code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _a : str = logging.get_logger(__name__) _a : int = {'vocab_file': 'vocab.txt'} _a : int = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } _a : Dict = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } _a : Optional[int] = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class a_ ( lowercase_ ): A__ : int = VOCAB_FILES_NAMES A__ : str = PRETRAINED_VOCAB_FILES_MAP A__ : Tuple = PRETRAINED_INIT_CONFIGURATION A__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = ConvBertTokenizer def __init__( self : Optional[int] , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Dict="[UNK]" , UpperCAmelCase__ : Union[str, Any]="[SEP]" , UpperCAmelCase__ : List[Any]="[PAD]" , UpperCAmelCase__ : Tuple="[CLS]" , UpperCAmelCase__ : List[str]="[MASK]" , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[Any] , ): """simple docstring""" super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , tokenize_chinese_chars=lowerCamelCase_ , strip_accents=lowerCamelCase_ , **lowerCamelCase_ , ) snake_case : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCamelCase_ ) != tokenize_chinese_chars ): snake_case : List[Any] = getattr(lowerCamelCase_ , normalizer_state.pop('''type''' ) ) snake_case : int = do_lower_case snake_case : Optional[Any] = strip_accents snake_case : int = tokenize_chinese_chars snake_case : Any = normalizer_class(**lowerCamelCase_ ) snake_case : List[str] = do_lower_case def lowerCAmelCase( self : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int]=None ): """simple docstring""" snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase( self : str , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" snake_case : Optional[Any] = [self.sep_token_id] snake_case : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ): """simple docstring""" snake_case : List[Any] = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
598
'''simple docstring''' from math import factorial def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if n < k or k < 0: raise ValueError("""Please enter positive integers for n and k where n >= k""" ) return factorial(lowerCamelCase_ ) // (factorial(lowerCamelCase_ ) * factorial(n - k )) if __name__ == "__main__": print( """The number of five-card hands possible from a standard""", f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( """If a class of 40 students must be arranged into groups of""", f'''4 for group projects, there are {combinations(40, 4)} ways''', """to arrange them.\n""", ) print( """If 10 teams are competing in a Formula One race, there""", f'''are {combinations(10, 3)} ways that first, second and''', """third place can be awarded.""", )
379
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class a__ ( __lowercase ): UpperCAmelCase__ = '''sew-d''' def __init__( self :Optional[int] , _lowerCamelCase :List[str]=32 , _lowerCamelCase :Union[str, Any]=768 , _lowerCamelCase :str=12 , _lowerCamelCase :List[Any]=12 , _lowerCamelCase :Optional[Any]=3_072 , _lowerCamelCase :Optional[int]=2 , _lowerCamelCase :Optional[Any]=512 , _lowerCamelCase :int=256 , _lowerCamelCase :Union[str, Any]=True , _lowerCamelCase :str=True , _lowerCamelCase :Optional[int]=("p2c", "c2p") , _lowerCamelCase :Optional[int]="layer_norm" , _lowerCamelCase :Any="gelu_python" , _lowerCamelCase :int=0.1 , _lowerCamelCase :Optional[int]=0.1 , _lowerCamelCase :Any=0.1 , _lowerCamelCase :Any=0.0 , _lowerCamelCase :Optional[Any]=0.1 , _lowerCamelCase :int=0.02 , _lowerCamelCase :Dict=1E-7 , _lowerCamelCase :str=1E-5 , _lowerCamelCase :str="group" , _lowerCamelCase :Optional[int]="gelu" , _lowerCamelCase :List[Any]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _lowerCamelCase :Tuple=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _lowerCamelCase :int=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _lowerCamelCase :Dict=False , _lowerCamelCase :List[Any]=128 , _lowerCamelCase :str=16 , _lowerCamelCase :List[str]=True , _lowerCamelCase :Dict=0.05 , _lowerCamelCase :int=10 , _lowerCamelCase :Tuple=2 , _lowerCamelCase :str=0.0 , _lowerCamelCase :Dict=10 , _lowerCamelCase :int=0 , _lowerCamelCase :Any="mean" , _lowerCamelCase :Any=False , _lowerCamelCase :List[str]=False , _lowerCamelCase :int=256 , _lowerCamelCase :Tuple=0 , _lowerCamelCase :List[str]=1 , _lowerCamelCase :str=2 , **_lowerCamelCase :List[str] , ): '''simple docstring''' super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) UpperCamelCase_ : Any =hidden_size UpperCamelCase_ : Union[str, Any] =feat_extract_norm UpperCamelCase_ : Union[str, Any] =feat_extract_activation UpperCamelCase_ : Union[str, Any] =list(__a ) UpperCamelCase_ : str =list(__a ) UpperCamelCase_ : List[str] =list(__a ) UpperCamelCase_ : Dict =conv_bias UpperCamelCase_ : Dict =num_conv_pos_embeddings UpperCamelCase_ : Optional[Any] =num_conv_pos_embedding_groups UpperCamelCase_ : Union[str, Any] =len(self.conv_dim ) UpperCamelCase_ : List[str] =num_hidden_layers UpperCamelCase_ : Tuple =intermediate_size UpperCamelCase_ : int =squeeze_factor UpperCamelCase_ : Tuple =max_position_embeddings UpperCamelCase_ : Any =position_buckets UpperCamelCase_ : Dict =share_att_key UpperCamelCase_ : int =relative_attention UpperCamelCase_ : Tuple =norm_rel_ebd UpperCamelCase_ : Optional[Any] =list(__a ) UpperCamelCase_ : Optional[int] =hidden_act UpperCamelCase_ : str =num_attention_heads UpperCamelCase_ : Tuple =hidden_dropout UpperCamelCase_ : Optional[Any] =attention_dropout UpperCamelCase_ : List[Any] =activation_dropout UpperCamelCase_ : Any =feat_proj_dropout UpperCamelCase_ : Dict =final_dropout UpperCamelCase_ : Optional[Any] =layer_norm_eps UpperCamelCase_ : Union[str, Any] =feature_layer_norm_eps UpperCamelCase_ : Dict =initializer_range UpperCamelCase_ : Dict =vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase_ : Any =apply_spec_augment UpperCamelCase_ : Dict =mask_time_prob UpperCamelCase_ : Any =mask_time_length UpperCamelCase_ : str =mask_time_min_masks UpperCamelCase_ : int =mask_feature_prob UpperCamelCase_ : int =mask_feature_length UpperCamelCase_ : Optional[int] =mask_feature_min_masks # ctc loss UpperCamelCase_ : Dict =ctc_loss_reduction UpperCamelCase_ : Optional[int] =ctc_zero_infinity # sequence classification UpperCamelCase_ : int =use_weighted_layer_sum UpperCamelCase_ : Tuple =classifier_proj_size @property def lowerCamelCase_ ( self :str ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
720
"""simple docstring""" def A_ ( __lowercase ): UpperCamelCase_ : List[str] ='' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def A_ ( __lowercase ): UpperCamelCase_ : int =[chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key UpperCamelCase_ : Any =remove_duplicates(key.upper() ) UpperCamelCase_ : int =len(__lowercase ) # First fill cipher with key characters UpperCamelCase_ : Union[str, Any] ={alphabet[i]: char for i, char in enumerate(__lowercase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__lowercase ) , 26 ): UpperCamelCase_ : List[Any] =alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 UpperCamelCase_ : str =alphabet[i - offset] UpperCamelCase_ : int =char return cipher_alphabet def A_ ( __lowercase , __lowercase ): return "".join(cipher_map.get(__lowercase , __lowercase ) for ch in message.upper() ) def A_ ( __lowercase , __lowercase ): UpperCamelCase_ : str ={v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__lowercase , __lowercase ) for ch in message.upper() ) def A_ ( ): UpperCamelCase_ : Tuple =input('Enter message to encode or decode: ' ).strip() UpperCamelCase_ : int =input('Enter keyword: ' ).strip() UpperCamelCase_ : List[Any] =input('Encipher or decipher? E/D:' ).strip()[0].lower() try: UpperCamelCase_ : List[str] ={'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) UpperCamelCase_ : List[Any] =create_cipher_map(__lowercase ) print(func(__lowercase , __lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
395
0
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: if not is_accelerate_available(): return method __A : Union[str, Any] = version.parse(accelerate.__version__ ).base_version if version.parse(__snake_case ) < version.parse('0.17.0' ): return method def wrapper(self : Optional[int] , *__snake_case : int , **__snake_case : int ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *__snake_case , **__snake_case ) return wrapper
8
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A_ : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A_ : str = 250004 A_ : str = 250020 @require_sentencepiece @require_tokenizers class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MBartTokenizer lowerCamelCase__ = MBartTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def __UpperCamelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self ): snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) snake_case__ : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case__ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case__ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def __UpperCamelCase ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case__ : Optional[int] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = tempfile.mkdtemp() snake_case__ : int = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) snake_case__ : List[str] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way snake_case__ : Tuple = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True snake_case__ : Any = tempfile.mkdtemp() snake_case__ : Optional[int] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) snake_case__ : int = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way snake_case__ : List[Any] = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False snake_case__ : Dict = tempfile.mkdtemp() snake_case__ : Union[str, Any] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case__ : Dict = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = '''facebook/mbart-large-en-ro''' lowerCamelCase__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] lowerCamelCase__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] lowerCamelCase__ = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def __UpperCamelCase ( cls ): snake_case__ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) snake_case__ : Any = 1 return cls def __UpperCamelCase ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 2_5_0_0_2_0 ) def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): self.assertIn(__SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids ) snake_case__ : List[str] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] snake_case__ : List[Any] = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertNotIn(self.tokenizer.eos_token , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = ["""this is gunna be a long sentence """ * 2_0] assert isinstance(src_text[0] , __SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = 1_0 snake_case__ : int = self.tokenizer(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = tempfile.mkdtemp() snake_case__ : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = MBartTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __SCREAMING_SNAKE_CASE ) @require_torch def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) snake_case__ : int = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) snake_case__ : List[str] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) snake_case__ : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.tokenizer(self.src_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=3 , return_tensors="""pt""" ) snake_case__ : Optional[int] = self.tokenizer( text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=1_0 , return_tensors="""pt""" ) snake_case__ : str = targets["""input_ids"""] snake_case__ : Optional[Any] = shift_tokens_right(__SCREAMING_SNAKE_CASE , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def __UpperCamelCase ( self ): snake_case__ : Tuple = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , { # A, test, EOS, en_XX """input_ids""": [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 2_5_0_0_0_1, } , )
38
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: lowerCamelCase_ : Optional[int] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase_ : Any = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(lowercase_ ) , torch_builtin(lowercase_ ) ) ) self.assertFalse(torch.allclose(gelu_python(lowercase_ ) , gelu_new(lowercase_ ) ) ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: lowerCamelCase_ : Tuple = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase_ : List[Any] = get_activation("gelu" ) lowerCamelCase_ : List[Any] = get_activation("gelu_10" ) lowerCamelCase_ : str = torch_builtin(lowercase_ ) lowerCamelCase_ : Optional[int] = geluaa(lowercase_ ) lowerCamelCase_ : List[Any] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(lowercase_ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(lowercase_ ): get_activation("bogus" ) with self.assertRaises(lowercase_ ): get_activation(lowercase_ ) def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: lowerCamelCase_ : Tuple = get_activation("gelu" ) lowerCamelCase_ : Dict = 1 lowerCamelCase_ : Dict = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(lowercase_ ): lowerCamelCase_ : int = acta.a
704
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. snake_case_ : List[Any] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. snake_case_ : Tuple = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. snake_case_ : Optional[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def __a ( __UpperCAmelCase : str , __UpperCAmelCase : str ) -> tuple[str, float]: """simple docstring""" lowerCamelCase_ : Tuple = len([g for position, g in enumerate(__UpperCAmelCase ) if g == main_target[position]] ) return (item, float(__UpperCAmelCase )) def __a ( __UpperCAmelCase : str , __UpperCAmelCase : str ) -> tuple[str, str]: """simple docstring""" lowerCamelCase_ : Optional[Any] = random.randint(0 , len(__UpperCAmelCase ) - 1 ) lowerCamelCase_ : Union[str, Any] = parent_a[:random_slice] + parent_a[random_slice:] lowerCamelCase_ : str = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __a ( __UpperCAmelCase : str , __UpperCAmelCase : list[str] ) -> str: """simple docstring""" lowerCamelCase_ : Dict = list(__UpperCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowerCamelCase_ : Optional[int] = random.choice(__UpperCAmelCase ) return "".join(__UpperCAmelCase ) def __a ( __UpperCAmelCase : tuple[str, float] , __UpperCAmelCase : list[tuple[str, float]] , __UpperCAmelCase : list[str] , ) -> list[str]: """simple docstring""" lowerCamelCase_ : Tuple = [] # Generate more children proportionally to the fitness score. lowerCamelCase_ : str = int(parent_a[1] * 100 ) + 1 lowerCamelCase_ : List[str] = 10 if child_n >= 10 else child_n for _ in range(__UpperCAmelCase ): lowerCamelCase_ : str = population_score[random.randint(0 , __UpperCAmelCase )][0] lowerCamelCase_ , lowerCamelCase_ : str = crossover(parent_a[0] , __UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(__UpperCAmelCase , __UpperCAmelCase ) ) pop.append(mutate(__UpperCAmelCase , __UpperCAmelCase ) ) return pop def __a ( __UpperCAmelCase : str , __UpperCAmelCase : list[str] , __UpperCAmelCase : bool = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: lowerCamelCase_ : Tuple = f"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(__UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCamelCase_ : int = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCamelCase_ : Optional[int] = f"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(__UpperCAmelCase ) # Generate random starting population. lowerCamelCase_ : int = [] for _ in range(__UpperCAmelCase ): population.append("".join([random.choice(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCamelCase_ , lowerCamelCase_ : List[str] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCamelCase_ : int = [evaluate(__UpperCAmelCase , __UpperCAmelCase ) for item in population] # Check if there is a matching evolution. lowerCamelCase_ : Any = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x[1] , reverse=__UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"\nGeneration: {generation}" f"\nTotal Population:{total_population}" f"\nBest score: {population_score[0][1]}" f"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCamelCase_ : List[Any] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__UpperCAmelCase ) # Normalize population score to be between 0 and 1. lowerCamelCase_ : Optional[int] = [ (item, score / len(__UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(__UpperCAmelCase ): population.extend(select(population_score[int(__UpperCAmelCase )] , __UpperCAmelCase , __UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": snake_case_ : str = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) snake_case_ : Optional[int] = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = basic(target_str, genes_list) print( f"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}" )
253
0
def UpperCamelCase__ ( _A: str ): '''simple docstring''' return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def UpperCamelCase__ ( _A: str ): '''simple docstring''' __lowerCamelCase = credit_card_number __lowerCamelCase = 0 __lowerCamelCase = len(_SCREAMING_SNAKE_CASE ) - 2 for i in range(_SCREAMING_SNAKE_CASE , -1 , -2 ): # double the value of every second digit __lowerCamelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 __lowerCamelCase = cc_number[:i] + str(_SCREAMING_SNAKE_CASE ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def UpperCamelCase__ ( _A: str ): '''simple docstring''' __lowerCamelCase = f'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(f'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(_SCREAMING_SNAKE_CASE ) <= 16: print(f'''{error_message} of its length.''' ) return False if not validate_initial_digits(_SCREAMING_SNAKE_CASE ): print(f'''{error_message} of its first two digits.''' ) return False if not luhn_validation(_SCREAMING_SNAKE_CASE ): print(f'''{error_message} it fails the Luhn check.''' ) return False print(f'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
479
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[str] = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
602
0
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class UpperCamelCase ( _snake_case ): def __init__(self : Any , _A : str = "▁" , _A : bool = True , _A : Union[str, AddedToken] = "<unk>" , _A : Union[str, AddedToken] = "</s>" , _A : Union[str, AddedToken] = "<pad>" , ) -> Optional[Any]: __snake_case : Dict = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __snake_case : Dict = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): __snake_case : Optional[int] = token_dict['token'] __snake_case : Optional[int] = Tokenizer(Unigram()) __snake_case : Dict = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}') , ' '), normalizers.Lowercase(), ]) __snake_case : Tuple = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__), pre_tokenizers.Digits(individual_digits=lowerCAmelCase__), pre_tokenizers.Punctuation(), ]) __snake_case : Union[str, Any] = decoders.Metaspace(replacement=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__) __snake_case : str = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __snake_case : Tuple = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(lowerCAmelCase__ , lowerCAmelCase__) def _lowercase (self : Any , _A : Union[str, List[str]] , _A : int = 80_00 , _A : bool = True , ) -> List[str]: __snake_case : Optional[int] = trainers.UnigramTrainer( vocab_size=lowerCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=lowerCAmelCase__ , ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__): __snake_case : List[Any] = [files] self._tokenizer.train(lowerCAmelCase__ , trainer=lowerCAmelCase__) self.add_unk_id() def _lowercase (self : Tuple , _A : Union[Iterator[str], Iterator[Iterator[str]]] , _A : int = 80_00 , _A : bool = True , ) -> List[Any]: __snake_case : List[str] = trainers.UnigramTrainer( vocab_size=lowerCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=lowerCAmelCase__ , ) self._tokenizer.train_from_iterator(lowerCAmelCase__ , trainer=lowerCAmelCase__) self.add_unk_id() def _lowercase (self : List[Any]) -> Dict: __snake_case : int = json.loads(self._tokenizer.to_str()) __snake_case : Tuple = self.special_tokens['unk']['id'] __snake_case : Union[str, Any] = Tokenizer.from_str(json.dumps(lowerCAmelCase__))
701
"""simple docstring""" import argparse from collections import defaultdict import yaml _a : Tuple= "docs/source/en/_toctree.yml" def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] ) -> Dict: '''simple docstring''' __snake_case : Union[str, Any] = defaultdict(UpperCAmelCase_ ) __snake_case : List[str] = [] __snake_case : Tuple = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(UpperCAmelCase_ ) __snake_case : Any = new_doc_list __snake_case : Dict = [key for key, value in counts.items() if value > 1] __snake_case : Optional[int] = [] for duplicate_key in duplicates: __snake_case : Tuple = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(UpperCAmelCase_ ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) __snake_case : List[Any] = sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(UpperCAmelCase_ ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(UpperCAmelCase_ ) # Sort return overview_doc def __UpperCAmelCase ( UpperCAmelCase_ : Optional[int]=False ) -> str: '''simple docstring''' with open(UpperCAmelCase_ , encoding='utf-8' ) as f: __snake_case : List[Any] = yaml.safe_load(f.read() ) # Get to the API doc __snake_case : str = 0 while content[api_idx]["title"] != "API": api_idx += 1 __snake_case : Union[str, Any] = content[api_idx]['sections'] # Then to the model doc __snake_case : Dict = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 __snake_case : Optional[Any] = api_doc[scheduler_idx]['sections'] __snake_case : Tuple = clean_doc_toc(UpperCAmelCase_ ) __snake_case : Tuple = False if new_scheduler_doc != scheduler_doc: __snake_case : Optional[int] = True if overwrite: __snake_case : Tuple = new_scheduler_doc if diff: if overwrite: __snake_case : Optional[int] = api_doc with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(UpperCAmelCase_ , allow_unicode=UpperCAmelCase_ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def __UpperCAmelCase ( UpperCAmelCase_ : Any=False ) -> Union[str, Any]: '''simple docstring''' with open(UpperCAmelCase_ , encoding='utf-8' ) as f: __snake_case : Dict = yaml.safe_load(f.read() ) # Get to the API doc __snake_case : Dict = 0 while content[api_idx]["title"] != "API": api_idx += 1 __snake_case : Dict = content[api_idx]['sections'] # Then to the model doc __snake_case : Dict = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 __snake_case : Optional[int] = False __snake_case : Optional[Any] = api_doc[pipeline_idx]['sections'] __snake_case : Tuple = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: __snake_case : List[str] = pipeline_doc['section'] __snake_case : Optional[int] = clean_doc_toc(UpperCAmelCase_ ) if overwrite: __snake_case : List[Any] = new_sub_pipeline_doc new_pipeline_docs.append(UpperCAmelCase_ ) # sort overall pipeline doc __snake_case : List[Any] = clean_doc_toc(UpperCAmelCase_ ) if new_pipeline_docs != pipeline_docs: __snake_case : Dict = True if overwrite: __snake_case : Tuple = new_pipeline_docs if diff: if overwrite: __snake_case : Union[str, Any] = api_doc with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(UpperCAmelCase_ , allow_unicode=UpperCAmelCase_ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": _a : Optional[int]= argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _a : List[str]= parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
