKE_CASE ) __snake_case = floats_tensor((batch_size, embedding_dim) ).to(SCREAMING_SNAKE_CASE ) __snake_case = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(SCREAMING_SNAKE_CASE ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE : Optional[Any]=0 ) -> Any: '''simple docstring''' torch.manual_seed(SCREAMING_SNAKE_CASE ) __snake_case = 4 __snake_case = 8 __snake_case = 7 __snake_case = torch.randn((batch_size, embedding_dim) ).to(SCREAMING_SNAKE_CASE ) __snake_case = torch.randn((batch_size, embedding_dim) ).to(SCREAMING_SNAKE_CASE ) __snake_case = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(SCREAMING_SNAKE_CASE ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def SCREAMING_SNAKE_CASE_ ( self : str ) -> str: '''simple docstring''' return (4, 8) @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any: '''simple docstring''' return (4, 8) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Dict: '''simple docstring''' __snake_case = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Dict: '''simple docstring''' __snake_case , __snake_case = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy" , output_loading_info=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(SCREAMING_SNAKE_CASE ) __snake_case = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**SCREAMING_SNAKE_CASE ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2] , SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' __snake_case = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) __snake_case = model.to(SCREAMING_SNAKE_CASE ) if hasattr(SCREAMING_SNAKE_CASE , "set_default_attn_processor" ): model.set_default_attn_processor() __snake_case = self.get_dummy_seed_input() with torch.no_grad(): __snake_case = model(**SCREAMING_SNAKE_CASE )[0] __snake_case = output[0, :5].flatten().cpu() print(SCREAMING_SNAKE_CASE ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. __snake_case = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , rtol=1e-2 ) ) @slow class UpperCamelCase( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE : int=1 , SCREAMING_SNAKE_CASE : str=7_6_8 , SCREAMING_SNAKE_CASE : Dict=7_7 , SCREAMING_SNAKE_CASE : int=0 ) -> List[str]: '''simple docstring''' torch.manual_seed(SCREAMING_SNAKE_CASE ) __snake_case = batch_size __snake_case = embedding_dim __snake_case = num_embeddings __snake_case = torch.randn((batch_size, embedding_dim) ).to(SCREAMING_SNAKE_CASE ) __snake_case = torch.randn((batch_size, embedding_dim) ).to(SCREAMING_SNAKE_CASE ) __snake_case = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(SCREAMING_SNAKE_CASE ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [1_3, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [3_7, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: '''simple docstring''' __snake_case = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior" , subfolder="prior" ) model.to(SCREAMING_SNAKE_CASE ) __snake_case = self.get_dummy_seed_input(seed=SCREAMING_SNAKE_CASE ) with torch.no_grad(): __snake_case = model(**SCREAMING_SNAKE_CASE )[0] assert list(sample.shape ) == [1, 7_6_8] __snake_case = sample[0, :8].flatten().cpu() print(SCREAMING_SNAKE_CASE ) __snake_case = torch.tensor(SCREAMING_SNAKE_CASE ) assert torch_all_close(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 )
371
0
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase (__UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] ): """simple docstring""" assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase (__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase (__UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =features.copy() if features else default_expected_features __UpperCamelCase =( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowerCAmelCase (__UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __UpperCamelCase =features.copy() if features else default_expected_features __UpperCamelCase =( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowerCAmelCase (__UpperCamelCase : Tuple , __UpperCamelCase : List[str] ): """simple docstring""" __UpperCamelCase ={'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __UpperCamelCase =features.copy() __UpperCamelCase =( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : str ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , split=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase , __UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowerCAmelCase (__UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple ): """simple docstring""" if issubclass(__UpperCamelCase , __UpperCamelCase ): __UpperCamelCase =jsonl_path elif issubclass(__UpperCamelCase , __UpperCamelCase ): __UpperCamelCase =[jsonl_path] __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase (__UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict=("train",) ): """simple docstring""" assert isinstance(__UpperCamelCase , __UpperCamelCase ) for split in splits: __UpperCamelCase =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCamelCase =JsonDatasetReader({'''train''': jsonl_path} , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_json_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ): """simple docstring""" __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =features.copy() if features else default_expected_features __UpperCamelCase =( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase =JsonDatasetReader({'''train''': jsonl_path} , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_json_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase (__UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] ): """simple docstring""" if split: __UpperCamelCase ={split: jsonl_path} else: __UpperCamelCase ='''train''' __UpperCamelCase ={'''train''': jsonl_path, '''test''': jsonl_path} __UpperCamelCase =tmp_path / '''cache''' __UpperCamelCase ={'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCamelCase =JsonDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_json_datasetdict(__UpperCamelCase , __UpperCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase (__UpperCamelCase : Dict ): """simple docstring""" return json.load(__UpperCamelCase ) def lowerCAmelCase (__UpperCamelCase : Optional[Any] ): """simple docstring""" return [json.loads(__UpperCamelCase ) for line in buffer] class _lowercase : """simple docstring""" @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ ).write() buffer.seek(0 ) __UpperCamelCase =load_json_function(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert isinstance(exported_content[0] , UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def UpperCAmelCase_ ( self : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> str: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , orient=UpperCamelCase__ ).write() buffer.seek(0 ) __UpperCamelCase =load_json(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase_ ( self : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] ) -> Any: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , num_proc=2 ).write() buffer.seek(0 ) __UpperCamelCase =load_json_function(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert isinstance(exported_content[0] , UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def UpperCAmelCase_ ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str ) -> Any: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , orient=UpperCamelCase__ , num_proc=2 ).write() buffer.seek(0 ) __UpperCamelCase =load_json(UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__ , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase__ ) == 10 def UpperCAmelCase_ ( self : List[Any] , UpperCamelCase__ : List[Any] ) -> Dict: '''simple docstring''' with pytest.raises(UpperCamelCase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' __UpperCamelCase =tmp_path_factory.mktemp('''data''' ) / f"""test.json.{extension}""" __UpperCamelCase =str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , compression=UpperCamelCase__ ).write() with fsspec.open(UpperCamelCase__ , '''rb''' , compression='''infer''' ) as f: __UpperCamelCase =f.read() with fsspec.open(UpperCamelCase__ , '''rb''' , compression='''infer''' ) as f: __UpperCamelCase =f.read() assert exported_content == original_content
296
"""simple docstring""" from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __lowercase = 299_792_458 # Symbols __lowercase , __lowercase , __lowercase , __lowercase = symbols('''ct x y z''') def lowerCAmelCase (__UpperCamelCase : float ): """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCAmelCase (__UpperCamelCase : float ): """simple docstring""" return 1 / sqrt(1 - beta(__UpperCamelCase ) ** 2 ) def lowerCAmelCase (__UpperCamelCase : float ): """simple docstring""" return np.array( [ [gamma(__UpperCamelCase ), -gamma(__UpperCamelCase ) * beta(__UpperCamelCase ), 0, 0], [-gamma(__UpperCamelCase ) * beta(__UpperCamelCase ), gamma(__UpperCamelCase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCAmelCase (__UpperCamelCase : float , __UpperCamelCase : np.ndarray | None = None ): """simple docstring""" if event is None: __UpperCamelCase =np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(__UpperCamelCase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __lowercase = transform(29_979_245) print('''Example of four vector: ''') print(f'''ct\' = {four_vector[0]}''') print(f'''x\' = {four_vector[1]}''') print(f'''y\' = {four_vector[2]}''') print(f'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values __lowercase = {ct: c, x: 1, y: 1, z: 1} __lowercase = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'''\n{numerical_vector}''')
296
1
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __UpperCamelCase (lowerCAmelCase : Any, lowerCAmelCase : Any ) -> str: assert isinstance(lowerCAmelCase, lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def __UpperCamelCase (lowerCAmelCase : Optional[Any], lowerCAmelCase : Tuple, lowerCAmelCase : Optional[int] ) -> str: A = tmp_path / """cache""" A = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A = TextDatasetReader(lowerCAmelCase, cache_dir=lowerCAmelCase, keep_in_memory=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase, lowerCAmelCase ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def __UpperCamelCase (lowerCAmelCase : Any, lowerCAmelCase : Any, lowerCAmelCase : Dict ) -> Optional[int]: A = tmp_path / """cache""" A = {"""text""": """string"""} A = features.copy() if features else default_expected_features A = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A = TextDatasetReader(lowerCAmelCase, features=lowerCAmelCase, cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase, lowerCAmelCase ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def __UpperCamelCase (lowerCAmelCase : Any, lowerCAmelCase : Optional[int], lowerCAmelCase : Union[str, Any] ) -> List[str]: A = tmp_path / """cache""" A = {"""text""": """string"""} A = TextDatasetReader(lowerCAmelCase, cache_dir=lowerCAmelCase, split=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase, lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : int, lowerCAmelCase : Optional[int] ) -> Optional[int]: if issubclass(lowerCAmelCase, lowerCAmelCase ): A = text_path elif issubclass(lowerCAmelCase, lowerCAmelCase ): A = [text_path] A = tmp_path / """cache""" A = {"""text""": """string"""} A = TextDatasetReader(lowerCAmelCase, cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase, lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : List[Any], lowerCAmelCase : List[str], lowerCAmelCase : Dict=("train",) ) -> Union[str, Any]: assert isinstance(lowerCAmelCase, lowerCAmelCase ) for split in splits: A = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : List[str], lowerCAmelCase : Any ) -> List[Any]: A = tmp_path / """cache""" A = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A = TextDatasetReader({'train': text_path}, cache_dir=lowerCAmelCase, keep_in_memory=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase, lowerCAmelCase ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def __UpperCamelCase (lowerCAmelCase : Union[str, Any], lowerCAmelCase : Any, lowerCAmelCase : Optional[Any] ) -> List[str]: A = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" A = {"""text""": """string"""} A = features.copy() if features else default_expected_features A = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A = TextDatasetReader({'train': text_path}, features=lowerCAmelCase, cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase, lowerCAmelCase ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def __UpperCamelCase (lowerCAmelCase : Dict, lowerCAmelCase : Any, lowerCAmelCase : Dict ) -> Union[str, Any]: if split: A = {split: text_path} else: A = """train""" A = {"""train""": text_path, """test""": text_path} A = tmp_path / """cache""" A = {"""text""": """string"""} A = TextDatasetReader(lowerCAmelCase, cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase, lowerCAmelCase, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
699
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Dict: '''simple docstring''' snake_case__ : int = botoa.client("""iam""" ) snake_case__ : Union[str, Any] = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=__magic_name__ , AssumeRolePolicyDocument=json.dumps(__magic_name__ , indent=2 ) ) snake_case__ : Dict = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=__magic_name__ , PolicyName=f"{role_name}_policy_permission" , PolicyDocument=json.dumps(__magic_name__ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"role {role_name} already exists. Using existing one" ) def UpperCamelCase__ ( __magic_name__ : Any ) -> Tuple: '''simple docstring''' snake_case__ : List[str] = botoa.client("""iam""" ) return iam_client.get_role(RoleName=__magic_name__ )["Role"]["Arn"] def UpperCamelCase__ ( ) -> Tuple: '''simple docstring''' snake_case__ : Union[str, Any] = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , __magic_name__ , ) snake_case__ : List[Any] = None if credentials_configuration == 0: snake_case__ : Dict = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) snake_case__ : List[str] = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) snake_case__ : List[str] = _ask_field("""AWS Access Key ID: """ ) snake_case__ : int = aws_access_key_id snake_case__ : Optional[Any] = _ask_field("""AWS Secret Access Key: """ ) snake_case__ : List[str] = aws_secret_access_key snake_case__ : Tuple = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) snake_case__ : Optional[int] = aws_region snake_case__ : int = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , __magic_name__ , ) if role_management == 0: snake_case__ : Optional[Any] = _ask_field("""Enter your IAM role name: """ ) else: snake_case__ : Optional[int] = """accelerate_sagemaker_execution_role""" print(f"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" ) _create_iam_role_for_sagemaker(__magic_name__ ) snake_case__ : Dict = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : Any = None if is_custom_docker_image: snake_case__ : str = _ask_field("""Enter your Docker image: """ , lambda __magic_name__ : str(__magic_name__ ).lower() ) snake_case__ : Tuple = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : List[Any] = None if is_sagemaker_inputs_enabled: snake_case__ : str = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , ) snake_case__ : Optional[int] = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : Optional[Any] = None if is_sagemaker_metrics_enabled: snake_case__ : List[Any] = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , ) snake_case__ : Tuple = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) snake_case__ : Any = {} snake_case__ : List[Any] = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) if use_dynamo: snake_case__ : str = """dynamo_""" snake_case__ : Tuple = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) snake_case__ : List[str] = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) if use_custom_options: snake_case__ : str = _ask_options( """Which mode do you want to use?""" , __magic_name__ , lambda __magic_name__ : TORCH_DYNAMO_MODES[int(__magic_name__ )] , default="""default""" , ) snake_case__ : Union[str, Any] = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : str = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , ) snake_case__ : Dict = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: snake_case__ : List[str] = _ask_options( __magic_name__ , __magic_name__ , lambda __magic_name__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__magic_name__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" snake_case__ : Optional[int] = _ask_field(__magic_name__ , lambda __magic_name__ : str(__magic_name__ ).lower() , default="""ml.p3.2xlarge""" ) snake_case__ : Dict = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): snake_case__ : Optional[Any] = _ask_field( """How many machines do you want use? [1]: """ , __magic_name__ , default=1 , ) snake_case__ : Union[str, Any] = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=__magic_name__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__magic_name__ , use_cpu=__magic_name__ , dynamo_config=__magic_name__ , eca_instance_type=__magic_name__ , profile=__magic_name__ , region=__magic_name__ , iam_role_name=__magic_name__ , mixed_precision=__magic_name__ , num_machines=__magic_name__ , sagemaker_inputs_file=__magic_name__ , sagemaker_metrics_file=__magic_name__ , )
38
0
import numpy class __lowercase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: A : Tuple = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. A : Optional[Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. A : Union[str, Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. A : Optional[Any] = numpy.random.rand(3 , 1 ) # Real output values provided. A : List[Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. A : Any = numpy.zeros(output_array.shape ) def snake_case ( self ) -> numpy.ndarray: A : Union[str, Any] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. A : List[str] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. A : Tuple = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case ( self ) -> None: A : Optional[Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) A : Union[str, Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) A : Tuple = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> None: for iteration in range(1 , iterations + 1 ): A : Any = self.feedforward() self.back_propagation() if give_loss: A : Optional[int] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f'Iteration {iteration} Loss: {loss}' ) def snake_case ( self , __UpperCAmelCase ) -> int: A : List[str] = input_arr A : Dict = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) A : int = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) A : Tuple = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def snake_case__ ( lowerCamelCase_ ): return 1 / (1 + numpy.exp(-value )) def snake_case__ ( lowerCamelCase_ ): return (value) * (1 - (value)) def snake_case__ ( ): A : List[str] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. A : Optional[Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. A : List[Any] = TwoHiddenLayerNeuralNetwork( input_array=lowerCamelCase_ , output_array=lowerCamelCase_ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=lowerCamelCase_ , iterations=10 , give_loss=lowerCamelCase_ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
423
def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): return x if y == 0 else greatest_common_divisor(lowerCamelCase_ , x % y ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): return (x * y) // greatest_common_divisor(lowerCamelCase_ , lowerCamelCase_ ) def snake_case__ ( lowerCamelCase_ = 20 ): A : Optional[Any] = 1 for i in range(1 , n + 1 ): A : Dict = lcm(lowerCamelCase_ , lowerCamelCase_ ) return g if __name__ == "__main__": print(F"{solution() = }")
423
1
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) _snake_case : Optional[Any] = logging.getLogger() def a_ ( ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('-f' ) __lowerCAmelCase = parser.parse_args() return args.f def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = {} __lowerCAmelCase = os.path.join(_A, 'all_results.json' ) if os.path.exists(_A ): with open(_A, 'r' ) as f: __lowerCAmelCase = json.load(_A ) else: raise ValueError(F"""can\'t find {path}""" ) return results def a_ ( ): __lowerCAmelCase = torch.cuda.is_available() and torch_device == 'cuda' return is_using_cuda and is_apex_available() _snake_case : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCAmelCase ( _UpperCAmelCase ): """simple docstring""" @classmethod def lowercase ( cls : int ) -> Union[str, Any]: __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = os.path.join(cls.tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) __lowerCAmelCase = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def lowercase ( cls : str ) -> List[Any]: shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowercase ( self : Dict ) -> Tuple: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append('--fp16' ) run_command(self._launch_args + testargs ) __lowerCAmelCase = get_results(lowerCAmelCase_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , 'glue_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowercase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) __lowerCAmelCase = get_results(lowerCAmelCase_ ) self.assertLess(result['perplexity'] , 1_0_0 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , 'clm_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowercase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) __lowerCAmelCase = get_results(lowerCAmelCase_ ) self.assertLess(result['perplexity'] , 4_2 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , 'mlm_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = 7 if get_gpu_count() > 1 else 2 __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) __lowerCAmelCase = get_results(lowerCAmelCase_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertLess(result['train_loss'] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , 'ner_no_trainer' ) ) ) @unittest.skip(reason='Fix me @muellerzr' ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) __lowerCAmelCase = get_results(lowerCAmelCase_ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['eval_f1'] , 2_8 ) self.assertGreaterEqual(result['eval_exact'] , 2_8 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , 'qa_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) __lowerCAmelCase = get_results(lowerCAmelCase_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , 'swag_no_trainer' ) ) ) @slow @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowercase ( self : Optional[int] ) -> str: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) __lowerCAmelCase = get_results(lowerCAmelCase_ ) self.assertGreaterEqual(result['eval_rouge1'] , 1_0 ) self.assertGreaterEqual(result['eval_rouge2'] , 2 ) self.assertGreaterEqual(result['eval_rougeL'] , 7 ) self.assertGreaterEqual(result['eval_rougeLsum'] , 7 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , 'summarization_no_trainer' ) ) ) @slow @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowercase ( self : Union[str, Any] ) -> str: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) __lowerCAmelCase = get_results(lowerCAmelCase_ ) self.assertGreaterEqual(result['eval_bleu'] , 3_0 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , 'translation_no_trainer' ) ) ) @slow def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase_ ) __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) __lowerCAmelCase = get_results(lowerCAmelCase_ ) self.assertGreaterEqual(result['eval_overall_accuracy'] , 0.10 ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowercase ( self : Optional[Any] ) -> List[Any]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append('--fp16' ) run_command(self._launch_args + testargs ) __lowerCAmelCase = get_results(lowerCAmelCase_ ) # The base model scores a 25% self.assertGreaterEqual(result['eval_accuracy'] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , 'step_1' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , 'image_classification_no_trainer' ) ) )
53
class _lowercase : """simple docstring""" def __init__( self , UpperCAmelCase ): '''simple docstring''' _lowercase = arr.split(""",""" ) def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = [int(self.array[0] )] * len(self.array ) _lowercase = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): _lowercase = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) _lowercase = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": A_: List[str] = input('please input some numbers:') A_: Optional[int] = SubArray(whole_array) A_: Dict = array.solve_sub_array() print(('the results is:', re))
398
0
"""simple docstring""" from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __a : Any = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class _SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self: Union[str, Any] , __A: int = 14 ): '''simple docstring''' if group not in primes: raise ValueError('''Unsupported Group''' ) a__ = primes[group]['''prime'''] a__ = primes[group]['''generator'''] a__ = int(hexlify(urandom(32 ) ) , base=16 ) def lowercase ( self: Tuple ): '''simple docstring''' return hex(self.__private_key )[2:] def lowercase ( self: int ): '''simple docstring''' a__ = pow(self.generator , self.__private_key , self.prime ) return hex(__A )[2:] def lowercase ( self: Tuple , __A: int ): '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(__A , (self.prime - 1) // 2 , self.prime ) == 1 ) def lowercase ( self: Optional[int] , __A: str ): '''simple docstring''' a__ = int(__A , base=16 ) if not self.is_valid_public_key(__A ): raise ValueError('''Invalid public key''' ) a__ = pow(__A , self.__private_key , self.prime ) return shaaaa(str(__A ).encode() ).hexdigest() @staticmethod def lowercase ( __A: int , __A: int ): '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(__A , (prime - 1) // 2 , __A ) == 1 ) @staticmethod def lowercase ( __A: str , __A: str , __A: int = 14 ): '''simple docstring''' a__ = int(__A , base=16 ) a__ = int(__A , base=16 ) a__ = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(__A , __A ): raise ValueError('''Invalid public key''' ) a__ = pow(__A , __A , __A ) return shaaaa(str(__A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
200
"""simple docstring""" __a : List[Any] = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) __a : Union[str, Any] = frozenset(['prompt', 'negative_prompt']) __a : Any = frozenset([]) __a : Union[str, Any] = frozenset(['image']) __a : Dict = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) __a : Dict = frozenset(['image']) __a : Dict = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) __a : Optional[Any] = frozenset(['prompt', 'image', 'negative_prompt']) __a : List[Any] = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) __a : Union[str, Any] = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) __a : Optional[Any] = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) __a : int = frozenset(['image', 'mask_image']) __a : Tuple = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) __a : Optional[Any] = frozenset(['example_image', 'image', 'mask_image']) __a : Optional[Any] = frozenset(['class_labels']) __a : Tuple = frozenset(['class_labels']) __a : int = frozenset(['batch_size']) __a : int = frozenset([]) __a : Union[str, Any] = frozenset(['batch_size']) __a : Tuple = frozenset([]) __a : Dict = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) __a : Dict = frozenset(['prompt', 'negative_prompt']) __a : Optional[int] = frozenset(['input_tokens']) __a : str = frozenset(['input_tokens'])
200
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __UpperCamelCase: Optional[Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } __UpperCamelCase: Union[str, Any] = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def SCREAMING_SNAKE_CASE__ ( _lowercase : Optional[int] , _lowercase : Tuple=False ) -> Any: '''simple docstring''' lowercase__ , lowercase__ : Tuple = create_model( 'HTSAT-tiny' , 'roberta' , _lowercase , precision='fp32' , device='cuda:0' if torch.cuda.is_available() else 'cpu' , enable_fusion=_lowercase , fusion_type='aff_2d' if enable_fusion else None , ) return model, model_cfg def SCREAMING_SNAKE_CASE__ ( _lowercase : Tuple ) -> Optional[int]: '''simple docstring''' lowercase__ : int = {} lowercase__ : Union[str, Any] = r'.*sequential.(\d+).*' lowercase__ : str = r'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowercase__ : List[Any] = key.replace(_lowercase , _lowercase ) if re.match(_lowercase , _lowercase ): # replace sequential layers with list lowercase__ : List[Any] = re.match(_lowercase , _lowercase ).group(1 ) lowercase__ : List[str] = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(_lowercase )//3}.linear.""" ) elif re.match(_lowercase , _lowercase ): lowercase__ : Optional[int] = int(re.match(_lowercase , _lowercase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... lowercase__ : Optional[Any] = 1 if projecton_layer == 0 else 2 lowercase__ : Tuple = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value lowercase__ : List[Any] = value lowercase__ : int = mixed_qkv.size(0 ) // 3 lowercase__ : Optional[Any] = mixed_qkv[:qkv_dim] lowercase__ : Optional[Any] = mixed_qkv[qkv_dim : qkv_dim * 2] lowercase__ : int = mixed_qkv[qkv_dim * 2 :] lowercase__ : Dict = query_layer lowercase__ : Optional[Any] = key_layer lowercase__ : List[Any] = value_layer else: lowercase__ : Any = value return model_state_dict def SCREAMING_SNAKE_CASE__ ( _lowercase : Dict , _lowercase : int , _lowercase : Tuple , _lowercase : Union[str, Any]=False ) -> Any: '''simple docstring''' lowercase__ , lowercase__ : Any = init_clap(_lowercase , enable_fusion=_lowercase ) clap_model.eval() lowercase__ : int = clap_model.state_dict() lowercase__ : Any = rename_state_dict(_lowercase ) lowercase__ : int = ClapConfig() lowercase__ : str = enable_fusion lowercase__ : Tuple = ClapModel(_lowercase ) # ignore the spectrogram embedding layer model.load_state_dict(_lowercase , strict=_lowercase ) model.save_pretrained(_lowercase ) transformers_config.save_pretrained(_lowercase ) if __name__ == "__main__": __UpperCamelCase: List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") __UpperCamelCase: List[str] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
266
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self: Optional[int], lowerCamelCase_: Dict, lowerCamelCase_: Tuple=7, lowerCamelCase_: Dict=3, lowerCamelCase_: Optional[Any]=30, lowerCamelCase_: str=400, lowerCamelCase_: List[Any]=True, lowerCamelCase_: List[Any]=None, lowerCamelCase_: Dict=True, lowerCamelCase_: Optional[Any]=[0.5, 0.5, 0.5], lowerCamelCase_: Dict=[0.5, 0.5, 0.5], lowerCamelCase_: Dict=True, lowerCamelCase_: List[str]=1 / 255, lowerCamelCase_: Dict=True, ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase__ : str = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} lowercase__ : Optional[int] = parent lowercase__ : List[Any] = batch_size lowercase__ : Optional[int] = num_channels lowercase__ : Optional[Any] = min_resolution lowercase__ : Union[str, Any] = max_resolution lowercase__ : Tuple = do_resize lowercase__ : str = size lowercase__ : Dict = do_normalize lowercase__ : Optional[int] = image_mean lowercase__ : Dict = image_std lowercase__ : int = do_rescale lowercase__ : Any = rescale_factor lowercase__ : Union[str, Any] = do_pad def snake_case__( self: str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case__( self: Tuple, lowerCamelCase_: Tuple, lowerCamelCase_: int=False ): if not batched: lowercase__ : Any = image_inputs[0] if isinstance(lowerCamelCase_, Image.Image ): lowercase__ , lowercase__ : List[str] = image.size else: lowercase__ , lowercase__ : str = image.shape[1], image.shape[2] if w < h: lowercase__ : Optional[Any] = int(self.size['shortest_edge'] * h / w ) lowercase__ : Optional[int] = self.size['shortest_edge'] elif w > h: lowercase__ : List[str] = self.size['shortest_edge'] lowercase__ : Any = int(self.size['shortest_edge'] * w / h ) else: lowercase__ : List[str] = self.size['shortest_edge'] lowercase__ : List[Any] = self.size['shortest_edge'] else: lowercase__ : int = [] for image in image_inputs: lowercase__ , lowercase__ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__ : int = max(lowerCamelCase_, key=lambda lowerCamelCase_ : item[0] )[0] lowercase__ : Tuple = max(lowerCamelCase_, key=lambda lowerCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' _A = YolosImageProcessor if is_vision_available() else None def snake_case__( self: int ): lowercase__ : Optional[int] = YolosImageProcessingTester(self ) @property def snake_case__( self: Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case__( self: Dict ): lowercase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_, 'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'image_std' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase_, 'size' ) ) def snake_case__( self: List[Any] ): lowercase__ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad, lowerCamelCase_ ) lowercase__ : Optional[int] = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=lowerCamelCase_ ) self.assertEqual(image_processor.size, {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad, lowerCamelCase_ ) def snake_case__( self: str ): pass def snake_case__( self: Optional[Any] ): # Initialize image_processing lowercase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_, Image.Image ) # Test not batched input lowercase__ : Tuple = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowercase__ , lowercase__ : Optional[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase_, batched=lowerCamelCase_ ) lowercase__ : Dict = image_processing(lowerCamelCase_, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def snake_case__( self: str ): # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase_, numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_, np.ndarray ) # Test not batched input lowercase__ : List[Any] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowercase__ : Any = image_processing(lowerCamelCase_, return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCamelCase_, batched=lowerCamelCase_ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def snake_case__( self: Union[str, Any] ): # Initialize image_processing lowercase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Dict = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase_, torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_, torch.Tensor ) # Test not batched input lowercase__ : List[str] = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(lowerCamelCase_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowercase__ : List[Any] = image_processing(lowerCamelCase_, return_tensors='pt' ).pixel_values lowercase__ , lowercase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(lowerCamelCase_, batched=lowerCamelCase_ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def snake_case__( self: int ): # Initialize image_processings lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) lowercase__ : List[str] = self.image_processing_class(do_resize=lowerCamelCase_, do_normalize=lowerCamelCase_, do_rescale=lowerCamelCase_ ) # create random PyTorch tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCamelCase_, torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_, torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowercase__ : Optional[int] = image_processing_a.pad(lowerCamelCase_, return_tensors='pt' ) lowercase__ : int = image_processing_a(lowerCamelCase_, return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'], encoded_images['pixel_values'], atol=1E-4 ) ) @slow def snake_case__( self: List[str] ): # prepare image and target lowercase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r' ) as f: lowercase__ : List[str] = json.loads(f.read() ) lowercase__ : List[str] = {'image_id': 39769, 'annotations': target} # encode them lowercase__ : Any = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) lowercase__ : Optional[Any] = image_processing(images=lowerCamelCase_, annotations=lowerCamelCase_, return_tensors='pt' ) # verify pixel values lowercase__ : Optional[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape, lowerCamelCase_ ) lowercase__ : int = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], lowerCamelCase_, atol=1E-4 ) ) # verify area lowercase__ : Optional[int] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], lowerCamelCase_ ) ) # verify boxes lowercase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, lowerCamelCase_ ) lowercase__ : Tuple = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], lowerCamelCase_, atol=1E-3 ) ) # verify image_id lowercase__ : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], lowerCamelCase_ ) ) # verify is_crowd lowercase__ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], lowerCamelCase_ ) ) # verify class_labels lowercase__ : Tuple = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], lowerCamelCase_ ) ) # verify orig_size lowercase__ : Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], lowerCamelCase_ ) ) # verify size lowercase__ : List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], lowerCamelCase_ ) ) @slow def snake_case__( self: Dict ): # prepare image, target and masks_path lowercase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r' ) as f: lowercase__ : Optional[Any] = json.loads(f.read() ) lowercase__ : List[Any] = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} lowercase__ : Optional[int] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowercase__ : List[Any] = YolosImageProcessor(format='coco_panoptic' ) lowercase__ : Dict = image_processing(images=lowerCamelCase_, annotations=lowerCamelCase_, masks_path=lowerCamelCase_, return_tensors='pt' ) # verify pixel values lowercase__ : str = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape, lowerCamelCase_ ) lowercase__ : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], lowerCamelCase_, atol=1E-4 ) ) # verify area lowercase__ : Optional[int] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], lowerCamelCase_ ) ) # verify boxes lowercase__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape, lowerCamelCase_ ) lowercase__ : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], lowerCamelCase_, atol=1E-3 ) ) # verify image_id lowercase__ : Any = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], lowerCamelCase_ ) ) # verify is_crowd lowercase__ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], lowerCamelCase_ ) ) # verify class_labels lowercase__ : List[str] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], lowerCamelCase_ ) ) # verify masks lowercase__ : Optional[Any] = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item(), lowerCamelCase_ ) # verify orig_size lowercase__ : Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], lowerCamelCase_ ) ) # verify size lowercase__ : Dict = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], lowerCamelCase_ ) )