192
0
'''simple docstring''' from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging UpperCAmelCase = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Union[str, Any] , __lowercase : Optional[Any] = 101 ): """simple docstring""" __lowercase =length def __len__( self : Tuple ): """simple docstring""" return self.length def __getitem__( self : str , __lowercase : Any ): """simple docstring""" return i class lowerCAmelCase : def __call__( self : Tuple , __lowercase : int ): """simple docstring""" return {"input_ids": torch.tensor(a__ ), "labels": torch.tensor(a__ )} class lowerCAmelCase ( nn.Module ): def __init__( self : Dict ): """simple docstring""" super().__init__() # Add some (unused) params otherwise DDP will complain. __lowercase =nn.Linear(120 , 80 ) def snake_case ( self : List[Any] , __lowercase : Optional[int] , __lowercase : Any=None ): """simple docstring""" if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): @require_torch_neuroncore def snake_case ( self : str ): """simple docstring""" __lowercase =f'''--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '''.split() __lowercase =self.get_auto_remove_tmp_dir() __lowercase =f'''--output_dir {output_dir}'''.split() __lowercase =["""torchrun"""] + distributed_args + args execute_subprocess_async(a__ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): @require_torch_multi_gpu def snake_case ( self : Tuple ): """simple docstring""" __lowercase =f'''--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '''.split() __lowercase =self.get_auto_remove_tmp_dir() __lowercase =f'''--output_dir {output_dir}'''.split() __lowercase =["""torchrun"""] + distributed_args + args execute_subprocess_async(a__ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py UpperCAmelCase = HfArgumentParser((TrainingArguments,)) UpperCAmelCase = parser.parse_args_into_dataclasses()[0] logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' F'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: UpperCAmelCase = DummyDataset(dataset_length) def __UpperCamelCase ( lowercase__ : EvalPrediction ): '''simple docstring''' __lowercase =list(range(len(_lowerCamelCase ) ) ) __lowercase =p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' F'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} UpperCAmelCase = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) UpperCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) UpperCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) UpperCAmelCase = 2 UpperCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) UpperCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) UpperCAmelCase = None
119
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): # TODO: is there an appropriate internal test set? _UpperCamelCase : int = "ssube/stable-diffusion-x4-upscaler-onnx" def __A ( self , a__=0 ): _lowerCAmelCase : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(a__ ) ) _lowerCAmelCase : List[Any] = torch.manual_seed(a__ ) _lowerCAmelCase : Any = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __A ( self ): _lowerCAmelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : List[Any] = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**a__ ).images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : List[Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a__ ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Dict = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**a__ ).images _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Any = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = self.get_dummy_inputs() _lowerCAmelCase : str = pipe(**a__ ).images _lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Any = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Any = self.get_dummy_inputs() _lowerCAmelCase : str = pipe(**a__ ).images _lowerCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : List[str] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __A ( self ): _lowerCAmelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _lowerCAmelCase : Tuple = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Tuple = self.get_dummy_inputs() _lowerCAmelCase : Any = pipe(**a__ ).images _lowerCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Dict = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __A ( unittest.TestCase ): @property def __A ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __A ( self ): _lowerCAmelCase : str = ort.SessionOptions() _lowerCAmelCase : Tuple = False return options def __A ( self ): _lowerCAmelCase : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _lowerCAmelCase : Any = init_image.resize((128, 128) ) # using the PNDM scheduler by default _lowerCAmelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[int] = """A fantasy landscape, trending on artstation""" _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : Dict = pipe( prompt=a__ , image=a__ , guidance_scale=7.5 , num_inference_steps=10 , generator=a__ , output_type="""np""" , ) _lowerCAmelCase : List[str] = output.images _lowerCAmelCase : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _lowerCAmelCase : Dict = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def __A ( self ): _lowerCAmelCase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _lowerCAmelCase : Union[str, Any] = init_image.resize((128, 128) ) _lowerCAmelCase : int = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , subfolder="""scheduler""" ) _lowerCAmelCase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , scheduler=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : List[Any] = """A fantasy landscape, trending on artstation""" _lowerCAmelCase : List[Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe( prompt=a__ , image=a__ , guidance_scale=7.5 , num_inference_steps=20 , generator=a__ , output_type="""np""" , ) _lowerCAmelCase : List[Any] = output.images _lowerCAmelCase : Optional[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _lowerCAmelCase : Optional[Any] = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
213
0
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class _UpperCamelCase : def __init__( self :str , lowerCamelCase :Optional[int] , lowerCamelCase :Any=13 , lowerCamelCase :Tuple=7 , lowerCamelCase :List[str]=True , lowerCamelCase :int=True , lowerCamelCase :int=True , lowerCamelCase :Tuple=True , lowerCamelCase :Optional[int]=99 , lowerCamelCase :Union[str, Any]=64 , lowerCamelCase :Any=5 , lowerCamelCase :List[Any]=4 , lowerCamelCase :Tuple=37 , lowerCamelCase :Tuple="gelu" , lowerCamelCase :Optional[int]=0.1 , lowerCamelCase :List[Any]=0.1 , lowerCamelCase :Dict=512 , lowerCamelCase :List[str]=16 , lowerCamelCase :List[Any]=2 , lowerCamelCase :List[str]=0.02 , lowerCamelCase :int=3 , lowerCamelCase :str=4 , lowerCamelCase :Tuple=None , ) -> List[Any]: UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_input_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = num_choices UpperCAmelCase__ = scope UpperCAmelCase__ = vocab_size - 1 def UpperCAmelCase_ ( self :Optional[Any] ) -> List[Any]: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self :Optional[int] ) -> Any: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def UpperCAmelCase_ ( self :Union[str, Any] ) -> Optional[Any]: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ = True return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self :str , lowerCamelCase :List[str] , lowerCamelCase :List[Any] , lowerCamelCase :List[str] ) -> str: UpperCAmelCase__ = GPTNeoXModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCAmelCase__ = model(lowerCamelCase , attention_mask=lowerCamelCase ) UpperCAmelCase__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self :int , lowerCamelCase :Any , lowerCamelCase :List[Any] , lowerCamelCase :Tuple ) -> Union[str, Any]: UpperCAmelCase__ = True UpperCAmelCase__ = GPTNeoXModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCAmelCase__ = model(lowerCamelCase , attention_mask=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self :List[Any] , lowerCamelCase :Dict , lowerCamelCase :Union[str, Any] , lowerCamelCase :List[str] , lowerCamelCase :Union[str, Any] ) -> List[Any]: UpperCAmelCase__ = GPTNeoXForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCAmelCase__ = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self :Union[str, Any] , lowerCamelCase :str , lowerCamelCase :Optional[Any] , lowerCamelCase :Union[str, Any] , lowerCamelCase :Tuple ) -> Any: UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = GPTNeoXForQuestionAnswering(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCAmelCase__ = model(lowerCamelCase , attention_mask=lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self :str , lowerCamelCase :Union[str, Any] , lowerCamelCase :int , lowerCamelCase :Dict , lowerCamelCase :Optional[Any] ) -> Union[str, Any]: UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = GPTNeoXForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self :Optional[int] , lowerCamelCase :str , lowerCamelCase :Dict , lowerCamelCase :str , lowerCamelCase :List[Any] ) -> Any: UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = GPTNeoXForTokenClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() UpperCAmelCase__ = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self :Optional[int] , lowerCamelCase :Optional[int] , lowerCamelCase :str , lowerCamelCase :Dict ) -> List[str]: UpperCAmelCase__ = True UpperCAmelCase__ = GPTNeoXForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # first forward pass UpperCAmelCase__ = model(lowerCamelCase , attention_mask=lowerCamelCase , use_cache=lowerCamelCase ) UpperCAmelCase__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase__ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase__ = model(lowerCamelCase , attention_mask=lowerCamelCase , output_hidden_states=lowerCamelCase ) UpperCAmelCase__ = output_from_no_past["hidden_states"][0] UpperCAmelCase__ = model( lowerCamelCase , attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , output_hidden_states=lowerCamelCase , )["hidden_states"][0] # select random slice UpperCAmelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) ) def UpperCAmelCase_ ( self :Tuple ) -> Tuple: UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase_ = (GPTNeoXForCausalLM,) if is_torch_available() else () UpperCAmelCase_ = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def UpperCAmelCase_ ( self :int ) -> Any: UpperCAmelCase__ = GPTNeoXModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=lowerCamelCase , hidden_size=64 , num_attention_heads=8 ) def UpperCAmelCase_ ( self :int ) -> List[str]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self :List[str] ) -> Union[str, Any]: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def UpperCAmelCase_ ( self :str ) -> Optional[Any]: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def UpperCAmelCase_ ( self :List[Any] ) -> Any: # This regression test was failing with PyTorch < 1.3 UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase__ = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def UpperCAmelCase_ ( self :Any ) -> Optional[int]: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def UpperCAmelCase_ ( self :Optional[int] ) -> Union[str, Any]: UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase ) def UpperCAmelCase_ ( self :int ) -> Optional[Any]: UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase ) def UpperCAmelCase_ ( self :Any ) -> Dict: UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase ) def UpperCAmelCase_ ( self :int ) -> Any: UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase ) @unittest.skip(reason="Feed forward chunking is not implemented" ) def UpperCAmelCase_ ( self :Any ) -> Union[str, Any]: pass @parameterized.expand([("linear",), ("dynamic",)] ) def UpperCAmelCase_ ( self :Any , lowerCamelCase :Optional[Any] ) -> Tuple: UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase__ = GPTNeoXModel(lowerCamelCase ) original_model.to(lowerCamelCase ) original_model.eval() UpperCAmelCase__ = original_model(lowerCamelCase ).last_hidden_state UpperCAmelCase__ = original_model(lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase__ = {"type": scaling_type, "factor": 10.0} UpperCAmelCase__ = GPTNeoXModel(lowerCamelCase ) scaled_model.to(lowerCamelCase ) scaled_model.eval() UpperCAmelCase__ = scaled_model(lowerCamelCase ).last_hidden_state UpperCAmelCase__ = scaled_model(lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-5 ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase_ ( self :Tuple ) -> Optional[int]: UpperCAmelCase__ = AutoTokenizer.from_pretrained("EleutherAI/pythia-410m-deduped" ) for checkpointing in [True, False]: UpperCAmelCase__ = GPTNeoXForCausalLM.from_pretrained("EleutherAI/pythia-410m-deduped" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase ) UpperCAmelCase__ = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCamelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 UpperCAmelCase__ = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" UpperCAmelCase__ = model.generate(**lowerCamelCase , do_sample=lowerCamelCase , max_new_tokens=20 ) UpperCAmelCase__ = tokenizer.batch_decode(lowerCamelCase )[0] self.assertEqual(lowerCamelCase , lowerCamelCase )
364
from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=lowerCAmelCase ): UpperCAmelCase_ = ["""flax"""] def __init__( self :List[Any] , *lowerCamelCase :int , **lowerCamelCase :List[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :Union[str, Any] , *lowerCamelCase :Any , **lowerCamelCase :List[str] ) -> int: requires_backends(cls , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :Optional[int] , *lowerCamelCase :List[str] , **lowerCamelCase :List[Any] ) -> Dict: requires_backends(cls , ["flax"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase ): UpperCAmelCase_ = ["""flax"""] def __init__( self :Dict , *lowerCamelCase :int , **lowerCamelCase :str ) -> str: requires_backends(self , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :Optional[int] , *lowerCamelCase :Tuple , **lowerCamelCase :List[Any] ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :Optional[Any] , *lowerCamelCase :Dict , **lowerCamelCase :Optional[int] ) -> List[Any]: requires_backends(cls , ["flax"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase ): UpperCAmelCase_ = ["""flax"""] def __init__( self :List[str] , *lowerCamelCase :Union[str, Any] , **lowerCamelCase :Any ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :List[Any] , *lowerCamelCase :str , **lowerCamelCase :List[Any] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :str , *lowerCamelCase :Any , **lowerCamelCase :Dict ) -> int: requires_backends(cls , ["flax"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase ): UpperCAmelCase_ = ["""flax"""] def __init__( self :Union[str, Any] , *lowerCamelCase :int , **lowerCamelCase :Dict ) -> List[Any]: requires_backends(self , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :int , *lowerCamelCase :Union[str, Any] , **lowerCamelCase :str ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :List[str] , *lowerCamelCase :Optional[int] , **lowerCamelCase :Tuple ) -> Dict: requires_backends(cls , ["flax"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase ): UpperCAmelCase_ = ["""flax"""] def __init__( self :Union[str, Any] , *lowerCamelCase :Any , **lowerCamelCase :List[str] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :Optional[Any] , *lowerCamelCase :Union[str, Any] , **lowerCamelCase :Optional[Any] ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :List[Any] , *lowerCamelCase :Dict , **lowerCamelCase :Optional[int] ) -> List[str]: requires_backends(cls , ["flax"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase ): UpperCAmelCase_ = ["""flax"""] def __init__( self :Tuple , *lowerCamelCase :str , **lowerCamelCase :List[str] ) -> List[Any]: requires_backends(self , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :Any , *lowerCamelCase :List[str] , **lowerCamelCase :Any ) -> int: requires_backends(cls , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :List[Any] , *lowerCamelCase :List[Any] , **lowerCamelCase :Optional[Any] ) -> Tuple: requires_backends(cls , ["flax"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase ): UpperCAmelCase_ = ["""flax"""] def __init__( self :Any , *lowerCamelCase :List[Any] , **lowerCamelCase :List[str] ) -> List[str]: requires_backends(self , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :Optional[Any] , *lowerCamelCase :Optional[int] , **lowerCamelCase :Dict ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :int , *lowerCamelCase :List[Any] , **lowerCamelCase :str ) -> str: requires_backends(cls , ["flax"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase ): UpperCAmelCase_ = ["""flax"""] def __init__( self :str , *lowerCamelCase :Any , **lowerCamelCase :Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :Optional[Any] , *lowerCamelCase :Any , **lowerCamelCase :List[str] ) -> int: requires_backends(cls , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :List[Any] , *lowerCamelCase :Union[str, Any] , **lowerCamelCase :Union[str, Any] ) -> List[Any]: requires_backends(cls , ["flax"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase ): UpperCAmelCase_ = ["""flax"""] def __init__( self :Dict , *lowerCamelCase :Dict , **lowerCamelCase :int ) -> List[Any]: requires_backends(self , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :Tuple , *lowerCamelCase :Optional[Any] , **lowerCamelCase :Optional[int] ) -> Dict: requires_backends(cls , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :Any , *lowerCamelCase :Optional[int] , **lowerCamelCase :List[str] ) -> List[Any]: requires_backends(cls , ["flax"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase ): UpperCAmelCase_ = ["""flax"""] def __init__( self :List[Any] , *lowerCamelCase :int , **lowerCamelCase :Optional[Any] ) -> List[str]: requires_backends(self , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :int , *lowerCamelCase :List[Any] , **lowerCamelCase :List[Any] ) -> Any: requires_backends(cls , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :str , *lowerCamelCase :Optional[int] , **lowerCamelCase :str ) -> List[str]: requires_backends(cls , ["flax"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase ): UpperCAmelCase_ = ["""flax"""] def __init__( self :List[Any] , *lowerCamelCase :str , **lowerCamelCase :int ) -> List[Any]: requires_backends(self , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :List[str] , *lowerCamelCase :List[Any] , **lowerCamelCase :Any ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :Optional[Any] , *lowerCamelCase :Any , **lowerCamelCase :Tuple ) -> int: requires_backends(cls , ["flax"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase ): UpperCAmelCase_ = ["""flax"""] def __init__( self :Any , *lowerCamelCase :List[Any] , **lowerCamelCase :Tuple ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :List[Any] , *lowerCamelCase :int , **lowerCamelCase :Union[str, Any] ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :str , *lowerCamelCase :int , **lowerCamelCase :List[str] ) -> List[str]: requires_backends(cls , ["flax"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase ): UpperCAmelCase_ = ["""flax"""] def __init__( self :int , *lowerCamelCase :Dict , **lowerCamelCase :Optional[int] ) -> str: requires_backends(self , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :Union[str, Any] , *lowerCamelCase :Any , **lowerCamelCase :Union[str, Any] ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def UpperCAmelCase_ ( cls :int , *lowerCamelCase :Union[str, Any] , **lowerCamelCase :Any ) -> Optional[Any]: requires_backends(cls , ["flax"] )
364
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase: str = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Optional[Any] = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCAmelCase: Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
526