266
1
"""simple docstring""" class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self :Optional[Any] ): __lowerCamelCase : Optional[Any] ={} # Mapping from char to TrieNode __lowerCamelCase : Optional[Any] =False def __lowercase ( self :Dict , __lowercase :Tuple ): for word in words: self.insert(__lowercase ) def __lowercase ( self :Optional[int] , __lowercase :int ): __lowerCamelCase : int =self for char in word: if char not in curr.nodes: __lowerCamelCase : Optional[int] =TrieNode() __lowerCamelCase : Optional[int] =curr.nodes[char] __lowerCamelCase : List[Any] =True def __lowercase ( self :List[str] , __lowercase :List[Any] ): __lowerCamelCase : Optional[int] =self for char in word: if char not in curr.nodes: return False __lowerCamelCase : Union[str, Any] =curr.nodes[char] return curr.is_leaf def __lowercase ( self :str , __lowercase :str ): def _delete(__lowercase :Optional[Any] , __lowercase :Any , __lowercase :Tuple ) -> bool: if index == len(__lowercase ): # If word does not exist if not curr.is_leaf: return False __lowerCamelCase : int =False return len(curr.nodes ) == 0 __lowerCamelCase : Dict =word[index] __lowerCamelCase : Optional[int] =curr.nodes.get(__lowercase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted __lowerCamelCase : Optional[int] =_delete(__lowercase , __lowercase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , __lowercase , 0 ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' if node.is_leaf: print(_snake_case , end=''' ''' ) for key, value in node.nodes.items(): print_words(_snake_case , word + key ) def lowerCAmelCase_ ( ): '''simple docstring''' __lowerCamelCase : Optional[Any] ='''banana bananas bandana band apple all beast'''.split() __lowerCamelCase : Any =TrieNode() root.insert_many(_snake_case ) # print_words(root, "") assert all(root.find(_snake_case ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' print(str(_snake_case ) , '''works!''' if passes else '''doesn\'t work :(''' ) def lowerCAmelCase_ ( ): '''simple docstring''' assert test_trie() def lowerCAmelCase_ ( ): '''simple docstring''' print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
708
"""simple docstring""" from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE , collections.abc.Iterable ): return x return (x, x) @require_tf class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __lowercase ( self :Optional[int] , __lowercase :Union[str, Any] , __lowercase :List[Any] ): pass def __lowercase ( self :Any ): pass def __lowercase ( self :str ): pass def __lowercase ( self :str , __lowercase :Dict , __lowercase :List[Any] , __lowercase :Union[str, Any] , __lowercase :Union[str, Any] , __lowercase :Any=None , **__lowercase :Tuple ): __lowerCamelCase : Optional[Any] =VisionTextDualEncoderConfig.from_vision_text_configs(__lowercase , __lowercase ) __lowerCamelCase : Dict =TFVisionTextDualEncoderModel(__lowercase ) __lowerCamelCase : List[Any] =model(input_ids=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def __lowercase ( self :str , __lowercase :Any , __lowercase :Dict , __lowercase :Any , __lowercase :int , __lowercase :str=None , **__lowercase :List[str] ): __lowerCamelCase , __lowerCamelCase : Any =self.get_vision_text_model(__lowercase , __lowercase ) __lowerCamelCase : List[str] =TFVisionTextDualEncoderModel(vision_model=__lowercase , text_model=__lowercase ) __lowerCamelCase : Optional[int] =model(input_ids=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __lowercase ( self :int , __lowercase :Dict , __lowercase :List[Any] , __lowercase :Any , __lowercase :Optional[Any] , __lowercase :Tuple=None , **__lowercase :List[Any] ): __lowerCamelCase , __lowerCamelCase : int =self.get_vision_text_model(__lowercase , __lowercase ) __lowerCamelCase : Dict ={'''vision_model''': vision_model, '''text_model''': text_model} __lowerCamelCase : List[Any] =TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowercase ) __lowerCamelCase : Optional[Any] =model(input_ids=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __lowercase ( self :Optional[Any] , __lowercase :Dict , __lowercase :int , __lowercase :Dict , __lowercase :List[Any] , __lowercase :Tuple=None , **__lowercase :Optional[Any] ): __lowerCamelCase , __lowerCamelCase : Tuple =self.get_vision_text_model(__lowercase , __lowercase ) __lowerCamelCase : List[Any] =TFVisionTextDualEncoderModel(vision_model=__lowercase , text_model=__lowercase ) __lowerCamelCase : Any =model(input_ids=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase ) __lowerCamelCase : Optional[Any] =output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ) __lowerCamelCase : Dict =TFVisionTextDualEncoderModel.from_pretrained(__lowercase ) __lowerCamelCase : Optional[Any] =model(input_ids=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase ) __lowerCamelCase : Any =after_output[0].numpy() __lowerCamelCase : Tuple =np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowercase , 1e-5 ) def __lowercase ( self :int , __lowercase :Any , __lowercase :List[Any] , __lowercase :Any , __lowercase :str , __lowercase :int=None , **__lowercase :List[Any] ): __lowerCamelCase , __lowerCamelCase : Any =self.get_vision_text_model(__lowercase , __lowercase ) __lowerCamelCase : Union[str, Any] =TFVisionTextDualEncoderModel(vision_model=__lowercase , text_model=__lowercase ) __lowerCamelCase : Any =model( input_ids=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase , output_attentions=__lowercase ) __lowerCamelCase : Optional[Any] =output.vision_model_output.attentions self.assertEqual(len(__lowercase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : Dict =to_atuple(vision_model.config.image_size ) __lowerCamelCase : Tuple =to_atuple(vision_model.config.patch_size ) __lowerCamelCase : Tuple =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowerCamelCase : Any =num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowerCamelCase : List[Any] =output.text_model_output.attentions self.assertEqual(len(__lowercase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowercase ( self :List[Any] , __lowercase :np.ndarray , __lowercase :np.ndarray , __lowercase :float ): __lowerCamelCase : Dict =np.abs((a - b) ).max() self.assertLessEqual(__lowercase , __lowercase , f'Difference between torch and flax is {diff} (>= {tol}).' ) def __lowercase ( self :List[str] ): __lowerCamelCase : Any =self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__lowercase ) def __lowercase ( self :Tuple ): __lowerCamelCase : List[Any] =self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__lowercase ) def __lowercase ( self :Union[str, Any] ): __lowerCamelCase : Dict =self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__lowercase ) def __lowercase ( self :Any ): __lowerCamelCase : List[Any] =self.prepare_config_and_inputs() self.check_save_load(**__lowercase ) def __lowercase ( self :List[str] ): __lowerCamelCase : Any =self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__lowercase ) @slow def __lowercase ( self :Tuple ): __lowerCamelCase , __lowerCamelCase : Optional[Any] =self.get_pretrained_model_and_inputs() __lowerCamelCase : Optional[Any] =model_a(**__lowercase ) __lowerCamelCase : int =outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__lowercase ) __lowerCamelCase : List[Any] =TFVisionTextDualEncoderModel.from_pretrained(__lowercase ) __lowerCamelCase : Tuple =model_a(**__lowercase ) __lowerCamelCase : Optional[int] =after_outputs[0].numpy() __lowerCamelCase : Optional[Any] =np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowercase , 1e-5 ) @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case__ , unittest.TestCase ): """simple docstring""" def __lowercase ( self :List[Any] ): __lowerCamelCase : Union[str, Any] =TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''' ) __lowerCamelCase : Any =13 __lowerCamelCase : Optional[int] =floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowerCamelCase : Dict =ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowerCamelCase : Optional[Any] =random_attention_mask([batch_size, 4] ) __lowerCamelCase : Dict ={'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def __lowercase ( self :Optional[Any] , __lowercase :List[Any] , __lowercase :List[str] ): __lowerCamelCase : Optional[Any] =TFViTModel(__lowercase , name='''vision_model''' ) __lowerCamelCase : Union[str, Any] =TFBertModel(__lowercase , name='''text_model''' ) return vision_model, text_model def __lowercase ( self :Union[str, Any] ): __lowerCamelCase : str =TFViTModelTester(self ) __lowerCamelCase : Any =TFBertModelTester(self ) __lowerCamelCase : Optional[Any] =vit_model_tester.prepare_config_and_inputs() __lowerCamelCase : Tuple =bert_model_tester.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict =vision_config_and_inputs ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : int =text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case__ , unittest.TestCase ): """simple docstring""" def __lowercase ( self :Optional[Any] ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. __lowerCamelCase : List[Any] =TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''' ) __lowerCamelCase : Tuple =13 __lowerCamelCase : str =floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowerCamelCase : Any =ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowerCamelCase : Optional[int] =random_attention_mask([batch_size, 4] ) __lowerCamelCase : Optional[Any] ={'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def __lowercase ( self :Any , __lowercase :Tuple , __lowercase :List[Any] , __lowercase :Union[str, Any] , __lowercase :Any , __lowercase :int=None , **__lowercase :List[str] ): __lowerCamelCase , __lowerCamelCase : Union[str, Any] =self.get_vision_text_model(__lowercase , __lowercase ) __lowerCamelCase : Optional[int] =TFVisionTextDualEncoderModel(vision_model=__lowercase , text_model=__lowercase ) __lowerCamelCase : Any =model( input_ids=__lowercase , pixel_values=__lowercase , attention_mask=__lowercase , output_attentions=__lowercase ) __lowerCamelCase : str =output.vision_model_output.attentions self.assertEqual(len(__lowercase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowerCamelCase : int =to_atuple(vision_model.config.image_size ) __lowerCamelCase : Union[str, Any] =to_atuple(vision_model.config.patch_size ) __lowerCamelCase : Tuple =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowerCamelCase : Any =num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowerCamelCase : Any =output.text_model_output.attentions self.assertEqual(len(__lowercase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowercase ( self :Any , __lowercase :Any , __lowercase :Optional[Any] ): __lowerCamelCase : str =TFDeiTModel(__lowercase , name='''vision_model''' ) __lowerCamelCase : List[str] =TFRobertaModel(__lowercase , name='''text_model''' ) return vision_model, text_model def __lowercase ( self :Dict ): __lowerCamelCase : Optional[int] =TFDeiTModelTester(self ) __lowerCamelCase : Any =TFRobertaModelTester(self ) __lowerCamelCase : Dict =vit_model_tester.prepare_config_and_inputs() __lowerCamelCase : Optional[int] =bert_model_tester.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] =vision_config_and_inputs ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : List[Any] =text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case__ , unittest.TestCase ): """simple docstring""" def __lowercase ( self :Tuple ): __lowerCamelCase : str =TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''' ) __lowerCamelCase : str =13 __lowerCamelCase : int =floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowerCamelCase : int =ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowerCamelCase : str =random_attention_mask([batch_size, 4] ) __lowerCamelCase : Optional[Any] ={'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def __lowercase ( self :List[Any] , __lowercase :str , __lowercase :Tuple ): __lowerCamelCase : int =TFCLIPVisionModel(__lowercase , name='''vision_model''' ) __lowerCamelCase : Optional[Any] =TFBertModel(__lowercase , name='''text_model''' ) return vision_model, text_model def __lowercase ( self :Tuple ): __lowerCamelCase : List[str] =TFCLIPVisionModelTester(self ) __lowerCamelCase : Union[str, Any] =TFBertModelTester(self ) __lowerCamelCase : str =clip_model_tester.prepare_config_and_inputs() __lowerCamelCase : Tuple =bert_model_tester.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase : Any =vision_config_and_inputs ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : str =text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self :List[Any] ): __lowerCamelCase : Union[str, Any] =TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=__lowercase ) __lowerCamelCase : str =VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) __lowerCamelCase : Optional[Any] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __lowerCamelCase : int =processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__lowercase , padding=__lowercase , return_tensors='''np''' ) __lowerCamelCase : str =model(**__lowercase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowerCamelCase : int =np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __lowercase , atol=1e-3 ) )
363
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run __UpperCAmelCase = True except (ImportError, AttributeError): __UpperCAmelCase = object def _snake_case ( *A , **A ) -> str: pass __UpperCAmelCase = False __UpperCAmelCase = logging.get_logger('''transformers-cli/serving''') def _snake_case ( A ) -> Optional[int]: lowerCAmelCase__ = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(A , args.host , args.port , args.workers ) class a__ ( a__ ): '''simple docstring''' lowercase__ : dict class a__ ( a__ ): '''simple docstring''' lowercase__ : List[str] lowercase__ : Optional[List[int]] class a__ ( a__ ): '''simple docstring''' lowercase__ : str class a__ ( a__ ): '''simple docstring''' lowercase__ : Any class a__ ( a__ ): '''simple docstring''' @staticmethod def __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ) -> List[str]: lowerCAmelCase__ = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=lowerCamelCase_ , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=lowerCamelCase_ , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=lowerCamelCase_ , default=88_88 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=lowerCamelCase_ , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=lowerCamelCase_ , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=lowerCamelCase_ , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=lowerCamelCase_ , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=lowerCamelCase_ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=lowerCamelCase_ ) def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: lowerCAmelCase__ = pipeline lowerCAmelCase__ = host lowerCAmelCase__ = port lowerCAmelCase__ = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F"""Serving model over {host}:{port}""" ) lowerCAmelCase__ = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=lowerCamelCase_ , response_class=lowerCamelCase_ , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=lowerCamelCase_ , response_class=lowerCamelCase_ , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=lowerCamelCase_ , response_class=lowerCamelCase_ , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=lowerCamelCase_ , response_class=lowerCamelCase_ , methods=['''POST'''] , ), ] , timeout=6_00 , ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: run(self._app , host=self.host , port=self.port , workers=self.workers ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ = Body(lowerCamelCase_ , embed=lowerCamelCase_ ) , lowerCamelCase_ = Body(lowerCamelCase_ , embed=lowerCamelCase_ ) ) -> List[Any]: try: lowerCAmelCase__ = self._pipeline.tokenizer.tokenize(lowerCamelCase_ ) if return_ids: lowerCAmelCase__ = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) return ServeTokenizeResult(tokens=lowerCamelCase_ , tokens_ids=lowerCamelCase_ ) else: return ServeTokenizeResult(tokens=lowerCamelCase_ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(lowerCamelCase_ )} ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ = Body(lowerCamelCase_ , embed=lowerCamelCase_ ) , lowerCamelCase_ = Body(lowerCamelCase_ , embed=lowerCamelCase_ ) , lowerCamelCase_ = Body(lowerCamelCase_ , embed=lowerCamelCase_ ) , ) -> Optional[Any]: try: lowerCAmelCase__ = self._pipeline.tokenizer.decode(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return ServeDeTokenizeResult(model='''''' , text=lowerCamelCase_ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={'''model''': '''''', '''error''': str(lowerCamelCase_ )} ) async def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_=Body(lowerCamelCase_ , embed=lowerCamelCase_ ) ) -> List[str]: # Check we don't have empty string if len(lowerCamelCase_ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model lowerCAmelCase__ = self._pipeline(lowerCamelCase_ ) return ServeForwardResult(output=lowerCamelCase_ ) except Exception as e: raise HTTPException(5_00 , {'''error''': str(lowerCamelCase_ )} )
90
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class _lowercase ( __UpperCAmelCase ): _lowerCamelCase = '''Wav2Vec2FeatureExtractor''' _lowerCamelCase = '''AutoTokenizer''' def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): super().__init__(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = self.feature_extractor __magic_name__ = False @classmethod def lowerCAmelCase__ ( cls , UpperCamelCase_ , **UpperCamelCase_ ): try: return super().from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) except OSError: warnings.warn( f'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , UpperCamelCase_ , ) __magic_name__ = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) __magic_name__ = WavaVecaCTCTokenizer.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) return cls(feature_extractor=UpperCamelCase_ , tokenizer=UpperCamelCase_ ) def __call__( self , *UpperCamelCase_ , **UpperCamelCase_ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCamelCase_ , **UpperCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) __magic_name__ = kwargs.pop('''raw_speech''' ) else: __magic_name__ = kwargs.pop('''audio''' , UpperCamelCase_ ) __magic_name__ = kwargs.pop('''sampling_rate''' , UpperCamelCase_ ) __magic_name__ = kwargs.pop('''text''' , UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: __magic_name__ = args[0] __magic_name__ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: __magic_name__ = self.feature_extractor(UpperCamelCase_ , *UpperCamelCase_ , sampling_rate=UpperCamelCase_ , **UpperCamelCase_ ) if text is not None: __magic_name__ = self.tokenizer(UpperCamelCase_ , **UpperCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: __magic_name__ = encodings['''input_ids'''] return inputs def lowerCAmelCase__ ( self , *UpperCamelCase_ , **UpperCamelCase_ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*UpperCamelCase_ , **UpperCamelCase_ ) __magic_name__ = kwargs.pop('''input_features''' , UpperCamelCase_ ) __magic_name__ = kwargs.pop('''labels''' , UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: __magic_name__ = args[0] __magic_name__ = args[1:] if input_features is not None: __magic_name__ = self.feature_extractor.pad(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) if labels is not None: __magic_name__ = self.tokenizer.pad(UpperCamelCase_ , **UpperCamelCase_ ) if labels is None: return input_features elif input_features is None: return labels else: __magic_name__ = labels['''input_ids'''] return input_features def lowerCAmelCase__ ( self , *UpperCamelCase_ , **UpperCamelCase_ ): return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , *UpperCamelCase_ , **UpperCamelCase_ ): return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @contextmanager def lowerCAmelCase__ ( self ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) __magic_name__ = True __magic_name__ = self.tokenizer yield __magic_name__ = self.feature_extractor __magic_name__ = False
490
0
'''simple docstring''' def _UpperCamelCase ( lowerCAmelCase__: int = 1000 ) -> int: SCREAMING_SNAKE_CASE_ = -1 SCREAMING_SNAKE_CASE_ = 0 for a in range(1 ,n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c SCREAMING_SNAKE_CASE_ = (n * n - 2 * a * n) // (2 * n - 2 * a) SCREAMING_SNAKE_CASE_ = n - a - b if c * c == (a * a + b * b): SCREAMING_SNAKE_CASE_ = a * b * c if candidate >= product: SCREAMING_SNAKE_CASE_ = candidate return product if __name__ == "__main__": print(f"{solution() = }")
238
'''simple docstring''' from typing import Any def _UpperCamelCase ( lowerCAmelCase__: list ) -> list[Any]: if not input_list: return [] SCREAMING_SNAKE_CASE_ = [input_list.count(lowerCAmelCase__ ) for value in input_list] SCREAMING_SNAKE_CASE_ = max(lowerCAmelCase__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowerCAmelCase__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
238
1
def __UpperCAmelCase ( lowerCamelCase_ : Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : List[str] = 2 while i * i <= n: SCREAMING_SNAKE_CASE_ : Dict = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __UpperCAmelCase ( ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : Optional[int] = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase_ ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
105
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowercase__( A ): return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowercase__( A ): snake_case__ : Dict = create_tensor(A ) snake_case__ : Any = gather(A ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowercase__( A ): snake_case__ : Dict = [state.process_index] snake_case__ : List[str] = gather_object(A ) assert len(A ) == state.num_processes, f'''{gathered_obj}, {len(A )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def lowercase__( A ): snake_case__ : Optional[Any] = create_tensor(A ) snake_case__ : Optional[int] = broadcast(A ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowercase__( A ): # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: snake_case__ : Dict = torch.arange(state.num_processes + 1 ).to(state.device ) else: snake_case__ : Optional[Any] = torch.arange(state.num_processes ).to(state.device ) snake_case__ : List[Any] = pad_across_processes(A ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowercase__( A ): # For now runs on only two processes if state.num_processes != 2: return snake_case__ : Tuple = create_tensor(A ) snake_case__ : Optional[Any] = reduce(A , 'sum' ) snake_case__ : Optional[Any] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(A , A ), f'''{reduced_tensor} != {truth_tensor}''' def lowercase__( A ): # For now runs on only two processes if state.num_processes != 2: return snake_case__ : Optional[Any] = create_tensor(A ) snake_case__ : Optional[Any] = reduce(A , 'mean' ) snake_case__ : int = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(A , A ), f'''{reduced_tensor} != {truth_tensor}''' def lowercase__( A ): # For xla_spawn (TPUs) main() def lowercase__( ): snake_case__ : Optional[Any] = PartialState() state.print(f'''State: {state}''' ) state.print('testing gather' ) test_gather(A ) state.print('testing gather_object' ) test_gather_object(A ) state.print('testing broadcast' ) test_broadcast(A ) state.print('testing pad_across_processes' ) test_pad_across_processes(A ) state.print('testing reduce_sum' ) test_reduce_sum(A ) state.print('testing reduce_mean' ) test_reduce_mean(A ) if __name__ == "__main__": main()
170
0
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def A__ ( A : Optional[Any]): '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: UpperCamelCase : Dict = k.replace(A , A) if k.startswith("encoder"): UpperCamelCase : int = k.replace(".attn" , ".self_attn") UpperCamelCase : Any = k.replace("norm1" , "self_attn_layer_norm") UpperCamelCase : Any = k.replace("norm2" , "final_layer_norm") elif k.startswith("decoder"): UpperCamelCase : Any = k.replace("norm1" , "self_attn_layer_norm") UpperCamelCase : str = k.replace("norm2" , "encoder_attn_layer_norm") UpperCamelCase : Optional[Any] = k.replace("norm3" , "final_layer_norm") return k def A__ ( A : int): '''simple docstring''' UpperCamelCase : Any = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: UpperCamelCase : int = sd.pop(A) UpperCamelCase : str = k.replace("layernorm_embedding" , "layer_norm") assert new_k not in sd UpperCamelCase : Union[str, Any] = v lowerCAmelCase_ = ['START'] @torch.no_grad() def A__ ( A : int , A : Dict , A : Optional[Any]): '''simple docstring''' UpperCamelCase : List[Any] = torch.load(A , map_location="cpu") UpperCamelCase : int = model["model"] UpperCamelCase : str = BlenderbotConfig.from_json_file(A) UpperCamelCase : Tuple = BlenderbotForConditionalGeneration(A) UpperCamelCase : Any = m.model.state_dict().keys() UpperCamelCase : Any = [] UpperCamelCase : Optional[Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue UpperCamelCase : Union[str, Any] = rename_state_dict_key(A) if new_k not in valid_keys: failures.append([k, new_k]) else: UpperCamelCase : Any = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(A) m.model.load_state_dict(A , strict=A) m.half() m.save_pretrained(A) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) lowerCAmelCase_ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
719
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE = BioGptTokenizer __SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCamelCase : Optional[int] = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) UpperCamelCase : Union[str, Any] = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(lowerCamelCase ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase ) -> int: '''simple docstring''' UpperCamelCase : Optional[int] = "lower newer" UpperCamelCase : Optional[int] = "lower newer" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' UpperCamelCase : Optional[Any] = BioGptTokenizer(self.vocab_file , self.merges_file ) UpperCamelCase : int = "lower" UpperCamelCase : List[Any] = ["low", "er</w>"] UpperCamelCase : Dict = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) UpperCamelCase : List[Any] = tokens + ["<unk>"] UpperCamelCase : Tuple = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : List[Any] = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) UpperCamelCase : Dict = tokenizer.encode("sequence builders" , add_special_tokens=lowerCamelCase ) UpperCamelCase : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=lowerCamelCase ) UpperCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) UpperCamelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase , lowerCamelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
435
0
'''simple docstring''' import re def A ( UpperCamelCase_ : str ) -> str: '''simple docstring''' if len(re.findall("[ATCG]" , UpperCamelCase_ ) ) != len(UpperCamelCase_ ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
48
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() a :Any = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a :str = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Tuple = state_dict.pop(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = val def _lowercase ( __lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__ : str = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: SCREAMING_SNAKE_CASE__ : List[Any] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) SCREAMING_SNAKE_CASE__ : Dict = value else: SCREAMING_SNAKE_CASE__ : Tuple = value return new_state_dict def _lowercase ( __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ : str = """""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ : int = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ : int = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE__ : Any = in_proj_bias[:256] SCREAMING_SNAKE_CASE__ : Dict = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE__ : List[str] = in_proj_bias[256:512] SCREAMING_SNAKE_CASE__ : int = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE__ : List[Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE__ : List[str] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ : Tuple = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ : Any = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE__ : List[str] = in_proj_bias[:256] SCREAMING_SNAKE_CASE__ : Optional[Any] = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE__ : Tuple = in_proj_bias[256:512] SCREAMING_SNAKE_CASE__ : Optional[int] = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE__ : Dict = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention SCREAMING_SNAKE_CASE__ : Optional[Any] = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ : List[Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict SCREAMING_SNAKE_CASE__ : int = in_proj_weight_cross_attn[:256, :] SCREAMING_SNAKE_CASE__ : List[str] = in_proj_bias_cross_attn[:256] SCREAMING_SNAKE_CASE__ : Optional[Any] = in_proj_weight_cross_attn[256:512, :] SCREAMING_SNAKE_CASE__ : Optional[int] = in_proj_bias_cross_attn[256:512] SCREAMING_SNAKE_CASE__ : int = in_proj_weight_cross_attn[-256:, :] SCREAMING_SNAKE_CASE__ : Dict = in_proj_bias_cross_attn[-256:] def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = image.size SCREAMING_SNAKE_CASE__ : Optional[Any] = max(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = 800 if """detection""" in checkpoint_url else 1000 SCREAMING_SNAKE_CASE__ : List[str] = target_max_size / current_max_size SCREAMING_SNAKE_CASE__ : str = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def _lowercase ( __lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[int] = F.to_tensor(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = F.normalize(__lowerCAmelCase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: logger.info("""Converting model...""" ) # load original state dict SCREAMING_SNAKE_CASE__ : str = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" ) # rename keys for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = rename_backbone_keys(__lowerCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__lowerCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE__ : Optional[int] = """model.""" for key in state_dict.copy().keys(): if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): SCREAMING_SNAKE_CASE__ : Optional[int] = state_dict.pop(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = val # create HuggingFace model and load state dict SCREAMING_SNAKE_CASE__ : Tuple = TableTransformerConfig( backbone="""resnet18""" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Optional[int] = 15 SCREAMING_SNAKE_CASE__ : Any = 2 SCREAMING_SNAKE_CASE__ : str = {0: """table""", 1: """table rotated"""} SCREAMING_SNAKE_CASE__ : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE__ : List[str] = {v: k for k, v in idalabel.items()} else: SCREAMING_SNAKE_CASE__ : Tuple = 125 SCREAMING_SNAKE_CASE__ : str = 6 SCREAMING_SNAKE_CASE__ : List[Any] = { 0: """table""", 1: """table column""", 2: """table row""", 3: """table column header""", 4: """table projected row header""", 5: """table spanning cell""", } SCREAMING_SNAKE_CASE__ : Any = idalabel SCREAMING_SNAKE_CASE__ : Dict = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : Dict = DetrImageProcessor( format="""coco_detection""" , max_size=800 if """detection""" in checkpoint_url else 1000 ) SCREAMING_SNAKE_CASE__ : Tuple = TableTransformerForObjectDetection(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # verify our conversion SCREAMING_SNAKE_CASE__ : Dict = """example_pdf.png""" if """detection""" in checkpoint_url else """example_table.png""" SCREAMING_SNAKE_CASE__ : Tuple = hf_hub_download(repo_id="""nielsr/example-pdf""" , repo_type="""dataset""" , filename=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = Image.open(__lowerCAmelCase ).convert("""RGB""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = normalize(resize(__lowerCAmelCase , __lowerCAmelCase ) ).unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Dict = model(__lowerCAmelCase ) if "detection" in checkpoint_url: SCREAMING_SNAKE_CASE__ : List[Any] = (1, 15, 3) SCREAMING_SNAKE_CASE__ : str = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) SCREAMING_SNAKE_CASE__ : str = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: SCREAMING_SNAKE_CASE__ : Dict = (1, 125, 7) SCREAMING_SNAKE_CASE__ : Any = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: # Push model to HF hub logger.info("""Pushing model to the hub...""" ) SCREAMING_SNAKE_CASE__ : List[Any] = ( """microsoft/table-transformer-detection""" if """detection""" in checkpoint_url else """microsoft/table-transformer-structure-recognition""" ) model.push_to_hub(__lowerCAmelCase ) image_processor.push_to_hub(__lowerCAmelCase ) if __name__ == "__main__": a :Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a :int = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