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowerCAmelCase: Dict = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase: Union[str, Any] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowerCAmelCase: Union[str, Any] = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') lowerCAmelCase: Optional[Any] = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCAmelCase: int = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowerCAmelCase: List[Any] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def lowerCamelCase__ ( _A ): a : Optional[Any] = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , _A ) return [m.group(0 ) for m in matches] def lowerCamelCase__ ( ): a : Union[str, Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES a : Union[str, Any] = { config.replace('Config' , '' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. a : Union[str, Any] = collections.defaultdict(_A ) a : Optional[Any] = collections.defaultdict(_A ) a : int = collections.defaultdict(_A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(_A ): a : Optional[Any] = None if _re_tf_models.match(_A ) is not None: a : List[str] = tf_models a : str = _re_tf_models.match(_A ).groups()[0] elif _re_flax_models.match(_A ) is not None: a : Optional[int] = flax_models a : List[Any] = _re_flax_models.match(_A ).groups()[0] elif _re_pt_models.match(_A ) is not None: a : int = pt_models a : List[str] = _re_pt_models.match(_A ).groups()[0] if lookup_dict is not None: while len(_A ) > 0: if attr_name in model_prefix_to_model_type: a : Optional[Any] = True break # Try again after removing the last word in the name a : List[str] = ''.join(camel_case_split(_A )[:-1] ) a : Any = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) a : int = list(_A ) all_models.sort() a : Optional[Any] = {'model_type': all_models} a : List[str] = [pt_models[t] for t in all_models] a : str = [tf_models[t] for t in all_models] a : int = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure a : Any = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: a : Optional[int] = 'AutoProcessor' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: a : Union[str, Any] = 'AutoTokenizer' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: a : Tuple = 'AutoFeatureExtractor' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. a : str = 'AutoTokenizer' a : str = [processors[t] for t in all_models] return pd.DataFrame(_A ) def lowerCamelCase__ ( _A ): a : List[Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: a : Optional[Any] = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] a : Optional[int] = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(_A , _A , _A ): # The type of pipeline may not exist in this framework if not hasattr(_A , _A ): continue # First extract all model_names a : List[str] = [] for name in getattr(_A , _A ).values(): if isinstance(_A , _A ): model_names.append(_A ) else: model_names.extend(list(_A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCamelCase__ ( _A , _A ): a : Optional[int] = get_frameworks_table() a : List[str] = Dataset.from_pandas(_A ) a : Optional[Any] = hf_hub_download( 'huggingface/transformers-metadata' , 'pipeline_tags.json' , repo_type='dataset' , token=_A ) a : List[Any] = Dataset.from_json(_A ) a : Optional[Any] = { tags_dataset[i]['model_class']: (tags_dataset[i]['pipeline_tag'], tags_dataset[i]['auto_class']) for i in range(len(_A ) ) } a : Dict = update_pipeline_and_auto_class_table(_A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. a : str = sorted(table.keys() ) a : List[Any] = pd.DataFrame( { 'model_class': model_classes, 'pipeline_tag': [table[m][0] for m in model_classes], 'auto_class': [table[m][1] for m in model_classes], } ) a : Optional[Any] = Dataset.from_pandas(_A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(_A , 'frameworks.json' ) ) tags_dataset.to_json(os.path.join(_A , 'pipeline_tags.json' ) ) if commit_sha is not None: a : int = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: a : Optional[int] = 'Update' upload_folder( repo_id='huggingface/transformers-metadata' , folder_path=_A , repo_type='dataset' , token=_A , commit_message=_A , ) def lowerCamelCase__ ( ): a : int = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} a : List[Any] = transformers_module.pipelines.SUPPORTED_TASKS a : str = [] for key in pipeline_tasks: if key not in in_table: a : Dict = pipeline_tasks[key]['pt'] if isinstance(_A , (list, tuple) ): a : List[Any] = model[0] a : Union[str, Any] = model.__name__ if model not in in_table.values(): missing.append(_A ) if len(_A ) > 0: a : List[str] = ', '.join(_A ) raise ValueError( 'The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": lowerCAmelCase: Tuple = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') lowerCAmelCase: Optional[Any] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
526
1
"""simple docstring""" from __future__ import annotations from typing import Any class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase )-> None: UpperCAmelCase__ : Any = num_of_nodes UpperCAmelCase__ : list[list[int]] = [] UpperCAmelCase__ : dict[int, int] = {} def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> None: self.m_edges.append([u_node, v_node, weight] ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> None: if self.m_component[u_node] != u_node: for k in self.m_component: UpperCAmelCase__ : List[Any] = self.find_component(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> None: if component_size[u_node] <= component_size[v_node]: UpperCAmelCase__ : str = v_node component_size[v_node] += component_size[u_node] self.set_component(__UpperCamelCase ) elif component_size[u_node] >= component_size[v_node]: UpperCAmelCase__ : str = self.find_component(__UpperCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(__UpperCamelCase ) def lowerCAmelCase__ ( self )-> None: UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : int = 0 UpperCAmelCase__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) UpperCAmelCase__ : Tuple = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = edge UpperCAmelCase__ : List[Any] = self.m_component[u] UpperCAmelCase__ : Tuple = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): UpperCAmelCase__ : Dict = [u, v, w] for edge in minimum_weight_edge: if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = edge UpperCAmelCase__ : Any = self.m_component[u] UpperCAmelCase__ : List[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) print(F"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 UpperCAmelCase__ : Union[str, Any] = [-1] * self.m_num_of_nodes print(F"The total weight of the minimal spanning tree is: {mst_weight}" ) def a__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
660
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__ : Union[str, Any] = logging.get_logger(__name__) A__ : Optional[int] = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'table-transformer' _A = ['past_key_values'] _A = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=3 , __UpperCamelCase=1_00 , __UpperCamelCase=6 , __UpperCamelCase=20_48 , __UpperCamelCase=8 , __UpperCamelCase=6 , __UpperCamelCase=20_48 , __UpperCamelCase=8 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=True , __UpperCamelCase="relu" , __UpperCamelCase=2_56 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=1.0 , __UpperCamelCase=False , __UpperCamelCase="sine" , __UpperCamelCase="resnet50" , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=0.1 , **__UpperCamelCase , )-> List[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase__ : Any = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : int = backbone_config.get("model_type" ) UpperCAmelCase__ : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase__ : int = config_class.from_dict(__UpperCamelCase ) # set timm attributes to None UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = None, None, None UpperCAmelCase__ : Optional[int] = use_timm_backbone UpperCAmelCase__ : Dict = backbone_config UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Any = num_queries UpperCAmelCase__ : int = d_model UpperCAmelCase__ : Optional[int] = encoder_ffn_dim UpperCAmelCase__ : str = encoder_layers UpperCAmelCase__ : Dict = encoder_attention_heads UpperCAmelCase__ : Optional[Any] = decoder_ffn_dim UpperCAmelCase__ : Tuple = decoder_layers UpperCAmelCase__ : Optional[Any] = decoder_attention_heads UpperCAmelCase__ : List[str] = dropout UpperCAmelCase__ : Tuple = attention_dropout UpperCAmelCase__ : List[Any] = activation_dropout UpperCAmelCase__ : Dict = activation_function UpperCAmelCase__ : Optional[Any] = init_std UpperCAmelCase__ : List[str] = init_xavier_std UpperCAmelCase__ : int = encoder_layerdrop UpperCAmelCase__ : Tuple = decoder_layerdrop UpperCAmelCase__ : int = encoder_layers UpperCAmelCase__ : Dict = auxiliary_loss UpperCAmelCase__ : Union[str, Any] = position_embedding_type UpperCAmelCase__ : List[str] = backbone UpperCAmelCase__ : List[Any] = use_pretrained_backbone UpperCAmelCase__ : List[str] = dilation # Hungarian matcher UpperCAmelCase__ : Dict = class_cost UpperCAmelCase__ : Any = bbox_cost UpperCAmelCase__ : Tuple = giou_cost # Loss coefficients UpperCAmelCase__ : Any = mask_loss_coefficient UpperCAmelCase__ : Dict = dice_loss_coefficient UpperCAmelCase__ : Any = bbox_loss_coefficient UpperCAmelCase__ : Tuple = giou_loss_coefficient UpperCAmelCase__ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) @property def lowerCAmelCase__ ( self )-> int: return self.encoder_attention_heads @property def lowerCAmelCase__ ( self )-> int: return self.d_model class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = version.parse('1.11' ) @property def lowerCAmelCase__ ( self )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def lowerCAmelCase__ ( self )-> float: return 1E-5 @property def lowerCAmelCase__ ( self )-> int: return 12
660
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowercase( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase__ = ["note_seq"] def __init__( self: List[str], *a_: Optional[Any], **a_: Union[str, Any] ): '''simple docstring''' requires_backends(self, ["""note_seq"""] ) @classmethod def UpperCamelCase_ ( cls: str, *a_: List[str], **a_: Any ): '''simple docstring''' requires_backends(cls, ["""note_seq"""] ) @classmethod def UpperCamelCase_ ( cls: Tuple, *a_: List[Any], **a_: Dict ): '''simple docstring''' requires_backends(cls, ["""note_seq"""] )
609
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["image_processor", "tokenizer"] lowercase_ = "ChineseCLIPImageProcessor" lowercase_ = ("BertTokenizer", "BertTokenizerFast") def __init__(self : Any , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : str) ->Dict: '''simple docstring''' lowerCamelCase__: str =None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase_ , ) lowerCamelCase__: Tuple =kwargs.pop("feature_extractor") lowerCamelCase__: Optional[int] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.image_processor def __call__(self : int , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : Dict) ->Optional[int]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none.") if text is not None: lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_) if images is not None: lowerCamelCase__: List[str] =self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_) if text is not None and images is not None: lowerCamelCase__: Union[str, Any] =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_) , tensor_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int) ->str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any]) ->Dict: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_) @property def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' lowerCamelCase__: str =self.tokenizer.model_input_names lowerCamelCase__: Union[str, Any] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->str: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase_ , ) return self.image_processor_class
59
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : List[Any] = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _A ( __magic_name__): SCREAMING_SNAKE_CASE : List[Any] = '''vivit''' def __init__( self , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=[2, 16, 16] , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu_fast" , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-06 , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Dict = image_size SCREAMING_SNAKE_CASE_ : Optional[Any] = num_frames SCREAMING_SNAKE_CASE_ : Tuple = tubelet_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : Union[str, Any] = qkv_bias super().__init__(**_SCREAMING_SNAKE_CASE )
353
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowerCAmelCase : Optional[int] = logging.get_logger(__name__) @dataclass class _A : def __init__( self , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=6.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="fp4" , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = load_in_abit SCREAMING_SNAKE_CASE_ : Tuple = load_in_abit SCREAMING_SNAKE_CASE_ : Dict = llm_inta_threshold SCREAMING_SNAKE_CASE_ : Tuple = llm_inta_skip_modules SCREAMING_SNAKE_CASE_ : Optional[int] = llm_inta_enable_fpaa_cpu_offload SCREAMING_SNAKE_CASE_ : Optional[Any] = llm_inta_has_fpaa_weight SCREAMING_SNAKE_CASE_ : List[str] = bnb_abit_quant_type SCREAMING_SNAKE_CASE_ : int = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: SCREAMING_SNAKE_CASE_ : List[Any] = torch.floataa elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , torch.dtype ): SCREAMING_SNAKE_CASE_ : Optional[int] = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def UpperCAmelCase ( self ): """simple docstring""" if not isinstance(self.llm_inta_threshold , _SCREAMING_SNAKE_CASE ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , _SCREAMING_SNAKE_CASE ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , _SCREAMING_SNAKE_CASE ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , _SCREAMING_SNAKE_CASE ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , _SCREAMING_SNAKE_CASE ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , _SCREAMING_SNAKE_CASE ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def UpperCAmelCase ( self ): """simple docstring""" return self.load_in_abit or self.load_in_abit def UpperCAmelCase ( self ): """simple docstring""" if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def UpperCAmelCase ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = cls(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for key, value in kwargs.items(): if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) to_remove.append(_SCREAMING_SNAKE_CASE ) for key in to_remove: kwargs.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if return_unused_kwargs: return config, kwargs else: return config def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as writer: SCREAMING_SNAKE_CASE_ : Optional[int] = self.to_dict() SCREAMING_SNAKE_CASE_ : Optional[Any] = json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + '\n' writer.write(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ : str = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ): """simple docstring""" return f"{self.__class__.__name__} {self.to_json_string()}" def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE = True ): """simple docstring""" if use_diff is True: SCREAMING_SNAKE_CASE_ : int = self.to_diff_dict() else: SCREAMING_SNAKE_CASE_ : List[str] = self.to_dict() return json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + "\n" def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.to_dict() # get the default config dict SCREAMING_SNAKE_CASE_ : Optional[Any] = BitsAndBytesConfig().to_dict() SCREAMING_SNAKE_CASE_ : Optional[Any] = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: SCREAMING_SNAKE_CASE_ : int = value return serializable_config_dict
353
1
def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : list[int] , snake_case_ : int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(UpperCAmelCase_ ) ) def lowerCamelCase__ ( snake_case_ : list[list[int]] , snake_case_ : int , snake_case_ : list[int] , snake_case_ : int ) -> bool: if index == len(UpperCAmelCase_ ): return True # Recursive Step for i in range(UpperCAmelCase_ ): if valid_coloring(graph[index] , UpperCAmelCase_ , UpperCAmelCase_ ): # Color current vertex __snake_case = i # Validate coloring if util_color(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , index + 1 ): return True # Backtrack __snake_case = -1 return False def lowerCamelCase__ ( snake_case_ : list[list[int]] , snake_case_ : int ) -> list[int]: __snake_case = [-1] * len(UpperCAmelCase_ ) if util_color(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , 0 ): return colored_vertices return []
592
"""simple docstring""" class UpperCamelCase__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ = "" , SCREAMING_SNAKE_CASE__ = False ) -> None: # Mapping from the first character of the prefix of the node A__ = {} # A node will be a leaf if the tree contains its word A__ = is_leaf A__ = prefix def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> tuple[str, str, str]: A__ = 0 for q, w in zip(self.prefix , SCREAMING_SNAKE_CASE__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> None: for word in words: self.insert(SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> None: # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: A__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: A__ = RadixNode(prefix=SCREAMING_SNAKE_CASE__ , is_leaf=SCREAMING_SNAKE_CASE__ ) else: A__ = self.nodes[word[0]] A__ , A__ , A__ = incoming_node.match( SCREAMING_SNAKE_CASE__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: A__ = remaining_prefix A__ = self.nodes[matching_string[0]] A__ = RadixNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = aux_node if remaining_word == "": A__ = True else: self.nodes[matching_string[0]].insert(SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> bool: A__ = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE__ ) if not incoming_node: return False else: A__ , A__ , A__ = incoming_node.match( SCREAMING_SNAKE_CASE__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> bool: A__ = self.nodes.get(word[0] , SCREAMING_SNAKE_CASE__ ) if not incoming_node: return False else: A__ , A__ , A__ = incoming_node.match( SCREAMING_SNAKE_CASE__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(SCREAMING_SNAKE_CASE__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: A__ = list(self.nodes.values() )[0] A__ = merging_node.is_leaf self.prefix += merging_node.prefix A__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: A__ = False # If there is 1 edge, we merge it with its child else: A__ = list(incoming_node.nodes.values() )[0] A__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix A__ = merging_node.nodes return True def snake_case__ ( self , SCREAMING_SNAKE_CASE__ = 0 ) -> None: if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def _lowerCamelCase ( ) -> bool: """simple docstring""" A__ = "banana bananas bandana band apple all beast".split() A__ = RadixNode() root.insert_many(UpperCAmelCase_ ) assert all(root.find(UpperCAmelCase_ ) for word in words ) assert not root.find("bandanas" ) assert not root.find("apps" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def _lowerCamelCase ( ) -> None: """simple docstring""" assert test_trie() def _lowerCamelCase ( ) -> None: """simple docstring""" A__ = RadixNode() A__ = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(UpperCAmelCase_ ) print("Words:", UpperCAmelCase_ ) print("Tree:" ) root.print_tree() if __name__ == "__main__": main()
104
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict , lowerCAmelCase: Tuple=False ) -> List[str]: '''simple docstring''' try: _UpperCAmelCase : Union[str, Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCAmelCase : Any = default else: # KEY is set, convert it to True or False. try: _UpperCAmelCase : Union[str, Any] = strtobool(lowerCamelCase_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'If set, {key} must be yes or no.' ) return _value SCREAMING_SNAKE_CASE_ = parse_flag_from_env('RUN_SLOW', default=False) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' return unittest.skip("Test was skipped" )(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] ) -> List[str]: '''simple docstring''' return unittest.skipUnless(_run_slow_tests , "test is slow" )(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU" )(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> Any: '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU" )(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(is_xpu_available() , "test requires a XPU" )(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> int: '''simple docstring''' return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`" )(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> Tuple: '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite" )(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> str: '''simple docstring''' return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library" )(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> Dict: '''simple docstring''' return unittest.skipUnless(is_tpu_available() , "test requires TPU" )(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[int] ) -> Tuple: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU" )(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> Optional[Any]: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU" )(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[int] ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs" )(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs" )(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] ) -> List[str]: '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , "test requires safetensors" )(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] ) -> Tuple: '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed" )(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(is_torch_version(">=" , "1.12.0" ) , "test requires torch version >= 1.12.0" )(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple=None , lowerCAmelCase: Optional[Any]=None ) -> Any: '''simple docstring''' if test_case is None: return partial(lowerCamelCase_ , version=lowerCamelCase_ ) return unittest.skipUnless(is_torch_version(">=" , lowerCamelCase_ ) , F'test requires torch version >= {version}' )(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[int] ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard" )(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> int: '''simple docstring''' return unittest.skipUnless(is_wandb_available() , "test requires wandb" )(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml" )(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] ) -> Optional[Any]: '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(lowerCamelCase_ ) class a ( unittest.TestCase ): _lowercase = True @classmethod def _UpperCAmelCase ( cls ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = tempfile.mkdtemp() @classmethod def _UpperCAmelCase ( cls ): '''simple docstring''' if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def _UpperCAmelCase ( self ): '''simple docstring''' if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCAmelCase_ ) class a ( unittest.TestCase ): def _UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class a ( unittest.TestCase ): def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Dict = mocks if isinstance(UpperCAmelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase : Any = AcceleratorState() _UpperCAmelCase : List[Any] = tensor[None].clone().to(state.device ) _UpperCAmelCase : List[str] = gather(lowerCamelCase_ ).cpu() _UpperCAmelCase : int = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , lowerCamelCase_ ): return False return True class a : def __init__( self , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Optional[int] = returncode _UpperCAmelCase : Any = stdout _UpperCAmelCase : Union[str, Any] = stderr async def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' while True: _UpperCAmelCase : Optional[int] = await stream.readline() if line: callback(lowerCamelCase_ ) else: break async def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Tuple=None , lowerCAmelCase: List[str]=None , lowerCAmelCase: str=None , lowerCAmelCase: List[str]=False , lowerCAmelCase: str=False ) -> _RunOutput: '''simple docstring''' if echo: print("\nRunning: " , " ".join(lowerCamelCase_ ) ) _UpperCAmelCase : Any = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCamelCase_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCamelCase_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : int = [] def tee(lowerCAmelCase: Optional[int] , lowerCAmelCase: Optional[int] , lowerCAmelCase: List[Any] , lowerCAmelCase: Any="" ): _UpperCAmelCase : Union[str, Any] = line.decode("utf-8" ).rstrip() sink.append(lowerCamelCase_ ) if not quiet: print(lowerCamelCase_ , lowerCamelCase_ , file=lowerCamelCase_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda lowerCAmelCase : tee(lowerCamelCase_ , lowerCamelCase_ , sys.stdout , label="stdout:" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda lowerCAmelCase : tee(lowerCamelCase_ , lowerCamelCase_ , sys.stderr , label="stderr:" ) ) ), ] , timeout=lowerCamelCase_ , ) return _RunOutput(await p.wait() , lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Union[str, Any]=None , lowerCAmelCase: Any=None , lowerCAmelCase: Union[str, Any]=180 , lowerCAmelCase: List[str]=False , lowerCAmelCase: Union[str, Any]=True ) -> _RunOutput: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = asyncio.get_event_loop() _UpperCAmelCase : Tuple = loop.run_until_complete( _stream_subprocess(lowerCamelCase_ , env=lowerCamelCase_ , stdin=lowerCamelCase_ , timeout=lowerCamelCase_ , quiet=lowerCamelCase_ , echo=lowerCamelCase_ ) ) _UpperCAmelCase : Union[str, Any] = ' '.join(lowerCamelCase_ ) if result.returncode > 0: _UpperCAmelCase : int = '\n'.join(result.stderr ) raise RuntimeError( F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' F'The combined stderr from workers follows:\n{stderr}' ) return result class a ( __lowerCamelCase ): pass def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: Tuple=False ) -> Dict: '''simple docstring''' try: _UpperCAmelCase : int = subprocess.check_output(lowerCamelCase_ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(lowerCamelCase_ , "decode" ): _UpperCAmelCase : int = output.decode("utf-8" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'Command `{" ".join(lowerCamelCase_ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