680
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : int = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __a : List[Any] = "xmod" def __init__( self : Dict , lowercase : int=3_0_5_2_2 , lowercase : Tuple=7_6_8 , lowercase : Dict=1_2 , lowercase : Optional[int]=1_2 , lowercase : int=3_0_7_2 , lowercase : str="gelu" , lowercase : Optional[int]=0.1 , lowercase : Any=0.1 , lowercase : int=5_1_2 , lowercase : int=2 , lowercase : int=0.0_2 , lowercase : Optional[Any]=1e-12 , lowercase : int=1 , lowercase : Dict=0 , lowercase : List[Any]=2 , lowercase : List[Any]="absolute" , lowercase : List[str]=True , lowercase : Tuple=None , lowercase : str=False , lowercase : List[Any]=2 , lowercase : List[str]=False , lowercase : str=True , lowercase : Optional[int]=True , lowercase : Any=("en_XX",) , lowercase : Union[str, Any]=None , **lowercase : Any , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = use_cache UpperCamelCase__ = classifier_dropout UpperCamelCase__ = pre_norm UpperCamelCase__ = adapter_reduction_factor UpperCamelCase__ = adapter_layer_norm UpperCamelCase__ = adapter_reuse_layer_norm UpperCamelCase__ = ln_before_adapter UpperCamelCase__ = list(lowercase ) UpperCamelCase__ = default_language class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def A ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCamelCase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
712
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , lowercase : List[str] , lowercase : List[Any]=1_3 , lowercase : Union[str, Any]=7 , lowercase : Dict=True , lowercase : Optional[int]=True , lowercase : List[Any]=True , lowercase : Dict=True , lowercase : List[str]=9_9 , lowercase : Dict=1_6 , lowercase : Dict=3_6 , lowercase : str=6 , lowercase : List[Any]=6 , lowercase : int=6 , lowercase : Union[str, Any]=3_7 , lowercase : Union[str, Any]="gelu" , lowercase : List[Any]=0.1 , lowercase : List[str]=0.1 , lowercase : str=5_1_2 , lowercase : Any=1_6 , lowercase : str=2 , lowercase : List[Any]=0.0_2 , lowercase : Tuple=3 , lowercase : Dict=4 , lowercase : Dict=None , ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = embedding_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_hidden_groups UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope def A ( self : List[str] ) -> str: '''simple docstring''' UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Optional[int] ) -> str: '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def A ( self : List[str] , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Dict , lowercase : str , lowercase : int , lowercase : List[str] , lowercase : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = AlbertModel(config=lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) UpperCamelCase__ = model(lowercase , token_type_ids=lowercase ) UpperCamelCase__ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : int , lowercase : List[str] , lowercase : Optional[int] , lowercase : Optional[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : int ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = AlbertForPreTraining(config=lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , sentence_order_label=lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def A ( self : Optional[int] , lowercase : Dict , lowercase : List[Any] , lowercase : Any , lowercase : List[str] , lowercase : int , lowercase : Any , lowercase : Dict ) -> Any: '''simple docstring''' UpperCamelCase__ = AlbertForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Optional[Any] , lowercase : Any , lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : List[Any] , lowercase : List[str] , lowercase : Optional[Any] , lowercase : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = AlbertForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Any , lowercase : Optional[Any] , lowercase : Any , lowercase : Dict , lowercase : Any , lowercase : Optional[int] , lowercase : str , lowercase : Dict ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = self.num_labels UpperCamelCase__ = AlbertForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : List[str] , lowercase : int , lowercase : Any , lowercase : Tuple , lowercase : List[str] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : Dict ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = self.num_labels UpperCamelCase__ = AlbertForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : List[Any] , lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : Any , lowercase : List[str] , lowercase : Optional[Any] , lowercase : List[str] , lowercase : List[Any] ) -> str: '''simple docstring''' UpperCamelCase__ = self.num_choices UpperCamelCase__ = AlbertForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,unittest.TestCase ): '''simple docstring''' __a : Any = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __a : List[Any] = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) __a : List[str] = True def A ( self : Any , lowercase : int , lowercase : Dict , lowercase : Optional[Any]=False ) -> Tuple: '''simple docstring''' UpperCamelCase__ = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class in get_values(lowercase ): UpperCamelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase ) UpperCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def A ( self : Any ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = AlbertModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=lowercase , hidden_size=3_7 ) def A ( self : int ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def A ( self : str ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : int ) -> Dict: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase ) def A ( self : Tuple ) -> int: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def A ( self : Any ) -> int: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase ) def A ( self : List[str] ) -> int: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase ) def A ( self : int ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase ) def A ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase__ = type self.model_tester.create_and_check_model(*lowercase ) @slow def A ( self : Optional[int] ) -> Any: '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = AlbertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def A ( self : List[Any] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = AlbertModel.from_pretrained("""albert-base-v2""" ) UpperCamelCase__ = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ = model(lowercase , attention_mask=lowercase )[0] UpperCamelCase__ = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowercase ) UpperCamelCase__ = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase , atol=1e-4 ) )
265
0
import math from collections.abc import Callable def __lowerCAmelCase ( _UpperCamelCase : Callable[[float], float] , _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' SCREAMING_SNAKE_CASE = xa SCREAMING_SNAKE_CASE = xa while True: if x_n == x_na or function(_UpperCamelCase ) == function(_UpperCamelCase ): raise ZeroDivisionError('float division by zero, could not find root' ) SCREAMING_SNAKE_CASE = x_na - ( function(_UpperCamelCase ) / ((function(_UpperCamelCase ) - function(_UpperCamelCase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na SCREAMING_SNAKE_CASE = x_na SCREAMING_SNAKE_CASE = x_na def __lowerCAmelCase ( _UpperCamelCase : float ) -> float: '''simple docstring''' return math.pow(_UpperCamelCase , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
439
import baseaa def __lowerCAmelCase ( _UpperCamelCase : str ) -> bytes: '''simple docstring''' return baseaa.aaaencode(string.encode('utf-8' ) ) def __lowerCAmelCase ( _UpperCamelCase : bytes ) -> str: '''simple docstring''' return baseaa.aaadecode(_UpperCamelCase ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
439
1
from copy import deepcopy class A__ : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase__ : list[int] | None = None , lowerCamelCase__ : int | None = None ): if arr is None and size is not None: a__ : Union[str, Any] = size a__ : Optional[Any] = [0] * size elif arr is not None: self.init(lowerCamelCase__ ) else: raise ValueError("Either arr or size must be specified" ) def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : list[int] ): a__ : Any = len(lowerCamelCase__ ) a__ : List[Any] = deepcopy(lowerCamelCase__ ) for i in range(1 , self.size ): a__ : Union[str, Any] = self.next_(lowerCamelCase__ ) if j < self.size: self.tree[j] += self.tree[i] def _UpperCamelCase( self : Tuple ): a__ : List[str] = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): a__ : Optional[Any] = self.next_(lowerCamelCase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _UpperCamelCase( lowerCamelCase__ : int ): return index + (index & (-index)) @staticmethod def _UpperCamelCase( lowerCamelCase__ : int ): return index - (index & (-index)) def _UpperCamelCase( self : str , lowerCamelCase__ : int , lowerCamelCase__ : int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value a__ : Optional[int] = self.next_(lowerCamelCase__ ) def _UpperCamelCase( self : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : int ): self.add(lowerCamelCase__ , value - self.get(lowerCamelCase__ ) ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : int ): if right == 0: return 0 a__ : Tuple = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] a__ : List[Any] = self.prev(lowerCamelCase__ ) return result def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int ): return self.prefix(lowerCamelCase__ ) - self.prefix(lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : int ): return self.query(lowerCamelCase__ , index + 1 ) def _UpperCamelCase( self : int , lowerCamelCase__ : int ): value -= self.tree[0] if value < 0: return -1 a__ : Union[str, Any] = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 a__ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
151
from queue import PriorityQueue from typing import Any import numpy as np def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a , __a , __a , __a , ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue a__ : Union[str, Any] = cst_fwd.get(__a , np.inf ) a__ : Dict = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) a__ : List[str] = new_cost_f a__ : Optional[int] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: a__ : Optional[Any] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCamelCase_ ( __a , __a , __a , __a ) -> int: a__ : Any = -1 a__ : List[str] = set() a__ : Optional[Any] = set() a__ : Optional[int] = {source: 0} a__ : Optional[Any] = {destination: 0} a__ : List[Any] = {source: None} a__ : Union[str, Any] = {destination: None} a__ : PriorityQueue[Any] = PriorityQueue() a__ : PriorityQueue[Any] = PriorityQueue() a__ : int = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): a__, a__ : Union[str, Any] = queue_forward.get() visited_forward.add(__a ) a__, a__ : List[Any] = queue_backward.get() visited_backward.add(__a ) a__ : Union[str, Any] = pass_and_relaxation( __a , __a , __a , __a , __a , __a , __a , __a , __a , ) a__ : Dict = pass_and_relaxation( __a , __a , __a , __a , __a , __a , __a , __a , __a , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: a__ : Tuple = shortest_distance return shortest_path_distance UpperCamelCase : Optional[Any] = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } UpperCamelCase : List[Any] = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
151
1
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
270
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCamelCase__ = get_logger(__name__) class UpperCamelCase : __UpperCamelCase = """dummy_data""" __UpperCamelCase = """datasets""" __UpperCamelCase = False def __init__( self : Dict ,_lowerCAmelCase : str ,_lowerCAmelCase : str ,_lowerCAmelCase : Union[Version, str] ,_lowerCAmelCase : Optional[str] = None ,_lowerCAmelCase : bool = False ,_lowerCAmelCase : bool = True ,_lowerCAmelCase : Optional[List[Callable]] = None ,): """simple docstring""" __snake_case = 0 __snake_case = dataset_name __snake_case = cache_dir __snake_case = use_local_dummy_data __snake_case = config # download_callbacks take a single url as input __snake_case = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __snake_case = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __snake_case = str(_lowerCAmelCase ) # to be downloaded __snake_case = None __snake_case = None @property def UpperCamelCase_ ( self : str ): """simple docstring""" if self._dummy_file is None: __snake_case = self.download_dummy_data() return self._dummy_file @property def UpperCamelCase_ ( self : Tuple ): """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join("dummy" ,self.version_name ) @property def UpperCamelCase_ ( self : List[Any] ): """simple docstring""" return os.path.join(self.dummy_data_folder ,"dummy_data.zip" ) def UpperCamelCase_ ( self : List[str] ): """simple docstring""" __snake_case = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __snake_case = cached_path( _lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=_lowerCAmelCase ,force_extract=_lowerCAmelCase ) return os.path.join(_lowerCAmelCase ,self.dummy_file_name ) @property def UpperCamelCase_ ( self : Dict ): """simple docstring""" return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def UpperCamelCase_ ( self : str ): """simple docstring""" if self._bucket_url is None: __snake_case = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) ) return self._bucket_url @property def UpperCamelCase_ ( self : Optional[int] ): """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] ) def UpperCamelCase_ ( self : str ,_lowerCAmelCase : List[Any] ,*_lowerCAmelCase : Optional[int] ): """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested __snake_case = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __snake_case = self.dummy_file_name # special case when data_url is a dict if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): return self.create_dummy_data_dict(_lowerCAmelCase ,_lowerCAmelCase ) elif isinstance(_lowerCAmelCase ,(list, tuple) ): return self.create_dummy_data_list(_lowerCAmelCase ,_lowerCAmelCase ) else: return self.create_dummy_data_single(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self : Dict ,_lowerCAmelCase : str ,*_lowerCAmelCase : Dict ): """simple docstring""" return self.download_and_extract(_lowerCAmelCase ) def UpperCamelCase_ ( self : int ,_lowerCAmelCase : Optional[int] ,_lowerCAmelCase : Optional[Any] ): """simple docstring""" return self.download_and_extract(_lowerCAmelCase ) def UpperCamelCase_ ( self : List[str] ,_lowerCAmelCase : str ,*_lowerCAmelCase : List[str] ,**_lowerCAmelCase : List[Any] ): """simple docstring""" return path def UpperCamelCase_ ( self : Optional[int] ): """simple docstring""" return {} def UpperCamelCase_ ( self : str ,_lowerCAmelCase : int ,_lowerCAmelCase : Optional[int] ): """simple docstring""" __snake_case = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): for single_url in single_urls: download_callback(_lowerCAmelCase ) else: __snake_case = single_urls download_callback(_lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): __snake_case = [os.path.join(_lowerCAmelCase ,urllib.parse.quote_plus(Path(_lowerCAmelCase ).name ) ) for x in single_urls] else: __snake_case = single_urls __snake_case = os.path.join(_lowerCAmelCase ,urllib.parse.quote_plus(Path(_lowerCAmelCase ).name ) ) __snake_case = value # make sure that values are unique if all(isinstance(_lowerCAmelCase ,_lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __snake_case = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCamelCase_ ( self : List[str] ,_lowerCAmelCase : str ,_lowerCAmelCase : Any ): """simple docstring""" __snake_case = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __snake_case = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,_lowerCAmelCase ) ) for url in data_url ) __snake_case = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __snake_case = [data_url[0]] * len(_lowerCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __snake_case = os.path.join(_lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(_lowerCAmelCase ) return dummy_data_list def UpperCamelCase_ ( self : Tuple ,_lowerCAmelCase : Any ,_lowerCAmelCase : Union[str, Any] ): """simple docstring""" for download_callback in self.download_callbacks: download_callback(_lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __snake_case = os.path.join(_lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(_lowerCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCamelCase_ ( self : Any ): """simple docstring""" pass def UpperCamelCase_ ( self : Dict ): """simple docstring""" pass def UpperCamelCase_ ( self : Tuple ,_lowerCAmelCase : List[str] ): """simple docstring""" def _iter_archive_members(_lowerCAmelCase : Tuple ): # this preserves the order of the members inside the ZIP archive __snake_case = Path(self.dummy_file ).parent __snake_case = path.relative_to(_lowerCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __snake_case = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_lowerCAmelCase ) __snake_case = Path(_lowerCAmelCase ) __snake_case = _iter_archive_members(_lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(_lowerCAmelCase ).as_posix(), file_path.open("rb" ) def UpperCamelCase_ ( self : List[str] ,_lowerCAmelCase : Tuple ): """simple docstring""" if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ): __snake_case = [paths] for path in paths: if os.path.isfile(_lowerCAmelCase ): if os.path.basename(_lowerCAmelCase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(_lowerCAmelCase ): if os.path.basename(_lowerCAmelCase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(_lowerCAmelCase ): if filename.startswith((".", "__") ): continue yield os.path.join(_lowerCAmelCase ,_lowerCAmelCase )
524
0
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( a_, unittest.TestCase ): _lowerCamelCase : Optional[Any]= None _lowerCamelCase : Any= BloomTokenizerFast _lowerCamelCase : Optional[Any]= BloomTokenizerFast _lowerCamelCase : List[Any]= True _lowerCamelCase : Tuple= False _lowerCamelCase : List[str]= "tokenizer_file" _lowerCamelCase : Optional[int]= {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def _snake_case ( self) -> int: super().setUp() UpperCAmelCase_ : Optional[Any] = BloomTokenizerFast.from_pretrained('bigscience/tokenizer') tokenizer.save_pretrained(self.tmpdirname) def _snake_case ( self , **_snake_case) -> Union[str, Any]: kwargs.update(self.special_tokens_map) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase) def _snake_case ( self) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = self.get_rust_tokenizer() UpperCAmelCase_ : Optional[int] = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] UpperCAmelCase_ : Any = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] UpperCAmelCase_ : Union[str, Any] = tokenizer.batch_encode_plus(_lowerCAmelCase)['input_ids'] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) UpperCAmelCase_ : Dict = tokenizer.batch_decode(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) def _snake_case ( self , _snake_case=6) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): UpperCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input UpperCAmelCase_ : str = 'This is a simple input' UpperCAmelCase_ : Tuple = ['This is a simple input 1', 'This is a simple input 2'] UpperCAmelCase_ : List[Any] = ('This is a simple input', 'This is a pair') UpperCAmelCase_ : Optional[int] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(_lowerCAmelCase , max_length=_lowerCAmelCase) tokenizer_r.encode_plus(_lowerCAmelCase , max_length=_lowerCAmelCase) tokenizer_r.batch_encode_plus(_lowerCAmelCase , max_length=_lowerCAmelCase) tokenizer_r.encode(_lowerCAmelCase , max_length=_lowerCAmelCase) tokenizer_r.batch_encode_plus(_lowerCAmelCase , max_length=_lowerCAmelCase) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding') UpperCAmelCase_ : List[Any] = None # Hotfixing padding = None self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='max_length') # Simple input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='max_length') # Simple input self.assertRaises( _lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='max_length' , ) # Pair input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='max_length') # Pair input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='max_length') # Pair input self.assertRaises( _lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding='max_length' , ) def _snake_case ( self) -> int: UpperCAmelCase_ : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase_ : List[Any] = load_dataset('xnli' , 'all_languages' , split='test' , streaming=_lowerCAmelCase) UpperCAmelCase_ : Optional[int] = next(iter(_lowerCAmelCase))['premise'] # pick up one data UpperCAmelCase_ : Any = list(sample_data.values()) UpperCAmelCase_ : List[str] = list(map(tokenizer.encode , _lowerCAmelCase)) UpperCAmelCase_ : List[str] = [tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase) for x in output_tokens] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) def _snake_case ( self) -> Optional[Any]: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map) , 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]) , 1)
709
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowercase ( a_ ): _lowerCamelCase : torch.FloatTensor class lowercase ( a_, a_ ): @register_to_config def __init__( self , _snake_case = 6_5536 , _snake_case = None , _snake_case = 2 , _snake_case = 2 , _snake_case = 0 , _snake_case = "fourier" , _snake_case = True , _snake_case = False , _snake_case = 0.0 , _snake_case = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _snake_case = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _snake_case = "UNetMidBlock1D" , _snake_case = None , _snake_case = (32, 32, 64) , _snake_case = None , _snake_case = 8 , _snake_case = 1 , _snake_case = False , ) -> List[str]: super().__init__() UpperCAmelCase_ : Optional[Any] = sample_size # time if time_embedding_type == "fourier": UpperCAmelCase_ : Tuple = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_snake_case , log=_snake_case , flip_sin_to_cos=_snake_case) UpperCAmelCase_ : int = 2 * block_out_channels[0] elif time_embedding_type == "positional": UpperCAmelCase_ : Optional[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_snake_case , downscale_freq_shift=_snake_case) UpperCAmelCase_ : List[Any] = block_out_channels[0] if use_timestep_embedding: UpperCAmelCase_ : Dict = block_out_channels[0] * 4 UpperCAmelCase_ : List[Any] = TimestepEmbedding( in_channels=_snake_case , time_embed_dim=_snake_case , act_fn=_snake_case , out_dim=block_out_channels[0] , ) UpperCAmelCase_ : int = nn.ModuleList([]) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Optional[int] = nn.ModuleList([]) UpperCAmelCase_ : Any = None # down UpperCAmelCase_ : Dict = in_channels for i, down_block_type in enumerate(_snake_case): UpperCAmelCase_ : int = output_channel UpperCAmelCase_ : Optional[int] = block_out_channels[i] if i == 0: input_channel += extra_in_channels UpperCAmelCase_ : int = i == len(_snake_case) - 1 UpperCAmelCase_ : Any = get_down_block( _snake_case , num_layers=_snake_case , in_channels=_snake_case , out_channels=_snake_case , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_snake_case) # mid UpperCAmelCase_ : Optional[int] = get_mid_block( _snake_case , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_snake_case , add_downsample=_snake_case , ) # up UpperCAmelCase_ : Union[str, Any] = list(reversed(_snake_case)) UpperCAmelCase_ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: UpperCAmelCase_ : Tuple = out_channels else: UpperCAmelCase_ : int = block_out_channels[0] for i, up_block_type in enumerate(_snake_case): UpperCAmelCase_ : Dict = output_channel UpperCAmelCase_ : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_snake_case) - 1 else final_upsample_channels ) UpperCAmelCase_ : str = i == len(_snake_case) - 1 UpperCAmelCase_ : Union[str, Any] = get_up_block( _snake_case , num_layers=_snake_case , in_channels=_snake_case , out_channels=_snake_case , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_snake_case) UpperCAmelCase_ : Dict = output_channel # out UpperCAmelCase_ : Union[str, Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) UpperCAmelCase_ : Any = get_out_block( out_block_type=_snake_case , num_groups_out=_snake_case , embed_dim=block_out_channels[0] , out_channels=_snake_case , act_fn=_snake_case , fc_dim=block_out_channels[-1] // 4 , ) def _snake_case ( self , _snake_case , _snake_case , _snake_case = True , ) -> Union[UNetaDOutput, Tuple]: UpperCAmelCase_ : Union[str, Any] = timestep if not torch.is_tensor(_snake_case): UpperCAmelCase_ : Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_snake_case) and len(timesteps.shape) == 0: UpperCAmelCase_ : Tuple = timesteps[None].to(sample.device) UpperCAmelCase_ : Any = self.time_proj(_snake_case) if self.config.use_timestep_embedding: UpperCAmelCase_ : int = self.time_mlp(_snake_case) else: UpperCAmelCase_ : int = timestep_embed[..., None] UpperCAmelCase_ : List[Any] = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) UpperCAmelCase_ : int = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down UpperCAmelCase_ : Optional[Any] = () for downsample_block in self.down_blocks: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = downsample_block(hidden_states=_snake_case , temb=_snake_case) down_block_res_samples += res_samples # 3. mid if self.mid_block: UpperCAmelCase_ : List[Any] = self.mid_block(_snake_case , _snake_case) # 4. up for i, upsample_block in enumerate(self.up_blocks): UpperCAmelCase_ : int = down_block_res_samples[-1:] UpperCAmelCase_ : Tuple = down_block_res_samples[:-1] UpperCAmelCase_ : List[Any] = upsample_block(_snake_case , res_hidden_states_tuple=_snake_case , temb=_snake_case) # 5. post-process if self.out_block: UpperCAmelCase_ : Optional[Any] = self.out_block(_snake_case , _snake_case) if not return_dict: return (sample,) return UNetaDOutput(sample=_snake_case)
471
0
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_SCREAMING_SNAKE_CASE ): UpperCAmelCase__ : Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Optional[Any] = FlaxAutoModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) @slow def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_SCREAMING_SNAKE_CASE ): UpperCAmelCase__ : Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Optional[Any] = FlaxAutoModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) @slow def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : int = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : str = tokenizer('''Do you support jax jitted function?''' ,return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCamelCase_ ): return model(**_SCREAMING_SNAKE_CASE ) eval(**_SCREAMING_SNAKE_CASE ).block_until_ready() @slow def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : int = FlaxRobertaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Dict = tokenizer('''Do you support jax jitted function?''' ,return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCamelCase_ ): return model(**_SCREAMING_SNAKE_CASE ) eval(**_SCREAMING_SNAKE_CASE ).block_until_ready() def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,'''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Optional[Any] = FlaxAutoModel.from_pretrained('''bert-base''' ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : int = FlaxAutoModel.from_pretrained(_SCREAMING_SNAKE_CASE ,revision='''aaaaaa''' ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE ,'''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''' ,): UpperCAmelCase__ : List[Any] = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE ,'''Use `from_pt=True` to load this model''' ): UpperCAmelCase__ : Optional[Any] = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
614
"""simple docstring""" def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :str , _SCREAMING_SNAKE_CASE :str ) -> str: a_ : int = len(_SCREAMING_SNAKE_CASE ) a_ : int = len(_SCREAMING_SNAKE_CASE ) a_ : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) a_ : list = [] for char_count in range(_SCREAMING_SNAKE_CASE ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(alternative_string_arrange('AB', 'XYZ'), end=' ')
473
0
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil A__ : int =100 A__ : Tuple =set(range(3, NUM_PRIMES, 2)) primes.add(2) A__ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def A_ ( __SCREAMING_SNAKE_CASE : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __A : set[int] = set() __A : int __A : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def A_ ( __SCREAMING_SNAKE_CASE : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __SCREAMING_SNAKE_CASE ): if len(partition(__SCREAMING_SNAKE_CASE ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"{solution() = }")
706
'''simple docstring''' from collections.abc import Sequence def A_ ( __SCREAMING_SNAKE_CASE : Sequence[float] , __SCREAMING_SNAKE_CASE : bool = False ) -> float: """simple docstring""" if not arr: return 0 __A : Any = 0 if allow_empty_subarrays else float("""-inf""" ) __A : List[Any] = 0.0 for num in arr: __A : Tuple = max(0 if allow_empty_subarrays else num , curr_sum + num ) __A : Optional[int] = max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() A__ : Any =[-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
499
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=7 ,__UpperCAmelCase=3 ,__UpperCAmelCase=18 ,__UpperCAmelCase=30 ,__UpperCAmelCase=400 ,__UpperCAmelCase=True ,__UpperCAmelCase=None ,__UpperCAmelCase=True ,) -> Tuple: lowerCAmelCase__ : List[Any] = size if size is not None else {"""height""": 18, """width""": 18} lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : Optional[Any] = batch_size lowerCAmelCase__ : int = num_channels lowerCAmelCase__ : Any = image_size lowerCAmelCase__ : List[str] = min_resolution lowerCAmelCase__ : Dict = max_resolution lowerCAmelCase__ : Dict = do_resize lowerCAmelCase__ : Any = size lowerCAmelCase__ : Tuple = apply_ocr def UpperCAmelCase_ ( self ) -> Dict: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : Tuple = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Union[str, Any] = LayoutLMvaImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase ,"""do_resize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""size""" ) ) self.assertTrue(hasattr(__UpperCAmelCase ,"""apply_ocr""" ) ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 18, """width""": 18} ) lowerCAmelCase__ : int = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{"""height""": 42, """width""": 42} ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> str: # Initialize image_processing lowerCAmelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase ,Image.Image ) # Test not batched input lowerCAmelCase__ : Union[str, Any] = image_processing(image_inputs[0] ,return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) self.assertIsInstance(encoding.words ,__UpperCAmelCase ) self.assertIsInstance(encoding.boxes ,__UpperCAmelCase ) # Test batched lowerCAmelCase__ : Dict = image_processing(__UpperCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def UpperCAmelCase_ ( self ) -> int: # Initialize image_processing lowerCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCAmelCase ,numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase ,np.ndarray ) # Test not batched input lowerCAmelCase__ : Union[str, Any] = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched lowerCAmelCase__ : Any = image_processing(__UpperCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def UpperCAmelCase_ ( self ) -> str: # Initialize image_processing lowerCAmelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__UpperCAmelCase ,torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase ,torch.Tensor ) # Test not batched input lowerCAmelCase__ : str = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) # Test batched lowerCAmelCase__ : str = image_processing(__UpperCAmelCase ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) ,) def UpperCAmelCase_ ( self ) -> int: # with apply_OCR = True lowerCAmelCase__ : Tuple = LayoutLMvaImageProcessor() from datasets import load_dataset lowerCAmelCase__ : List[str] = load_dataset("""hf-internal-testing/fixtures_docvqa""" ,split="""test""" ) lowerCAmelCase__ : Any = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) lowerCAmelCase__ : Tuple = image_processing(__UpperCAmelCase ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowerCAmelCase__ : int = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 lowerCAmelCase__ : Optional[Any] = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,__UpperCAmelCase ) self.assertListEqual(encoding.boxes ,__UpperCAmelCase ) # with apply_OCR = False lowerCAmelCase__ : Any = LayoutLMvaImageProcessor(apply_ocr=__UpperCAmelCase ) lowerCAmelCase__ : int = image_processing(__UpperCAmelCase ,return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) )
565
'''simple docstring''' class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ) -> Any: lowerCAmelCase__ : str = n lowerCAmelCase__ : Optional[Any] = [None] * self.n lowerCAmelCase__ : Tuple = 0 # index of the first element lowerCAmelCase__ : str = 0 lowerCAmelCase__ : Any = 0 def __len__( self ) -> int: return self.size def UpperCAmelCase_ ( self ) -> bool: return self.size == 0 def UpperCAmelCase_ ( self ) -> str: return False if self.is_empty() else self.array[self.front] def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) lowerCAmelCase__ : List[str] = data lowerCAmelCase__ : Any = (self.rear + 1) % self.n self.size += 1 return self def UpperCAmelCase_ ( self ) -> List[Any]: if self.size == 0: raise Exception("""UNDERFLOW""" ) lowerCAmelCase__ : List[str] = self.array[self.front] lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Optional[int] = (self.front + 1) % self.n self.size -= 1 return temp
565
1
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : Tuple = KandinskyVaaControlnetPipeline _UpperCAmelCase : Tuple = ["image_embeds", "negative_image_embeds", "hint"] _UpperCAmelCase : List[Any] = ["image_embeds", "negative_image_embeds", "hint"] _UpperCAmelCase : Union[str, Any] = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _UpperCAmelCase : Union[str, Any] = False @property def __lowerCamelCase ( self : int ) ->Dict: return 3_2 @property def __lowerCamelCase ( self : int ) ->Any: return 3_2 @property def __lowerCamelCase ( self : Dict ) ->Optional[Any]: return self.time_input_dim @property def __lowerCamelCase ( self : Any ) ->str: return self.time_input_dim * 4 @property def __lowerCamelCase ( self : int ) ->str: return 1_0_0 @property def __lowerCamelCase ( self : Any ) ->Optional[Any]: torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowerCamelCase__ : int = UNetaDConditionModel(**A ) return model @property def __lowerCamelCase ( self : str ) ->Any: return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __lowerCamelCase ( self : Union[str, Any] ) ->Union[str, Any]: torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCamelCase ( self : Any ) ->int: lowerCamelCase__ : Union[str, Any] = self.dummy_unet lowerCamelCase__ : Dict = self.dummy_movq lowerCamelCase__ : Tuple = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=A , set_alpha_to_one=A , steps_offset=1 , prediction_type='''epsilon''' , thresholding=A , ) lowerCamelCase__ : str = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCamelCase ( self : int , A : Any , A : str=0 ) ->str: lowerCamelCase__ : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A ) ).to(A ) lowerCamelCase__ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A ) # create hint lowerCamelCase__ : List[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(A ) ).to(A ) if str(A ).startswith('''mps''' ): lowerCamelCase__ : Optional[int] = torch.manual_seed(A ) else: lowerCamelCase__ : int = torch.Generator(device=A ).manual_seed(A ) lowerCamelCase__ : int = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __lowerCamelCase ( self : Any ) ->Optional[Any]: lowerCamelCase__ : Dict = '''cpu''' lowerCamelCase__ : List[str] = self.get_dummy_components() lowerCamelCase__ : int = self.pipeline_class(**A ) lowerCamelCase__ : List[str] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) lowerCamelCase__ : Dict = pipe(**self.get_dummy_inputs(A ) ) lowerCamelCase__ : Any = output.images lowerCamelCase__ : Union[str, Any] = pipe( **self.get_dummy_inputs(A ) , return_dict=A , )[0] lowerCamelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCamelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : Any = np.array( [0.6_95_98_26, 0.86_82_79, 0.7_55_80_92, 0.68_76_94_67, 0.85_80_58_04, 0.65_97_74_96, 0.44_88_53_02, 0.5_95_91_11, 0.4_25_15_95] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self : Union[str, Any] ) ->str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self : Any ) ->int: lowerCamelCase__ : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) lowerCamelCase__ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) lowerCamelCase__ : Optional[int] = torch.from_numpy(np.array(A ) ).float() / 2_55.0 lowerCamelCase__ : int = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowerCamelCase__ : Optional[Any] = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(A ) lowerCamelCase__ : List[Any] = KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) lowerCamelCase__ : Optional[int] = pipeline.to(A ) pipeline.set_progress_bar_config(disable=A ) lowerCamelCase__ : str = '''A robot, 4k photo''' lowerCamelCase__ : int = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : Any = pipe_prior( A , generator=A , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowerCamelCase__ : Optional[Any] = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowerCamelCase__ : Optional[int] = pipeline( image_embeds=A , negative_image_embeds=A , hint=A , generator=A , num_inference_steps=1_0_0 , output_type='''np''' , ) lowerCamelCase__ : str = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(A , A )
130
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): def __init__( self : Tuple , A : str = "▁" , A : bool = True , A : Union[str, AddedToken] = "<unk>" , A : Union[str, AddedToken] = "</s>" , A : Union[str, AddedToken] = "<pad>" , ) ->Optional[int]: lowerCamelCase__ : str = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } lowerCamelCase__ : Optional[int] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowerCamelCase__ : Optional[Any] = token_dict['''token'''] lowerCamelCase__ : int = Tokenizer(Unigram() ) lowerCamelCase__ : List[Any] = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) , ''' ''' ), normalizers.Lowercase(), ] ) lowerCamelCase__ : Dict = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=A , add_prefix_space=A ), pre_tokenizers.Digits(individual_digits=A ), pre_tokenizers.Punctuation(), ] ) lowerCamelCase__ : Optional[int] = decoders.Metaspace(replacement=A , add_prefix_space=A ) lowerCamelCase__ : Any = TemplateProcessing( single=F"$A {self.special_tokens['eos']['token']}" , special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] , ) lowerCamelCase__ : List[str] = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(A , A ) def __lowerCamelCase ( self : List[str] , A : Union[str, List[str]] , A : int = 8_0_0_0 , A : bool = True , ) ->Optional[int]: lowerCamelCase__ : Optional[int] = trainers.UnigramTrainer( vocab_size=A , special_tokens=self.special_tokens_list , show_progress=A , ) if isinstance(A , A ): lowerCamelCase__ : Union[str, Any] = [files] self._tokenizer.train(A , trainer=A ) self.add_unk_id() def __lowerCamelCase ( self : Union[str, Any] , A : Union[Iterator[str], Iterator[Iterator[str]]] , A : int = 8_0_0_0 , A : bool = True , ) ->List[Any]: lowerCamelCase__ : str = trainers.UnigramTrainer( vocab_size=A , special_tokens=self.special_tokens_list , show_progress=A , ) self._tokenizer.train_from_iterator(A , trainer=A ) self.add_unk_id() def __lowerCamelCase ( self : int ) ->Union[str, Any]: lowerCamelCase__ : Union[str, Any] = json.loads(self._tokenizer.to_str() ) lowerCamelCase__ : str = self.special_tokens['''unk''']['''id'''] lowerCamelCase__ : List[Any] = Tokenizer.from_str(json.dumps(A ) )
130
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time SCREAMING_SNAKE_CASE__ = Lock() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__UpperCamelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A__ = min(__UpperCamelCase , __UpperCamelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__UpperCamelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A__ = max(__UpperCamelCase , __UpperCamelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(__UpperCamelCase ) def A ( __UpperCamelCase ) -> Union[str, Any]: A__ = [] A__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A__ = Pipe() A__ = Pipe() process_array_.append( Process( target=__UpperCamelCase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A__ = temp_rs A__ = temp_rr for i in range(1 , len(__UpperCamelCase ) - 1 ): A__ = Pipe() A__ = Pipe() process_array_.append( Process( target=__UpperCamelCase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A__ = temp_rs A__ = temp_rr process_array_.append( Process( target=__UpperCamelCase , args=( len(__UpperCamelCase ) - 1, arr[len(__UpperCamelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__UpperCamelCase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__UpperCamelCase ) ): A__ = result_pipe[p][0].recv() process_array_[p].join() return arr def A ( ) -> Optional[int]: A__ = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*__UpperCamelCase ) A__ = odd_even_transposition(__UpperCamelCase ) print('Sorted List\n' ) print(*__UpperCamelCase ) if __name__ == "__main__": main()
9
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class _SCREAMING_SNAKE_CASE: def __init__( self : str ) -> None: SCREAMING_SNAKE_CASE__ :list[Any] = [] SCREAMING_SNAKE_CASE__ :int = 0 SCREAMING_SNAKE_CASE__ :int = 0 def __lowerCamelCase ( self : Any ) -> bool: return self.head == self.tail def __lowerCamelCase ( self : Any , UpperCamelCase_ : Any ) -> None: self.data.append(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :int = self.tail + 1 def __lowerCamelCase ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE__ :Union[str, Any] = self.data[self.head] SCREAMING_SNAKE_CASE__ :Union[str, Any] = self.head + 1 return ret def __lowerCamelCase ( self : str ) -> int: return self.tail - self.head def __lowerCamelCase ( self : Optional[int] ) -> None: print(self.data ) print('**************' ) print(self.data[self.head : self.tail] ) class _SCREAMING_SNAKE_CASE: def __init__( self : List[str] , UpperCamelCase_ : Any ) -> None: SCREAMING_SNAKE_CASE__ :Tuple = data SCREAMING_SNAKE_CASE__ :MyNode | None = None SCREAMING_SNAKE_CASE__ :MyNode | None = None SCREAMING_SNAKE_CASE__ :int = 1 def __lowerCamelCase ( self : Union[str, Any] ) -> Any: return self.data def __lowerCamelCase ( self : Optional[int] ) -> MyNode | None: return self.left def __lowerCamelCase ( self : List[str] ) -> MyNode | None: return self.right def __lowerCamelCase ( self : List[Any] ) -> int: return self.height def __lowerCamelCase ( self : Optional[Any] , UpperCamelCase_ : Any ) -> None: SCREAMING_SNAKE_CASE__ :List[str] = data def __lowerCamelCase ( self : Dict , UpperCamelCase_ : MyNode | None ) -> None: SCREAMING_SNAKE_CASE__ :Dict = node def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : MyNode | None ) -> None: SCREAMING_SNAKE_CASE__ :Union[str, Any] = node def __lowerCamelCase ( self : Union[str, Any] , UpperCamelCase_ : int ) -> None: SCREAMING_SNAKE_CASE__ :Dict = height def lowerCamelCase ( UpperCAmelCase__ : MyNode | None ) -> int: '''simple docstring''' if node is None: return 0 return node.get_height() def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: '''simple docstring''' if a > b: return a return b def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> MyNode: '''simple docstring''' print('left rotation node:' , node.get_data() ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Any = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Dict = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(UpperCAmelCase__ ) return ret def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> MyNode: '''simple docstring''' print('right rotation node:' , node.get_data() ) SCREAMING_SNAKE_CASE__ :Tuple = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :int = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(UpperCAmelCase__ ) return ret def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> MyNode: '''simple docstring''' SCREAMING_SNAKE_CASE__ :str = node.get_left() assert left_child is not None node.set_left(left_rotation(UpperCAmelCase__ ) ) return right_rotation(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> MyNode: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = node.get_right() assert right_child is not None node.set_right(right_rotation(UpperCAmelCase__ ) ) return left_rotation(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : MyNode | None , UpperCAmelCase__ : Any ) -> MyNode | None: '''simple docstring''' if node is None: return MyNode(UpperCAmelCase__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , UpperCAmelCase__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected SCREAMING_SNAKE_CASE__ :Union[str, Any] = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child SCREAMING_SNAKE_CASE__ :Dict = right_rotation(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE__ :str = lr_rotation(UpperCAmelCase__ ) else: node.set_right(insert_node(node.get_right() , UpperCAmelCase__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: SCREAMING_SNAKE_CASE__ :Optional[int] = node.get_right() assert right_child is not None if data < right_child.get_data(): SCREAMING_SNAKE_CASE__ :Optional[Any] = rl_rotation(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE__ :Union[str, Any] = left_rotation(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Tuple = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(UpperCAmelCase__ ) return node def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> Any: '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ :Optional[int] = root.get_right() if right_child is None: break SCREAMING_SNAKE_CASE__ :str = right_child return root.get_data() def lowerCamelCase ( UpperCAmelCase__ : MyNode ) -> Any: '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ :Optional[int] = root.get_left() if left_child is None: break SCREAMING_SNAKE_CASE__ :List[Any] = left_child return root.get_data() def lowerCamelCase ( UpperCAmelCase__ : MyNode , UpperCAmelCase__ : Any ) -> MyNode | None: '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = root.get_left() SCREAMING_SNAKE_CASE__ :Optional[int] = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: SCREAMING_SNAKE_CASE__ :int = get_left_most(UpperCAmelCase__ ) root.set_data(UpperCAmelCase__ ) root.set_right(del_node(UpperCAmelCase__ , UpperCAmelCase__ ) ) elif left_child is not None: SCREAMING_SNAKE_CASE__ :Union[str, Any] = left_child elif right_child is not None: SCREAMING_SNAKE_CASE__ :Optional[int] = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(UpperCAmelCase__ , UpperCAmelCase__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(UpperCAmelCase__ , UpperCAmelCase__ ) ) if get_height(UpperCAmelCase__ ) - get_height(UpperCAmelCase__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): SCREAMING_SNAKE_CASE__ :Any = left_rotation(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE__ :int = rl_rotation(UpperCAmelCase__ ) elif get_height(UpperCAmelCase__ ) - get_height(UpperCAmelCase__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): SCREAMING_SNAKE_CASE__ :Any = right_rotation(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE__ :str = lr_rotation(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(UpperCAmelCase__ ) return root class _SCREAMING_SNAKE_CASE: def __init__( self : List[Any] ) -> None: SCREAMING_SNAKE_CASE__ :MyNode | None = None def __lowerCamelCase ( self : Optional[Any] ) -> int: return get_height(self.root ) def __lowerCamelCase ( self : int , UpperCamelCase_ : Any ) -> None: print('insert:' + str(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ :Dict = insert_node(self.root , UpperCamelCase_ ) def __lowerCamelCase ( self : str , UpperCamelCase_ : Any ) -> None: print('delete:' + str(UpperCamelCase_ ) ) if self.root is None: print('Tree is empty!' ) return SCREAMING_SNAKE_CASE__ :List[Any] = del_node(self.root , UpperCamelCase_ ) def __str__( self : List[Any] , ) -> str: # a level traversale, gives a more intuitive look on the tree SCREAMING_SNAKE_CASE__ :List[str] = '' SCREAMING_SNAKE_CASE__ :Optional[Any] = MyQueue() q.push(self.root ) SCREAMING_SNAKE_CASE__ :int = self.get_height() if layer == 0: return output SCREAMING_SNAKE_CASE__ :str = 0 while not q.is_empty(): SCREAMING_SNAKE_CASE__ :Optional[int] = q.pop() SCREAMING_SNAKE_CASE__ :List[str] = ' ' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(UpperCamelCase_ ) q.push(UpperCamelCase_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space SCREAMING_SNAKE_CASE__ :Tuple = cnt + 1 for i in range(1_00 ): if cnt == math.pow(2 , UpperCamelCase_ ) - 1: SCREAMING_SNAKE_CASE__ :Optional[int] = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowerCamelCase ( ) -> None: '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() UpperCamelCase_ = AVLtree() UpperCamelCase_ = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
209
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : List[str] = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
5
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowercase : """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Dict=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[Any]=36 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Union[str, Any]=6 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Dict=None , ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Any = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : int = use_input_mask lowerCamelCase__ : List[str] = use_token_type_ids lowerCamelCase__ : int = use_labels lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : List[Any] = embedding_size lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_hidden_groups lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : Optional[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : str = num_labels lowerCamelCase__ : List[Any] = num_choices lowerCamelCase__ : Any = scope def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[int] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = None lowerCamelCase__ : int = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : str ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : int = AlbertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Any = AlbertForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Union[str, Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Dict = AlbertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : str = AlbertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : str = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ : int = self.num_labels lowerCamelCase__ : Optional[int] = AlbertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : List[str] = AlbertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.num_choices lowerCamelCase__ : Optional[int] = AlbertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : int = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Union[str, Any] = config_and_inputs lowerCamelCase__ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A__ = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) A__ = True def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ): '''simple docstring''' lowerCamelCase__ : Any = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase ) lowerCamelCase__ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = AlbertModelTester(self ) lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ : Dict = type self.model_tester.create_and_check_model(*__lowerCamelCase ) @slow def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : List[str] = AlbertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = AlbertModel.from_pretrained("albert-base-v2" ) lowerCamelCase__ : Any = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase__ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase__ : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] lowerCamelCase__ : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) lowerCamelCase__ : Dict = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
5
1
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __SCREAMING_SNAKE_CASE ( _snake_case ): @require_torch def __lowerCAmelCase ( self ) -> int: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched __SCREAMING_SNAKE_CASE = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' __SCREAMING_SNAKE_CASE = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' __SCREAMING_SNAKE_CASE = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache __SCREAMING_SNAKE_CASE = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__lowerCamelCase ) BertModel.from_pretrained(__lowerCamelCase ) BertTokenizer.from_pretrained(__lowerCamelCase ) pipeline(task="fill-mask", model=__lowerCamelCase ) # baseline - just load from_pretrained with normal network __SCREAMING_SNAKE_CASE = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed __SCREAMING_SNAKE_CASE = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __SCREAMING_SNAKE_CASE = '''1''' __SCREAMING_SNAKE_CASE = subprocess.run(__lowerCamelCase, env=__lowerCamelCase, check=__lowerCamelCase, capture_output=__lowerCamelCase ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn("success", result.stdout.decode() ) @require_torch def __lowerCAmelCase ( self ) -> int: # python one-liner segments # this must be loaded before socket.socket is monkey-patched __SCREAMING_SNAKE_CASE = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' __SCREAMING_SNAKE_CASE = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' __SCREAMING_SNAKE_CASE = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache __SCREAMING_SNAKE_CASE = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__lowerCamelCase ) BertModel.from_pretrained(__lowerCamelCase ) BertTokenizer.from_pretrained(__lowerCamelCase ) pipeline(task="fill-mask", model=__lowerCamelCase ) # baseline - just load from_pretrained with normal network __SCREAMING_SNAKE_CASE = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed __SCREAMING_SNAKE_CASE = self.get_env() __SCREAMING_SNAKE_CASE = subprocess.run(__lowerCamelCase, env=__lowerCamelCase, check=__lowerCamelCase, capture_output=__lowerCamelCase ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn("success", result.stdout.decode() ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched __SCREAMING_SNAKE_CASE = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' __SCREAMING_SNAKE_CASE = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' __SCREAMING_SNAKE_CASE = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network __SCREAMING_SNAKE_CASE = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed __SCREAMING_SNAKE_CASE = self.get_env() __SCREAMING_SNAKE_CASE = subprocess.run(__lowerCamelCase, env=__lowerCamelCase, check=__lowerCamelCase, capture_output=__lowerCamelCase ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn("success", result.stdout.decode() ) # next emulate no network __SCREAMING_SNAKE_CASE = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __SCREAMING_SNAKE_CASE = '''1''' __SCREAMING_SNAKE_CASE = subprocess.run(__lowerCamelCase, env=__lowerCamelCase, check=__lowerCamelCase, capture_output=__lowerCamelCase ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn("success", result.stdout.decode() ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = ''' from transformers import pipeline ''' __SCREAMING_SNAKE_CASE = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' __SCREAMING_SNAKE_CASE = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' __SCREAMING_SNAKE_CASE = self.get_env() __SCREAMING_SNAKE_CASE = '''1''' __SCREAMING_SNAKE_CASE = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] __SCREAMING_SNAKE_CASE = subprocess.run(__lowerCamelCase, env=__lowerCamelCase, check=__lowerCamelCase, capture_output=__lowerCamelCase ) self.assertEqual(result.returncode, 1, result.stderr ) self.assertIn( "You cannot infer task automatically within `pipeline` when using offline mode", result.stderr.decode().replace("\n", "" ), ) @require_torch def __lowerCAmelCase ( self ) -> int: __SCREAMING_SNAKE_CASE = ''' from transformers import AutoModel ''' __SCREAMING_SNAKE_CASE = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network __SCREAMING_SNAKE_CASE = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed __SCREAMING_SNAKE_CASE = self.get_env() __SCREAMING_SNAKE_CASE = subprocess.run(__lowerCamelCase, env=__lowerCamelCase, check=__lowerCamelCase, capture_output=__lowerCamelCase ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn("success", result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __SCREAMING_SNAKE_CASE = '''1''' __SCREAMING_SNAKE_CASE = subprocess.run(__lowerCamelCase, env=__lowerCamelCase, check=__lowerCamelCase, capture_output=__lowerCamelCase ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn("success", result.stdout.decode() )
693
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = False, False, False @dataclass class UpperCAmelCase : UpperCAmelCase = None UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = None # Automatically constructed UpperCAmelCase = "dict" UpperCAmelCase = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCAmelCase = field(default="Audio" , init=_snake_case , repr=_snake_case ) def __call__( self : Any ): return self.pa_type def __SCREAMING_SNAKE_CASE ( self : Dict , __lowerCamelCase : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(__lowerCamelCase , __lowerCamelCase ): return {"bytes": None, "path": value} elif isinstance(__lowerCamelCase , __lowerCamelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase__ :int = BytesIO() sf.write(__lowerCamelCase , value['''array'''] , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase__ :List[Any] = np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: UpperCAmelCase__ :Optional[Any] = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 3_2_7_6_7 UpperCAmelCase__ :Optional[Any] = BytesIO(bytes() ) sf.write(__lowerCamelCase , __lowerCamelCase , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCamelCase : dict , __lowerCamelCase : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) UpperCAmelCase__ , UpperCAmelCase__ :str = (value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err UpperCAmelCase__ :List[str] = xsplitext(__lowerCamelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) if file is None: UpperCAmelCase__ :Optional[Any] = token_per_repo_id or {} UpperCAmelCase__ :str = path.split('''::''' )[-1] try: UpperCAmelCase__ :Tuple = string_to_dict(__lowerCamelCase , config.HUB_DATASETS_URL )['''repo_id'''] UpperCAmelCase__ :str = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase__ :Tuple = None with xopen(__lowerCamelCase , '''rb''' , use_auth_token=__lowerCamelCase ) as f: UpperCAmelCase__ , UpperCAmelCase__ :Union[str, Any] = sf.read(__lowerCamelCase ) else: UpperCAmelCase__ , UpperCAmelCase__ :List[Any] = sf.read(__lowerCamelCase ) UpperCAmelCase__ :Optional[int] = array.T if self.mono: UpperCAmelCase__ :Any = librosa.to_mono(__lowerCamelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase__ :Union[str, Any] = librosa.resample(__lowerCamelCase , orig_sr=__lowerCamelCase , target_sr=self.sampling_rate ) UpperCAmelCase__ :List[str] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def __SCREAMING_SNAKE_CASE ( self : Any , __lowerCamelCase : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): UpperCAmelCase__ :List[str] = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) UpperCAmelCase__ :Tuple = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase__ :str = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) UpperCAmelCase__ :int = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): UpperCAmelCase__ :Any = pa.array([Audio().encode_example(__lowerCamelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: UpperCAmelCase__ :str = storage.field('''bytes''' ) else: UpperCAmelCase__ :List[str] = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: UpperCAmelCase__ :Optional[int] = storage.field('''path''' ) else: UpperCAmelCase__ :Optional[int] = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) UpperCAmelCase__ :List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) return array_cast(__lowerCamelCase , self.pa_type ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCamelCase : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__lowerCamelCase : Dict ): with xopen(__lowerCamelCase , '''rb''' ) as f: UpperCAmelCase__ :Any = f.read() return bytes_ UpperCAmelCase__ :Union[str, Any] = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase__ :Optional[int] = pa.array( [os.path.basename(__lowerCamelCase ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) UpperCAmelCase__ :Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(__lowerCamelCase , self.pa_type )
467
0
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowerCamelCase : int = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase ) class lowerCamelCase (__lowerCamelCase ): """simple docstring""" def __init__( self : str, **_UpperCAmelCase : Any ) -> Tuple: """simple docstring""" super().__init__(**_UpperCAmelCase ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self : str, _UpperCAmelCase : Union[np.ndarray, bytes, str], **_UpperCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" return super().__call__(_UpperCAmelCase, **_UpperCAmelCase ) def A_ ( self : Union[str, Any], **_UpperCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = {} if "candidate_labels" in kwargs: SCREAMING_SNAKE_CASE__ : int = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: SCREAMING_SNAKE_CASE__ : Optional[int] = kwargs["hypothesis_template"] return preprocess_params, {}, {} def A_ ( self : Optional[Any], _UpperCAmelCase : str, _UpperCAmelCase : int=None, _UpperCAmelCase : Optional[int]="This is a sound of {}." ) -> Any: """simple docstring""" if isinstance(_UpperCAmelCase, _UpperCAmelCase ): if audio.startswith("http://" ) or audio.startswith("https://" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png SCREAMING_SNAKE_CASE__ : Union[str, Any] = requests.get(_UpperCAmelCase ).content else: with open(_UpperCAmelCase, "rb" ) as f: SCREAMING_SNAKE_CASE__ : int = f.read() if isinstance(_UpperCAmelCase, _UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : Dict = ffmpeg_read(_UpperCAmelCase, self.feature_extractor.sampling_rate ) if not isinstance(_UpperCAmelCase, np.ndarray ): raise ValueError("We expect a numpy ndarray as input" ) if len(audio.shape ) != 1: raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline" ) SCREAMING_SNAKE_CASE__ : List[str] = self.feature_extractor( [audio], sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt" ) SCREAMING_SNAKE_CASE__ : Dict = candidate_labels SCREAMING_SNAKE_CASE__ : List[str] = [hypothesis_template.format(_UpperCAmelCase ) for x in candidate_labels] SCREAMING_SNAKE_CASE__ : str = self.tokenizer(_UpperCAmelCase, return_tensors=self.framework, padding=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = [text_inputs] return inputs def A_ ( self : Any, _UpperCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = model_inputs.pop("candidate_labels" ) SCREAMING_SNAKE_CASE__ : Optional[int] = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0], _UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : Any = text_inputs[0] else: # Batching case. SCREAMING_SNAKE_CASE__ : int = text_inputs[0][0] SCREAMING_SNAKE_CASE__ : Any = self.model(**_UpperCAmelCase, **_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_audio, } return model_outputs def A_ ( self : Optional[int], _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = model_outputs.pop("candidate_labels" ) SCREAMING_SNAKE_CASE__ : int = model_outputs["logits"][0] if self.framework == "pt": SCREAMING_SNAKE_CASE__ : Tuple = logits.softmax(dim=0 ) SCREAMING_SNAKE_CASE__ : List[str] = probs.tolist() else: raise ValueError("`tf` framework not supported." ) SCREAMING_SNAKE_CASE__ : Optional[int] = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(_UpperCAmelCase, _UpperCAmelCase ), key=lambda _UpperCAmelCase : -x[0] ) ] return result
157
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = ["image_processor", "tokenizer"] UpperCAmelCase_ = "AutoImageProcessor" UpperCAmelCase_ = "AutoTokenizer" def __init__( self : List[Any], _UpperCAmelCase : Any=None, _UpperCAmelCase : int=None, **_UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", _UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : int = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor SCREAMING_SNAKE_CASE__ : List[Any] = False def __call__( self : Optional[Any], *_UpperCAmelCase : Any, **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_UpperCAmelCase, **_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = kwargs.pop("images", _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = kwargs.pop("text", _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: SCREAMING_SNAKE_CASE__ : str = args[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = args[1:] if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: SCREAMING_SNAKE_CASE__ : Any = self.image_processor(_UpperCAmelCase, *_UpperCAmelCase, **_UpperCAmelCase ) if text is not None: SCREAMING_SNAKE_CASE__ : int = self.tokenizer(_UpperCAmelCase, **_UpperCAmelCase ) if text is None: return inputs elif images is None: return encodings else: SCREAMING_SNAKE_CASE__ : int = encodings["input_ids"] return inputs def A_ ( self : Tuple, *_UpperCAmelCase : List[Any], **_UpperCAmelCase : Dict ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase, **_UpperCAmelCase ) def A_ ( self : List[Any], *_UpperCAmelCase : int, **_UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase, **_UpperCAmelCase ) @contextmanager def A_ ( self : Tuple ) -> List[str]: """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your images inputs, or in a separate call." ) SCREAMING_SNAKE_CASE__ : Optional[int] = True SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer yield SCREAMING_SNAKE_CASE__ : List[str] = self.image_processor SCREAMING_SNAKE_CASE__ : List[Any] = False def A_ ( self : str, _UpperCAmelCase : Tuple, _UpperCAmelCase : Any=False, _UpperCAmelCase : Union[str, Any]=None ) -> Any: """simple docstring""" if added_vocab is None: SCREAMING_SNAKE_CASE__ : int = self.tokenizer.get_added_vocab() SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} while tokens: SCREAMING_SNAKE_CASE__ : Dict = re.search(r"<s_(.*?)>", _UpperCAmelCase, re.IGNORECASE ) if start_token is None: break SCREAMING_SNAKE_CASE__ : List[Any] = start_token.group(1 ) SCREAMING_SNAKE_CASE__ : str = re.search(rF'''</s_{key}>''', _UpperCAmelCase, re.IGNORECASE ) SCREAMING_SNAKE_CASE__ : List[str] = start_token.group() if end_token is None: SCREAMING_SNAKE_CASE__ : Optional[int] = tokens.replace(_UpperCAmelCase, "" ) else: SCREAMING_SNAKE_CASE__ : int = end_token.group() SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.escape(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = re.escape(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = re.search(F'''{start_token_escaped}(.*?){end_token_escaped}''', _UpperCAmelCase, re.IGNORECASE ) if content is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node SCREAMING_SNAKE_CASE__ : Optional[int] = self.tokenajson(_UpperCAmelCase, is_inner_value=_UpperCAmelCase, added_vocab=_UpperCAmelCase ) if value: if len(_UpperCAmelCase ) == 1: SCREAMING_SNAKE_CASE__ : List[str] = value[0] SCREAMING_SNAKE_CASE__ : Optional[int] = value else: # leaf nodes SCREAMING_SNAKE_CASE__ : Tuple = [] for leaf in content.split(r"<sep/>" ): SCREAMING_SNAKE_CASE__ : str = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": SCREAMING_SNAKE_CASE__ : List[Any] = leaf[1:-2] # for categorical special tokens output[key].append(_UpperCAmelCase ) if len(output[key] ) == 1: SCREAMING_SNAKE_CASE__ : int = output[key][0] SCREAMING_SNAKE_CASE__ : int = tokens[tokens.find(_UpperCAmelCase ) + len(_UpperCAmelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:], is_inner_value=_UpperCAmelCase, added_vocab=_UpperCAmelCase ) if len(_UpperCAmelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def A_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", _UpperCAmelCase, ) return self.image_processor_class @property def A_ ( self : Any ) -> int: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", _UpperCAmelCase, ) return self.image_processor
157
1
def UpperCamelCase_( _A :Union[str, Any] )-> Union[str, Any]: UpperCamelCase__ = [False] * len(A__ ) UpperCamelCase__ = [-1] * len(A__ ) def dfs(_A :Union[str, Any] , _A :List[str] ): UpperCamelCase__ = True UpperCamelCase__ = c for u in graph[v]: if not visited[u]: dfs(A__ , 1 - c ) for i in range(len(A__ ) ): if not visited[i]: dfs(A__ , 0 ) for i in range(len(A__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __UpperCamelCase = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
551
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def UpperCamelCase_ ( A__ : str , A__ : str = "cpu" , A__ : Union[str, None] = None ): '''simple docstring''' lowerCAmelCase_ : Dict = torch.load(A__ , map_location=A__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(A__ , torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) lowerCAmelCase_ : List[str] = v.half() if save_path is None: # overwrite src_path lowerCAmelCase_ : List[str] = src_path torch.save(A__ , A__ ) if __name__ == "__main__": fire.Fire(convert)