706
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] ) -> Union[str, Any]: _UpperCAmelCase : Dict = b.T _UpperCAmelCase : Dict = np.sum(np.square(lowerCAmelCase ) , axis=1 ) _UpperCAmelCase : Optional[Any] = np.sum(np.square(lowerCAmelCase ) , axis=0 ) _UpperCAmelCase : str = np.matmul(lowerCAmelCase , lowerCAmelCase ) _UpperCAmelCase : Any = aa[:, None] - 2 * ab + ba[None, :] return d def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Dict ) -> int: _UpperCAmelCase : Any = x.reshape(-1 , 3 ) _UpperCAmelCase : List[str] = squared_euclidean_distance(lowerCAmelCase , lowerCAmelCase ) return np.argmin(lowerCAmelCase , axis=1 ) class a ( UpperCAmelCase ): _lowercase = ["pixel_values"] def __init__( self , A_ = None , A_ = True , A_ = None , A_ = PILImageResampling.BILINEAR , A_ = True , A_ = True , **A_ , ): '''simple docstring''' super().__init__(**A_ ) _UpperCAmelCase : Optional[Any] = size if size is not None else {"height": 256, "width": 256} _UpperCAmelCase : Optional[int] = get_size_dict(A_ ) _UpperCAmelCase : Union[str, Any] = np.array(A_ ) if clusters is not None else None _UpperCAmelCase : int = do_resize _UpperCAmelCase : Union[str, Any] = size _UpperCAmelCase : Optional[Any] = resample _UpperCAmelCase : str = do_normalize _UpperCAmelCase : List[str] = do_color_quantize def _UpperCAmelCase ( self , A_ , A_ , A_ = PILImageResampling.BILINEAR , A_ = None , **A_ , ): '''simple docstring''' _UpperCAmelCase : int = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( A_ , size=(size["height"], size["width"]) , resample=A_ , data_format=A_ , **A_ ) def _UpperCAmelCase ( self , A_ , A_ = None , ): '''simple docstring''' _UpperCAmelCase : Dict = rescale(image=A_ , scale=1 / 1_27.5 , data_format=A_ ) _UpperCAmelCase : List[Any] = image - 1 return image def _UpperCAmelCase ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ): '''simple docstring''' _UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : Any = size if size is not None else self.size _UpperCAmelCase : Dict = get_size_dict(A_ ) _UpperCAmelCase : List[Any] = resample if resample is not None else self.resample _UpperCAmelCase : Any = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : Optional[Any] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize _UpperCAmelCase : Any = clusters if clusters is not None else self.clusters _UpperCAmelCase : Optional[int] = np.array(A_ ) _UpperCAmelCase : List[str] = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. _UpperCAmelCase : List[str] = [to_numpy_array(A_ ) for image in images] if do_resize: _UpperCAmelCase : int = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_normalize: _UpperCAmelCase : List[str] = [self.normalize(image=A_ ) for image in images] if do_color_quantize: _UpperCAmelCase : Tuple = [to_channel_dimension_format(A_ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) _UpperCAmelCase : List[str] = np.array(A_ ) _UpperCAmelCase : List[Any] = color_quantize(A_ , A_ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) _UpperCAmelCase : Any = images.shape[0] _UpperCAmelCase : List[Any] = images.reshape(A_ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. _UpperCAmelCase : Union[str, Any] = list(A_ ) else: _UpperCAmelCase : Optional[Any] = [to_channel_dimension_format(A_ , A_ ) for image in images] _UpperCAmelCase : List[Any] = {"input_ids": images} return BatchFeature(data=A_ , tensor_type=A_ )
467
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase: Dict = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Tuple = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys _lowercase: str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
192
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase: Any = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: str = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: str = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys _lowercase: Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
192
1
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP __UpperCAmelCase =False try: __UpperCAmelCase =_is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class lowerCAmelCase__ : def __init__( self , UpperCamelCase__ = None , UpperCamelCase__ = [] ): '''simple docstring''' A__ = 0 A__ = choices A__ = prompt if sys.platform == "win32": A__ = "*" else: A__ = "➔ " def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = "" ): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index] , 32 , UpperCamelCase__ ) else: forceWrite(self.choices[index] , UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' if index == self.position: forceWrite(f""" {self.arrow_char} """ ) self.write_choice(UpperCamelCase__ ) else: forceWrite(f""" {self.choices[index]}""" ) reset_cursor() def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = 1 ): '''simple docstring''' A__ = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(UpperCamelCase__ ) move_cursor(UpperCamelCase__ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def lowercase_ ( self ): '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def lowercase_ ( self ): '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def lowercase_ ( self ): '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def lowercase_ ( self ): '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(UpperCamelCase__ )] for number in range(10 )] ) def lowercase_ ( self ): '''simple docstring''' A__ = int(chr(self.current_selection ) ) A__ = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , UpperCamelCase__ ) else: return else: return def lowercase_ ( self , UpperCamelCase__ = 0 ): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt , "\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" ) A__ = default_choice for i in range(len(self.choices ) ): self.print_choice(UpperCamelCase__ ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position , "UP" ) with cursor.hide(): while True: if in_colab: try: A__ = int(builtins.input() ) except ValueError: A__ = default_choice else: A__ = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , "UP" ) clear_line() self.write_choice(UpperCamelCase__ , "\n" ) return choice
714
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ """openai/imagegpt-small""": """""", """openai/imagegpt-medium""": """""", """openai/imagegpt-large""": """""", } class lowerCAmelCase__ ( UpperCAmelCase_ ): lowercase__ : Dict = """imagegpt""" lowercase__ : str = ["""past_key_values"""] lowercase__ : Union[str, Any] = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , UpperCamelCase__=5_12 + 1 , UpperCamelCase__=32 * 32 , UpperCamelCase__=5_12 , UpperCamelCase__=24 , UpperCamelCase__=8 , UpperCamelCase__=None , UpperCamelCase__="quick_gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1e-5 , UpperCamelCase__=0.02 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , **UpperCamelCase__ , ): '''simple docstring''' A__ = vocab_size A__ = n_positions A__ = n_embd A__ = n_layer A__ = n_head A__ = n_inner A__ = activation_function A__ = resid_pdrop A__ = embd_pdrop A__ = attn_pdrop A__ = layer_norm_epsilon A__ = initializer_range A__ = scale_attn_weights A__ = use_cache A__ = scale_attn_by_inverse_layer_idx A__ = reorder_and_upcast_attn A__ = tie_word_embeddings super().__init__(tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase_ ): @property def lowercase_ ( self ): '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = 1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = 3 , UpperCamelCase__ = 32 , UpperCamelCase__ = 32 , ): '''simple docstring''' A__ = self._generate_dummy_images(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ = dict(preprocessor(images=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return inputs
261
0
import socket def __magic_name__ ( ) -> List[str]: """simple docstring""" lowercase_ : Optional[int] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowercase_ : List[str] = socket.gethostname() lowercase_ : Optional[int] = 12312 sock.connect((host, port) ) sock.send(b"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: lowercase_ : int = sock.recv(1024 ) if not data: break out_file.write(lowercase ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
458
import qiskit def __magic_name__ ( lowercase , lowercase ) -> qiskit.result.counts.Counts: """simple docstring""" lowercase_ : Dict = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register lowercase_ : str = qiskit.QuantumCircuit(lowercase , lowercase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator lowercase_ : List[Any] = qiskit.execute(lowercase , lowercase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
458
1
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCAmelCase ( a ): """simple docstring""" def __init__( self , *UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> int: '''simple docstring''' super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase_ = eval_examples lowerCamelCase_ = post_process_function def _lowerCAmelCase ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__ = "eval" ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.eval_dataset if eval_dataset is None else eval_dataset lowerCamelCase_ = self.get_eval_dataloader(UpperCamelCase__ ) lowerCamelCase_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase_ = self.compute_metrics lowerCamelCase_ = None lowerCamelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCamelCase_ = time.time() try: lowerCamelCase_ = eval_loop( UpperCamelCase__ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , metric_key_prefix=UpperCamelCase__ , ) finally: lowerCamelCase_ = compute_metrics lowerCamelCase_ = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCamelCase__ , UpperCamelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowerCamelCase_ = self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , output.predictions ) lowerCamelCase_ = self.compute_metrics(UpperCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): lowerCamelCase_ = metrics.pop(UpperCamelCase__ ) metrics.update(output.metrics ) else: lowerCamelCase_ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCamelCase_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase__ ) return metrics def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__ = "test" ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.get_test_dataloader(UpperCamelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. lowerCamelCase_ = self.compute_metrics lowerCamelCase_ = None lowerCamelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowerCamelCase_ = time.time() try: lowerCamelCase_ = eval_loop( UpperCamelCase__ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , metric_key_prefix=UpperCamelCase__ , ) finally: lowerCamelCase_ = compute_metrics lowerCamelCase_ = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCamelCase__ , UpperCamelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowerCamelCase_ = self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , output.predictions , '''predict''' ) lowerCamelCase_ = self.compute_metrics(UpperCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): lowerCamelCase_ = metrics.pop(UpperCamelCase__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase__ )
66
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCAmelCase : """simple docstring""" @staticmethod def _lowerCAmelCase ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' pass @is_pipeline_test @require_vision class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @require_torch def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCamelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase_ = image_classifier(UpperCamelCase__ , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(UpperCamelCase__ ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) lowerCamelCase_ = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], ] , ) @require_tf def _lowerCAmelCase ( self ) -> str: '''simple docstring''' lowerCamelCase_ = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCamelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase_ = image_classifier(UpperCamelCase__ , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) lowerCamelCase_ = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], ] , ) @slow @require_torch def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase_ = image_classifier(UpperCamelCase__ , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) lowerCamelCase_ = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase_ = image_classifier(UpperCamelCase__ , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) lowerCamelCase_ = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
66
1
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def __a(SCREAMING_SNAKE_CASE_ : SplitDict ): '''simple docstring''' _lowerCAmelCase = split_dict._to_yaml_list() assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = SplitDict._from_yaml_list(SCREAMING_SNAKE_CASE_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _lowerCAmelCase = None # the split name of split_dict takes over the name of the split info object _lowerCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=SCREAMING_SNAKE_CASE_ ), SplitInfo(dataset_name="my_dataset" )] ) def __a(SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
18
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Any = (DDPMParallelScheduler,) def _snake_case ( self , **_lowerCAmelCase ) -> int: _lowerCAmelCase = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**_lowerCAmelCase ) return config def _snake_case ( self ) -> List[Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def _snake_case ( self ) -> Any: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _snake_case ( self ) -> List[str]: self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def _snake_case ( self ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _snake_case ( self ) -> Dict: for t in [0, 500, 999]: self.check_over_forward(time_step=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = self.dummy_sample_deter + 0.1 _lowerCAmelCase = self.dummy_sample_deter - 0.1 _lowerCAmelCase = samplea.shape[0] _lowerCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) _lowerCAmelCase = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) _lowerCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _lowerCAmelCase = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" ) _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowerCAmelCase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowerCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def _snake_case ( self ) -> Dict: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCAmelCase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowerCAmelCase ): if i == len(_lowerCAmelCase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowerCAmelCase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowerCAmelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowerCAmelCase ) with self.assertRaises(_lowerCAmelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=_lowerCAmelCase , timesteps=_lowerCAmelCase ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowerCAmelCase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=_lowerCAmelCase )
18
1
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline __A : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def lowercase ( __snake_case : Dict , __snake_case : tuple , __snake_case : Path , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any]=False , ): output_path.parent.mkdir(parents=__snake_case , exist_ok=__snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __snake_case , __snake_case , f=output_path.as_posix() , input_names=__snake_case , output_names=__snake_case , dynamic_axes=__snake_case , do_constant_folding=__snake_case , use_external_data_format=__snake_case , enable_onnx_checker=__snake_case , opset_version=__snake_case , ) else: export( __snake_case , __snake_case , f=output_path.as_posix() , input_names=__snake_case , output_names=__snake_case , dynamic_axes=__snake_case , do_constant_folding=__snake_case , opset_version=__snake_case , ) @torch.no_grad() def lowercase ( __snake_case : str , __snake_case : str , __snake_case : int , __snake_case : bool = False ): lowercase_ : int = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase_ : Union[str, Any] = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: lowercase_ : List[Any] = '''cpu''' lowercase_ : Tuple = StableDiffusionPipeline.from_pretrained(__snake_case , torch_dtype=__snake_case ).to(__snake_case ) lowercase_ : Any = Path(__snake_case ) # TEXT ENCODER lowercase_ : Optional[int] = pipeline.text_encoder.config.max_position_embeddings lowercase_ : Tuple = pipeline.text_encoder.config.hidden_size lowercase_ : Union[str, Any] = pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=__snake_case , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=__snake_case , dtype=torch.intaa )) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=__snake_case , ) del pipeline.text_encoder # UNET lowercase_ : Dict = pipeline.unet.config.in_channels lowercase_ : Optional[Any] = pipeline.unet.config.sample_size lowercase_ : str = output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet , model_args=( torch.randn(2 , __snake_case , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), torch.randn(2 ).to(device=__snake_case , dtype=__snake_case ), torch.randn(2 , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), False, ) , output_path=__snake_case , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=__snake_case , use_external_data_format=__snake_case , ) lowercase_ : List[str] = str(unet_path.absolute().as_posix() ) lowercase_ : Optional[int] = os.path.dirname(__snake_case ) lowercase_ : Dict = onnx.load(__snake_case ) # clean up existing tensor files shutil.rmtree(__snake_case ) os.mkdir(__snake_case ) # collate external tensor files into one onnx.save_model( __snake_case , __snake_case , save_as_external_data=__snake_case , all_tensors_to_one_file=__snake_case , location='''weights.pb''' , convert_attribute=__snake_case , ) del pipeline.unet # VAE ENCODER lowercase_ : Optional[int] = pipeline.vae lowercase_ : Dict = vae_encoder.config.in_channels lowercase_ : int = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowercase_ : Dict = lambda __snake_case , __snake_case : vae_encoder.encode(__snake_case , __snake_case )[0].sample() onnx_export( __snake_case , model_args=( torch.randn(1 , __snake_case , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=__snake_case , ) # VAE DECODER lowercase_ : int = pipeline.vae lowercase_ : Optional[Any] = vae_decoder.config.latent_channels lowercase_ : int = vae_decoder.config.out_channels # forward only through the decoder part lowercase_ : Any = vae_encoder.decode onnx_export( __snake_case , model_args=( torch.randn(1 , __snake_case , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=__snake_case , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowercase_ : Optional[int] = pipeline.safety_checker lowercase_ : List[str] = safety_checker.config.vision_config.num_channels lowercase_ : Optional[int] = safety_checker.config.vision_config.image_size lowercase_ : int = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , __snake_case , __snake_case , __snake_case , ).to(device=__snake_case , dtype=__snake_case ), torch.randn(1 , __snake_case , __snake_case , __snake_case ).to(device=__snake_case , dtype=__snake_case ), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=__snake_case , ) del pipeline.safety_checker lowercase_ : Any = OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''' ) lowercase_ : Dict = pipeline.feature_extractor else: lowercase_ : List[Any] = None lowercase_ : Union[str, Any] = None lowercase_ : int = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''' ) , scheduler=pipeline.scheduler , safety_checker=__snake_case , feature_extractor=__snake_case , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(__snake_case ) print('''ONNX pipeline saved to''' , __snake_case ) del pipeline del onnx_pipeline lowercase_ : int = OnnxStableDiffusionPipeline.from_pretrained(__snake_case , provider='''CPUExecutionProvider''' ) print('''ONNX pipeline is loadable''' ) if __name__ == "__main__": __A : int = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') __A : List[str] = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
141
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class _UpperCAmelCase ( unittest.TestCase ): def A ( self : Tuple ) -> Optional[Any]: lowercase_ : Any = inspect.getfile(accelerate.test_utils ) lowercase_ : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) lowercase_ : Union[str, Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) lowercase_ : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def A ( self : List[str] ) -> List[str]: print(F'''Found {torch.cuda.device_count()} devices.''' ) lowercase_ : int = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() ) @require_multi_gpu def A ( self : List[Any] ) -> List[Any]: print(F'''Found {torch.cuda.device_count()} devices.''' ) lowercase_ : List[str] = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() ) @require_multi_gpu def A ( self : str ) -> Union[str, Any]: lowercase_ : Tuple = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() ) @require_multi_gpu def A ( self : Optional[int] ) -> Optional[Any]: print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) lowercase_ : Optional[int] = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(A , env=os.environ.copy() ) if __name__ == "__main__": __A : List[Any] = Accelerator() __A : Dict = (accelerator.state.process_index + 2, 10) __A : Tuple = torch.randint(0, 10, shape).to(accelerator.device) __A : Optional[Any] = '''''' __A : Optional[int] = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __A : int = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __A : Optional[int] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