275
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowercase( UpperCAmelCase__ ): """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = create_tensor(UpperCAmelCase__ ) lowerCamelCase = gather(UpperCAmelCase__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = [state.process_index] lowerCamelCase = gather_object(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == state.num_processes, F"""{gathered_obj}, {len(UpperCAmelCase__ )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), F"""{gathered_obj} != {list(range(state.num_processes ) )}""" def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = create_tensor(UpperCAmelCase__ ) lowerCamelCase = broadcast(UpperCAmelCase__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __lowercase( UpperCAmelCase__ ): """simple docstring""" if state.is_main_process: lowerCamelCase = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowerCamelCase = torch.arange(state.num_processes ).to(state.device ) lowerCamelCase = pad_across_processes(UpperCAmelCase__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __lowercase( UpperCAmelCase__ ): """simple docstring""" if state.num_processes != 2: return lowerCamelCase = create_tensor(UpperCAmelCase__ ) lowerCamelCase = reduce(UpperCAmelCase__ , "sum" ) lowerCamelCase = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ ), F"""{reduced_tensor} != {truth_tensor}""" def __lowercase( UpperCAmelCase__ ): """simple docstring""" if state.num_processes != 2: return lowerCamelCase = create_tensor(UpperCAmelCase__ ) lowerCamelCase = reduce(UpperCAmelCase__ , "mean" ) lowerCamelCase = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ ), F"""{reduced_tensor} != {truth_tensor}""" def __lowercase( UpperCAmelCase__ ): """simple docstring""" main() def __lowercase( ): """simple docstring""" lowerCamelCase = PartialState() state.print(F"""State: {state}""" ) state.print("testing gather" ) test_gather(UpperCAmelCase__ ) state.print("testing gather_object" ) test_gather_object(UpperCAmelCase__ ) state.print("testing broadcast" ) test_broadcast(UpperCAmelCase__ ) state.print("testing pad_across_processes" ) test_pad_across_processes(UpperCAmelCase__ ) state.print("testing reduce_sum" ) test_reduce_sum(UpperCAmelCase__ ) state.print("testing reduce_mean" ) test_reduce_mean(UpperCAmelCase__ ) if __name__ == "__main__": main()
484
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ : int = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
484
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Union[str, Any] = UnCLIPImageVariationPipeline a__ : Tuple = IMAGE_VARIATION_PARAMS - {"""height""", """width""", """guidance_scale"""} a__ : Union[str, Any] = IMAGE_VARIATION_BATCH_PARAMS a__ : Union[str, Any] = [ """generator""", """return_dict""", """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] a__ : Any = False @property def _lowercase (self : int ): return 32 @property def _lowercase (self : Union[str, Any] ): return 32 @property def _lowercase (self : Dict ): return self.time_input_dim @property def _lowercase (self : Optional[Any] ): return self.time_input_dim * 4 @property def _lowercase (self : Tuple ): return 100 @property def _lowercase (self : List[str] ): UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _lowercase (self : Optional[int] ): torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__a ) @property def _lowercase (self : Optional[int] ): torch.manual_seed(0 ) UpperCAmelCase_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(__a ) @property def _lowercase (self : Dict ): torch.manual_seed(0 ) UpperCAmelCase_ = { "clip_embeddings_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "cross_attention_dim": self.cross_attention_dim, } UpperCAmelCase_ = UnCLIPTextProjModel(**__a ) return model @property def _lowercase (self : int ): torch.manual_seed(0 ) UpperCAmelCase_ = { "sample_size": 32, # RGB in channels "in_channels": 3, # Out channels is double in channels because predicts mean and variance "out_channels": 6, "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": "identity", } UpperCAmelCase_ = UNetaDConditionModel(**__a ) return model @property def _lowercase (self : Union[str, Any] ): return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _lowercase (self : int ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _lowercase (self : Dict ): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) UpperCAmelCase_ = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.dummy_decoder UpperCAmelCase_ = self.dummy_text_proj UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = self.dummy_tokenizer UpperCAmelCase_ = self.dummy_super_res_first UpperCAmelCase_ = self.dummy_super_res_last UpperCAmelCase_ = UnCLIPScheduler( variance_type="learned_range" , prediction_type="epsilon" , num_train_timesteps=1000 , ) UpperCAmelCase_ = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="epsilon" , num_train_timesteps=1000 , ) UpperCAmelCase_ = CLIPImageProcessor(crop_size=32 , size=32 ) UpperCAmelCase_ = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _lowercase (self : Optional[int] , __a : Any , __a : List[Any]=0 , __a : str=True ): UpperCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) if str(__a ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(__a ) else: UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(__a ) if pil_image: UpperCAmelCase_ = input_image * 0.5 + 0.5 UpperCAmelCase_ = input_image.clamp(0 , 1 ) UpperCAmelCase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ = DiffusionPipeline.numpy_to_pil(__a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _lowercase (self : Dict ): UpperCAmelCase_ = "cpu" UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**__a ) UpperCAmelCase_ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = self.get_dummy_inputs(__a , pil_image=__a ) UpperCAmelCase_ = pipe(**__a ) UpperCAmelCase_ = output.images UpperCAmelCase_ = self.get_dummy_inputs(__a , pil_image=__a ) UpperCAmelCase_ = pipe( **__a , return_dict=__a , )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ = np.array( [ 0.99_97, 0.00_02, 0.99_97, 0.99_97, 0.99_69, 0.00_23, 0.99_97, 0.99_69, 0.99_70, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase (self : str ): UpperCAmelCase_ = "cpu" UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**__a ) UpperCAmelCase_ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = self.get_dummy_inputs(__a , pil_image=__a ) UpperCAmelCase_ = pipe(**__a ) UpperCAmelCase_ = output.images UpperCAmelCase_ = self.get_dummy_inputs(__a , pil_image=__a ) UpperCAmelCase_ = pipe( **__a , return_dict=__a , )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ = np.array([0.99_97, 0.00_03, 0.99_97, 0.99_97, 0.99_70, 0.00_24, 0.99_97, 0.99_71, 0.99_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase (self : List[str] ): UpperCAmelCase_ = "cpu" UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**__a ) UpperCAmelCase_ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = self.get_dummy_inputs(__a , pil_image=__a ) UpperCAmelCase_ = [ pipeline_inputs["image"], pipeline_inputs["image"], ] UpperCAmelCase_ = pipe(**__a ) UpperCAmelCase_ = output.images UpperCAmelCase_ = self.get_dummy_inputs(__a , pil_image=__a ) UpperCAmelCase_ = [ tuple_pipeline_inputs["image"], tuple_pipeline_inputs["image"], ] UpperCAmelCase_ = pipe( **__a , return_dict=__a , )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) UpperCAmelCase_ = np.array( [ 0.99_97, 0.99_89, 0.00_08, 0.00_21, 0.99_60, 0.00_18, 0.00_14, 0.00_02, 0.99_33, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase (self : Tuple ): UpperCAmelCase_ = torch.device("cpu" ) class __A : a__ : Optional[Any] = 1 UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**__a ) UpperCAmelCase_ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = pipe.decoder.dtype UpperCAmelCase_ = 1 UpperCAmelCase_ = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) UpperCAmelCase_ = pipe.prepare_latents( __a , dtype=__a , device=__a , generator=__a , latents=__a , scheduler=DummyScheduler() ) UpperCAmelCase_ = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) UpperCAmelCase_ = pipe.prepare_latents( __a , dtype=__a , device=__a , generator=__a , latents=__a , scheduler=DummyScheduler() ) UpperCAmelCase_ = self.get_dummy_inputs(__a , pil_image=__a ) UpperCAmelCase_ = pipe( **__a , decoder_latents=__a , super_res_latents=__a ).images UpperCAmelCase_ = self.get_dummy_inputs(__a , pil_image=__a ) # Don't pass image, instead pass embedding UpperCAmelCase_ = pipeline_inputs.pop("image" ) UpperCAmelCase_ = pipe.image_encoder(__a ).image_embeds UpperCAmelCase_ = pipe( **__a , decoder_latents=__a , super_res_latents=__a , image_embeddings=__a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _lowercase (self : Optional[int] ): UpperCAmelCase_ = torch_device == "cpu" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor UpperCAmelCase_ = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=__a , expected_max_diff=__a ) @skip_mps def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = torch_device == "cpu" UpperCAmelCase_ = True UpperCAmelCase_ = [ "decoder_num_inference_steps", "super_res_num_inference_steps", ] self._test_inference_batch_single_identical( test_max_difference=__a , relax_max_difference=__a , additional_params_copy_to_batched_inputs=__a , ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = [ "decoder_num_inference_steps", "super_res_num_inference_steps", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes UpperCAmelCase_ = [2, 3] self._test_inference_batch_consistent( batch_sizes=__a , additional_params_copy_to_batched_inputs=__a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__a ) @skip_mps def _lowercase (self : Optional[Any] ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowercase (self : Optional[Any] ): return super().test_save_load_local() @skip_mps def _lowercase (self : int ): return super().test_save_load_optional_components() @slow @require_torch_gpu class __A ( unittest.TestCase ): def _lowercase (self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : Any ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/unclip/karlo_v1_alpha_cat_variation_fp16.npy" ) UpperCAmelCase_ = UnCLIPImageVariationPipeline.from_pretrained( "kakaobrain/karlo-v1-alpha-image-variations" , torch_dtype=torch.floataa ) UpperCAmelCase_ = pipeline.to(__a ) pipeline.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ = pipeline( __a , generator=__a , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(__a , __a , 15 )
78
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Optional[int] = '''MCTCTFeatureExtractor''' UpperCamelCase__ : Union[str, Any] = '''AutoTokenizer''' def __init__( self , _A , _A ): '''simple docstring''' super().__init__(_A , _A ) __SCREAMING_SNAKE_CASE = self.feature_extractor __SCREAMING_SNAKE_CASE = False def __call__( self , *_A , **_A ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) __SCREAMING_SNAKE_CASE = kwargs.pop('raw_speech' ) else: __SCREAMING_SNAKE_CASE = kwargs.pop('audio' , _A ) __SCREAMING_SNAKE_CASE = kwargs.pop('sampling_rate' , _A ) __SCREAMING_SNAKE_CASE = kwargs.pop('text' , _A ) if len(_A ) > 0: __SCREAMING_SNAKE_CASE = args[0] __SCREAMING_SNAKE_CASE = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: __SCREAMING_SNAKE_CASE = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: __SCREAMING_SNAKE_CASE = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: __SCREAMING_SNAKE_CASE = encodings['input_ids'] return inputs def _A ( self , *_A , **_A ): '''simple docstring''' return self.tokenizer.batch_decode(*_A , **_A ) def _A ( self , *_A , **_A ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A ) __SCREAMING_SNAKE_CASE = kwargs.pop('input_features' , _A ) __SCREAMING_SNAKE_CASE = kwargs.pop('labels' , _A ) if len(_A ) > 0: __SCREAMING_SNAKE_CASE = args[0] __SCREAMING_SNAKE_CASE = args[1:] if input_features is not None: __SCREAMING_SNAKE_CASE = self.feature_extractor.pad(_A , *_A , **_A ) if labels is not None: __SCREAMING_SNAKE_CASE = self.tokenizer.pad(_A , **_A ) if labels is None: return input_features elif input_features is None: return labels else: __SCREAMING_SNAKE_CASE = labels['input_ids'] return input_features def _A ( self , *_A , **_A ): '''simple docstring''' return self.tokenizer.decode(*_A , **_A ) @contextmanager def _A ( self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = self.tokenizer yield __SCREAMING_SNAKE_CASE = self.feature_extractor __SCREAMING_SNAKE_CASE = False
148
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( _lowercase ): '''simple docstring''' _snake_case : Optional[int] = ["""image_processor""", """tokenizer"""] _snake_case : Tuple = """CLIPImageProcessor""" _snake_case : Dict = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : List[Any] , lowerCamelCase : Optional[Any]=None , lowerCamelCase : List[Any]=None , **lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase , ) __lowercase = kwargs.pop("feature_extractor" ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCamelCase , lowerCamelCase ) def __call__( self : Dict , lowerCamelCase : Dict=None , lowerCamelCase : Tuple=None , lowerCamelCase : Any=None , **lowerCamelCase : Any ): '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __lowercase = self.tokenizer(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if images is not None: __lowercase = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase ) , tensor_type=lowerCamelCase ) def _snake_case ( self : List[str] , *lowerCamelCase : Tuple , **lowerCamelCase : str ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def _snake_case ( self : Any , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : List[Any] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _snake_case ( self : str ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCamelCase , ) return self.image_processor_class @property def _snake_case ( self : Optional[int] ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCamelCase , ) return self.image_processor
655
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } snake_case__ : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def snake_case_ ( ): __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self : Optional[int] ): '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(lowerCamelCase ) __lowercase = get_pairs(lowerCamelCase ) if not pairs: return token while True: __lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(lowerCamelCase ): try: __lowercase = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(lowerCamelCase ) __lowercase = new_word if len(lowerCamelCase ) == 1: break else: __lowercase = get_pairs(lowerCamelCase ) __lowercase = " ".join(lowerCamelCase ) __lowercase = word return word def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.decoder.get(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = "".join(lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __lowercase = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' __lowercase = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __lowercase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase ) if needs_to_be_padded: __lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __lowercase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
655
1
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCAmelCase_ : UpperCamelCase_ :Optional[Union[str, Path]] = None UpperCamelCase_ :bool = False UpperCamelCase_ :bool = False UpperCamelCase_ :bool = False UpperCamelCase_ :Optional[Dict] = None UpperCamelCase_ :Optional[str] = None UpperCamelCase_ :bool = False UpperCamelCase_ :bool = False UpperCamelCase_ :bool = False UpperCamelCase_ :bool = True UpperCamelCase_ :Optional[int] = None UpperCamelCase_ :int = 1 UpperCamelCase_ :Optional[Union[str, bool]] = None UpperCamelCase_ :bool = False UpperCamelCase_ :Optional[Dict] = None UpperCamelCase_ :Optional[str] = None def __snake_case ( self : Any ): return self.__class__(**{k: copy.deepcopy(lowerCAmelCase__ ) for k, v in self.__dict__.items()} )
668
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[Any] = '''upernet''' def __init__( self : Any , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : List[str]=512 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : str=[1, 2, 3, 6] , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Dict=0.4 , lowerCAmelCase__ : int=384 , lowerCAmelCase__ : Union[str, Any]=256 , lowerCAmelCase__ : Any=1 , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : List[str]=255 , **lowerCAmelCase__ : List[str] , ): super().__init__(**lowerCAmelCase__) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") SCREAMING_SNAKE_CASE_: Dict = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = backbone_config.get("model_type") SCREAMING_SNAKE_CASE_: str = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_: Tuple = config_class.from_dict(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = backbone_config SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_size SCREAMING_SNAKE_CASE_: Dict = initializer_range SCREAMING_SNAKE_CASE_: Any = pool_scales SCREAMING_SNAKE_CASE_: Optional[Any] = use_auxiliary_head SCREAMING_SNAKE_CASE_: str = auxiliary_loss_weight SCREAMING_SNAKE_CASE_: List[Any] = auxiliary_in_channels SCREAMING_SNAKE_CASE_: Union[str, Any] = auxiliary_channels SCREAMING_SNAKE_CASE_: Dict = auxiliary_num_convs SCREAMING_SNAKE_CASE_: str = auxiliary_concat_input SCREAMING_SNAKE_CASE_: Dict = loss_ignore_index def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = copy.deepcopy(self.__dict__) SCREAMING_SNAKE_CASE_: int = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE_: Optional[int] = self.__class__.model_type return output
671
0
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = None UpperCamelCase_ = None @property def A__ ( self : Tuple ) -> Dict: '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Optional[int] =self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(UpperCAmelCase , '''feature_size''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''sampling_rate''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''padding_value''' ) ) def A__ ( self : List[str] ) -> Dict: '''simple docstring''' lowercase : int =self.feat_extract_tester.prepare_inputs_for_common() lowercase : List[Any] =self.feature_extraction_class(**self.feat_extract_dict ) lowercase : Dict =feat_extract.model_input_names[0] lowercase : Union[str, Any] =BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(UpperCAmelCase ) == len(UpperCAmelCase ) for x, y in zip(UpperCAmelCase , processed_features[input_name] ) ) ) lowercase : Optional[Any] =self.feat_extract_tester.prepare_inputs_for_common(equal_length=UpperCAmelCase ) lowercase : List[Any] =BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) lowercase : int =processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase : Optional[Any] =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =self.feat_extract_tester.prepare_inputs_for_common(equal_length=UpperCAmelCase ) lowercase : Dict =self.feature_extraction_class(**self.feat_extract_dict ) lowercase : Union[str, Any] =feat_extract.model_input_names[0] lowercase : List[str] =BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) lowercase : Tuple =processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase : Tuple =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def A__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.feat_extract_tester.prepare_inputs_for_common(equal_length=UpperCAmelCase ) lowercase : List[Any] =self.feature_extraction_class(**self.feat_extract_dict ) lowercase : Tuple =feat_extract.model_input_names[0] lowercase : str =BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' ) lowercase : Dict =processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase : List[str] =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def A__ ( self : int , UpperCAmelCase : List[Any]=False ) -> str: '''simple docstring''' def _inputs_have_equal_length(UpperCAmelCase : List[str] ): lowercase : Tuple =len(input[0] ) for input_slice in input[1:]: if len(UpperCAmelCase ) != length: return False return True def _inputs_are_equal(UpperCAmelCase : List[str] , UpperCAmelCase : Any ): if len(UpperCAmelCase ) != len(UpperCAmelCase ): return False for input_slice_a, input_slice_a in zip(UpperCAmelCase , UpperCAmelCase ): if not np.allclose(np.asarray(UpperCAmelCase ) , np.asarray(UpperCAmelCase ) , atol=1e-3 ): return False return True lowercase : str =self.feature_extraction_class(**self.feat_extract_dict ) lowercase : Optional[int] =self.feat_extract_tester.prepare_inputs_for_common(numpify=UpperCAmelCase ) lowercase : List[str] =feat_extract.model_input_names[0] lowercase : Any =BatchFeature({input_name: speech_inputs} ) lowercase : List[str] =self.feat_extract_tester.seq_length_diff lowercase : Union[str, Any] =self.feat_extract_tester.max_seq_length + pad_diff lowercase : Union[str, Any] =self.feat_extract_tester.min_seq_length lowercase : Tuple =self.feat_extract_tester.batch_size lowercase : List[str] =self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase : Union[str, Any] =feat_extract.pad(UpperCAmelCase , padding=UpperCAmelCase ) lowercase : str =input_a[input_name] lowercase : List[str] =feat_extract.pad(UpperCAmelCase , padding='''longest''' ) lowercase : Any =input_a[input_name] lowercase : Tuple =feat_extract.pad(UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[-1] ) ) lowercase : Union[str, Any] =input_a[input_name] lowercase : Tuple =feat_extract.pad(UpperCAmelCase , padding='''longest''' , return_tensors='''np''' ) lowercase : str =input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(UpperCAmelCase ): feat_extract.pad(UpperCAmelCase , padding='''max_length''' )[input_name] lowercase : List[Any] =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=UpperCAmelCase , return_tensors='''np''' ) lowercase : Union[str, Any] =input_a[input_name] self.assertFalse(_inputs_have_equal_length(UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(UpperCAmelCase ) ) self.assertTrue(_inputs_are_equal(UpperCAmelCase , UpperCAmelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase : str =feat_extract.pad(UpperCAmelCase , pad_to_multiple_of=10 ) lowercase : int =input_a[input_name] lowercase : Any =feat_extract.pad(UpperCAmelCase , padding='''longest''' , pad_to_multiple_of=10 ) lowercase : List[Any] =input_a[input_name] lowercase : Union[str, Any] =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , pad_to_multiple_of=10 , max_length=UpperCAmelCase ) lowercase : int =input_a[input_name] lowercase : Dict =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , pad_to_multiple_of=10 , max_length=UpperCAmelCase , return_tensors='''np''' , ) lowercase : Any =input_a[input_name] self.assertTrue(all(len(UpperCAmelCase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(UpperCAmelCase , UpperCAmelCase ) ) lowercase : Union[str, Any] =pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(UpperCAmelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct lowercase : Union[str, Any] =(np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def A__ ( self : Optional[int] , UpperCAmelCase : Optional[int]=False ) -> Optional[Any]: '''simple docstring''' def _inputs_have_equal_length(UpperCAmelCase : int ): lowercase : List[Any] =len(input[0] ) for input_slice in input[1:]: if len(UpperCAmelCase ) != length: return False return True def _inputs_are_equal(UpperCAmelCase : Dict , UpperCAmelCase : Any ): if len(UpperCAmelCase ) != len(UpperCAmelCase ): return False for input_slice_a, input_slice_a in zip(UpperCAmelCase , UpperCAmelCase ): if not np.allclose(np.asarray(UpperCAmelCase ) , np.asarray(UpperCAmelCase ) , atol=1e-3 ): return False return True lowercase : Dict =self.feature_extraction_class(**self.feat_extract_dict ) lowercase : Union[str, Any] =self.feat_extract_tester.prepare_inputs_for_common(numpify=UpperCAmelCase ) lowercase : List[str] =feat_extract.model_input_names[0] lowercase : Union[str, Any] =BatchFeature({input_name: speech_inputs} ) # truncate to smallest lowercase : Union[str, Any] =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=UpperCAmelCase ) lowercase : List[str] =input_a[input_name] lowercase : str =feat_extract.pad(UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) ) lowercase : Tuple =input_a[input_name] self.assertTrue(_inputs_have_equal_length(UpperCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(UpperCAmelCase ) ) # truncate to smallest with np lowercase : Any =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=UpperCAmelCase , ) lowercase : Union[str, Any] =input_a[input_name] lowercase : List[Any] =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' ) lowercase : int =input_a[input_name] self.assertTrue(_inputs_have_equal_length(UpperCAmelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(UpperCAmelCase ) ) # truncate to middle lowercase : Optional[Any] =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=UpperCAmelCase , return_tensors='''np''' , ) lowercase : Union[str, Any] =input_a[input_name] lowercase : int =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=UpperCAmelCase ) lowercase : str =input_a[input_name] lowercase : str =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' ) lowercase : Tuple =input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(UpperCAmelCase ) ) self.assertTrue(_inputs_are_equal(UpperCAmelCase , UpperCAmelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(UpperCAmelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(UpperCAmelCase ): feat_extract.pad(UpperCAmelCase , truncation=UpperCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(UpperCAmelCase ): feat_extract.pad(UpperCAmelCase , padding='''longest''' , truncation=UpperCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(UpperCAmelCase ): feat_extract.pad(UpperCAmelCase , padding='''longest''' , truncation=UpperCAmelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(UpperCAmelCase ): feat_extract.pad(UpperCAmelCase , padding='''max_length''' , truncation=UpperCAmelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase : int =12 lowercase : List[str] =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=UpperCAmelCase , truncation=UpperCAmelCase , ) lowercase : int =input_a[input_name] lowercase : Tuple =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=UpperCAmelCase , ) lowercase : Dict =input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase : Dict =len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: lowercase : List[Any] =((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(UpperCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(UpperCAmelCase ) ) def A__ ( self : str ) -> int: '''simple docstring''' self._check_padding(numpify=UpperCAmelCase ) def A__ ( self : Tuple ) -> Dict: '''simple docstring''' self._check_padding(numpify=UpperCAmelCase ) def A__ ( self : Any ) -> Any: '''simple docstring''' self._check_truncation(numpify=UpperCAmelCase ) def A__ ( self : Any ) -> Any: '''simple docstring''' self._check_truncation(numpify=UpperCAmelCase ) @require_torch def A__ ( self : Any ) -> int: '''simple docstring''' lowercase : Optional[Any] =self.feature_extraction_class(**self.feat_extract_dict ) lowercase : int =self.feat_extract_tester.prepare_inputs_for_common() lowercase : str =feat_extract.model_input_names[0] lowercase : Optional[int] =BatchFeature({input_name: speech_inputs} ) lowercase : Optional[Any] =feat_extract.pad(UpperCAmelCase , padding='''longest''' , return_tensors='''np''' )[input_name] lowercase : List[str] =feat_extract.pad(UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =self.feature_extraction_class(**self.feat_extract_dict ) lowercase : Tuple =self.feat_extract_tester.prepare_inputs_for_common() lowercase : Optional[Any] =feat_extract.model_input_names[0] lowercase : int =BatchFeature({input_name: speech_inputs} ) lowercase : str =feat_extract.pad(UpperCAmelCase , padding='''longest''' , return_tensors='''np''' )[input_name] lowercase : List[str] =feat_extract.pad(UpperCAmelCase , padding='''longest''' , return_tensors='''tf''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def A__ ( self : str ) -> List[Any]: '''simple docstring''' lowercase : str =self.feat_extract_dict lowercase : Union[str, Any] =True lowercase : List[str] =self.feature_extraction_class(**UpperCAmelCase ) lowercase : Optional[int] =self.feat_extract_tester.prepare_inputs_for_common() lowercase : int =[len(UpperCAmelCase ) for x in speech_inputs] lowercase : Tuple =feat_extract.model_input_names[0] lowercase : Dict =BatchFeature({input_name: speech_inputs} ) lowercase : str =feat_extract.pad(UpperCAmelCase , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , UpperCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , UpperCAmelCase ) def A__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowercase : Dict =self.feat_extract_dict lowercase : List[str] =True lowercase : Optional[Any] =self.feature_extraction_class(**UpperCAmelCase ) lowercase : Any =self.feat_extract_tester.prepare_inputs_for_common() lowercase : Optional[Any] =[len(UpperCAmelCase ) for x in speech_inputs] lowercase : Tuple =feat_extract.model_input_names[0] lowercase : Optional[Any] =BatchFeature({input_name: speech_inputs} ) lowercase : List[str] =min(UpperCAmelCase ) lowercase : Any =feat_extract.pad( UpperCAmelCase , padding='''max_length''' , max_length=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors='''np''' ) self.assertIn('''attention_mask''' , UpperCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
721
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
0
def a ( a ) ->list: '''simple docstring''' for i in range(len(a ) - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE = False for j in range(a , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = unsorted[j - 1], unsorted[j] SCREAMING_SNAKE_CASE = True for j in range(a ): if unsorted[j] > unsorted[j + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = unsorted[j + 1], unsorted[j] SCREAMING_SNAKE_CASE = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase = input('Enter numbers separated by a comma:\n').strip() __lowerCAmelCase = [int(item) for item in user_input.split(',')] print(F'''{cocktail_shaker_sort(unsorted) = }''')
201
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowerCamelCase : UpperCamelCase_ : int UpperCamelCase_ : int class lowerCamelCase : def __init__( self :Dict , lowercase :int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = [[] for _ in range(lowercase )] SCREAMING_SNAKE_CASE = size def __getitem__( self :Union[str, Any] , lowercase :int ) -> Iterator[Edge]: """simple docstring""" return iter(self._graph[vertex] ) @property def snake_case__ ( self :List[Any] ) -> str: """simple docstring""" return self._size def snake_case__ ( self :Optional[Any] , lowercase :int , lowercase :int , lowercase :int ) -> List[Any]: """simple docstring""" if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowercase , lowercase ) ) def snake_case__ ( self :List[str] , lowercase :int , lowercase :int ) -> int | None: """simple docstring""" SCREAMING_SNAKE_CASE = deque([start_vertex] ) SCREAMING_SNAKE_CASE = [None] * self.size SCREAMING_SNAKE_CASE = 0 while queue: SCREAMING_SNAKE_CASE = queue.popleft() SCREAMING_SNAKE_CASE = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: SCREAMING_SNAKE_CASE = current_distance + edge.weight SCREAMING_SNAKE_CASE = distances[edge.destination_vertex] if ( isinstance(lowercase , lowercase ) and new_distance >= dest_vertex_distance ): continue SCREAMING_SNAKE_CASE = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
201
1
'''simple docstring''' from __future__ import annotations def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) ((_a) , (_a)) = extended_euclid(lowerCAmelCase__ , a % b ) _a = a // b return (y, x - k * y) def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: '''simple docstring''' ((_a) , (_a)) = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) _a = na * na _a = ra * x * na + ra * y * na return (n % m + m) % m def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: '''simple docstring''' ((_a) , (_a)) = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) if b < 0: _a = (b % n + n) % n return b def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: '''simple docstring''' _a , _a = invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ), invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ) _a = na * na _a = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
532
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCAmelCase = DiTPipeline _lowerCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """latents""", """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _lowerCAmelCase = False def __UpperCAmelCase ( self ) -> Dict: torch.manual_seed(0 ) _a = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__magic_name__ , activation_fn='gelu-approximate' , num_embeds_ada_norm=10_00 , norm_type='ada_norm_zero' , norm_elementwise_affine=__magic_name__ , ) _a = AutoencoderKL() _a = DDIMScheduler() _a = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def __UpperCAmelCase ( self , __magic_name__ , __magic_name__=0 ) -> Union[str, Any]: if str(__magic_name__ ).startswith('mps' ): _a = torch.manual_seed(__magic_name__ ) else: _a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) _a = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self ) -> Tuple: _a = 'cpu' _a = self.get_dummy_components() _a = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) _a = self.get_dummy_inputs(__magic_name__ ) _a = pipe(**__magic_name__ ).images _a = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _a = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _a = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__magic_name__ , 1e-3 ) def __UpperCAmelCase ( self ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=__magic_name__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCAmelCase ( self ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class a ( unittest.TestCase ): def __UpperCAmelCase ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ) -> Union[str, Any]: _a = torch.manual_seed(0 ) _a = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _a = ['vase', 'umbrella', 'white shark', 'white wolf'] _a = pipe.get_label_ids(__magic_name__ ) _a = pipe(__magic_name__ , generator=__magic_name__ , num_inference_steps=40 , output_type='np' ).images for word, image in zip(__magic_name__ , __magic_name__ ): _a = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1e-2 def __UpperCAmelCase ( self ) -> Any: _a = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _a = ['vase', 'umbrella'] _a = pipe.get_label_ids(__magic_name__ ) _a = torch.manual_seed(0 ) _a = pipe(__magic_name__ , generator=__magic_name__ , num_inference_steps=25 , output_type='np' ).images for word, image in zip(__magic_name__ , __magic_name__ ): _a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1e-1
532
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 42 lowercase__ = 42 def __init__( self , __a , __a) -> str: '''simple docstring''' super().__init__() self.register_modules(unet=__a , scheduler=__a) @torch.no_grad() def __call__( self , __a = 1 , __a = 20_00 , __a = None , __a = "pil" , __a = True , **__a , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' _UpperCamelCase = self.unet.config.sample_size _UpperCamelCase = (batch_size, 3, img_size, img_size) _UpperCamelCase = self.unet _UpperCamelCase = randn_tensor(__a , generator=__a) * self.scheduler.init_noise_sigma _UpperCamelCase = sample.to(self.device) self.scheduler.set_timesteps(__a) self.scheduler.set_sigmas(__a) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): _UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device) # correction step for _ in range(self.scheduler.config.correct_steps): _UpperCamelCase = self.unet(__a , __a).sample _UpperCamelCase = self.scheduler.step_correct(__a , __a , generator=__a).prev_sample # prediction step _UpperCamelCase = model(__a , __a).sample _UpperCamelCase = self.scheduler.step_pred(__a , __a , __a , generator=__a) _UpperCamelCase , _UpperCamelCase = output.prev_sample, output.prev_sample_mean _UpperCamelCase = sample_mean.clamp(0 , 1) _UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(__a) if not return_dict: return (sample,) return ImagePipelineOutput(images=__a)
19
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : List[Any] = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
0
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): A__ = 1.5 A__ = int(factor * num_class_images ) A__ = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=UpperCAmelCase_ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=UpperCAmelCase_ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: A__ = client.query(text=UpperCAmelCase_ ) if len(UpperCAmelCase_ ) >= factor * num_class_images or num_images > 1e4: break else: A__ = int(factor * num_images ) A__ = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=UpperCAmelCase_ , aesthetic_weight=0.1 , ) A__ = 0 A__ = 0 A__ = tqdm(desc="""downloading real regularization images""" , total=UpperCAmelCase_ ) with open(F"""{class_data_dir}/caption.txt""" , """w""" ) as fa, open(F"""{class_data_dir}/urls.txt""" , """w""" ) as fa, open( F"""{class_data_dir}/images.txt""" , """w""" ) as fa: while total < num_class_images: A__ = class_images[count] count += 1 try: A__ = requests.get(images["""url"""] ) if img.status_code == 200: A__ = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , """wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def _snake_case ( ): A__ = argparse.ArgumentParser("""""" , add_help=UpperCAmelCase_ ) parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=UpperCAmelCase_ , type=UpperCAmelCase_ ) parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=UpperCAmelCase_ , type=UpperCAmelCase_ ) parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=200 , type=UpperCAmelCase_ ) return parser.parse_args() if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Optional[Any] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
500
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): A__ = [0 for i in range(r + 1 )] # nc0 = 1 A__ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. A__ = min(UpperCAmelCase_ , UpperCAmelCase_ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
500
1
import torch from transformers import AutoModel class A ( torch.nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCamelCase : str="sayef/fsner-bert-base-uncased"): super(_UpperCamelCase , self).__init__() _lowercase: Optional[int] = AutoModel.from_pretrained(_UpperCamelCase , return_dict=_UpperCamelCase) _lowercase: str = torch.nn.CosineSimilarity(3 , 1e-08) _lowercase: List[Any] = torch.nn.Softmax(dim=1) def UpperCAmelCase__ ( self : List[Any] , **_UpperCamelCase : List[Any]): return self.bert(**_UpperCamelCase).last_hidden_state def UpperCAmelCase__ ( self : Tuple , _UpperCamelCase : Optional[int]): return token_embeddings.sum(2 , keepdim=_UpperCamelCase) def UpperCAmelCase__ ( self : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : List[str]=1): return self.softmax(T * self.cos(_UpperCamelCase , _UpperCamelCase)) def UpperCAmelCase__ ( self : Tuple , _UpperCamelCase : Dict , _UpperCamelCase : List[Any]): _lowercase: Dict = W_supports["sizes"].tolist() _lowercase: Tuple = W_supports["start_token_id"].item() _lowercase: str = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _lowercase: List[str] = self.BERT(**_UpperCamelCase) _lowercase: str = self.BERT(**_UpperCamelCase) _lowercase: Any = None _lowercase: Optional[int] = None _lowercase: List[Any] = W_supports["input_ids"] == start_token_id _lowercase: Optional[int] = W_supports["input_ids"] == end_token_id for i, size in enumerate(_UpperCamelCase): if i == 0: _lowercase: Optional[int] = 0 else: _lowercase: int = support_sizes[i - 1] _lowercase: List[str] = S[s : s + size][start_token_masks[s : s + size]] _lowercase: str = S[s : s + size][end_token_masks[s : s + size]] _lowercase: List[str] = torch.matmul(q[i] , s_start.T).sum(1).softmax(0) _lowercase: Optional[int] = torch.matmul(q[i] , s_end.T).sum(1).softmax(0) if p_starts is not None: _lowercase: List[str] = torch.vstack((p_starts, p_start)) _lowercase: Union[str, Any] = torch.vstack((p_ends, p_end)) else: _lowercase: Union[str, Any] = p_start _lowercase: Union[str, Any] = p_end return p_starts, p_ends
226
from typing import TYPE_CHECKING from ....utils import _LazyModule _SCREAMING_SNAKE_CASE : Union[str, Any] = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys _SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
226
1
"""simple docstring""" def __magic_name__ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple ): print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def __magic_name__ ( _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] ): __a : Optional[int] = [[float("""inf""" ) for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): __a : Dict = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_lowerCamelCase ): # looping through rows of graph array for i in range(_lowerCamelCase ): # looping through columns of graph array for j in range(_lowerCamelCase ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): __a : Any = dist[i][k] + dist[k][j] _print_dist(_lowerCamelCase , _lowerCamelCase ) return dist, v if __name__ == "__main__": lowercase__ = int(input("Enter number of vertices: ")) lowercase__ = int(input("Enter number of edges: ")) lowercase__ = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): lowercase__ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) lowercase__ = int(input("Enter source:")) lowercase__ = int(input("Enter destination:")) lowercase__ = float(input("Enter weight:")) lowercase__ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
721
"""simple docstring""" import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def lowerCAmelCase__(self ): '''simple docstring''' __a : str = 0 __a : Optional[Any] = [0] __a : int = [0] __a : str = len(_lowercase ) self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 0 ) __a : int = [60] __a : Union[str, Any] = [10] __a : Tuple = len(_lowercase ) self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 0 ) def lowerCAmelCase__(self ): '''simple docstring''' __a : int = 3 __a : str = [1, 2, 3] __a : Optional[Any] = [3, 2, 1] __a : int = len(_lowercase ) self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 5 ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Dict = 50 __a : Tuple = [60, 100, 120] __a : List[str] = [10, 20, 30] __a : Union[str, Any] = len(_lowercase ) self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 220 ) if __name__ == "__main__": unittest.main()
63
0
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any]=14 , _lowerCAmelCase : int=7 , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : List[Any]=99 , _lowerCAmelCase : Dict=32 , _lowerCAmelCase : Optional[int]=5 , _lowerCAmelCase : int=4 , _lowerCAmelCase : Union[str, Any]=37 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Tuple=512 , _lowerCAmelCase : Dict=16 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : List[Any]=3 , _lowerCAmelCase : Union[str, Any]=4 , _lowerCAmelCase : List[str]=None , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_input_mask SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = use_mc_token_ids SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = num_choices SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = self.vocab_size - 1 def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_mc_token_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ = self.get_config() SCREAMING_SNAKE_CASE_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase_ ( self : Optional[int] ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , *_lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = CTRLModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase ) model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , *_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = CTRLLMHeadModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , *_lowerCAmelCase : List[str] ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = CTRLForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowercase_ = (CTRLLMHeadModel,) if is_torch_available() else () lowercase_ = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) lowercase_ = True lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = CTRLModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , n_embd=37 ) def lowerCAmelCase_ ( self : int ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_lowerCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase_ ( self : int ): pass @slow def lowerCAmelCase_ ( self : str ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = CTRLModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCAmelCase_ ( self : int ): pass @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[11_859, 0, 1_611, 8]] , dtype=torch.long , device=_lowerCAmelCase ) # Legal the president is SCREAMING_SNAKE_CASE_ = [ 11_859, 0, 1_611, 8, 5, 150, 26_449, 2, 19, 348, 469, 3, 2_595, 48, 20_740, 246_533, 246_533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a SCREAMING_SNAKE_CASE_ = model.generate(_lowerCAmelCase , do_sample=_lowerCAmelCase ) self.assertListEqual(output_ids[0].tolist() , _lowerCAmelCase )
31
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } UpperCAmelCase = { """gpt-neox-20b""": 2_048, } class UpperCAmelCase_ ( _lowercase): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Dict , __UpperCamelCase : int=None , __UpperCamelCase : Any=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Tuple="<|endoftext|>" , __UpperCamelCase : int="<|endoftext|>" , __UpperCamelCase : Dict="<|endoftext|>" , __UpperCamelCase : Union[str, Any]=False , **__UpperCamelCase : Union[str, Any] , ) -> Any: super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , unk_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , **__UpperCamelCase , ) _UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __UpperCamelCase ) != add_prefix_space: _UpperCamelCase = getattr(__UpperCamelCase , pre_tok_state.pop('''type''' ) ) _UpperCamelCase = add_prefix_space _UpperCamelCase = pre_tok_class(**__UpperCamelCase ) _UpperCamelCase = add_prefix_space def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) -> Tuple[str]: _UpperCamelCase = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def _UpperCamelCase ( self : List[str] , __UpperCamelCase : "Conversation" ) -> List[int]: _UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) + [self.eos_token_id] ) if len(__UpperCamelCase ) > self.model_max_length: _UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
420
0
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __A ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) lowerCamelCase__ = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowerCamelCase__ = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids lowerCamelCase__ = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids lowerCamelCase__ = shift_tokens_right(__a , model.config.pad_token_id , model.config.decoder_start_token_id ) lowerCamelCase__ = model(__a , decoder_input_ids=__a ).logits lowerCamelCase__ = optax.softmax_cross_entropy(__a , onehot(__a , logits.shape[-1] ) ).mean() lowerCamelCase__ = -(labels.shape[-1] * loss.item()) lowerCamelCase__ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
711
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _a = logging.get_logger(__name__) @dataclass class __A : '''simple docstring''' lowerCAmelCase_ = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) lowerCAmelCase_ = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) lowerCAmelCase_ = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowerCAmelCase_ = field( default=lowerCAmelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.task_name.lower() class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """train""" lowerCAmelCase_ = """dev""" lowerCAmelCase_ = """test""" class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = Split.train , __lowerCAmelCase = None , ): '''simple docstring''' warnings.warn( '''This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' , __lowerCAmelCase , ) lowerCamelCase__ = args lowerCamelCase__ = glue_processors[args.task_name]() lowerCamelCase__ = glue_output_modes[args.task_name] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): try: lowerCamelCase__ = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) # Load data features from cache or dataset file lowerCamelCase__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) lowerCamelCase__ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ = label_list[2], label_list[1] lowerCamelCase__ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ = cached_features_file + '''.lock''' with FileLock(__lowerCAmelCase ): if os.path.exists(__lowerCAmelCase ) and not args.overwrite_cache: lowerCamelCase__ = time.time() lowerCamelCase__ = torch.load(__lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: lowerCamelCase__ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCamelCase__ = self.processor.get_test_examples(args.data_dir ) else: lowerCamelCase__ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCamelCase__ = examples[:limit_length] lowerCamelCase__ = glue_convert_examples_to_features( __lowerCAmelCase , __lowerCAmelCase , max_length=args.max_seq_length , label_list=__lowerCAmelCase , output_mode=self.output_mode , ) lowerCamelCase__ = time.time() torch.save(self.features , __lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self , __lowerCAmelCase ): '''simple docstring''' return self.features[i] def __lowerCamelCase ( self ): '''simple docstring''' return self.label_list
29
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _snake_case : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
53
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
0
from __future__ import annotations from random import choice def A ( __UpperCamelCase ) -> Optional[Any]: return choice(__UpperCamelCase ) def A ( __UpperCamelCase , __UpperCamelCase ) -> int: A__ = random_pivot(__UpperCamelCase ) # partition based on pivot # linear time A__ = [e for e in lst if e < pivot] A__ = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(__UpperCamelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(__UpperCamelCase ) < k - 1: return kth_number(__UpperCamelCase , k - len(__UpperCamelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
716
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } SCREAMING_SNAKE_CASE__ = { '''google/rembert''': 2_5_6, } SCREAMING_SNAKE_CASE__ = '''▁''' class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Any = VOCAB_FILES_NAMES A__ : str = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = RemBertTokenizer def __init__( self : Union[str, Any] , _snake_case : Any=None , _snake_case : Optional[Any]=None , _snake_case : Any=True , _snake_case : Optional[int]=True , _snake_case : Dict=False , _snake_case : Dict="[CLS]" , _snake_case : List[Any]="[SEP]" , _snake_case : Union[str, Any]="<unk>" , _snake_case : List[str]="[SEP]" , _snake_case : List[str]="<pad>" , _snake_case : str="[CLS]" , _snake_case : Any="[MASK]" , **_snake_case : Any , ): """simple docstring""" A__ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , remove_space=_snake_case , keep_accents=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , **_snake_case , ) A__ = do_lower_case A__ = remove_space A__ = keep_accents A__ = vocab_file A__ = False if not self.vocab_file else True def _a ( self : Any , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ): """simple docstring""" A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _a ( self : Tuple , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_snake_case )) + [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1] def _a ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ): """simple docstring""" A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self : Any , _snake_case : str , _snake_case : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_snake_case ): logger.error('Vocabulary path ({}) should be a directory'.format(_snake_case ) ) return A__ = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ): copyfile(self.vocab_file , _snake_case ) return (out_vocab_file,)
52
0
"""simple docstring""" import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''', [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''', ['''default''', 0, 100 * 2**20, 900 * 2**20] ) def a ( __snake_case : Tuple, __snake_case : str, __snake_case : Dict ): '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config, '''IN_MEMORY_MAX_SIZE''', __snake_case ) UpperCAmelCase_ :Optional[Any] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: UpperCAmelCase_ :Union[str, Any] = dataset_size < in_memory_max_size else: UpperCAmelCase_ :Union[str, Any] = False UpperCAmelCase_ :Optional[Any] = is_small_dataset(__snake_case ) assert result == expected
608
"""simple docstring""" from collections.abc import Callable import numpy as np def a ( __snake_case : Callable, __snake_case : float, __snake_case : float, __snake_case : float, __snake_case : float ): '''simple docstring''' UpperCAmelCase_ :str = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase_ :int = np.zeros((n + 1,) ) UpperCAmelCase_ :str = ya UpperCAmelCase_ :List[str] = xa for k in range(__snake_case ): UpperCAmelCase_ :Tuple = y[k] + step_size * ode_func(__snake_case, y[k] ) UpperCAmelCase_ :Optional[int] = y[k] + ( (step_size / 2) * (ode_func(__snake_case, y[k] ) + ode_func(x + step_size, __snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
608
1
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> float: '''simple docstring''' UpperCamelCase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(lowercase_ )] ) UpperCamelCase = np.array(lowercase_ ) UpperCamelCase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , lowercase_ ) ) , x.transpose() ) , lowercase_ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ ) -> float: '''simple docstring''' UpperCamelCase = (1, 2, 1) UpperCamelCase = (1, 1, 0, 7) UpperCamelCase = SARIMAX( lowercase_ , exog=lowercase_ , order=lowercase_ , seasonal_order=lowercase_ ) UpperCamelCase = model.fit(disp=lowercase_ , maxiter=600 , method="nm" ) UpperCamelCase = model_fit.predict(1 , len(lowercase_ ) , exog=[test_match] ) return result[0] def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ ) -> float: '''simple docstring''' UpperCamelCase = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(lowercase_ , lowercase_ ) UpperCamelCase = regressor.predict(lowercase_ ) return y_pred[0] def __magic_name__ ( lowercase_ ) -> float: '''simple docstring''' train_user.sort() UpperCamelCase = np.percentile(lowercase_ , 25 ) UpperCamelCase = np.percentile(lowercase_ , 75 ) UpperCamelCase = qa - qa UpperCamelCase = qa - (iqr * 0.1) return low_lim def __magic_name__ ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = 0 for i in list_vote: if i > actual_result: UpperCamelCase = not_safe + 1 else: if abs(abs(lowercase_ ) - abs(lowercase_ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __a : Any = [[1_8_2_3_1, 0.0, 1], [2_2_6_2_1, 1.0, 2], [1_5_6_7_5, 0.0, 3], [2_3_5_8_3, 1.0, 4]] __a : Union[str, Any] = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) __a : Optional[int] = Normalizer().fit_transform(data_input_df.values) # split data __a : Optional[Any] = normalize_df[:, 2].tolist() __a : str = normalize_df[:, 0].tolist() __a : Optional[int] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __a : Union[str, Any] = normalize_df[:, [1, 2]].tolist() __a : Any = x[: len(x) - 1] __a : List[str] = x[len(x) - 1 :] # for linear regression & sarimax __a : Optional[int] = total_date[: len(total_date) - 1] __a : int = total_user[: len(total_user) - 1] __a : int = total_match[: len(total_match) - 1] __a : str = total_date[len(total_date) - 1 :] __a : Any = total_user[len(total_user) - 1 :] __a : Optional[Any] = total_match[len(total_match) - 1 :] # voting system with forecasting __a : Optional[Any] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __a : int = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
414
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __a : int = 0 __a : List[str] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __a : Any = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __a : Union[str, Any] = tuple[int, int] class __UpperCAmelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" UpperCamelCase = pos_x UpperCamelCase = pos_y UpperCamelCase = (pos_y, pos_x) UpperCamelCase = goal_x UpperCamelCase = goal_y UpperCamelCase = g_cost UpperCamelCase = parent UpperCamelCase = self.calculate_heuristic() UpperCamelCase = self.g_cost + self.h_cost def __lowerCAmelCase ( self ) -> float: """simple docstring""" UpperCamelCase = self.pos_x - self.goal_x UpperCamelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(SCREAMING_SNAKE_CASE ) + abs(SCREAMING_SNAKE_CASE ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class __UpperCAmelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE ) UpperCamelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , SCREAMING_SNAKE_CASE ) UpperCamelCase = [self.start] UpperCamelCase = [] UpperCamelCase = False def __lowerCAmelCase ( self ) -> list[TPosition]: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCamelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(SCREAMING_SNAKE_CASE ) self.closed_nodes.append(SCREAMING_SNAKE_CASE ) UpperCamelCase = self.get_successors(SCREAMING_SNAKE_CASE ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(SCREAMING_SNAKE_CASE ) else: # retrieve the best current path UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(SCREAMING_SNAKE_CASE ) else: self.open_nodes.append(SCREAMING_SNAKE_CASE ) return [self.start.pos] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> list[Node]: """simple docstring""" UpperCamelCase = [] for action in delta: UpperCamelCase = parent.pos_x + action[1] UpperCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE , ) ) return successors def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> list[TPosition]: """simple docstring""" UpperCamelCase = node UpperCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCamelCase = current_node.parent path.reverse() return path class __UpperCAmelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" UpperCamelCase = AStar(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase = AStar(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase = False def __lowerCAmelCase ( self ) -> list[TPosition]: """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCamelCase = self.fwd_astar.open_nodes.pop(0 ) UpperCamelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.fwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE ) self.bwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE ) UpperCamelCase = current_bwd_node UpperCamelCase = current_fwd_node UpperCamelCase = { self.fwd_astar: self.fwd_astar.get_successors(SCREAMING_SNAKE_CASE ), self.bwd_astar: self.bwd_astar.get_successors(SCREAMING_SNAKE_CASE ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(SCREAMING_SNAKE_CASE ) else: # retrieve the best current path UpperCamelCase = astar.open_nodes.pop( astar.open_nodes.index(SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(SCREAMING_SNAKE_CASE ) else: astar.open_nodes.append(SCREAMING_SNAKE_CASE ) return [self.fwd_astar.start.pos] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[TPosition]: """simple docstring""" UpperCamelCase = self.fwd_astar.retrace_path(SCREAMING_SNAKE_CASE ) UpperCamelCase = self.bwd_astar.retrace_path(SCREAMING_SNAKE_CASE ) bwd_path.pop() bwd_path.reverse() UpperCamelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __a : List[Any] = (0, 0) __a : Optional[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __a : str = time.time() __a : Any = AStar(init, goal) __a : List[Any] = a_star.search() __a : Dict = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') __a : List[str] = time.time() __a : Optional[int] = BidirectionalAStar(init, goal) __a : Any = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
414
1
"""simple docstring""" def lowerCamelCase__ ( UpperCAmelCase_ )-> list: """simple docstring""" if len(UpperCAmelCase_ ) < 2: return collection def circle_sort_util(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> bool: UpperCamelCase = False if low == high: return swapped UpperCamelCase = low UpperCamelCase = high while left < right: if collection[left] > collection[right]: UpperCamelCase , UpperCamelCase = ( collection[right], collection[left], ) UpperCamelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: UpperCamelCase , UpperCamelCase = ( collection[right + 1], collection[left], ) UpperCamelCase = True UpperCamelCase = low + int((high - low) / 2 ) UpperCamelCase = circle_sort_util(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = circle_sort_util(UpperCAmelCase_ , mid + 1 , UpperCAmelCase_ ) return swapped or left_swap or right_swap UpperCamelCase = True while is_not_sorted is True: UpperCamelCase = circle_sort_util(UpperCAmelCase_ , 0 , len(UpperCAmelCase_ ) - 1 ) return collection if __name__ == "__main__": SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""").strip() SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(""",""")] print(circle_sort(unsorted))
554
"""simple docstring""" import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def lowerCamelCase__ ( )-> Tuple: """simple docstring""" UpperCamelCase = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" , type=UpperCAmelCase_ , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , ) parser.add_argument( "--dataset_config" , type=UpperCAmelCase_ , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" , type=UpperCAmelCase_ , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , ) parser.add_argument( "--shard_size" , type=UpperCAmelCase_ , default=10_00 , help="Number of entries to go in a single shard." , ) parser.add_argument("--split" , type=UpperCAmelCase_ , default="train" , choices=["train", "test", "validation"] ) parser.add_argument( "--limit" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help="Limit the number of shards (used for debugging)." , ) parser.add_argument( "--max_length" , type=UpperCAmelCase_ , default=5_12 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." , ) parser.add_argument( "--output_dir" , default="tf-tpu" , type=UpperCAmelCase_ , help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." , ) UpperCamelCase = parser.parse_args() return args def lowerCamelCase__ ( UpperCAmelCase_ )-> Optional[int]: """simple docstring""" def fn(UpperCAmelCase_ ): return tokenizer(examples["text"] ) return fn def lowerCamelCase__ ( UpperCAmelCase_ )-> Union[str, Any]: """simple docstring""" UpperCamelCase = [] for i in range(len(tokenized_data["input_ids"] ) ): UpperCamelCase = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } UpperCamelCase = tf.train.Features(feature=UpperCAmelCase_ ) UpperCamelCase = tf.train.Example(features=UpperCAmelCase_ ) UpperCamelCase = example.SerializeToString() records.append(UpperCAmelCase_ ) return records def lowerCamelCase__ ( UpperCAmelCase_ )-> int: """simple docstring""" UpperCamelCase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: UpperCamelCase = min(len(UpperCAmelCase_ ) , args.limit ) UpperCamelCase = dataset.select(range(UpperCAmelCase_ ) ) print(F"Limiting the dataset to {args.limit} entries." ) UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) UpperCamelCase = os.path.join(args.output_dir , args.split ) if not os.path.exists(UpperCAmelCase_ ): os.makedirs(UpperCAmelCase_ ) else: UpperCamelCase = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. UpperCamelCase = tokenize_function(UpperCAmelCase_ ) UpperCamelCase = dataset.map(UpperCAmelCase_ , batched=UpperCAmelCase_ , num_proc=4 , remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(UpperCAmelCase_ ): # Concatenate all texts. UpperCamelCase = {k: sum(examples[k] , [] ) for k in examples.keys()} UpperCamelCase = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 UpperCamelCase = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. UpperCamelCase = { k: [t[i : i + args.max_length] for i in range(0 , UpperCAmelCase_ , args.max_length )] for k, t in concatenated_examples.items() } return result UpperCamelCase = dataset_tokenized.map(UpperCAmelCase_ , batched=UpperCAmelCase_ , batch_size=10_00 , num_proc=4 ) UpperCamelCase = 0 UpperCamelCase = 0 for shard in range(0 , len(UpperCAmelCase_ ) , args.shard_size ): UpperCamelCase = grouped_dataset[shard : shard + args.shard_size] UpperCamelCase = len(dataset_snapshot["input_ids"] ) UpperCamelCase = os.path.join(UpperCAmelCase_ , F"dataset-{shard_count}-{records_containing}.tfrecord" ) UpperCamelCase = get_serialized_examples(UpperCAmelCase_ ) with tf.io.TFRecordWriter(UpperCAmelCase_ ) as out_file: for i in range(len(UpperCAmelCase_ ) ): UpperCamelCase = serialized_examples[i] out_file.write(UpperCAmelCase_ ) print("Wrote file {} containing {} records".format(UpperCAmelCase_ , UpperCAmelCase_ ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , "w" ) as f: print(F"Total {args.split} records: {total_records}" , file=UpperCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = parse_args() main(args)
554
1
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :str = '''char''' lowerCamelCase_ :Tuple = '''bpe''' lowerCamelCase_ :Dict = '''wp''' snake_case__ : List[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :Union[str, Any] = ['''image_processor''', '''char_tokenizer'''] lowerCamelCase_ :Dict = '''ViTImageProcessor''' lowerCamelCase_ :Tuple = '''MgpstrTokenizer''' def __init__( self , snake_case_=None , snake_case_=None , **snake_case_ ): '''simple docstring''' UpperCAmelCase_ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , snake_case_ , ) UpperCAmelCase_ : Tuple = kwargs.pop('feature_extractor' ) UpperCAmelCase_ : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) UpperCAmelCase_ : Dict = tokenizer UpperCAmelCase_ : int = AutoTokenizer.from_pretrained('gpt2' ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(snake_case_ , snake_case_ ) def __call__( self , snake_case_=None , snake_case_=None , snake_case_=None , **snake_case_ ): '''simple docstring''' if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: UpperCAmelCase_ : str = self.image_processor(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if text is not None: UpperCAmelCase_ : Optional[int] = self.char_tokenizer(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if text is None: return inputs elif images is None: return encodings else: UpperCAmelCase_ : Optional[int] = encodings['input_ids'] return inputs def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = sequences UpperCAmelCase_ : Tuple = char_preds.size(0 ) UpperCAmelCase_ , UpperCAmelCase_ : str = self._decode_helper(snake_case_ , 'char' ) UpperCAmelCase_ , UpperCAmelCase_ : int = self._decode_helper(snake_case_ , 'bpe' ) UpperCAmelCase_ , UpperCAmelCase_ : int = self._decode_helper(snake_case_ , 'wp' ) UpperCAmelCase_ : Any = [] UpperCAmelCase_ : List[Any] = [] for i in range(snake_case_ ): UpperCAmelCase_ : Dict = [char_scores[i], bpe_scores[i], wp_scores[i]] UpperCAmelCase_ : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] UpperCAmelCase_ : str = scores.index(max(snake_case_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) UpperCAmelCase_ : Optional[Any] = {} UpperCAmelCase_ : int = final_strs UpperCAmelCase_ : Optional[int] = final_scores UpperCAmelCase_ : Tuple = char_strs UpperCAmelCase_ : Optional[Any] = bpe_strs UpperCAmelCase_ : Any = wp_strs return out def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' if format == DecodeType.CHARACTER: UpperCAmelCase_ : Any = self.char_decode UpperCAmelCase_ : Optional[int] = 1 UpperCAmelCase_ : Dict = '[s]' elif format == DecodeType.BPE: UpperCAmelCase_ : Optional[int] = self.bpe_decode UpperCAmelCase_ : str = 2 UpperCAmelCase_ : Dict = '#' elif format == DecodeType.WORDPIECE: UpperCAmelCase_ : List[str] = self.wp_decode UpperCAmelCase_ : Optional[int] = 1_0_2 UpperCAmelCase_ : Tuple = '[SEP]' else: raise ValueError(F'''Format {format} is not supported.''' ) UpperCAmelCase_ , UpperCAmelCase_ : str = [], [] UpperCAmelCase_ : List[str] = pred_logits.size(0 ) UpperCAmelCase_ : Dict = pred_logits.size(1 ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = pred_logits.topk(1 , dim=-1 , largest=snake_case_ , sorted=snake_case_ ) UpperCAmelCase_ : str = preds_index.view(-1 , snake_case_ )[:, 1:] UpperCAmelCase_ : Optional[Any] = decoder(snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = torch.nn.functional.softmax(snake_case_ , dim=2 ).max(dim=2 ) UpperCAmelCase_ : List[Any] = preds_max_prob[:, 1:] for index in range(snake_case_ ): UpperCAmelCase_ : Tuple = preds_str[index].find(snake_case_ ) UpperCAmelCase_ : Union[str, Any] = preds_str[index][:pred_eos] UpperCAmelCase_ : Dict = preds_index[index].cpu().tolist() UpperCAmelCase_ : List[str] = pred_index.index(snake_case_ ) if eos_token in pred_index else -1 UpperCAmelCase_ : Union[str, Any] = preds_max_prob[index][: pred_eos_index + 1] UpperCAmelCase_ : Optional[Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(snake_case_ ) conf_scores.append(snake_case_ ) return dec_strs, conf_scores def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(snake_case_ )] return decode_strs def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(snake_case_ ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Dict = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(snake_case_ )] return decode_strs
389
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :List[str] = ['''image_processor''', '''tokenizer'''] lowerCamelCase_ :Optional[int] = '''BlipImageProcessor''' lowerCamelCase_ :Union[str, Any] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = False super().__init__(snake_case_ , snake_case_ ) UpperCAmelCase_ : Union[str, Any] = self.image_processor def __call__( self , snake_case_ = None , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: UpperCAmelCase_ : str = self.tokenizer UpperCAmelCase_ : Optional[int] = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) return text_encoding # add pixel_values UpperCAmelCase_ : Optional[int] = self.image_processor(snake_case_ , return_tensors=snake_case_ ) if text is not None: UpperCAmelCase_ : Optional[Any] = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) else: UpperCAmelCase_ : Optional[int] = None if text_encoding is not None: encoding_image_processor.update(snake_case_ ) return encoding_image_processor def _UpperCamelCase ( self , *snake_case_ , **snake_case_ ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def _UpperCamelCase ( self , *snake_case_ , **snake_case_ ): '''simple docstring''' return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.tokenizer.model_input_names UpperCAmelCase_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