141
1
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def __lowerCAmelCase ( __snake_case ): __lowerCAmelCase = torch.load(__lowerCAmelCase , map_location="cpu" ) if "model" in sd.keys(): __lowerCAmelCase = torch.load(__lowerCAmelCase , map_location="cpu" )["model"] # pop unnecessary weights __lowerCAmelCase = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(__lowerCAmelCase ) __lowerCAmelCase = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __lowerCAmelCase = sd.pop(__lowerCAmelCase ) __lowerCAmelCase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __lowerCAmelCase = sd[key] # We split QKV in separate Q,K,V __lowerCAmelCase = key.replace(".qkv_proj." , ".q_proj." ) __lowerCAmelCase = key.replace(".qkv_proj." , ".k_proj." ) __lowerCAmelCase = key.replace(".qkv_proj." , ".v_proj." ) __lowerCAmelCase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = torch.split(__lowerCAmelCase , depth // 3 , dim=0 ) __lowerCAmelCase = q __lowerCAmelCase = k __lowerCAmelCase = v del sd[key] return sd @torch.no_grad() def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case=None ): __lowerCAmelCase = load_checkpoint(__lowerCAmelCase ) if config is not None: __lowerCAmelCase = OPTConfig.from_pretrained(__lowerCAmelCase ) else: __lowerCAmelCase = OPTConfig() __lowerCAmelCase = OPTModel(__lowerCAmelCase ).half().eval() model.load_state_dict(__lowerCAmelCase ) # Check results Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') lowerCamelCase : Any = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
367
from __future__ import annotations _A = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowerCamelCase__ ( __lowerCAmelCase : list[list[int]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : list[list[int]] , ): """simple docstring""" lowerCAmelCase_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCAmelCase ) ) ] # the reference grid lowerCAmelCase_ = 1 lowerCAmelCase_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowerCAmelCase ) ) ] # the action grid lowerCAmelCase_ = init[0] lowerCAmelCase_ = init[1] lowerCAmelCase_ = 0 lowerCAmelCase_ = g + heuristic[x][y] # cost from starting cell to destination cell lowerCAmelCase_ = [[f, g, x, y]] lowerCAmelCase_ = False # flag that is set when search is complete lowerCAmelCase_ = False # flag set if we can't find expand while not found and not resign: if len(__lowerCAmelCase ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() lowerCAmelCase_ = cell.pop() lowerCAmelCase_ = next_cell[2] lowerCAmelCase_ = next_cell[3] lowerCAmelCase_ = next_cell[1] if x == goal[0] and y == goal[1]: lowerCAmelCase_ = True else: for i in range(len(__lowerCAmelCase ) ): # to try out different valid actions lowerCAmelCase_ = x + DIRECTIONS[i][0] lowerCAmelCase_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__lowerCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: lowerCAmelCase_ = g + cost lowerCAmelCase_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) lowerCAmelCase_ = 1 lowerCAmelCase_ = i lowerCAmelCase_ = [] lowerCAmelCase_ = goal[0] lowerCAmelCase_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: lowerCAmelCase_ = x - DIRECTIONS[action[x][y]][0] lowerCAmelCase_ = y - DIRECTIONS[action[x][y]][1] lowerCAmelCase_ = xa lowerCAmelCase_ = ya invpath.append([x, y] ) lowerCAmelCase_ = [] for i in range(len(__lowerCAmelCase ) ): path.append(invpath[len(__lowerCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": _A = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _A = [0, 0] # all coordinates are given in format [y,x] _A = [len(grid) - 1, len(grid[0]) - 1] _A = 1 # the cost map which pushes the path closer to the goal _A = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _A = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _A = 99 _A, _A = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
290
0
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class __lowercase ( lowerCamelCase__ ): """simple docstring""" def __lt__( self , __UpperCAmelCase ) -> Union[str, Any]: return self[-1] < other[-1] def __eq__( self , __UpperCAmelCase ) -> int: return self[-1] == other[-1] def snake_case__ ( lowerCamelCase_ ): A : list[Stack] = [] # sort into stacks for element in collection: A : str = Stack([element] ) A : Any = bisect_left(lowerCamelCase_ , lowerCamelCase_ ) if i != len(lowerCamelCase_ ): stacks[i].append(lowerCamelCase_ ) else: stacks.append(lowerCamelCase_ ) # use a heap-based merge to merge stack efficiently A : Union[str, Any] = merge(*(reversed(lowerCamelCase_ ) for stack in stacks) ) return collection if __name__ == "__main__": lowercase : List[str] = input("Enter numbers separated by a comma:\n").strip() lowercase : str = [int(item) for item in user_input.split(",")] print(patience_sort(unsorted))
702
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase : Any = abspath(join(dirname(dirname(__file__)), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def snake_case__ ( lowerCamelCase_ ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCamelCase_ ) def snake_case__ ( lowerCamelCase_ ): from diffusers.utils.testing_utils import pytest_terminal_summary_main A : Union[str, Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(lowerCamelCase_ , id=lowerCamelCase_ )
423
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = KandinskyVaaControlnetImgaImgPipeline SCREAMING_SNAKE_CASE_ = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] SCREAMING_SNAKE_CASE_ = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] SCREAMING_SNAKE_CASE_ = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] SCREAMING_SNAKE_CASE_ = False @property def UpperCamelCase( self ) -> Tuple: '''simple docstring''' return 32 @property def UpperCamelCase( self ) -> Dict: '''simple docstring''' return 32 @property def UpperCamelCase( self ) -> int: '''simple docstring''' return self.time_input_dim @property def UpperCamelCase( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' return 100 @property def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase_ = UNetaDConditionModel(**SCREAMING_SNAKE_CASE_ ) return model @property def UpperCamelCase( self ) -> Dict: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCamelCase( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = self.dummy_unet lowerCamelCase_ = self.dummy_movq lowerCamelCase_ = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase_ = DDIMScheduler(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( SCREAMING_SNAKE_CASE_ ) # create init_image lowerCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert('RGB' ).resize((256, 256) ) # create hint lowerCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): lowerCamelCase_ = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = 'cpu' lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = output.images lowerCamelCase_ = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) , return_dict=SCREAMING_SNAKE_CASE_ , )[0] lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase_ = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase_ = init_image.resize((512, 512) ) lowerCamelCase_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase_ = torch.from_numpy(np.array(SCREAMING_SNAKE_CASE_ ) ).float() / 255.0 lowerCamelCase_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowerCamelCase_ = 'A robot, 4k photo' lowerCamelCase_ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) lowerCamelCase_ = pipeline.to(SCREAMING_SNAKE_CASE_ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase_ ,lowerCamelCase_ = pipe_prior( SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , strength=0.85 , generator=SCREAMING_SNAKE_CASE_ , negative_prompt='' , ).to_tuple() lowerCamelCase_ = pipeline( image=SCREAMING_SNAKE_CASE_ , image_embeds=SCREAMING_SNAKE_CASE_ , negative_image_embeds=SCREAMING_SNAKE_CASE_ , hint=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='np' , ) lowerCamelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
42
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __UpperCamelCase ) -> bool: lowerCamelCase_ = str(__UpperCamelCase ) return len(__UpperCamelCase ) == 9 and set(__UpperCamelCase ) == set('123456789' ) def _UpperCamelCase ( ) -> int | None: for base_num in range(99_99 ,49_99 ,-1 ): lowerCamelCase_ = 10_00_02 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate for base_num in range(3_33 ,99 ,-1 ): lowerCamelCase_ = 1_00_20_03 * base_num if is_9_pandigital(__UpperCamelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
42
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ : Optional[Any] = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : int = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
148
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Union[str, Any] = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys a_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
148
1
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCAmelCase_ ( snake_case ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> List[Any]: super().__init__( UpperCamelCase_ , split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , ) __lowercase : List[Any] = field __lowercase : List[str] = path_or_paths if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else {self.split: path_or_paths} __lowercase : Dict = Json( cache_dir=UpperCamelCase_ , data_files=UpperCamelCase_ , features=UpperCamelCase_ , field=UpperCamelCase_ , **UpperCamelCase_ , ) def _lowerCamelCase ( self ) -> str: # Build iterable dataset if self.streaming: __lowercase : Any = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowercase : List[Any] = None __lowercase : Any = None __lowercase : Union[str, Any] = None __lowercase : Optional[int] = None self.builder.download_and_prepare( download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , ) __lowercase : str = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory ) return dataset class UpperCAmelCase_ : def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) __lowercase : Any = dataset __lowercase : Dict = path_or_buf __lowercase : Any = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __lowercase : List[str] = num_proc __lowercase : Optional[Any] = '''utf-8''' __lowercase : Tuple = to_json_kwargs def _lowerCamelCase ( self ) -> int: __lowercase : str = self.to_json_kwargs.pop('''path_or_buf''' , UpperCamelCase_ ) __lowercase : str = self.to_json_kwargs.pop('''orient''' , '''records''' ) __lowercase : List[Any] = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) __lowercase : Any = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) __lowercase : Tuple = self.to_json_kwargs.pop('''compression''' , UpperCamelCase_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=UpperCamelCase_ ) as buffer: __lowercase : List[str] = self._write(file_obj=UpperCamelCase_ , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" ''' was passed. Please provide a local path instead.''' ) __lowercase : Tuple = self._write( file_obj=self.path_or_buf , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **self.to_json_kwargs ) return written def _lowerCamelCase ( self , UpperCamelCase_ ) -> List[str]: __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase : Dict = args __lowercase : Union[str, Any] = query_table( table=self.dataset.data , key=slice(UpperCamelCase_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __lowercase : Optional[Any] = batch.to_pandas().to_json( path_or_buf=UpperCamelCase_ , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **UpperCamelCase_ ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ , ) -> int: __lowercase : Dict = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): __lowercase : str = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(UpperCamelCase_ ) else: __lowercase ,__lowercase : Dict = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , UpperCamelCase_ , UpperCamelCase_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(UpperCamelCase_ ) return written
76
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : def __init__( self : List[str] , snake_case : int , snake_case : Optional[int]=1_3 , snake_case : List[str]=3_0 , snake_case : Optional[Any]=2 , snake_case : Union[str, Any]=3 , snake_case : List[Any]=True , snake_case : Union[str, Any]=True , snake_case : List[Any]=3_2 , snake_case : int=5 , snake_case : int=4 , snake_case : List[str]=3_7 , snake_case : Union[str, Any]="gelu" , snake_case : int=0.1 , snake_case : Dict=0.1 , snake_case : Any=1_0 , snake_case : Any=0.02 , snake_case : int=3 , snake_case : int=0.6 , snake_case : str=None , ) -> Any: """simple docstring""" UpperCamelCase_ : List[Any] = parent UpperCamelCase_ : Optional[int] = batch_size UpperCamelCase_ : Optional[Any] = image_size UpperCamelCase_ : Optional[int] = patch_size UpperCamelCase_ : List[str] = num_channels UpperCamelCase_ : Optional[int] = is_training UpperCamelCase_ : Tuple = use_labels UpperCamelCase_ : str = hidden_size UpperCamelCase_ : Union[str, Any] = num_hidden_layers UpperCamelCase_ : int = num_attention_heads UpperCamelCase_ : Optional[Any] = intermediate_size UpperCamelCase_ : Optional[int] = hidden_act UpperCamelCase_ : int = hidden_dropout_prob UpperCamelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase_ : List[str] = type_sequence_label_size UpperCamelCase_ : List[str] = initializer_range UpperCamelCase_ : Union[str, Any] = mask_ratio UpperCamelCase_ : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase_ : int = (image_size // patch_size) ** 2 UpperCamelCase_ : Any = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCamelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ : Tuple = None if self.use_labels: UpperCamelCase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ : List[Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Dict , snake_case : Optional[int] , snake_case : str ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = ViTMAEModel(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : Any = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : List[Any] , snake_case : Tuple , snake_case : Tuple ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : List[str] = ViTMAEForPreTraining(snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : Optional[int] = model(snake_case ) UpperCamelCase_ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase_ : str = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase_ : List[str] = 1 UpperCamelCase_ : Tuple = ViTMAEForPreTraining(snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_ : Optional[Any] = model(snake_case ) UpperCamelCase_ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : List[str] = self.prepare_config_and_inputs() UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = config_and_inputs UpperCamelCase_ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowercase ( snake_case_ , snake_case_ , unittest.TestCase ): lowercase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowercase = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: """simple docstring""" UpperCamelCase_ : Tuple = ViTMAEModelTester(self ) UpperCamelCase_ : List[str] = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> int: """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : List[str] = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Optional[Any] = model_class(snake_case ) UpperCamelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ : Optional[int] = [*signature.parameters.keys()] UpperCamelCase_ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> int: """simple docstring""" UpperCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : Tuple ) -> int: """simple docstring""" np.random.seed(2 ) UpperCamelCase_ : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCamelCase_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase_ : Optional[Any] = torch.from_numpy(snake_case ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase_ : Optional[int] = pt_noise super().check_pt_tf_models(snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : str = model_class(snake_case ) model.to(snake_case ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase_ : Union[str, Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) UpperCamelCase_ : Any = outputs[0].cpu().numpy() UpperCamelCase_ : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case ) UpperCamelCase_ : Any = model_class.from_pretrained(snake_case ) model.to(snake_case ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase_ : Optional[Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) # Make sure we don't have nans UpperCamelCase_ : int = after_outputs[0].cpu().numpy() UpperCamelCase_ : Union[str, Any] = 0 UpperCamelCase_ : Optional[int] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case , 1e-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: """simple docstring""" pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: """simple docstring""" pass @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ : Tuple = ViTMAEModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __lowercase ( ): UpperCamelCase_ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[str]: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) UpperCamelCase_ : Dict = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(snake_case ) UpperCamelCase_ : str = self.default_image_processor UpperCamelCase_ : int = prepare_img() UpperCamelCase_ : Optional[int] = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase_ : Optional[Any] = ViTMAEConfig() UpperCamelCase_ : List[str] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase_ : Any = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCamelCase_ : Tuple = model(**snake_case , noise=torch.from_numpy(snake_case ).to(device=snake_case ) ) # verify the logits UpperCamelCase_ : Optional[int] = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape , snake_case ) UpperCamelCase_ : List[Any] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(snake_case ) , atol=1e-4 ) )
417
0
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _a : Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.14.0""", """To fix: pip install -r examples/pytorch/audio-classification/requirements.txt""") def a__ ( a : np.ndarray , a : float , a : int = 16_000 ): """simple docstring""" _snake_case : List[str] = int(round(sample_rate * max_length ) ) if len(a ) <= sample_length: return wav _snake_case : str = randint(0 , len(a ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class _UpperCAmelCase : __lowercase : Optional[str] = field(default=_snake_case , metadata={"""help""": """Name of a dataset from the datasets package"""}) __lowercase : Optional[str] = field( default=_snake_case , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}) __lowercase : Optional[str] = field( default=_snake_case , metadata={"""help""": """A file containing the training audio paths and labels."""}) __lowercase : Optional[str] = field( default=_snake_case , metadata={"""help""": """A file containing the validation audio paths and labels."""}) __lowercase : str = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) __lowercase : str = field( default="""validation""" , metadata={ """help""": ( """The name of the training data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) __lowercase : str = field( default="""audio""" , metadata={"""help""": """The name of the dataset column containing the audio data. Defaults to 'audio'"""} , ) __lowercase : str = field( default="""label""" , metadata={"""help""": """The name of the dataset column containing the labels. Defaults to 'label'"""}) __lowercase : Optional[int] = field( default=_snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __lowercase : Optional[int] = field( default=_snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) __lowercase : float = field( default=2_0 , metadata={"""help""": """Audio clips will be randomly cut to this length during training if the value is set."""} , ) @dataclass class _UpperCAmelCase : __lowercase : str = field( default="""facebook/wav2vec2-base""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) __lowercase : Optional[str] = field( default=_snake_case , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) __lowercase : Optional[str] = field( default=_snake_case , metadata={"""help""": """Where do you want to store the pretrained models downloaded from the Hub"""}) __lowercase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __lowercase : Optional[str] = field( default=_snake_case , metadata={"""help""": """Name or path of preprocessor config."""}) __lowercase : bool = field( default=_snake_case , metadata={"""help""": """Whether to freeze the feature encoder layers of the model."""}) __lowercase : bool = field( default=_snake_case , metadata={"""help""": """Whether to generate an attention mask in the feature extractor."""}) __lowercase : bool = field( default=_snake_case , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __lowercase : Optional[bool] = field( default=_snake_case , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""}) __lowercase : bool = field( default=_snake_case , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def lowerCamelCase__ ( self ): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`." , snake_case_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def a__ ( ): """simple docstring""" _snake_case : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case , _snake_case , _snake_case : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case , _snake_case , _snake_case : Optional[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , a , a ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _snake_case : Dict = training_args.get_process_log_level() logger.setLevel(a ) transformers.utils.logging.set_verbosity(a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _snake_case : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _snake_case : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. _snake_case : List[str] = DatasetDict() _snake_case : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _snake_case : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--audio_column_name` to the correct audio column - one of " f'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--label_column_name` to the correct text column - one of " f'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _snake_case : Optional[Any] = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _snake_case : Optional[int] = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _snake_case : int = feature_extractor.model_input_names[0] def train_transforms(a : int ): _snake_case : Any = [] for audio in batch[data_args.audio_column_name]: _snake_case : Optional[int] = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(a ) _snake_case : Dict = feature_extractor(a , sampling_rate=feature_extractor.sampling_rate ) _snake_case : Dict = {model_input_name: inputs.get(a )} _snake_case : Dict = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(a : Optional[int] ): _snake_case : List[Any] = [audio["array"] for audio in batch[data_args.audio_column_name]] _snake_case : Dict = feature_extractor(a , sampling_rate=feature_extractor.sampling_rate ) _snake_case : int = {model_input_name: inputs.get(a )} _snake_case : Any = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _snake_case : Optional[int] = raw_datasets["train"].features[data_args.label_column_name].names _snake_case , _snake_case : int = {}, {} for i, label in enumerate(a ): _snake_case : int = str(a ) _snake_case : int = label # Load the accuracy metric from the datasets package _snake_case : int = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(a : List[str] ): _snake_case : List[str] = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=a , references=eval_pred.label_ids ) _snake_case : List[str] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(a ) , labelaid=a , idalabel=a , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _snake_case : List[str] = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _snake_case : List[Any] = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(a , output_all_columns=a ) if training_args.do_eval: if data_args.max_eval_samples is not None: _snake_case : Union[str, Any] = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(a , output_all_columns=a ) # Initialize our trainer _snake_case : Tuple = Trainer( model=a , args=a , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=a , tokenizer=a , ) # Training if training_args.do_train: _snake_case : Optional[int] = None if training_args.resume_from_checkpoint is not None: _snake_case : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _snake_case : List[str] = last_checkpoint _snake_case : Union[str, Any] = trainer.train(resume_from_checkpoint=a ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _snake_case : Optional[int] = trainer.evaluate() trainer.log_metrics("eval" , a ) trainer.save_metrics("eval" , a ) # Write model card and (optionally) push to hub _snake_case : Any = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**a ) else: trainer.create_model_card(**a ) if __name__ == "__main__": main()
87
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def a__ ( a : Namespace ): """simple docstring""" return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _a : int = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class _UpperCAmelCase ( _snake_case): @staticmethod def lowerCamelCase__ ( snake_case_ ): _snake_case : Dict = parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=snake_case_ , required=snake_case_ , help="Model's type." ) train_parser.add_argument( "--tf_checkpoint" , type=snake_case_ , required=snake_case_ , help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" , type=snake_case_ , required=snake_case_ , help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" , type=snake_case_ , default="" , help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" , type=snake_case_ , default=snake_case_ , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , *snake_case_ , ): _snake_case : str = logging.get_logger("transformers-cli/converting" ) self._logger.info(F'Loading model {model_type}' ) _snake_case : Optional[int] = model_type _snake_case : Any = tf_checkpoint _snake_case : Optional[int] = pytorch_dump_output _snake_case : Tuple = config _snake_case : Tuple = finetuning_task_name def lowerCamelCase__ ( self ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(snake_case_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case_ ) if "ckpt" in self._tf_checkpoint.lower(): _snake_case : int = self._tf_checkpoint _snake_case : Optional[Any] = "" else: _snake_case : Optional[int] = self._tf_checkpoint _snake_case : List[str] = "" convert_transfo_xl_checkpoint_to_pytorch( snake_case_ , self._config , self._pytorch_dump_output , snake_case_ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case_ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case_ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
87
1
"""simple docstring""" def UpperCAmelCase ( a__ ): '''simple docstring''' lowerCAmelCase :Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def UpperCAmelCase ( a__ = 50_00 ): '''simple docstring''' lowerCAmelCase :List[Any] = [(i * (3 * i - 1)) // 2 for i in range(1 , UpperCAmelCase__ )] for i, pentagonal_i in enumerate(UpperCAmelCase__ ): for j in range(UpperCAmelCase__ , len(UpperCAmelCase__ ) ): lowerCAmelCase :Tuple = pentagonal_nums[j] lowerCAmelCase :Optional[Any] = pentagonal_i + pentagonal_j lowerCAmelCase :int = pentagonal_j - pentagonal_i if is_pentagonal(UpperCAmelCase__ ) and is_pentagonal(UpperCAmelCase__ ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
553
'''simple docstring''' from math import pow def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> tuple[int, int]: if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count A_ = int(pow(UpperCAmelCase__, UpperCAmelCase__ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n A_ , A_ = backtrack( UpperCAmelCase__, UpperCAmelCase__, current_number + 1, UpperCAmelCase__, UpperCAmelCase__ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. A_ , A_ = backtrack( UpperCAmelCase__, UpperCAmelCase__, current_number + 1, UpperCAmelCase__, UpperCAmelCase__ ) return current_sum, solutions_count def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> int: if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(UpperCAmelCase__, UpperCAmelCase__, 1, 0, 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
288
0
from __future__ import annotations def __lowerCAmelCase ( A_ : int , A_ : int ): __UpperCAmelCase = [] create_all_state(1 , A_ , A_ , [] , A_ ) return result def __lowerCAmelCase ( A_ : int , A_ : int , A_ : int , A_ : list[int] , A_ : list[list[int]] , ): if level == 0: total_list.append(current_list[:] ) return for i in range(A_ , total_number - level + 2 ): current_list.append(A_ ) create_all_state(i + 1 , A_ , level - 1 , A_ , A_ ) current_list.pop() def __lowerCAmelCase ( A_ : list[list[int]] ): for i in total_list: print(*A_ ) if __name__ == "__main__": a_ = 4 a_ = 2 a_ = generate_all_combinations(n, k) print_all_state(total_list)
700
def __lowerCAmelCase ( A_ : str ) -> Any: if not head: return True # split the list to two parts __UpperCAmelCase , __UpperCAmelCase = head.next, head while fast and fast.next: __UpperCAmelCase = fast.next.next __UpperCAmelCase = slow.next __UpperCAmelCase = slow.next __UpperCAmelCase = None # Don't forget here! But forget still works! # reverse the second part __UpperCAmelCase = None while second: __UpperCAmelCase = second.next __UpperCAmelCase = node __UpperCAmelCase = second __UpperCAmelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False __UpperCAmelCase = node.next __UpperCAmelCase = head.next return True def __lowerCAmelCase ( A_ : Optional[Any] ) -> Optional[Any]: if not head or not head.next: return True # 1. Get the midpoint (slow) __UpperCAmelCase = __UpperCAmelCase = __UpperCAmelCase = head while fast and fast.next: __UpperCAmelCase , __UpperCAmelCase = fast.next.next, slow.next # 2. Push the second half into the stack __UpperCAmelCase = [slow.val] while slow.next: __UpperCAmelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False __UpperCAmelCase = cur.next return True def __lowerCAmelCase ( A_ : int ) -> Optional[int]: if not head or not head.next: return True __UpperCAmelCase = {} __UpperCAmelCase = 0 while head: if head.val in d: d[head.val].append(A_ ) else: __UpperCAmelCase = [pos] __UpperCAmelCase = head.next pos += 1 __UpperCAmelCase = pos - 1 __UpperCAmelCase = 0 for v in d.values(): if len(A_ ) % 2 != 0: middle += 1 else: __UpperCAmelCase = 0 for i in range(0 , len(A_ ) ): if v[i] + v[len(A_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
286
0
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class lowerCAmelCase_ : def __snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : int ): raise NotImplementedError() def __snake_case ( self : Union[str, Any] ): raise NotImplementedError() class lowerCAmelCase_ ( snake_case__ ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : "AutoTokenizer" , SCREAMING_SNAKE_CASE_ : bool = False , **SCREAMING_SNAKE_CASE_ : List[Any] ): lowerCAmelCase__ = tokenizer lowerCAmelCase__ = skip_prompt lowerCAmelCase__ = decode_kwargs # variables used in the streaming process lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = True def __snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : List[str] ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: lowerCAmelCase__ = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowerCAmelCase__ = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowerCAmelCase__ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): lowerCAmelCase__ = text[self.print_len :] lowerCAmelCase__ = [] lowerCAmelCase__ = 0 # If the last token is a CJK character, we print the characters. elif len(SCREAMING_SNAKE_CASE_ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowerCAmelCase__ = text[self.print_len :] self.print_len += len(SCREAMING_SNAKE_CASE_ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowerCAmelCase__ = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(SCREAMING_SNAKE_CASE_ ) self.on_finalized_text(SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : List[Any] ): # Flush the cache, if it exists if len(self.token_cache ) > 0: lowerCAmelCase__ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowerCAmelCase__ = text[self.print_len :] lowerCAmelCase__ = [] lowerCAmelCase__ = 0 else: lowerCAmelCase__ = '''''' lowerCAmelCase__ = True self.on_finalized_text(SCREAMING_SNAKE_CASE_ , stream_end=SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ): print(SCREAMING_SNAKE_CASE_ , flush=SCREAMING_SNAKE_CASE_ , end='''''' if not stream_end else None ) def __snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False class lowerCAmelCase_ ( snake_case__ ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : "AutoTokenizer" , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[float] = None , **SCREAMING_SNAKE_CASE_ : List[str] ): super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = Queue() lowerCAmelCase__ = None lowerCAmelCase__ = timeout def __snake_case ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ): self.text_queue.put(SCREAMING_SNAKE_CASE_ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Optional[int] ): return self def __snake_case ( self : int ): lowerCAmelCase__ = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
668
def lowerCAmelCase_ (lowercase__ : float , lowercase__ : int ) -> float: '''simple docstring''' if digit_amount > 0: return round(number - int(lowercase__ ) , lowercase__ ) return number - int(lowercase__ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
668
1
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = mock.Mock() _lowerCAmelCase : Optional[int] = 500 _lowerCAmelCase : Union[str, Any] = {} _lowerCAmelCase : Optional[Any] = HTTPError _lowerCAmelCase : List[Any] = {} # Download this model to make sure it's in the cache. _lowerCAmelCase : Union[str, Any] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=_lowercase ) as mock_head: _lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = mock.Mock() _lowerCAmelCase : Any = 500 _lowerCAmelCase : Optional[int] = {} _lowerCAmelCase : Any = HTTPError _lowerCAmelCase : Tuple = {} # Download this model to make sure it's in the cache. _lowerCAmelCase : Any = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=_lowercase ) as mock_head: _lowerCAmelCase : Tuple = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def __lowerCamelCase ( self ): '''simple docstring''' try: _lowerCAmelCase : Dict = tempfile.mktemp() with open(_lowercase ,'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,_lowercase ) _lowerCAmelCase : Union[str, Any] = AlbertTokenizer.from_pretrained(_lowercase ) finally: os.remove(_lowercase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,_lowercase ) _lowerCAmelCase : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Dict = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class __UpperCamelCase ( unittest.TestCase ): _UpperCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __lowerCamelCase ( cls ): '''simple docstring''' _lowerCAmelCase : Any = TOKEN HfFolder.save_token(_lowercase ) @classmethod def __lowerCamelCase ( cls ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def __lowerCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Dict = os.path.join(_lowercase ,'vocab.txt' ) with open(_lowercase ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCAmelCase : Any = BertTokenizer(_lowercase ) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token ) _lowerCAmelCase : List[str] = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ,repo_id='test-tokenizer' ,push_to_hub=_lowercase ,use_auth_token=self._token ) _lowerCAmelCase : Optional[Any] = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def __lowerCamelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Optional[Any] = os.path.join(_lowercase ,'vocab.txt' ) with open(_lowercase ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCAmelCase : List[Any] = BertTokenizer(_lowercase ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token ) _lowerCAmelCase : Dict = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _lowercase ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=_lowercase ,use_auth_token=self._token ) _lowerCAmelCase : List[Any] = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def __lowerCamelCase ( self ): '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Any = os.path.join(_lowercase ,'vocab.txt' ) with open(_lowercase ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCAmelCase : Tuple = CustomTokenizer(_lowercase ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) _lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" ,trust_remote_code=_lowercase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Dict = os.path.join(_lowercase ,'vocab.txt' ) with open(_lowercase ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCAmelCase : Any = BertTokenizerFast.from_pretrained(_lowercase ) bert_tokenizer.save_pretrained(_lowercase ) _lowerCAmelCase : Any = CustomTokenizerFast.from_pretrained(_lowercase ) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) _lowerCAmelCase : int = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" ,trust_remote_code=_lowercase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' ) _lowerCAmelCase : Any = AutoTokenizer.from_pretrained( F"""{USER}/test-dynamic-tokenizer""" ,use_fast=_lowercase ,trust_remote_code=_lowercase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = Trie() _lowerCAmelCase : List[Any] = trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(_lowercase ,['AB', 'C'] )
702
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
0
from itertools import permutations def _UpperCamelCase (a__ :tuple ): """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False UpperCamelCase__ = [7, 11, 13, 17] for i, test in enumerate(a__ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _UpperCamelCase (a__ :int = 10 ): """simple docstring""" return sum( int("""""".join(map(a__ , a__ ) ) ) for num in permutations(range(a__ ) ) if is_substring_divisible(a__ ) ) if __name__ == "__main__": print(f"""{solution() = }""")
619
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case : Dict = CodeGenTokenizer snake_case : Dict = CodeGenTokenizerFast snake_case : Tuple = True snake_case : Optional[int] = {"""add_prefix_space""": True} snake_case : int = False def _lowerCamelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] UpperCamelCase__ = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) UpperCamelCase__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCamelCase__ = {"""unk_token""": """<unk>"""} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__lowerCAmelCase ) ) def _lowerCamelCase ( self , **__lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _lowerCamelCase ( self , **__lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = """lower newer""" UpperCamelCase__ = """lower newer""" return input_text, output_text def _lowerCamelCase ( self ): UpperCamelCase__ = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase__ = """lower newer""" UpperCamelCase__ = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] UpperCamelCase__ = tokenizer.tokenize(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def _lowerCamelCase ( self ): if not self.test_rust_tokenizer: return UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_rust_tokenizer(add_prefix_space=__lowerCAmelCase ) UpperCamelCase__ = """lower newer""" # Testing tokenization UpperCamelCase__ = tokenizer.tokenize(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) UpperCamelCase__ = rust_tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens UpperCamelCase__ = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) UpperCamelCase__ = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens UpperCamelCase__ = self.get_rust_tokenizer(add_prefix_space=__lowerCAmelCase ) UpperCamelCase__ = tokenizer.encode(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) UpperCamelCase__ = rust_tokenizer.encode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing the unknown token UpperCamelCase__ = tokens + [rust_tokenizer.unk_token] UpperCamelCase__ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def _lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def _lowerCamelCase ( self , __lowerCAmelCase=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) # Simple input UpperCamelCase__ = """This is a simple input""" UpperCamelCase__ = ["""This is a simple input 1""", """This is a simple input 2"""] UpperCamelCase__ = ("""This is a simple input""", """This is a pair""") UpperCamelCase__ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="""max_length""" , ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding="""max_length""" , ) def _lowerCamelCase ( self ): UpperCamelCase__ = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input UpperCamelCase__ = """This is a simple input""" UpperCamelCase__ = ["""This is a simple input looooooooong""", """This is a simple input"""] UpperCamelCase__ = ("""This is a simple input""", """This is a pair""") UpperCamelCase__ = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] UpperCamelCase__ = tokenizer.pad_token_id UpperCamelCase__ = tokenizer(__lowerCAmelCase , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) UpperCamelCase__ = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncate=__lowerCAmelCase , return_tensors="""np""" ) UpperCamelCase__ = tokenizer(*__lowerCAmelCase , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) UpperCamelCase__ = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncate=__lowerCAmelCase , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def _lowerCamelCase ( self ): UpperCamelCase__ = """$$$""" UpperCamelCase__ = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__lowerCAmelCase , add_bos_token=__lowerCAmelCase ) UpperCamelCase__ = """This is a simple input""" UpperCamelCase__ = ["""This is a simple input 1""", """This is a simple input 2"""] UpperCamelCase__ = tokenizer.bos_token_id UpperCamelCase__ = tokenizer(__lowerCAmelCase ) UpperCamelCase__ = tokenizer(__lowerCAmelCase ) self.assertEqual(out_s.input_ids[0] , __lowerCAmelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) UpperCamelCase__ = tokenizer.decode(out_s.input_ids ) UpperCamelCase__ = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __lowerCAmelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def _lowerCamelCase ( self ): UpperCamelCase__ = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) UpperCamelCase__ = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" UpperCamelCase__ = """\nif len_a > len_b: result = a\nelse: result = b""" UpperCamelCase__ = tokenizer.encode(__lowerCAmelCase ) UpperCamelCase__ = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] UpperCamelCase__ = tokenizer.decode(__lowerCAmelCase , truncate_before_pattern=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self ): pass
619
1
from __future__ import annotations def __UpperCamelCase ( _lowerCAmelCase ): """simple docstring""" if len(_lowerCAmelCase ) == 0: return [] UpperCAmelCase , UpperCAmelCase = min(_lowerCAmelCase ), max(_lowerCAmelCase ) UpperCAmelCase = int(max_value - min_value ) + 1 UpperCAmelCase = [[] for _ in range(_lowerCAmelCase )] for i in my_list: buckets[int(i - min_value )].append(_lowerCAmelCase ) return [v for bucket in buckets for v in sorted(_lowerCAmelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
705
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase ={ "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } __lowerCAmelCase ={ "gpt-neox-20b": 2048, } class __magic_name__ ( _a): _UpperCAmelCase : int = VOCAB_FILES_NAMES _UpperCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : Tuple = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] ,__SCREAMING_SNAKE_CASE : str=None ,__SCREAMING_SNAKE_CASE : Union[str, Any]=None ,__SCREAMING_SNAKE_CASE : List[str]=None ,__SCREAMING_SNAKE_CASE : List[Any]="<|endoftext|>" ,__SCREAMING_SNAKE_CASE : Any="<|endoftext|>" ,__SCREAMING_SNAKE_CASE : Dict="<|endoftext|>" ,__SCREAMING_SNAKE_CASE : Union[str, Any]=False ,**__SCREAMING_SNAKE_CASE : Tuple ,): super().__init__( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,tokenizer_file=__SCREAMING_SNAKE_CASE ,unk_token=__SCREAMING_SNAKE_CASE ,bos_token=__SCREAMING_SNAKE_CASE ,eos_token=__SCREAMING_SNAKE_CASE ,add_prefix_space=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ,) UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" ,__SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCAmelCase = getattr(__SCREAMING_SNAKE_CASE ,pre_tok_state.pop("type" ) ) UpperCAmelCase = add_prefix_space UpperCAmelCase = pre_tok_class(**__SCREAMING_SNAKE_CASE ) UpperCAmelCase = add_prefix_space def _UpperCAmelCase ( self : int ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Optional[str] = None ): UpperCAmelCase = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE ,name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : str ,__SCREAMING_SNAKE_CASE : "Conversation" ): UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__SCREAMING_SNAKE_CASE ,add_special_tokens=__SCREAMING_SNAKE_CASE ) + [self.eos_token_id] ) if len(__SCREAMING_SNAKE_CASE ) > self.model_max_length: UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