389
1
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,) -> list[float]: lowercase__ , lowercase__ : Optional[Any] = coefficient_matrix.shape lowercase__ , lowercase__ : Dict = constant_matrix.shape if rowsa != colsa: lowercase__ : List[Any] = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(SCREAMING_SNAKE_CASE_ ) if colsa != 1: lowercase__ : str = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(SCREAMING_SNAKE_CASE_ ) if rowsa != rowsa: lowercase__ : int = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) != rowsa: lowercase__ : Tuple = ( "Number of initial values must be equal to number of rows in coefficient " F"""matrix but received {len(SCREAMING_SNAKE_CASE_ )} and {rowsa}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) lowercase__ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) ,axis=1 ) lowercase__ , lowercase__ : Union[str, Any] = table.shape strictly_diagonally_dominant(SCREAMING_SNAKE_CASE_ ) # Iterates the whole matrix for given number of times for _ in range(SCREAMING_SNAKE_CASE_ ): lowercase__ : List[Any] = [] for row in range(SCREAMING_SNAKE_CASE_ ): lowercase__ : int = 0 for col in range(SCREAMING_SNAKE_CASE_ ): if col == row: lowercase__ : Any = table[row][col] elif col == cols - 1: lowercase__ : List[Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowercase__ : Optional[int] = (temp + val) / denom new_val.append(SCREAMING_SNAKE_CASE_ ) lowercase__ : Union[str, Any] = new_val return [float(SCREAMING_SNAKE_CASE_ ) for i in new_val] def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> bool: lowercase__ , lowercase__ : Optional[Any] = table.shape lowercase__ : Tuple = True for i in range(0 ,SCREAMING_SNAKE_CASE_ ): lowercase__ : Tuple = 0 for j in range(0 ,cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
397
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a : Optional[Any] = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Any = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __a : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
397
1
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> float: """simple docstring""" return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case__ , snake_case__ ) ) ) def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> list[list[list[float] | float]]: """simple docstring""" if dataset.ndim != value_array.ndim: lowerCAmelCase__ = ( 'Wrong input data\'s dimensions... ' f'dataset : {dataset.ndim}, value_array : {value_array.ndim}' ) raise ValueError(snake_case__ ) try: if dataset.shape[1] != value_array.shape[1]: lowerCAmelCase__ = ( 'Wrong input data\'s shape... ' f'dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}' ) raise ValueError(snake_case__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: lowerCAmelCase__ = ( 'Input data have different datatype... ' f'dataset : {dataset.dtype}, value_array : {value_array.dtype}' ) raise TypeError(snake_case__ ) lowerCAmelCase__ = [] for value in value_array: lowerCAmelCase__ = euclidean(snake_case__ , dataset[0] ) lowerCAmelCase__ = dataset[0].tolist() for dataset_value in dataset[1:]: lowerCAmelCase__ = euclidean(snake_case__ , snake_case__ ) if dist > temp_dist: lowerCAmelCase__ = temp_dist lowerCAmelCase__ = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> float: """simple docstring""" return np.dot(snake_case__ , snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ )) if __name__ == "__main__": import doctest doctest.testmod()
717
def UpperCAmelCase_ ( snake_case__ = 200 ) -> int: """simple docstring""" lowerCAmelCase__ = [1, 2, 5, 10, 20, 50, 100, 200] lowerCAmelCase__ = [0] * (pence + 1) lowerCAmelCase__ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(snake_case__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_0_0) == 7_3_6_8_2
604
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : str = b.T SCREAMING_SNAKE_CASE : Optional[int] = np.sum(np.square(UpperCAmelCase__ ) , axis=1 ) SCREAMING_SNAKE_CASE : Optional[Any] = np.sum(np.square(UpperCAmelCase__ ) , axis=0 ) SCREAMING_SNAKE_CASE : Tuple = np.matmul(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = aa[:, None] - 2 * ab + ba[None, :] return d def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = x.reshape(-1 , 3 ) SCREAMING_SNAKE_CASE : Tuple = squared_euclidean_distance(UpperCAmelCase__ , UpperCAmelCase__ ) return np.argmin(UpperCAmelCase__ , axis=1 ) class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = ['pixel_values'] def __init__( self : Tuple , UpperCamelCase__ : Optional[Union[List[List[int]], np.ndarray]] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase__ : bool = True , UpperCamelCase__ : bool = True , **UpperCamelCase__ : Tuple , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = size if size is not None else {'''height''': 256, '''width''': 256} SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = np.array(UpperCamelCase__ ) if clusters is not None else None SCREAMING_SNAKE_CASE : Optional[Any] = do_resize SCREAMING_SNAKE_CASE : Optional[int] = size SCREAMING_SNAKE_CASE : Any = resample SCREAMING_SNAKE_CASE : Union[str, Any] = do_normalize SCREAMING_SNAKE_CASE : Tuple = do_color_quantize def __A ( self : Dict , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dictionary must contain both height and width keys. Got {size.keys()}""" ) return resize( UpperCamelCase__ , size=(size['''height'''], size['''width''']) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __A ( self : List[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = rescale(image=UpperCamelCase__ , scale=1 / 127.5 , data_format=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = image - 1 return image def __A ( self : List[Any] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : bool = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[List[List[int]], np.ndarray]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **UpperCamelCase__ : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : List[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE : Dict = get_size_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : Union[str, Any] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize SCREAMING_SNAKE_CASE : Tuple = clusters if clusters is not None else self.clusters SCREAMING_SNAKE_CASE : Optional[int] = np.array(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : Tuple = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : Dict = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : Optional[int] = [self.normalize(image=UpperCamelCase__ ) for image in images] if do_color_quantize: SCREAMING_SNAKE_CASE : str = [to_channel_dimension_format(UpperCamelCase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) SCREAMING_SNAKE_CASE : List[Any] = np.array(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = color_quantize(UpperCamelCase__ , UpperCamelCase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) SCREAMING_SNAKE_CASE : Optional[Any] = images.shape[0] SCREAMING_SNAKE_CASE : int = images.reshape(UpperCamelCase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. SCREAMING_SNAKE_CASE : List[str] = list(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Any = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] SCREAMING_SNAKE_CASE : Tuple = {'''input_ids''': images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
248
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a = get_logger() a = None class UpperCamelCase__ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self : Union[str, Any] , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Dict=None , **UpperCamelCase__ : Optional[Any] ): '''simple docstring''' super().__init__(features=UpperCamelCase__ ) import jax from jaxlib.xla_client import Device if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError( F'''Expected {device} to be a `str` not {type(UpperCamelCase__ )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) lowercase_ = device if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowercase_ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' F'''device: {str(jax.devices()[0] )}.''' ) lowercase_ = str(jax.devices()[0] ) lowercase_ = jnp_array_kwargs @staticmethod def UpperCAmelCase__ ( ): '''simple docstring''' import jax return {str(UpperCamelCase__ ): device for device in jax.devices()} def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : str ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and column: if all( isinstance(UpperCamelCase__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(UpperCamelCase__ , axis=0 ) return column def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(UpperCamelCase__ , (str, bytes, type(UpperCamelCase__ )) ): return value elif isinstance(UpperCamelCase__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowercase_ = {} if isinstance(UpperCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowercase_ = {"""dtype""": jnp.intaa} else: lowercase_ = {"""dtype""": jnp.intaa} elif isinstance(UpperCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowercase_ = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase__ , PIL.Image.Image ): lowercase_ = np.asarray(UpperCamelCase__ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowercase_ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCamelCase__ , **{**default_dtype, **self.jnp_array_kwargs} ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : Any ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCamelCase__ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(UpperCamelCase__ , """__array__""" ) and not isinstance(UpperCamelCase__ , jax.Array ): lowercase_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase__ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase__ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase__ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : dict ): '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCamelCase__ , map_list=UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , UpperCamelCase__ : pa.Table ): '''simple docstring''' lowercase_ = self.numpy_arrow_extractor().extract_row(UpperCamelCase__ ) lowercase_ = self.python_features_decoder.decode_row(UpperCamelCase__ ) return self.recursive_tensorize(UpperCamelCase__ ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : pa.Table ): '''simple docstring''' lowercase_ = self.numpy_arrow_extractor().extract_column(UpperCamelCase__ ) lowercase_ = self.python_features_decoder.decode_column(UpperCamelCase__ , pa_table.column_names[0] ) lowercase_ = self.recursive_tensorize(UpperCamelCase__ ) lowercase_ = self._consolidate(UpperCamelCase__ ) return column def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : pa.Table ): '''simple docstring''' lowercase_ = self.numpy_arrow_extractor().extract_batch(UpperCamelCase__ ) lowercase_ = self.python_features_decoder.decode_batch(UpperCamelCase__ ) lowercase_ = self.recursive_tensorize(UpperCamelCase__ ) for column_name in batch: lowercase_ = self._consolidate(batch[column_name] ) return batch
412
0
def _lowercase ( UpperCAmelCase_): """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise ValueError("""multiplicative_persistence() only accepts integral values""") if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""") snake_case__ : Tuple = 0 snake_case__ : Dict = str(UpperCAmelCase_) while len(UpperCAmelCase_) != 1: snake_case__ : Union[str, Any] = [int(UpperCAmelCase_) for i in num_string] snake_case__ : Any = 1 for i in range(0 , len(UpperCAmelCase_)): total *= numbers[i] snake_case__ : Optional[int] = str(UpperCAmelCase_) steps += 1 return steps def _lowercase ( UpperCAmelCase_): """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise ValueError("""additive_persistence() only accepts integral values""") if num < 0: raise ValueError("""additive_persistence() does not accept negative values""") snake_case__ : Optional[int] = 0 snake_case__ : List[Any] = str(UpperCAmelCase_) while len(UpperCAmelCase_) != 1: snake_case__ : List[Any] = [int(UpperCAmelCase_) for i in num_string] snake_case__ : List[Any] = 0 for i in range(0 , len(UpperCAmelCase_)): total += numbers[i] snake_case__ : Optional[int] = str(UpperCAmelCase_) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
721
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging lowercase_: Union[str, Any] = logging.get_logger(__name__) def _lowercase ( UpperCAmelCase_): """simple docstring""" if isinstance(UpperCAmelCase_ , np.ndarray): return list(tensor.shape) snake_case__ : List[Any] = tf.shape(UpperCAmelCase_) if tensor.shape == tf.TensorShape(UpperCAmelCase_): return dynamic snake_case__ : Tuple = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase_)] def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None): """simple docstring""" return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCAmelCase_ , name=UpperCAmelCase_) def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=1e-5 , UpperCAmelCase_=-1): """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""") # Get mean and variance on the axis to be normalized snake_case__ , snake_case__ : Any = tf.nn.moments(UpperCAmelCase_ , axes=[axis] , keepdims=UpperCAmelCase_) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis snake_case__ : Optional[Any] = [1] * inputs.shape.rank snake_case__ : Optional[int] = shape_list(UpperCAmelCase_)[axis] snake_case__ : Tuple = tf.reshape(UpperCAmelCase_ , UpperCAmelCase_) snake_case__ : Tuple = tf.reshape(UpperCAmelCase_ , UpperCAmelCase_) # Compute layer normalization using the batch_normalization # function. snake_case__ : List[str] = tf.nn.batch_normalization( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , offset=UpperCAmelCase_ , scale=UpperCAmelCase_ , variance_epsilon=UpperCAmelCase_ , ) return outputs def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_=0 , UpperCAmelCase_=-1): """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input snake_case__ : Optional[int] = tf.shape(UpperCAmelCase_) snake_case__ : List[Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1]) snake_case__ : Optional[Any] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0) return tf.reshape(UpperCAmelCase_ , UpperCAmelCase_) def _lowercase ( UpperCAmelCase_): """simple docstring""" if not isinstance(UpperCAmelCase_ , tf.Tensor): snake_case__ : int = tf.convert_to_tensor(UpperCAmelCase_) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: snake_case__ : Dict = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: snake_case__ : List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) snake_case__ : Dict = ( tf.cast(1 , encoder_attention_mask.dtype) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = "input_ids"): """simple docstring""" tf.debugging.assert_less( UpperCAmelCase_ , tf.cast(UpperCAmelCase_ , dtype=tensor.dtype) , message=( F'The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase_)}) must be smaller than the embedding ' F'layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.' ) , ) def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" snake_case__ : List[str] = 64_512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. snake_case__ : Tuple = [x for x in data if len(UpperCAmelCase_) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'they are larger than {HDF5_OBJECT_HEADER_LIMIT} ' F'bytes: {bad_attributes}') snake_case__ : Optional[int] = np.asarray(UpperCAmelCase_) snake_case__ : Tuple = 1 snake_case__ : Optional[Any] = np.array_split(UpperCAmelCase_ , UpperCAmelCase_) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data): num_chunks += 1 snake_case__ : Tuple = np.array_split(UpperCAmelCase_ , UpperCAmelCase_) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase_): snake_case__ : List[str] = chunk_data else: snake_case__ : Union[str, Any] = data def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" if name in group.attrs: snake_case__ : int = [n.decode("""utf8""") if hasattr(UpperCAmelCase_ , """decode""") else n for n in group.attrs[name]] else: snake_case__ : Tuple = [] snake_case__ : Optional[Any] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""") if hasattr(UpperCAmelCase_ , """decode""") else n for n in group.attrs["""%s%d""" % (name, chunk_id)]]) chunk_id += 1 return data def _lowercase ( UpperCAmelCase_): """simple docstring""" def _expand_single_ad_tensor(UpperCAmelCase_): if isinstance(UpperCAmelCase_ , tf.Tensor) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase_ , axis=-1) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase_)
127
0
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class SCREAMING_SNAKE_CASE_ (_lowerCamelCase ): '''simple docstring''' _a = None _a = None _a = None _a = None class SCREAMING_SNAKE_CASE_ (_lowerCamelCase ): '''simple docstring''' def __init__( self : Tuple , __a : int=1 , __a : Union[str, Any]=0 , __a : Optional[Any]=2 , __a : Any=512 , __a : Optional[Any]="cls" , __a : int=False , __a : Dict=True , **__a : int , ) ->Dict: super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCamelCase_ : Optional[int] = project_dim lowerCamelCase_ : Dict = pooler_fn lowerCamelCase_ : Optional[int] = learn_encoder lowerCamelCase_ : Tuple = use_attention_mask class SCREAMING_SNAKE_CASE_ (_lowerCamelCase ): '''simple docstring''' _a = [r'''pooler''', r'''logit_scale'''] _a = [r'''position_ids''', r'''predictions.decoder.bias'''] _a = '''roberta''' _a = RobertaSeriesConfig def __init__( self : str , __a : Dict ) ->Tuple: super().__init__(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ : int = XLMRobertaModel(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ : Optional[int] = nn.Linear(config.hidden_size , config.project_dim ) lowerCamelCase_ : List[Any] = getattr(_SCREAMING_SNAKE_CASE , """has_pre_transformation""" , _SCREAMING_SNAKE_CASE ) if self.has_pre_transformation: lowerCamelCase_ : Union[str, Any] = nn.Linear(config.hidden_size , config.project_dim ) lowerCamelCase_ : Optional[Any] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def _lowerCAmelCase ( self : List[Any] , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , ) ->Optional[int]: lowerCamelCase_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase_ : Tuple = self.base_model( input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , inputs_embeds=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=_SCREAMING_SNAKE_CASE , ) if self.has_pre_transformation: lowerCamelCase_ : List[str] = outputs['hidden_states'][-2] lowerCamelCase_ : str = self.pre_LN(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ : List[str] = self.transformation_pre(_SCREAMING_SNAKE_CASE ) return TransformationModelOutput( projection_state=_SCREAMING_SNAKE_CASE , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: lowerCamelCase_ : Optional[Any] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=_SCREAMING_SNAKE_CASE , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
278
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Optional[int] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase__ ( _lowerCamelCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : int = '''xmod''' def __init__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple=30_522 , _SCREAMING_SNAKE_CASE : Tuple=768 , _SCREAMING_SNAKE_CASE : Optional[int]=12 , _SCREAMING_SNAKE_CASE : List[str]=12 , _SCREAMING_SNAKE_CASE : Optional[Any]=3_072 , _SCREAMING_SNAKE_CASE : Any="gelu" , _SCREAMING_SNAKE_CASE : List[Any]=0.1 , _SCREAMING_SNAKE_CASE : Dict=0.1 , _SCREAMING_SNAKE_CASE : str=512 , _SCREAMING_SNAKE_CASE : Tuple=2 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0.0_2 , _SCREAMING_SNAKE_CASE : Union[str, Any]=1E-1_2 , _SCREAMING_SNAKE_CASE : List[str]=1 , _SCREAMING_SNAKE_CASE : Optional[Any]=0 , _SCREAMING_SNAKE_CASE : Optional[Any]=2 , _SCREAMING_SNAKE_CASE : Union[str, Any]="absolute" , _SCREAMING_SNAKE_CASE : Union[str, Any]=True , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : Dict=2 , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=True , _SCREAMING_SNAKE_CASE : Union[str, Any]=True , _SCREAMING_SNAKE_CASE : Tuple=("en_XX",) , _SCREAMING_SNAKE_CASE : Optional[int]=None , **_SCREAMING_SNAKE_CASE : List[Any] , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : str = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Tuple = position_embedding_type SCREAMING_SNAKE_CASE : int = use_cache SCREAMING_SNAKE_CASE : Optional[int] = classifier_dropout SCREAMING_SNAKE_CASE : List[Any] = pre_norm SCREAMING_SNAKE_CASE : int = adapter_reduction_factor SCREAMING_SNAKE_CASE : List[Any] = adapter_layer_norm SCREAMING_SNAKE_CASE : Any = adapter_reuse_layer_norm SCREAMING_SNAKE_CASE : Any = ln_before_adapter SCREAMING_SNAKE_CASE : Tuple = list(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = default_language class lowerCAmelCase__ ( _lowerCamelCase ): '''simple docstring''' @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE : List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
265
0
# Algorithm for the pigeonhole sorting def lowercase_ ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" snake_case__ : Union[str, Any] =min(_A ) # min() finds the minimum value snake_case__ : str =max(_A ) # max() finds the maximum value snake_case__ : List[Any] =max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size snake_case__ : int =[0] * size # Populate the pigeonholes. for x in a: assert isinstance(_A , _A ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. snake_case__ : str =0 for count in range(_A ): while holes[count] > 0: holes[count] -= 1 snake_case__ : Any =count + min_val i += 1 def lowercase_ ( ): """simple docstring""" snake_case__ : Optional[int] =[8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_A ) print('''Sorted order is:''' , ''' '''.join(_A ) ) if __name__ == "__main__": main()
709
def lowercase_ ( SCREAMING_SNAKE_CASE : int = 10_00 ): """simple docstring""" return sum(e for e in range(3 , SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
408
0
def lowerCamelCase__ ( _lowerCamelCase = 1000 ) ->int: return sum(e for e in range(3 , _lowerCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
408
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Tuple: # Load configuration defined in the metadata file with open(_lowerCamelCase ) as metadata_file: _UpperCAmelCase =json.load(_lowerCamelCase ) _UpperCAmelCase =LukeConfig(use_entity_aware_attention=_lowerCamelCase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path _UpperCAmelCase =torch.load(_lowerCamelCase , map_location="cpu" )["module"] # Load the entity vocab file _UpperCAmelCase =load_original_entity_vocab(_lowerCamelCase ) # add an entry for [MASK2] _UpperCAmelCase =max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase =XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase =AddedToken("<ent>" , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) _UpperCAmelCase =AddedToken("<ent2>" , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase , "tokenizer_config.json" ) , "r" ) as f: _UpperCAmelCase =json.load(_lowerCamelCase ) _UpperCAmelCase ="MLukeTokenizer" with open(os.path.join(_lowerCamelCase , "tokenizer_config.json" ) , "w" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) with open(os.path.join(_lowerCamelCase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase =MLukeTokenizer.from_pretrained(_lowerCamelCase ) # Initialize the embeddings of the special tokens _UpperCAmelCase =tokenizer.convert_tokens_to_ids(["@"] )[0] _UpperCAmelCase =tokenizer.convert_tokens_to_ids(["#"] )[0] _UpperCAmelCase =state_dict["embeddings.word_embeddings.weight"] _UpperCAmelCase =word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase =word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase =torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase =state_dict[bias_name] _UpperCAmelCase =decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase =decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase =torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase =F"encoder.layer.{layer_index}.attention.self." _UpperCAmelCase =state_dict[prefix + matrix_name] _UpperCAmelCase =state_dict[prefix + matrix_name] _UpperCAmelCase =state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase =state_dict["entity_embeddings.entity_embeddings.weight"] _UpperCAmelCase =entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCAmelCase =torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase =state_dict["entity_predictions.bias"] _UpperCAmelCase =entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCAmelCase =torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase =LukeForMaskedLM(config=_lowerCamelCase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) _UpperCAmelCase =OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): _UpperCAmelCase =state_dict[key] else: _UpperCAmelCase =state_dict[key] _UpperCAmelCase , _UpperCAmelCase =model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) if set(_lowerCamelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(F"Unexpected unexpected_keys: {unexpected_keys}" ) if set(_lowerCamelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase =MLukeTokenizer.from_pretrained(_lowerCamelCase , task="entity_classification" ) _UpperCAmelCase ="ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." _UpperCAmelCase =(0, 9) _UpperCAmelCase =tokenizer(_lowerCamelCase , entity_spans=[span] , return_tensors="pt" ) _UpperCAmelCase =model(**_lowerCamelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase =torch.Size((1, 33, 768) ) _UpperCAmelCase =torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase =torch.Size((1, 1, 768) ) _UpperCAmelCase =torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" F" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase =MLukeTokenizer.from_pretrained(_lowerCamelCase ) _UpperCAmelCase ="Tokyo is the capital of <mask>." _UpperCAmelCase =(24, 30) _UpperCAmelCase =tokenizer(_lowerCamelCase , entity_spans=[span] , return_tensors="pt" ) _UpperCAmelCase =model(**_lowerCamelCase ) _UpperCAmelCase =encoding["input_ids"][0].tolist() _UpperCAmelCase =input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) _UpperCAmelCase =outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_lowerCamelCase ) _UpperCAmelCase =outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase =[ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(_lowerCamelCase ) ) model.save_pretrained(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase ) ->str: _UpperCAmelCase =["[MASK]", "[PAD]", "[UNK]"] _UpperCAmelCase =[json.loads(_lowerCamelCase ) for line in open(_lowerCamelCase )] _UpperCAmelCase ={} for entry in data: _UpperCAmelCase =entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase =entity_id break _UpperCAmelCase =F"{language}:{entity_name}" _UpperCAmelCase =entity_id return new_mapping if __name__ == "__main__": snake_case__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) snake_case__ : int = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
408
1
"""simple docstring""" from __future__ import annotations class __lowercase : def __init__( self : Tuple ,A : list[list[int]] ): '''simple docstring''' UpperCAmelCase__ : List[str] = TypeError( """Matrices must be formed from a list of zero or more lists containing at """ """least one and the same number of values, each of which must be of type """ """int or float.""" ) if len(A ) != 0: UpperCAmelCase__ : Optional[int] = len(rows[0] ) if cols == 0: raise error for row in rows: if len(A ) != cols: raise error for value in row: if not isinstance(A ,(int, float) ): raise error UpperCAmelCase__ : int = rows else: UpperCAmelCase__ : int = [] def __lowercase ( self : Optional[Any] ): '''simple docstring''' return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def __lowercase ( self : Optional[int] ): '''simple docstring''' return len(self.rows ) @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return len(self.rows[0] ) @property def __lowercase ( self : List[str] ): '''simple docstring''' return (self.num_rows, self.num_columns) @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self.order[0] == self.order[1] def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(A ) def __lowercase ( self : Dict ): '''simple docstring''' if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def __lowercase ( self : Dict ): '''simple docstring''' return bool(self.determinant() ) def __lowercase ( self : str ,A : int ,A : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(A ).determinant() def __lowercase ( self : List[Any] ,A : int ,A : int ): '''simple docstring''' if (row + column) % 2 == 0: return self.get_minor(A ,A ) return -1 * self.get_minor(A ,A ) def __lowercase ( self : str ): '''simple docstring''' return Matrix( [ [self.get_minor(A ,A ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(A ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.determinant() if not determinant: raise TypeError("""Only matrices with a non-zero determinant have an inverse""" ) return self.adjugate() * (1 / determinant) def __repr__( self : Optional[Any] ): '''simple docstring''' return str(self.rows ) def __str__( self : Dict ): '''simple docstring''' if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ """[""" + """. """.join([str(A ) for value in row] ) + """.]""" for row in self.rows ] ) + "]" ) def __lowercase ( self : List[str] ,A : list[int] ,A : int | None = None ): '''simple docstring''' UpperCAmelCase__ : str = TypeError("""Row must be a list containing all ints and/or floats""" ) if not isinstance(A ,A ): raise type_error for value in row: if not isinstance(A ,(int, float) ): raise type_error if len(A ) != self.num_columns: raise ValueError( """Row must be equal in length to the other rows in the matrix""" ) if position is None: self.rows.append(A ) else: UpperCAmelCase__ : str = self.rows[0:position] + [row] + self.rows[position:] def __lowercase ( self : Union[str, Any] ,A : list[int] ,A : int | None = None ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = TypeError( """Column must be a list containing all ints and/or floats""" ) if not isinstance(A ,A ): raise type_error for value in column: if not isinstance(A ,(int, float) ): raise type_error if len(A ) != self.num_rows: raise ValueError( """Column must be equal in length to the other columns in the matrix""" ) if position is None: UpperCAmelCase__ : Optional[Any] = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: UpperCAmelCase__ : Optional[int] = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Union[str, Any] ,A : object ): '''simple docstring''' if not isinstance(A ,A ): return NotImplemented return self.rows == other.rows def __ne__( self : Optional[Any] ,A : object ): '''simple docstring''' return not self == other def __neg__( self : Any ): '''simple docstring''' return self * -1 def __add__( self : Dict ,A : Matrix ): '''simple docstring''' if self.order != other.order: raise ValueError("""Addition requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Union[str, Any] ,A : Matrix ): '''simple docstring''' if self.order != other.order: raise ValueError("""Subtraction requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : int ,A : Matrix | int | float ): '''simple docstring''' if isinstance(A ,(int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(A ,A ): if self.num_columns != other.num_rows: raise ValueError( """The number of columns in the first matrix must """ """be equal to the number of rows in the second""" ) return Matrix( [ [Matrix.dot_product(A ,A ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( """A Matrix can only be multiplied by an int, float, or another matrix""" ) def __pow__( self : Optional[int] ,A : int ): '''simple docstring''' if not isinstance(A ,A ): raise TypeError("""A Matrix can only be raised to the power of an int""" ) if not self.is_square: raise ValueError("""Only square matrices can be raised to a power""" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( """Only invertable matrices can be raised to a negative power""" ) UpperCAmelCase__ : List[str] = self for _ in range(other - 1 ): result *= self return result @classmethod def __lowercase ( cls : int ,A : list[int] ,A : list[int] ): '''simple docstring''' return sum(row[i] * column[i] for i in range(len(A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
194
"""simple docstring""" from datetime import datetime as dt import os from github import Github __UpperCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase__ : int = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase__ : Optional[int] = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase__ : Any = sorted([comment for comment in issue.get_comments()] , key=lambda __UpperCamelCase : i.created_at , reverse=__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = comments[0] if len(__UpperCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
194
1
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __A ( a_ : List[str] , a_ : List[str]=False )-> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = OmegaConf.load(a_ ) if display: print(yaml.dump(OmegaConf.to_container(a_ ) ) ) return config def __A ( a_ : Optional[Any] , a_ : Dict=None , a_ : int=None )-> str: '''simple docstring''' if conf_path is None: SCREAMING_SNAKE_CASE : Optional[Any] = '''./model_checkpoints/vqgan_only.yaml''' SCREAMING_SNAKE_CASE : str = load_config(a_ , display=a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = VQModel(**config.model.params ) if ckpt_path is None: SCREAMING_SNAKE_CASE : List[str] = '''./model_checkpoints/vqgan_only.pt''' SCREAMING_SNAKE_CASE : int = torch.load(a_ , map_location=a_ ) if ".ckpt" in ckpt_path: SCREAMING_SNAKE_CASE : Optional[int] = sd['''state_dict'''] model.load_state_dict(a_ , strict=a_ ) model.to(a_ ) del sd return model def __A ( a_ : List[Any] , a_ : List[Any] )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = model.encode(a_ ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) SCREAMING_SNAKE_CASE : Any = model.decode(a_ ) return xrec def __A ( a_ : Tuple , a_ : Optional[int]=False )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = string.rsplit('''.''' , 1 ) if reload: SCREAMING_SNAKE_CASE : Dict = importlib.import_module(a_ ) importlib.reload(a_ ) return getattr(importlib.import_module(a_ , package=a_ ) , cls ) def __A ( a_ : List[Any] )-> int: '''simple docstring''' if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def __A ( a_ : Dict , a_ : Any , a_ : List[str]=True , a_ : Any=True )-> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = instantiate_from_config(a_ ) if sd is not None: model.load_state_dict(a_ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __A ( a_ : int , a_ : Dict , a_ : str , a_ : List[Any] )-> Dict: '''simple docstring''' if ckpt: SCREAMING_SNAKE_CASE : Optional[int] = torch.load(a_ , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : List[str] = pl_sd['''global_step'''] print(F"loaded model from global step {global_step}." ) else: SCREAMING_SNAKE_CASE : str = {'''state_dict''': None} SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : int = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=a_ , eval_mode=a_ )['''model'''] return model, global_step
698
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowerCamelCase__ : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __A ( a_ : Optional[int] , a_ : str , a_ : str , a_ : str , a_ : List[str] )-> Tuple: '''simple docstring''' for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE : Any = getattr(a_ , a_ ) if weight_type is not None: SCREAMING_SNAKE_CASE : Optional[int] = getattr(a_ , a_ ).shape else: SCREAMING_SNAKE_CASE : Any = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : List[Any] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Any = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : List[Any] = value else: SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __A ( a_ : Optional[Any] , a_ : Dict )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Optional[Any] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : Tuple = hf_model.feature_extractor SCREAMING_SNAKE_CASE : Tuple = hf_model.adapter for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : int = False if "conv_layers" in name: load_conv_layer( a_ , a_ , a_ , a_ , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE : List[str] = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(a_ , a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE : Union[str, Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Dict = name.split(a_ )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE : Optional[int] = mapped_key.replace('''*''' , a_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE : List[str] = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE : str = '''bias''' elif "weight" in name: SCREAMING_SNAKE_CASE : Tuple = '''weight''' else: SCREAMING_SNAKE_CASE : str = None set_recursively(a_ , a_ , a_ , a_ , a_ ) continue if not is_used: unused_weights.append(a_ ) logger.warning(F"Unused weights: {unused_weights}" ) def __A ( a_ : Dict , a_ : int , a_ : Optional[int] , a_ : Optional[int] , a_ : Dict )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE : List[str] = name.split('''.''' ) SCREAMING_SNAKE_CASE : Dict = int(items[0] ) SCREAMING_SNAKE_CASE : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE : List[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) SCREAMING_SNAKE_CASE : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[int] , a_ : Optional[int] , a_ : Any , a_ : Any )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = full_name.split('''adaptor.''' )[-1] SCREAMING_SNAKE_CASE : List[Any] = name.split('''.''' ) if items[1].isdigit(): SCREAMING_SNAKE_CASE : List[Any] = int(items[1] ) else: SCREAMING_SNAKE_CASE : str = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found." SCREAMING_SNAKE_CASE : Optional[Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found." SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"Adapter proj layer bias was initialized from {full_name}." ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found." SCREAMING_SNAKE_CASE : int = value logger.info(F"Adapter proj layer weight was initialized from {full_name}." ) elif isinstance(a_ , a_ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found." SCREAMING_SNAKE_CASE : str = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found." SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." ) else: unused_weights.append(a_ ) def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = emb.weight.shape SCREAMING_SNAKE_CASE : Any = nn.Linear(a_ , a_ , bias=a_ ) SCREAMING_SNAKE_CASE : Optional[int] = emb.weight.data return lin_layer @torch.no_grad() def __A ( a_ : Tuple , a_ : Optional[int] , a_ : List[Any] , a_ : Any , a_ : Tuple , a_ : int , a_ : Any , a_ : str , a_ : Tuple , a_ : Union[str, Any] , a_ : Union[str, Any] , )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = WavaVecaConfig.from_pretrained( a_ , add_adapter=a_ , adapter_stride=a_ , adapter_kernel_size=a_ , use_auth_token=a_ , output_hidden_size=a_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = MBartConfig.from_pretrained(a_ ) # load model SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) SCREAMING_SNAKE_CASE : int = model[0].eval() # load feature extractor SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(a_ , use_auth_token=a_ ) # set weights for wav2vec2 encoder SCREAMING_SNAKE_CASE : str = WavaVecaModel(a_ ) recursively_load_weights_wavaveca(model.encoder , a_ ) # load decoder weights SCREAMING_SNAKE_CASE : Dict = MBartForCausalLM(a_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=a_ ) logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = SpeechEncoderDecoderModel(encoder=a_ , decoder=a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer(a_ ) tokenizer.save_pretrained(a_ ) SCREAMING_SNAKE_CASE : Tuple = hf_wavavec.config.to_dict() SCREAMING_SNAKE_CASE : Any = tokenizer.pad_token_id SCREAMING_SNAKE_CASE : List[str] = tokenizer.bos_token_id SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Optional[Any] = '''mbart50''' SCREAMING_SNAKE_CASE : Optional[int] = '''wav2vec2''' SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : List[str] = 25_00_04 SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token_id SCREAMING_SNAKE_CASE : Any = SpeechEncoderDecoderConfig.from_dict(a_ ) hf_wavavec.save_pretrained(a_ ) feature_extractor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250004, type=int, help="`decoder_start_token_id` of model config") lowerCamelCase__ : Dict = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
698
1
from collections import namedtuple UpperCamelCase = namedtuple('from_to', 'from_ to') UpperCamelCase = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.001, 1000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.00_454, 264.172), 'cubicyard': from_to(0.76_455, 1.30_795), 'cubicfoot': from_to(0.028, 35.3_147), 'cup': from_to(0.000_236_588, 4_226.75), } def _A ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple ): """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + ", ".join(__snake_case ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + ", ".join(__snake_case ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
712
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = ["image_processor", "tokenizer"] snake_case__ = "ViTImageProcessor" snake_case__ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : str=None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: lowerCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __call__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase__ = self.tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if visual_prompt is not None: lowerCAmelCase__ = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if images is not None: lowerCAmelCase__ = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if visual_prompt is not None and images is not None: lowerCAmelCase__ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase__ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase__ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE__ ) , tensor_type=SCREAMING_SNAKE_CASE__ ) def a ( self : Any , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def a ( self : str , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def a ( self : Dict ) -> Optional[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , SCREAMING_SNAKE_CASE__ , ) return self.image_processor_class @property def a ( self : Union[str, Any] ) -> int: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , SCREAMING_SNAKE_CASE__ , ) return self.image_processor
125
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : List[str] = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys A__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
672
0
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case: def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=True , A_=False , A_=False , A_=False , A_=2 , A_=99 , A_=0 , A_=32 , A_=5 , A_=4 , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=2 , A_=4 , A_="last" , A_=True , A_=None , A_=0 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_input_lengths _SCREAMING_SNAKE_CASE = use_token_type_ids _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = gelu_activation _SCREAMING_SNAKE_CASE = sinusoidal_embeddings _SCREAMING_SNAKE_CASE = causal _SCREAMING_SNAKE_CASE = asm _SCREAMING_SNAKE_CASE = n_langs _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = n_special _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = num_choices _SCREAMING_SNAKE_CASE = summary_type _SCREAMING_SNAKE_CASE = use_proj _SCREAMING_SNAKE_CASE = scope _SCREAMING_SNAKE_CASE = bos_token_id def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_input_lengths: _SCREAMING_SNAKE_CASE = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , 2 ).float() _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def A ( self ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def A ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = XLMModel(config=a_ ) model.to(a_ ) model.eval() _SCREAMING_SNAKE_CASE = model(a_ , lengths=a_ , langs=a_ ) _SCREAMING_SNAKE_CASE = model(a_ , langs=a_ ) _SCREAMING_SNAKE_CASE = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = XLMWithLMHeadModel(a_ ) model.to(a_ ) model.eval() _SCREAMING_SNAKE_CASE = model(a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = XLMForQuestionAnsweringSimple(a_ ) model.to(a_ ) model.eval() _SCREAMING_SNAKE_CASE = model(a_ ) _SCREAMING_SNAKE_CASE = model(a_ , start_positions=a_ , end_positions=a_ ) _SCREAMING_SNAKE_CASE = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = XLMForQuestionAnswering(a_ ) model.to(a_ ) model.eval() _SCREAMING_SNAKE_CASE = model(a_ ) _SCREAMING_SNAKE_CASE = model( a_ , start_positions=a_ , end_positions=a_ , cls_index=a_ , is_impossible=a_ , p_mask=a_ , ) _SCREAMING_SNAKE_CASE = model( a_ , start_positions=a_ , end_positions=a_ , cls_index=a_ , is_impossible=a_ , ) (_SCREAMING_SNAKE_CASE) = result_with_labels.to_tuple() _SCREAMING_SNAKE_CASE = model(a_ , start_positions=a_ , end_positions=a_ ) (_SCREAMING_SNAKE_CASE) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def A ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = XLMForSequenceClassification(a_ ) model.to(a_ ) model.eval() _SCREAMING_SNAKE_CASE = model(a_ ) _SCREAMING_SNAKE_CASE = model(a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = XLMForTokenClassification(a_ ) model.to(a_ ) model.eval() _SCREAMING_SNAKE_CASE = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_choices _SCREAMING_SNAKE_CASE = XLMForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() _SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE = model( a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( _SCREAMING_SNAKE_CASE ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class __snake_case( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _A = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _A = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _A = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def A ( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def A ( self , A_ , A_ , A_=False ): '''simple docstring''' _SCREAMING_SNAKE_CASE = super()._prepare_for_class(a_ , a_ , return_labels=a_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) _SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) return inputs_dict def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = XLMModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=a_ , emb_dim=37 ) def A ( self ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*a_ ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*a_ ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*a_ ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*a_ ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*a_ ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*a_ ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*a_ ) def A ( self , A_ , A_ , A_ , A_ , A_ , A_=False , A_=1 ): '''simple docstring''' self.assertIsInstance(a_ , a_ ) self.assertListEqual( [isinstance(a_ , a_ ) for iter_attentions in attentions] , [True] * len(a_ ) ) self.assertEqual(len(a_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(a_ ): # adds PAD dummy token _SCREAMING_SNAKE_CASE = min_length + idx + 1 _SCREAMING_SNAKE_CASE = min_length + idx + 1 _SCREAMING_SNAKE_CASE = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(a_ ) ) def A ( self , A_ , A_ , A_ , A_ , A_ , A_=False , A_=1 ): '''simple docstring''' self.assertIsInstance(a_ , a_ ) self.assertListEqual( [isinstance(a_ , a_ ) for iter_hidden_states in hidden_states] , [True] * len(a_ ) , ) self.assertEqual(len(a_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(a_ ): # adds PAD dummy token _SCREAMING_SNAKE_CASE = min_length + idx + 1 _SCREAMING_SNAKE_CASE = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(a_ ) , ) pass @slow def A ( self ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = XLMModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch class __snake_case( unittest.TestCase ): @slow def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(a_ ) _SCREAMING_SNAKE_CASE = torch.tensor([[14, 447]] , dtype=torch.long , device=a_ ) # the president _SCREAMING_SNAKE_CASE = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _SCREAMING_SNAKE_CASE = model.generate(a_ , do_sample=a_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , a_ )
707
"""simple docstring""" import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def A__ ( UpperCamelCase__ ): '''simple docstring''' return x + 2 class __snake_case( unittest.TestCase ): def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''x = 3''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = evaluate(A_ , {} , state=A_ ) assert result == 3 self.assertDictEqual(A_ , {'''x''': 3} ) _SCREAMING_SNAKE_CASE = '''x = y''' _SCREAMING_SNAKE_CASE = {'''y''': 5} _SCREAMING_SNAKE_CASE = evaluate(A_ , {} , state=A_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A_ , {'''x''': 5, '''y''': 5} ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''y = add_two(x)''' _SCREAMING_SNAKE_CASE = {'''x''': 3} _SCREAMING_SNAKE_CASE = evaluate(A_ , {'''add_two''': add_two} , state=A_ ) assert result == 5 self.assertDictEqual(A_ , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: _SCREAMING_SNAKE_CASE = evaluate(A_ , {} , state=A_ ) assert result is None assert "tried to execute add_two" in out.out def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''x = 3''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = evaluate(A_ , {} , state=A_ ) assert result == 3 self.assertDictEqual(A_ , {'''x''': 3} ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' _SCREAMING_SNAKE_CASE = {'''x''': 3} _SCREAMING_SNAKE_CASE = evaluate(A_ , {'''add_two''': add_two} , state=A_ ) self.assertDictEqual(A_ , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(A_ , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''x = 3\ny = 5''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = evaluate(A_ , {} , state=A_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A_ , {'''x''': 3, '''y''': 5} ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''text = f\'This is x: {x}.\'''' _SCREAMING_SNAKE_CASE = {'''x''': 3} _SCREAMING_SNAKE_CASE = evaluate(A_ , {} , state=A_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(A_ , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''if x <= 3:\n y = 2\nelse:\n y = 5''' _SCREAMING_SNAKE_CASE = {'''x''': 3} _SCREAMING_SNAKE_CASE = evaluate(A_ , {} , state=A_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(A_ , {'''x''': 3, '''y''': 2} ) _SCREAMING_SNAKE_CASE = {'''x''': 8} _SCREAMING_SNAKE_CASE = evaluate(A_ , {} , state=A_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A_ , {'''x''': 8, '''y''': 5} ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''test_list = [x, add_two(x)]''' _SCREAMING_SNAKE_CASE = {'''x''': 3} _SCREAMING_SNAKE_CASE = evaluate(A_ , {'''add_two''': add_two} , state=A_ ) self.assertListEqual(A_ , [3, 5] ) self.assertDictEqual(A_ , {'''x''': 3, '''test_list''': [3, 5]} ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''y = x''' _SCREAMING_SNAKE_CASE = {'''x''': 3} _SCREAMING_SNAKE_CASE = evaluate(A_ , {} , state=A_ ) assert result == 3 self.assertDictEqual(A_ , {'''x''': 3, '''y''': 3} ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''test_list = [x, add_two(x)]\ntest_list[1]''' _SCREAMING_SNAKE_CASE = {'''x''': 3} _SCREAMING_SNAKE_CASE = evaluate(A_ , {'''add_two''': add_two} , state=A_ ) assert result == 5 self.assertDictEqual(A_ , {'''x''': 3, '''test_list''': [3, 5]} ) _SCREAMING_SNAKE_CASE = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' _SCREAMING_SNAKE_CASE = {'''x''': 3} _SCREAMING_SNAKE_CASE = evaluate(A_ , {'''add_two''': add_two} , state=A_ ) assert result == 5 self.assertDictEqual(A_ , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''x = 0\nfor i in range(3):\n x = i''' _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = evaluate(A_ , {'''range''': range} , state=A_ ) assert result == 2 self.assertDictEqual(A_ , {'''x''': 2, '''i''': 2} )
168
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
91
import os def __lowerCamelCase (UpperCAmelCase__ : str = "matrix.txt" ): with open(os.path.join(os.path.dirname(UpperCAmelCase__ ) , UpperCAmelCase__ ) ) as in_file: SCREAMING_SNAKE_CASE = in_file.read() SCREAMING_SNAKE_CASE = [[int(UpperCAmelCase__ ) for cell in row.split("," )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE = len(grid[0] ) SCREAMING_SNAKE_CASE = [[0 for i in range(UpperCAmelCase__ )] for j in range(UpperCAmelCase__ )] SCREAMING_SNAKE_CASE = grid[0][0] for i in range(1 , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = grid[0][i] + dp[0][i - 1] for i in range(1 , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = grid[i][0] + dp[i - 1][0] for i in range(1 , UpperCAmelCase__ ): for j in range(1 , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f"""{solution() = }""")
403
0
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __a = test_metrics @require_cpu def snake_case_ ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def snake_case_ ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def snake_case_ ( self ): self.test_metrics.main() @require_multi_gpu def snake_case_ ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) __a = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() )
703
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = ["""image_processor""", """tokenizer"""] _lowerCamelCase = """LayoutLMv2ImageProcessor""" _lowerCamelCase = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , __A=None , __A=None , **__A ): if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __A , ) __a = kwargs.pop("""feature_extractor""" ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__A , __A ) def __call__( self , __A , __A = None , __A = None , __A = None , __A = None , __A = True , __A = False , __A = None , __A = None , __A = 0 , __A = None , __A = None , __A = None , __A = False , __A = False , __A = False , __A = False , __A = True , __A = None , **__A , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes """ """if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" ) # first, apply the image processor __a = self.image_processor(images=__A , return_tensors=__A ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__A , __A ): __a = [text] # add batch dimension (as the image processor always adds a batch dimension) __a = features["""words"""] __a = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_token_type_ids=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) # add pixel values __a = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: __a = self.get_overflowing_images(__A , encoded_inputs["""overflow_to_sample_mapping"""] ) __a = images return encoded_inputs def snake_case_ ( self , __A , __A ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__A ) != len(__A ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f''' {len(__A )} and {len(__A )}''' ) return images_with_overflow def snake_case_ ( self , *__A , **__A ): return self.tokenizer.batch_decode(*__A , **__A ) def snake_case_ ( self , *__A , **__A ): return self.tokenizer.decode(*__A , **__A ) @property def snake_case_ ( self ): return ["input_ids", "bbox", "attention_mask", "image"] @property def snake_case_ ( self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , ) return self.image_processor_class @property def snake_case_ ( self ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , ) return self.image_processor
209
0
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCAmelCase = 0 UpperCAmelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCAmelCase = tuple[int, int] class UpperCAmelCase_ : def __init__( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : Node | None , ) -> None: _UpperCamelCase = pos_x _UpperCamelCase = pos_y _UpperCamelCase = (pos_y, pos_x) _UpperCamelCase = goal_x _UpperCamelCase = goal_y _UpperCamelCase = g_cost _UpperCamelCase = parent _UpperCamelCase = self.calculate_heuristic() _UpperCamelCase = self.g_cost + self.h_cost def _UpperCamelCase ( self : Optional[Any] ) -> float: _UpperCamelCase = self.pos_x - self.goal_x _UpperCamelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(__UpperCamelCase ) + abs(__UpperCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : List[Any] , __UpperCamelCase : Node ) -> bool: return self.f_cost < other.f_cost class UpperCAmelCase_ : def __init__( self : List[Any] , __UpperCamelCase : TPosition , __UpperCamelCase : TPosition ) -> Tuple: _UpperCamelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __UpperCamelCase ) _UpperCamelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , __UpperCamelCase ) _UpperCamelCase = [self.start] _UpperCamelCase = [] _UpperCamelCase = False def _UpperCamelCase ( self : Union[str, Any] ) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _UpperCamelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(__UpperCamelCase ) self.closed_nodes.append(__UpperCamelCase ) _UpperCamelCase = self.get_successors(__UpperCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__UpperCamelCase ) else: # retrieve the best current path _UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(__UpperCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__UpperCamelCase ) else: self.open_nodes.append(__UpperCamelCase ) return [self.start.pos] def _UpperCamelCase ( self : List[str] , __UpperCamelCase : Node ) -> list[Node]: _UpperCamelCase = [] for action in delta: _UpperCamelCase = parent.pos_x + action[1] _UpperCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__UpperCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __UpperCamelCase , __UpperCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __UpperCamelCase , ) ) return successors def _UpperCamelCase ( self : str , __UpperCamelCase : Node | None ) -> list[TPosition]: _UpperCamelCase = node _UpperCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _UpperCamelCase = current_node.parent path.reverse() return path class UpperCAmelCase_ : def __init__( self : int , __UpperCamelCase : TPosition , __UpperCamelCase : TPosition ) -> None: _UpperCamelCase = AStar(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = AStar(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = False def _UpperCamelCase ( self : List[str] ) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _UpperCamelCase = self.fwd_astar.open_nodes.pop(0 ) _UpperCamelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( __UpperCamelCase , __UpperCamelCase ) self.fwd_astar.closed_nodes.append(__UpperCamelCase ) self.bwd_astar.closed_nodes.append(__UpperCamelCase ) _UpperCamelCase = current_bwd_node _UpperCamelCase = current_fwd_node _UpperCamelCase = { self.fwd_astar: self.fwd_astar.get_successors(__UpperCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(__UpperCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(__UpperCamelCase ) else: # retrieve the best current path _UpperCamelCase = astar.open_nodes.pop( astar.open_nodes.index(__UpperCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(__UpperCamelCase ) else: astar.open_nodes.append(__UpperCamelCase ) return [self.fwd_astar.start.pos] def _UpperCamelCase ( self : Tuple , __UpperCamelCase : Node , __UpperCamelCase : Node ) -> list[TPosition]: _UpperCamelCase = self.fwd_astar.retrace_path(__UpperCamelCase ) _UpperCamelCase = self.bwd_astar.retrace_path(__UpperCamelCase ) bwd_path.pop() bwd_path.reverse() _UpperCamelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCAmelCase = (0, 0) UpperCAmelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCAmelCase = time.time() UpperCAmelCase = AStar(init, goal) UpperCAmelCase = a_star.search() UpperCAmelCase = time.time() - start_time print(F'''AStar execution time = {end_time:f} seconds''') UpperCAmelCase = time.time() UpperCAmelCase = BidirectionalAStar(init, goal) UpperCAmelCase = time.time() - bd_start_time print(F'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
420
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json""", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class UpperCAmelCase_ ( _lowercase): snake_case__ = '''gpt_neox''' def __init__( self : Dict , __UpperCamelCase : int=5_0432 , __UpperCamelCase : List[Any]=6144 , __UpperCamelCase : str=44 , __UpperCamelCase : List[str]=64 , __UpperCamelCase : int=2_4576 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : Dict=0.2_5 , __UpperCamelCase : int=1_0000 , __UpperCamelCase : Optional[Any]=0.0 , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Dict=2048 , __UpperCamelCase : Optional[Any]=0.0_2 , __UpperCamelCase : Optional[Any]=1E-5 , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Optional[int]=0 , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : List[Any]=False , __UpperCamelCase : List[str]=True , __UpperCamelCase : Optional[Any]=None , **__UpperCamelCase : Union[str, Any] , ) -> Union[str, Any]: super().__init__(bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) _UpperCamelCase = vocab_size _UpperCamelCase = max_position_embeddings _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = rotary_pct _UpperCamelCase = rotary_emb_base _UpperCamelCase = attention_dropout _UpperCamelCase = hidden_dropout _UpperCamelCase = classifier_dropout _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = use_cache _UpperCamelCase = tie_word_embeddings _UpperCamelCase = use_parallel_residual _UpperCamelCase = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def _UpperCamelCase ( self : Optional[int] ) -> Tuple: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F'''got {self.rope_scaling}''' ) _UpperCamelCase = self.rope_scaling.get('''type''' , __UpperCamelCase ) _UpperCamelCase = self.rope_scaling.get('''factor''' , __UpperCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__UpperCamelCase , __UpperCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
420
1
'''simple docstring''' import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowercase_ : Optional[Any] = False class __UpperCamelCase (unittest.TestCase ): def _a ( self , _lowerCAmelCase=32 ) -> Union[str, Any]: '''simple docstring''' set_seed(0 ) lowercase = UNetaDModel(sample_size=_lowerCAmelCase , in_channels=3 , out_channels=3 ) lowercase = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = """cpu""" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowercase = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=_lowerCAmelCase , ) lowercase = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=_lowerCAmelCase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowercase = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(_lowerCAmelCase ) for _ in range(4 )] lowercase = [torch.randn((4, 3, 32, 32) ).to(_lowerCAmelCase ) for _ in range(4 )] lowercase = [torch.randint(0 , 1000 , (4,) ).long().to(_lowerCAmelCase ) for _ in range(4 )] # train with a DDPM scheduler lowercase , lowercase = self.get_model_optimizer(resolution=32 ) model.train().to(_lowerCAmelCase ) for i in range(4 ): optimizer.zero_grad() lowercase = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowercase = model(_lowerCAmelCase , timesteps[i] ).sample lowercase = torch.nn.functional.mse_loss(_lowerCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowercase , lowercase = self.get_model_optimizer(resolution=32 ) model.train().to(_lowerCAmelCase ) for i in range(4 ): optimizer.zero_grad() lowercase = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowercase = model(_lowerCAmelCase , timesteps[i] ).sample lowercase = torch.nn.functional.mse_loss(_lowerCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-5 ) )
708
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : str ): lowercase = """""" for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): return data[1:] + data[0] def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Dict ): lowercase = """""" for i in range(len(lowercase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : str ): lowercase = int("""0b""" + data[0] + data[-1] , 2 ) lowercase = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any ): lowercase = message[:4] lowercase = message[4:] lowercase = apply_table(lowercase_ , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) lowercase = apply_sbox(lowercase_ , temp[:4] ) # noqa: E741 lowercase = apply_sbox(lowercase_ , temp[4:] ) lowercase = """0""" * (2 - len(lowercase_ )) + l # noqa: E741 lowercase = """0""" * (2 - len(lowercase_ )) + r lowercase = apply_table(l + r , lowercase_ ) lowercase = xor(lowercase_ , lowercase_ ) return temp + right if __name__ == "__main__": lowercase_ : Tuple = input('''Enter 10 bit key: ''') lowercase_ : Any = input('''Enter 8 bit message: ''') lowercase_ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] lowercase_ : str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowercase_ : List[Any] = [2, 4, 3, 1] lowercase_ : List[str] = [2, 6, 3, 1, 4, 8, 5, 7] lowercase_ : Tuple = [4, 1, 3, 5, 7, 2, 8, 6] lowercase_ : Optional[Any] = [4, 1, 2, 3, 2, 3, 4, 1] lowercase_ : List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowercase_ : List[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowercase_ : Union[str, Any] = apply_table(key, paa_table) lowercase_ : Optional[Any] = temp[:5] lowercase_ : int = temp[5:] lowercase_ : List[str] = left_shift(left) lowercase_ : int = left_shift(right) lowercase_ : Tuple = apply_table(left + right, pa_table) lowercase_ : List[str] = left_shift(left) lowercase_ : Optional[Any] = left_shift(right) lowercase_ : Union[str, Any] = left_shift(left) lowercase_ : Union[str, Any] = left_shift(right) lowercase_ : Optional[int] = apply_table(left + right, pa_table) # encryption lowercase_ : int = apply_table(message, IP) lowercase_ : Dict = function(expansion, sa, sa, keya, temp) lowercase_ : Any = temp[4:] + temp[:4] lowercase_ : List[Any] = function(expansion, sa, sa, keya, temp) lowercase_ : Tuple = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption lowercase_ : List[str] = apply_table(CT, IP) lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = temp[4:] + temp[:4] lowercase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowercase_ : Optional[Any] = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
653
0
from __future__ import annotations class __lowerCamelCase : """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int]=None ) -> Optional[int]: lowerCAmelCase__ = data lowerCAmelCase__ = None def __repr__( self : str ) -> Optional[Any]: lowerCAmelCase__ = [] lowerCAmelCase__ = self while temp: string_rep.append(f'{temp.data}' ) lowerCAmelCase__ = temp.next return "->".join(SCREAMING_SNAKE_CASE__ ) def _A ( lowerCAmelCase_ : list ): """simple docstring""" if not elements_list: raise Exception("The Elements List is empty" ) lowerCAmelCase__ = lowerCAmelCase__ = Node(elements_list[0] ) for i in range(1 , len(lowerCAmelCase_ ) ): lowerCAmelCase__ = Node(elements_list[i] ) lowerCAmelCase__ = current.next return head def _A ( lowerCAmelCase_ : Node ): """simple docstring""" if head_node is not None and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): print_reverse(head_node.next ) print(head_node.data ) def _A ( ): """simple docstring""" from doctest import testmod testmod() lowerCAmelCase__ = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(lowerCAmelCase_ ) print("Elements in Reverse:" ) print_reverse(lowerCAmelCase_ ) if __name__ == "__main__": main()
61
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: _lowercase = ksize + 1 _lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(SCREAMING_SNAKE_CASE_ ): for x in range(SCREAMING_SNAKE_CASE_ ): # distance from center _lowercase = x - ksize // 2 _lowercase = y - ksize // 2 # degree to radiant _lowercase = theta / 1_80 * np.pi _lowercase = np.cos(_theta ) _lowercase = np.sin(_theta ) # get kernel x _lowercase = cos_theta * px + sin_theta * py # get kernel y _lowercase = -sin_theta * px + cos_theta * py # fill kernel _lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image A : Optional[Any] = imread('''../image_data/lena.jpg''') # turn image in gray scale value A : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges A : Optional[int] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: A : Optional[int] = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) A : int = out / out.max() * 255 A : str = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
287
0
'''simple docstring''' import os from distutils.util import strtobool def _snake_case ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: """simple docstring""" for e in env_keys: lowerCAmelCase = int(os.environ.get(_SCREAMING_SNAKE_CASE , -1 ) ) if val >= 0: return val return default def _snake_case ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int]=False ) -> List[str]: """simple docstring""" lowerCAmelCase = os.environ.get(_SCREAMING_SNAKE_CASE , str(_SCREAMING_SNAKE_CASE ) ) return strtobool(_SCREAMING_SNAKE_CASE ) == 1 # As its name indicates `strtobool` actually returns an int... def _snake_case ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any]="no" ) -> List[str]: """simple docstring""" lowerCAmelCase = os.environ.get(_SCREAMING_SNAKE_CASE , str(_SCREAMING_SNAKE_CASE ) ) return value
344
'''simple docstring''' import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCAmelCase = parser.parse_args() if args.model_type == "roberta": UpperCAmelCase = RobertaForMaskedLM.from_pretrained(args.model_name) UpperCAmelCase = 'roberta' elif args.model_type == "gpt2": UpperCAmelCase = GPTaLMHeadModel.from_pretrained(args.model_name) UpperCAmelCase = 'transformer' UpperCAmelCase = model.state_dict() UpperCAmelCase = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: UpperCAmelCase = state_dict[F'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: UpperCAmelCase = F'''{prefix}.embeddings.{w}.weight''' UpperCAmelCase = state_dict[param_name] for w in ["weight", "bias"]: UpperCAmelCase = F'''{prefix}.embeddings.LayerNorm.{w}''' UpperCAmelCase = state_dict[param_name] # Transformer Blocks # UpperCAmelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: UpperCAmelCase = state_dict[ F'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] UpperCAmelCase = state_dict[F'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: UpperCAmelCase = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: UpperCAmelCase = state_dict[F'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: UpperCAmelCase = state_dict[F'''lm_head.dense.{w}'''] UpperCAmelCase = state_dict[F'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: UpperCAmelCase = state_dict[F'''{prefix}.ln_f.{w}'''] UpperCAmelCase = state_dict['lm_head.weight'] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
344
1