405
0
"""simple docstring""" lowerCamelCase_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def __lowerCamelCase ( a_ : bytes ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(a_ , a_ ): __SCREAMING_SNAKE_CASE :Optional[Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(a_ ) __SCREAMING_SNAKE_CASE :Optional[Any] = ''''''.join(bin(a_ )[2:].zfill(8 ) for byte in data ) __SCREAMING_SNAKE_CASE :Optional[int] = len(a_ ) % 6 != 0 if padding_needed: # The padding that will be added later __SCREAMING_SNAKE_CASE :Tuple = b'''=''' * ((6 - len(a_ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(a_ ) % 6) else: __SCREAMING_SNAKE_CASE :Optional[int] = b'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(a_ ) , 6 ) ).encode() + padding ) def __lowerCamelCase ( a_ : str ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(a_ , a_ ) and not isinstance(a_ , a_ ): __SCREAMING_SNAKE_CASE :Tuple = ( '''argument should be a bytes-like object or ASCII string, ''' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(a_ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(a_ , a_ ): try: __SCREAMING_SNAKE_CASE :Tuple = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) __SCREAMING_SNAKE_CASE :List[str] = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(a_ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one __SCREAMING_SNAKE_CASE :Tuple = encoded_data[:-padding] __SCREAMING_SNAKE_CASE :List[str] = ''''''.join( bin(B64_CHARSET.index(a_ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: __SCREAMING_SNAKE_CASE :int = ''''''.join( bin(B64_CHARSET.index(a_ ) )[2:].zfill(6 ) for char in encoded_data ) __SCREAMING_SNAKE_CASE :Dict = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(a_ ) , 8 ) ] return bytes(a_ ) if __name__ == "__main__": import doctest doctest.testmod()
498
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase_ = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } lowerCamelCase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def __lowerCamelCase ( a_ : Any , a_ : Union[str, Any]=False ) -> int: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = create_model( '''HTSAT-tiny''' , '''roberta''' , a_ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=a_ , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def __lowerCamelCase ( a_ : Optional[int] ) -> int: __SCREAMING_SNAKE_CASE :Dict = {} __SCREAMING_SNAKE_CASE :Any = r'''.*sequential.(\d+).*''' __SCREAMING_SNAKE_CASE :Dict = r'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __SCREAMING_SNAKE_CASE :str = key.replace(a_ , a_ ) if re.match(a_ , a_ ): # replace sequential layers with list __SCREAMING_SNAKE_CASE :Tuple = re.match(a_ , a_ ).group(1 ) __SCREAMING_SNAKE_CASE :str = key.replace(f'''sequential.{sequential_layer}.''' , f'''layers.{int(a_ )//3}.linear.''' ) elif re.match(a_ , a_ ): __SCREAMING_SNAKE_CASE :Union[str, Any] = int(re.match(a_ , a_ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __SCREAMING_SNAKE_CASE :Union[str, Any] = 1 if projecton_layer == 0 else 2 __SCREAMING_SNAKE_CASE :Tuple = key.replace(f'''_projection.{projecton_layer}.''' , f'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value __SCREAMING_SNAKE_CASE :Union[str, Any] = value __SCREAMING_SNAKE_CASE :Optional[Any] = mixed_qkv.size(0 ) // 3 __SCREAMING_SNAKE_CASE :Optional[Any] = mixed_qkv[:qkv_dim] __SCREAMING_SNAKE_CASE :Optional[Any] = mixed_qkv[qkv_dim : qkv_dim * 2] __SCREAMING_SNAKE_CASE :str = mixed_qkv[qkv_dim * 2 :] __SCREAMING_SNAKE_CASE :Dict = query_layer __SCREAMING_SNAKE_CASE :Tuple = key_layer __SCREAMING_SNAKE_CASE :str = value_layer else: __SCREAMING_SNAKE_CASE :Optional[Any] = value return model_state_dict def __lowerCamelCase ( a_ : Optional[int] , a_ : Dict , a_ : Dict , a_ : List[Any]=False ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[int] = init_clap(a_ , enable_fusion=a_ ) clap_model.eval() __SCREAMING_SNAKE_CASE :Optional[Any] = clap_model.state_dict() __SCREAMING_SNAKE_CASE :Tuple = rename_state_dict(a_ ) __SCREAMING_SNAKE_CASE :Any = ClapConfig() __SCREAMING_SNAKE_CASE :Tuple = enable_fusion __SCREAMING_SNAKE_CASE :Dict = ClapModel(a_ ) # ignore the spectrogram embedding layer model.load_state_dict(a_ , strict=a_ ) model.save_pretrained(a_ ) transformers_config.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") lowerCamelCase_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
498
1
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a ( __UpperCAmelCase : Tuple ) -> Dict: __magic_name__: List[str] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def a ( __UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: __magic_name__: str = emb.weight.shape __magic_name__: str = nn.Linear(__UpperCAmelCase , __UpperCAmelCase , bias=__UpperCAmelCase ) __magic_name__: int = emb.weight.data return lin_layer def a ( __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int]=None ) -> Optional[Any]: __magic_name__: List[Any] = {} for old_key in state_dict.keys(): __magic_name__: List[str] = old_key if "moe_layer.experts." in key: if expert_idx is not None: __magic_name__: Tuple = key.replace("""moe_layer.experts.0""" , f'ffn.experts.expert_{expert_idx}' ) else: __magic_name__: Union[str, Any] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: __magic_name__: List[str] = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: __magic_name__: str = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: __magic_name__: Tuple = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: __magic_name__: str = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: __magic_name__: Dict = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: __magic_name__: Optional[int] = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) __magic_name__: Optional[Any] = state_dict[old_key] return new_dict def a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str = WEIGHTS_NAME ) -> Optional[Any]: __magic_name__: str = [] __magic_name__: Any = 0 os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) for expert in range(__UpperCAmelCase ): __magic_name__: List[Any] = switch_checkpoint_path + f'-rank-{expert}.pt' if os.path.isfile(__UpperCAmelCase ): __magic_name__: Any = torch.load(__UpperCAmelCase )["""model"""] remove_ignore_keys_(__UpperCAmelCase ) __magic_name__: List[str] = rename_fairseq_keys(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: Union[str, Any] = os.path.join( __UpperCAmelCase , weights_name.replace(""".bin""" , f'-{len(__UpperCAmelCase )+1:05d}-of-???.bin' ) ) torch.save(__UpperCAmelCase , __UpperCAmelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__UpperCAmelCase )[0]].dtype ) # Add the last block __magic_name__: Union[str, Any] = os.path.join(__UpperCAmelCase , weights_name.replace(""".bin""" , f'-{len(__UpperCAmelCase )+1:05d}-of-???.bin' ) ) __magic_name__: Union[str, Any] = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(__UpperCAmelCase ) __magic_name__: Union[str, Any] = rename_fairseq_keys(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: Union[str, Any] = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__UpperCAmelCase ) == 1: __magic_name__: Any = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) torch.save(__UpperCAmelCase , __UpperCAmelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__UpperCAmelCase , __UpperCAmelCase ) # Otherwise, let's build the index __magic_name__: List[str] = {} for idx, shard in enumerate(__UpperCAmelCase ): __magic_name__: Any = weights_name.replace(""".bin""" , f'-{idx+1:05d}-of-{len(__UpperCAmelCase ):05d}.bin' ) __magic_name__: Dict = os.path.join(__UpperCAmelCase , weights_name.replace(""".bin""" , f'-{idx+1:05d}-of-???.bin' ) ) os.rename(__UpperCAmelCase , os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) for key in shard: __magic_name__: Dict = shard_file # Add the metadata __magic_name__: Any = {"""total_size""": total_size} __magic_name__: int = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , """w""" , encoding="""utf-8""" ) as f: __magic_name__: List[Any] = json.dumps(__UpperCAmelCase , indent=2 , sort_keys=__UpperCAmelCase ) + """\n""" f.write(__UpperCAmelCase ) return metadata, index if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) __lowerCamelCase = parser.parse_args() __lowerCamelCase , __lowerCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) __lowerCamelCase = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) __lowerCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
713
"""simple docstring""" import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = GPTSwaTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = False def lowerCamelCase__ ( self : Dict ) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing __magic_name__: Optional[Any] = GPTSwaTokenizer(__snake_case , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : Optional[int] , __snake_case : int ) -> Tuple: __magic_name__: str = """This is a test""" __magic_name__: Dict = """This is a test""" return input_text, output_text def lowerCamelCase__ ( self : Optional[int] ) -> List[str]: __magic_name__: Any = """<s>""" __magic_name__: Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[Any]: __magic_name__: List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__snake_case ) , 2_0_0_0 ) def lowerCamelCase__ ( self : Optional[Any] ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 2_0_0_0 ) def lowerCamelCase__ ( self : Any ) -> List[str]: __magic_name__: int = GPTSwaTokenizer(__snake_case ) __magic_name__: Optional[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__snake_case , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2] ) __magic_name__: int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( __snake_case , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , ) # fmt: on __magic_name__: List[Any] = tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0] , ) __magic_name__: Dict = tokenizer.convert_ids_to_tokens(__snake_case ) # fmt: off self.assertListEqual( __snake_case , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def lowerCamelCase__ ( self : str ) -> Optional[int]: __magic_name__: int = GPTSwaTokenizer(__snake_case ) __magic_name__: Optional[Any] = ["""This is a test""", """I was born in 92000, and this is falsé."""] __magic_name__: Optional[int] = [ [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2], [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__snake_case , __snake_case ): self.assertListEqual(tokenizer.encode_fast(__snake_case ) , __snake_case ) # Test that decode_fast returns the input text for text, token_ids in zip(__snake_case , __snake_case ): self.assertEqual(tokenizer.decode_fast(__snake_case ) , __snake_case ) @slow def lowerCamelCase__ ( self : Optional[int] ) -> int: __magic_name__: Tuple = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off __magic_name__: str = {"""input_ids""": [[6_3_4_2_3, 5, 6_8_1_1, 1_4_9_5_4, 2_8_2, 8_1_6, 3_8_2_1, 6_3_4_6_6, 6_3_4_2_5, 6_3_4_6_2, 1_8, 6_3_9_7_8, 6_7_8, 3_0_1, 1_3_2_0, 6_3_4_2_3, 6_3_4_5_5, 6_3_4_5_8, 1_8, 6_3_9_8_2, 4_2_4_6, 3_9_4_0, 1_9_0_1, 4_7_7_8_9, 5_5_4_7, 1_8_9_9_4], [1_9_6_3_0, 1_1_0_0, 6_3_4_4_6, 1_3_4_2, 6_3_3, 5_4_4, 4_4_8_8, 5_9_3, 5_1_0_2, 2_4_1_6, 6_3_4_9_5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_6_5_2, 4_2_8, 2_6_8, 1_9_3_6, 5_1_5, 2_6_8, 5_8_5_9_3, 2_2_4_1_3, 9_1_0_6, 5_4_6, 2_6_8, 3_3_2_1_3, 6_3_9_7_9, 6_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5_1_3_0, 6_3_4_5_0, 9_2_4, 6_3_4_4_9, 2_2_4_9, 4_0_6_2, 1_5_5_8, 3_1_8, 6_3_5_0_4, 2_1_4_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_0_9, 3_7_7, 2_8_2_7, 2_5_5_9, 3_3_2, 6_5_7_5, 6_3_4_4_3, 2_6_8_0_1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=__snake_case , )
213
0
"""simple docstring""" from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP __lowercase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name __lowercase : Tuple = "\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")\n >>> pipe.to(\"cuda\")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save(\"cat.png\")\n ```\n" def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case=8): __snake_case = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __snake_case = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _A ( _UpperCAmelCase ): """simple docstring""" def __init__( self : int , A_ : MultilingualCLIP , A_ : XLMRobertaTokenizer , A_ : UNetaDConditionModel , A_ : Union[DDIMScheduler, DDPMScheduler] , A_ : VQModel , ) -> Dict: super().__init__() self.register_modules( text_encoder=A_ , tokenizer=A_ , unet=A_ , scheduler=A_ , movq=A_ , ) __snake_case = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowercase ( self : Any , A_ : List[str] , A_ : str , A_ : str , A_ : Union[str, Any] , A_ : Optional[Any] , A_ : Optional[Any] ) -> Dict: if latents is None: __snake_case = randn_tensor(A_ , generator=A_ , device=A_ , dtype=A_ ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) __snake_case = latents.to(A_ ) __snake_case = latents * scheduler.init_noise_sigma return latents def lowercase ( self : List[str] , A_ : Optional[int] , A_ : Any , A_ : Optional[Any] , A_ : Any , A_ : List[str]=None , ) -> str: __snake_case = len(A_ ) if isinstance(A_ , A_ ) else 1 # get prompt text embeddings __snake_case = self.tokenizer( A_ , padding='''max_length''' , truncation=A_ , max_length=77 , return_attention_mask=A_ , add_special_tokens=A_ , return_tensors='''pt''' , ) __snake_case = text_inputs.input_ids __snake_case = self.tokenizer(A_ , padding='''longest''' , return_tensors='''pt''' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(A_ , A_ ): __snake_case = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __snake_case = text_input_ids.to(A_ ) __snake_case = text_inputs.attention_mask.to(A_ ) __snake_case , __snake_case = self.text_encoder( input_ids=A_ , attention_mask=A_ ) __snake_case = prompt_embeds.repeat_interleave(A_ , dim=0 ) __snake_case = text_encoder_hidden_states.repeat_interleave(A_ , dim=0 ) __snake_case = text_mask.repeat_interleave(A_ , dim=0 ) if do_classifier_free_guidance: __snake_case = 42 if negative_prompt is None: __snake_case = [''''''] * batch_size elif type(A_ ) is not type(A_ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(A_ )} !=" f" {type(A_ )}." ) elif isinstance(A_ , A_ ): __snake_case = [negative_prompt] elif batch_size != len(A_ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(A_ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: __snake_case = negative_prompt __snake_case = self.tokenizer( A_ , padding='''max_length''' , max_length=77 , truncation=A_ , return_attention_mask=A_ , add_special_tokens=A_ , return_tensors='''pt''' , ) __snake_case = uncond_input.input_ids.to(A_ ) __snake_case = uncond_input.attention_mask.to(A_ ) __snake_case , __snake_case = self.text_encoder( input_ids=A_ , attention_mask=A_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __snake_case = negative_prompt_embeds.shape[1] __snake_case = negative_prompt_embeds.repeat(1 , A_ ) __snake_case = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ ) __snake_case = uncond_text_encoder_hidden_states.shape[1] __snake_case = uncond_text_encoder_hidden_states.repeat(1 , A_ , 1 ) __snake_case = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , A_ , -1 ) __snake_case = uncond_text_mask.repeat_interleave(A_ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case = torch.cat([negative_prompt_embeds, prompt_embeds] ) __snake_case = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) __snake_case = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def lowercase ( self : str , A_ : Dict=0 ) -> List[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __snake_case = torch.device(f"cuda:{gpu_id}" ) __snake_case = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A_ , A_ ) def lowercase ( self : Any , A_ : Dict=0 ) -> int: if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) __snake_case = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=A_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __snake_case = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __snake_case , __snake_case = cpu_offload_with_hook(A_ , A_ , prev_module_hook=A_ ) if self.safety_checker is not None: __snake_case , __snake_case = cpu_offload_with_hook(self.safety_checker , A_ , prev_module_hook=A_ ) # We'll offload the last model manually. __snake_case = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowercase ( self : Tuple ) -> List[Any]: if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(A_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A_ ) def __call__( self : str , A_ : Union[str, List[str]] , A_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A_ : Optional[Union[str, List[str]]] = None , A_ : int = 512 , A_ : int = 512 , A_ : int = 100 , A_ : float = 4.0 , A_ : int = 1 , A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A_ : Optional[torch.FloatTensor] = None , A_ : Optional[str] = "pil" , A_ : bool = True , ) -> Optional[Any]: if isinstance(A_ , A_ ): __snake_case = 1 elif isinstance(A_ , A_ ): __snake_case = len(A_ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(A_ )}" ) __snake_case = self._execution_device __snake_case = batch_size * num_images_per_prompt __snake_case = guidance_scale > 1.0 __snake_case , __snake_case , __snake_case = self._encode_prompt( A_ , A_ , A_ , A_ , A_ ) if isinstance(A_ , A_ ): __snake_case = torch.cat(A_ , dim=0 ) if isinstance(A_ , A_ ): __snake_case = torch.cat(A_ , dim=0 ) if do_classifier_free_guidance: __snake_case = image_embeds.repeat_interleave(A_ , dim=0 ) __snake_case = negative_image_embeds.repeat_interleave(A_ , dim=0 ) __snake_case = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=A_ ) self.scheduler.set_timesteps(A_ , device=A_ ) __snake_case = self.scheduler.timesteps __snake_case = self.unet.config.in_channels __snake_case , __snake_case = get_new_h_w(A_ , A_ , self.movq_scale_factor ) # create initial latent __snake_case = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , A_ , A_ , A_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A_ ) ): # expand the latents if we are doing classifier free guidance __snake_case = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case = {'''text_embeds''': prompt_embeds, '''image_embeds''': image_embeds} __snake_case = self.unet( sample=A_ , timestep=A_ , encoder_hidden_states=A_ , added_cond_kwargs=A_ , return_dict=A_ , )[0] if do_classifier_free_guidance: __snake_case , __snake_case = noise_pred.split(latents.shape[1] , dim=1 ) __snake_case , __snake_case = noise_pred.chunk(2 ) __snake_case , __snake_case = variance_pred.chunk(2 ) __snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __snake_case = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __snake_case , __snake_case = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step( A_ , A_ , A_ , generator=A_ , ).prev_sample # post-processing __snake_case = self.movq.decode(A_ , force_not_quantize=A_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: __snake_case = image * 0.5 + 0.5 __snake_case = image.clamp(0 , 1 ) __snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
564
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowercase : Union[str, Any] = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Tuple = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __lowercase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
564
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
710
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): return EnvironmentCommand() def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): return EnvironmentCommand(args.accelerate_config_file ) class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): @staticmethod def A_ ( lowerCamelCase ): snake_case__ = parser.add_parser("env" ) download_parser.set_defaults(func=lowerCamelCase ) download_parser.add_argument( "--accelerate-config_file" , default=lowerCamelCase , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=lowerCamelCase ) def __init__( self , lowerCamelCase , *lowerCamelCase ): snake_case__ = accelerate_config_file def A_ ( self ): snake_case__ = "not installed" if is_safetensors_available(): import safetensors snake_case__ = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors snake_case__ = F"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" snake_case__ = "not installed" snake_case__ = snake_case__ = "not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file snake_case__ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(lowerCamelCase ): snake_case__ = load_config_from_file(self._accelerate_config_file ).to_dict() snake_case__ = ( "\n".join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCamelCase , lowerCamelCase ) else F"""\t{accelerate_config}""" ) snake_case__ = "not installed" snake_case__ = "NA" if is_torch_available(): import torch snake_case__ = torch.__version__ snake_case__ = torch.cuda.is_available() snake_case__ = "not installed" snake_case__ = "NA" if is_tf_available(): import tensorflow as tf snake_case__ = tf.__version__ try: # deprecated in v2.1 snake_case__ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool snake_case__ = bool(tf.config.list_physical_devices("GPU" ) ) snake_case__ = "not installed" snake_case__ = "not installed" snake_case__ = "not installed" snake_case__ = "NA" if is_flax_available(): import flax import jax import jaxlib snake_case__ = flax.__version__ snake_case__ = jax.__version__ snake_case__ = jaxlib.__version__ snake_case__ = jax.lib.xla_bridge.get_backend().platform snake_case__ = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": F"""{safetensors_version}""", "Accelerate version": F"""{accelerate_version}""", "Accelerate config": F"""{accelerate_config_str}""", "PyTorch version (GPU?)": F"""{pt_version} ({pt_cuda_available})""", "Tensorflow version (GPU?)": F"""{tf_version} ({tf_cuda_available})""", "Flax version (CPU?/GPU?/TPU?)": F"""{flax_version} ({jax_backend})""", "Jax version": F"""{jax_version}""", "JaxLib version": F"""{jaxlib_version}""", "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(lowerCamelCase ) ) return info @staticmethod def A_ ( lowerCamelCase ): return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
530
0
"""simple docstring""" # using dfs for finding eulerian path traversal def lowerCamelCase (a_ :int , a_ :Tuple , a_ :Union[str, Any] , a_ :Any=None) -> Dict: lowercase :Optional[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowercase , lowercase :Any = True, True lowercase :str = dfs(a_ , a_ , a_ , a_) return path def lowerCamelCase (a_ :Optional[Any] , a_ :Optional[Any]) -> Tuple: lowercase :Union[str, Any] = 0 lowercase :Dict = -1 for i in range(a_): if i not in graph.keys(): continue if len(graph[i]) % 2 == 1: odd_degree_nodes += 1 lowercase :Tuple = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def lowerCamelCase (a_ :Dict , a_ :Optional[Any]) -> Optional[int]: lowercase :Union[str, Any] = [[False for _ in range(max_node + 1)] for _ in range(max_node + 1)] lowercase , lowercase :int = check_circuit_or_path(a_ , a_) if check == 3: print('''graph is not Eulerian''') print('''no path''') return lowercase :int = 1 if check == 2: lowercase :Tuple = odd_node print('''graph has a Euler path''') if check == 1: print('''graph has a Euler cycle''') lowercase :Optional[Any] = dfs(a_ , a_ , a_) print(a_) def lowerCamelCase () -> Any: lowercase :int = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowercase :Tuple = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowercase :Union[str, Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowercase :int = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowercase :Tuple = { 1: [], 2: [] # all degree is zero } lowercase :int = 10 check_euler(a_ , a_) check_euler(a_ , a_) check_euler(a_ , a_) check_euler(a_ , a_) check_euler(a_ , a_) if __name__ == "__main__": main()
677
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCAmelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def lowerCamelCase (a_ :Optional[int] , a_ :tuple , a_ :Path , a_ :str , a_ :int , a_ :List[Any] , a_ :Any , a_ :Union[str, Any]=False , ) -> Dict: output_path.parent.mkdir(parents=a_ , exist_ok=a_) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( a_ , a_ , f=output_path.as_posix() , input_names=a_ , output_names=a_ , dynamic_axes=a_ , do_constant_folding=a_ , use_external_data_format=a_ , enable_onnx_checker=a_ , opset_version=a_ , ) else: export( a_ , a_ , f=output_path.as_posix() , input_names=a_ , output_names=a_ , dynamic_axes=a_ , do_constant_folding=a_ , opset_version=a_ , ) @torch.no_grad() def lowerCamelCase (a_ :str , a_ :str , a_ :int , a_ :bool = False) -> Union[str, Any]: lowercase :Any = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase :Union[str, Any] = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''') else: lowercase :List[str] = '''cpu''' lowercase :List[str] = StableDiffusionPipeline.from_pretrained(a_ , torch_dtype=a_).to(a_) lowercase :List[Any] = Path(a_) # TEXT ENCODER lowercase :List[Any] = pipeline.text_encoder.config.max_position_embeddings lowercase :Dict = pipeline.text_encoder.config.hidden_size lowercase :Union[str, Any] = pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=a_ , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=a_ , dtype=torch.intaa)) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=a_ , ) del pipeline.text_encoder # UNET lowercase :Any = pipeline.unet.config.in_channels lowercase :List[Any] = pipeline.unet.config.sample_size lowercase :Optional[int] = output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet , model_args=( torch.randn(2 , a_ , a_ , a_).to(device=a_ , dtype=a_), torch.randn(2).to(device=a_ , dtype=a_), torch.randn(2 , a_ , a_).to(device=a_ , dtype=a_), False, ) , output_path=a_ , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=a_ , use_external_data_format=a_ , ) lowercase :List[Any] = str(unet_path.absolute().as_posix()) lowercase :str = os.path.dirname(a_) lowercase :Optional[Any] = onnx.load(a_) # clean up existing tensor files shutil.rmtree(a_) os.mkdir(a_) # collate external tensor files into one onnx.save_model( a_ , a_ , save_as_external_data=a_ , all_tensors_to_one_file=a_ , location='''weights.pb''' , convert_attribute=a_ , ) del pipeline.unet # VAE ENCODER lowercase :Tuple = pipeline.vae lowercase :Optional[Any] = vae_encoder.config.in_channels lowercase :Any = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowercase :Any = lambda a_ , a_: vae_encoder.encode(a_ , a_)[0].sample() onnx_export( a_ , model_args=( torch.randn(1 , a_ , a_ , a_).to(device=a_ , dtype=a_), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=a_ , ) # VAE DECODER lowercase :Any = pipeline.vae lowercase :Dict = vae_decoder.config.latent_channels lowercase :Union[str, Any] = vae_decoder.config.out_channels # forward only through the decoder part lowercase :List[Any] = vae_encoder.decode onnx_export( a_ , model_args=( torch.randn(1 , a_ , a_ , a_).to(device=a_ , dtype=a_), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=a_ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowercase :Dict = pipeline.safety_checker lowercase :str = safety_checker.config.vision_config.num_channels lowercase :str = safety_checker.config.vision_config.image_size lowercase :List[str] = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , a_ , a_ , a_ , ).to(device=a_ , dtype=a_), torch.randn(1 , a_ , a_ , a_).to(device=a_ , dtype=a_), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=a_ , ) del pipeline.safety_checker lowercase :Tuple = OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''') lowercase :Optional[Any] = pipeline.feature_extractor else: lowercase :int = None lowercase :Union[str, Any] = None lowercase :Optional[int] = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''') , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''') , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''') , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''') , scheduler=pipeline.scheduler , safety_checker=a_ , feature_extractor=a_ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(a_) print('''ONNX pipeline saved to''' , a_) del pipeline del onnx_pipeline lowercase :Tuple = OnnxStableDiffusionPipeline.from_pretrained(a_ , provider='''CPUExecutionProvider''') print('''ONNX pipeline is loadable''') if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') UpperCAmelCase = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
677
1
import math class __a : def UpperCamelCase ( self : Optional[Any] , snake_case_ : list[list[float]] , snake_case_ : list[int])-> int: __lowerCAmelCase =0.0 __lowerCAmelCase =0.0 for i in range(len(snake_case_)): da += math.pow((sample[i] - weights[0][i]) , 2) da += math.pow((sample[i] - weights[1][i]) , 2) return 0 if da > da else 1 return 0 def UpperCamelCase ( self : Optional[int] , snake_case_ : list[list[int | float]] , snake_case_ : list[int] , snake_case_ : int , snake_case_ : float)-> list[list[int | float]]: for i in range(len(snake_case_)): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def __lowerCAmelCase ( ) -> None: # Training Examples ( m, n ) __lowerCAmelCase =[[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) __lowerCAmelCase =[[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training __lowerCAmelCase =SelfOrganizingMap() __lowerCAmelCase =3 __lowerCAmelCase =0.5 for _ in range(__lowerCamelCase ): for j in range(len(__lowerCamelCase ) ): # training sample __lowerCAmelCase =training_samples[j] # Compute the winning vector __lowerCAmelCase =self_organizing_map.get_winner(__lowerCamelCase , __lowerCamelCase ) # Update the winning vector __lowerCAmelCase =self_organizing_map.update(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # classify test sample __lowerCAmelCase =[0, 0, 0, 1] __lowerCAmelCase =self_organizing_map.get_winner(__lowerCamelCase , __lowerCamelCase ) # results print(f"""Clusters that the test sample belongs to : {winner}""" ) print(f"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
721
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): lowercase_ = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: lowercase_ = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def __lowerCAmelCase ( __lowerCamelCase : List[str] ) -> int: __lowerCAmelCase =(images / 2 + 0.5).clamp(0 , 1 ) __lowerCAmelCase =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowerCAmelCase =numpy_to_pil(__lowerCamelCase ) return images def __lowerCAmelCase ( __lowerCamelCase : str ) -> str: if images.ndim == 3: __lowerCAmelCase =images[None, ...] __lowerCAmelCase =(images * 255).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __lowerCAmelCase =[Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: __lowerCAmelCase =[Image.fromarray(__lowerCamelCase ) for image in images] return pil_images
456
0
from math import factorial def __a ( A__ : int , A__ : int , A__ : float ): if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(A__ , A__ ) or not isinstance(A__ , A__ ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) SCREAMING_SNAKE_CASE = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! SCREAMING_SNAKE_CASE = float(factorial(A__ ) ) coefficient /= factorial(A__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
16
"""simple docstring""" import os from collections import deque import torch from torch.utils.data import Dataset class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' def __init__( self , _A="" , _A="train" ): '''simple docstring''' assert os.path.isdir(_A ) _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =os.listdir(_A ) for story_filename in story_filenames_list: if "summary" in story_filename: continue _SCREAMING_SNAKE_CASE =os.path.join(_A , _A ) if not os.path.isfile(_A ): continue self.documents.append(_A ) def __len__( self ): '''simple docstring''' return len(self.documents ) def __getitem__( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =self.documents[idx] _SCREAMING_SNAKE_CASE =document_path.split('''/''' )[-1] with open(_A , encoding='''utf-8''' ) as source: _SCREAMING_SNAKE_CASE =source.read() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =process_story(_A ) return document_name, story_lines, summary_lines def _lowerCAmelCase(a : str ) -> Any: _SCREAMING_SNAKE_CASE =list(filter(lambda a : len(a ) != 0 , [line.strip() for line in raw_story.split('''\n''' )] ) ) # for some unknown reason some lines miss a period, add it _SCREAMING_SNAKE_CASE =[_add_missing_period(a ) for line in nonempty_lines] # gather article lines _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =deque(a ) while True: try: _SCREAMING_SNAKE_CASE =lines.popleft() if element.startswith('''@highlight''' ): break story_lines.append(a ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines _SCREAMING_SNAKE_CASE =list(filter(lambda a : not t.startswith('''@highlight''' ) , a ) ) return story_lines, summary_lines def _lowerCAmelCase(a : Optional[Any] ) -> Optional[int]: _SCREAMING_SNAKE_CASE =['''.''', '''!''', '''?''', '''...''', '''\'''', '''`''', '''"''', '''\u2019''', '''\u2019''', ''')'''] if line.startswith('''@highlight''' ): return line if line[-1] in END_TOKENS: return line return line + "." def _lowerCAmelCase(a : Optional[int] , a : Optional[Any] , a : Tuple ) -> Union[str, Any]: if len(a ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(a )) ) return sequence def _lowerCAmelCase(a : Optional[int] , a : Any ) -> Dict: _SCREAMING_SNAKE_CASE =torch.ones_like(a ) _SCREAMING_SNAKE_CASE =sequence == pad_token_id _SCREAMING_SNAKE_CASE =0 return mask def _lowerCAmelCase(a : List[str] , a : Union[str, Any] , a : Optional[Any] ) -> Dict: _SCREAMING_SNAKE_CASE =[tokenizer.encode(a ) for line in story_lines] _SCREAMING_SNAKE_CASE =[token for sentence in story_lines_token_ids for token in sentence] _SCREAMING_SNAKE_CASE =[tokenizer.encode(a ) for line in summary_lines] _SCREAMING_SNAKE_CASE =[token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def _lowerCAmelCase(a : Optional[int] , a : str ) -> int: _SCREAMING_SNAKE_CASE =[] for sequence in batch: _SCREAMING_SNAKE_CASE =-1 _SCREAMING_SNAKE_CASE =[] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(a ) return torch.tensor(a )
255
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case__ ( __lowercase , __lowercase , __lowercase , __lowercase ) -> int: """simple docstring""" for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})' def snake_case__ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=True ) -> Optional[int]: """simple docstring""" model.train() A__ : Union[str, Any] = model(lowerCAmelCase__ ) A__ : List[Any] = F.mse_loss(lowerCAmelCase__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowerCAmelCase__ ) def snake_case__ ( __lowercase , __lowercase=False ) -> Optional[int]: """simple docstring""" set_seed(4_2 ) A__ : Union[str, Any] = RegressionModel() A__ : Optional[Any] = deepcopy(lowerCAmelCase__ ) A__ : Tuple = RegressionDataset(length=8_0 ) A__ : str = DataLoader(lowerCAmelCase__ , batch_size=1_6 ) model.to(accelerator.device ) if sched: A__ : Dict = AdamW(params=model.parameters() , lr=1E-3 ) A__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3 ) A__ : List[str] = LambdaLR(lowerCAmelCase__ , lr_lambda=lambda __lowercase : epoch**0.65 ) A__ : Tuple = LambdaLR(lowerCAmelCase__ , lr_lambda=lambda __lowercase : epoch**0.65 ) # Make a copy of `model` if sched: A__ : Optional[int] = accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: A__ : List[str] = accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case__ ( __lowercase ) -> List[str]: """simple docstring""" A__ : Optional[Any] = get_training_setup(lowerCAmelCase__ ) # Use a single batch A__ : Optional[Any] = next(iter(lowerCAmelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A__ : int = accelerator.gather((ddp_input, ddp_target) ) A__ : Any = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase__ ): step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: # Sync grads step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) A__ : Optional[Any] = ddp_input[torch.randperm(len(lowerCAmelCase__ ) )] def snake_case__ ( __lowercase ) -> Dict: """simple docstring""" A__ : str = get_training_setup(lowerCAmelCase__ ) # Use a single batch A__ : Dict = next(iter(lowerCAmelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A__ : Union[str, Any] = accelerator.gather((ddp_input, ddp_target) ) A__ : int = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase__ ): step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: # Sync grads step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) A__ : Optional[Any] = ddp_input[torch.randperm(len(lowerCAmelCase__ ) )] def snake_case__ ( __lowercase=False , __lowercase=False ) -> Dict: """simple docstring""" A__ : Optional[int] = Accelerator( split_batches=lowerCAmelCase__ , dispatch_batches=lowerCAmelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly A__ : Union[str, Any] = get_training_setup(lowerCAmelCase__ ) for iteration, batch in enumerate(lowerCAmelCase__ ): A__ : Any = batch.values() # Gather the distributed inputs and targs for the base model A__ : int = accelerator.gather((ddp_input, ddp_target) ) A__ : int = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowerCAmelCase__ ): step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCAmelCase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) A__ : str = ddp_input[torch.randperm(len(lowerCAmelCase__ ) )] GradientState._reset_state() def snake_case__ ( __lowercase=False , __lowercase=False ) -> Tuple: """simple docstring""" A__ : str = Accelerator( split_batches=lowerCAmelCase__ , dispatch_batches=lowerCAmelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly A__ : Optional[Any] = get_training_setup(lowerCAmelCase__ , lowerCAmelCase__ ) for iteration, batch in enumerate(lowerCAmelCase__ ): A__ : List[Any] = batch.values() # Gather the distributed inputs and targs for the base model A__ : Union[str, Any] = accelerator.gather((ddp_input, ddp_target) ) A__ : Tuple = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCAmelCase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowerCAmelCase__ ): step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' A__ : Optional[int] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCAmelCase__ )) if accelerator.num_processes > 1: check_model_parameters(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case__ ( ) -> str: """simple docstring""" A__ : Optional[int] = Accelerator() A__ : int = RegressionDataset(length=8_0 ) A__ : str = DataLoader(lowerCAmelCase__ , batch_size=1_6 ) A__ : Dict = RegressionDataset(length=9_6 ) A__ : Tuple = DataLoader(lowerCAmelCase__ , batch_size=1_6 ) A__ : Dict = accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowerCAmelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase__ ) if iteration < len(lowerCAmelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowerCAmelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase__ ) if batch_num < len(lowerCAmelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case__ ( ) -> str: """simple docstring""" A__ : Union[str, Any] = Accelerator() A__ : str = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(lowerCAmelCase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(lowerCAmelCase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation(lowerCAmelCase__ , lowerCAmelCase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation_with_opt_and_scheduler(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( __lowercase ) -> Optional[int]: """simple docstring""" main() if __name__ == "__main__": main()
709
import requests snake_case : int = '' # <-- Put your OpenWeatherMap appid here! snake_case : int = 'https://api.openweathermap.org/data/2.5/' def snake_case__ ( __lowercase = "Chicago" , __lowercase = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + "weather" , params=locals() ).json() def snake_case__ ( __lowercase = "Kolkata, India" , __lowercase = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + "forecast" , params=locals() ).json() def snake_case__ ( __lowercase = 55.68 , __lowercase = 12.57 , __lowercase = APPID ) -> dict: """simple docstring""" return requests.get(URL_BASE + "onecall" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: snake_case : int = input('Enter a location:').strip() if location: pprint(current_weather(location)) else: break
182
0
import torch def UpperCamelCase__ ( ) -> str: if torch.cuda.is_available(): _lowercase = torch.cuda.device_count() else: _lowercase = 0 print(f"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
287
'''simple docstring''' class _UpperCamelCase : '''simple docstring''' def __init__( self ): """simple docstring""" a__ = {} # Mapping from char to TrieNode a__ = False def lowercase__ ( self , _a ): """simple docstring""" for word in words: self.insert(_a ) def lowercase__ ( self , _a ): """simple docstring""" a__ = self for char in word: if char not in curr.nodes: a__ = TrieNode() a__ = curr.nodes[char] a__ = True def lowercase__ ( self , _a ): """simple docstring""" a__ = self for char in word: if char not in curr.nodes: return False a__ = curr.nodes[char] return curr.is_leaf def lowercase__ ( self , _a ): """simple docstring""" def _delete(_a , _a , _a ) -> bool: if index == len(_a ): # If word does not exist if not curr.is_leaf: return False a__ = False return len(curr.nodes ) == 0 a__ = word[index] a__ = curr.nodes.get(_a ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted a__ = _delete(_a , _a , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _a , 0 ) def lowerCAmelCase_ ( a : TrieNode , a : str ): if node.is_leaf: print(a , end=' ' ) for key, value in node.nodes.items(): print_words(a , word + key ) def lowerCAmelCase_ ( ): a__ = 'banana bananas bandana band apple all beast'.split() a__ = TrieNode() root.insert_many(a ) # print_words(root, "") assert all(root.find(a ) for word in words ) assert root.find('banana' ) assert not root.find('bandanas' ) assert not root.find('apps' ) assert root.find('apple' ) assert root.find('all' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def lowerCAmelCase_ ( a : str , a : bool ): print(str(a ) , 'works!' if passes else 'doesn\'t work :(' ) def lowerCAmelCase_ ( ): assert test_trie() def lowerCAmelCase_ ( ): print_results('Testing trie functionality' , test_trie() ) if __name__ == "__main__": main()
394
0
'''simple docstring''' import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) __snake_case : List[str] = logging.getLogger() __snake_case : Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : Any ) -> int: '''simple docstring''' os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) A__ : List[str] ={"""source""": """What is love ?""", """target""": """life"""} A__ : List[Any] ={"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: A__ : Optional[int] ="""\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCAmelCase_ , f"{split}.{field}" ) , """w""" ) as f: f.write(lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : str = "pytorch" ) -> Tuple: '''simple docstring''' A__ : int =self.get_auto_remove_tmp_dir() A__ : Union[str, Any] =os.path.join(lowerCAmelCase_ , """output""" ) A__ : Optional[Any] =os.path.join(lowerCAmelCase_ , """data""" ) self._create_dummy_data(data_dir=lowerCAmelCase_ ) A__ : List[str] =f"\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n ".split() if gpus > 0: testargs.append(f"--gpus={gpus}" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) A__ : int =[sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() ) A__ : Dict =os.path.join(lowerCAmelCase_ , """metrics.json""" ) with open(lowerCAmelCase_ ) as f: A__ : Optional[int] =json.load(lowerCAmelCase_ ) return result @require_torch_gpu def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' A__ : Tuple =self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' A__ : Dict =self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' A__ : List[str] =self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' A__ : str =self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
687
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str]=False ) -> str: """simple docstring""" A__ : int =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ : int =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : Tuple=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A__ : Any ="""""" else: A__ : Optional[int] ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : str =state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) A__ : Optional[Any] =state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : Optional[int] =in_proj_weight[ : config.hidden_size, : ] A__ : str =in_proj_bias[: config.hidden_size] A__ : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : List[Any] =in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] =in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ : List[Any] =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" A__ : Dict =dct.pop(__snake_case ) A__ : Tuple =val def __lowerCamelCase ( ) -> int: """simple docstring""" A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Tuple =Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return im @torch.no_grad() def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str]=True ) -> str: """simple docstring""" A__ : Tuple =ViTConfig() # patch_size if model_name[-1] == "8": A__ : Optional[Any] =8 # set labels if required if not base_model: A__ : Optional[Any] =1_000 A__ : str ="""huggingface/label-files""" A__ : Any ="""imagenet-1k-id2label.json""" A__ : Tuple =json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) ) A__ : List[str] ={int(__snake_case ): v for k, v in idalabel.items()} A__ : List[Any] =idalabel A__ : List[Any] ={v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: A__ : str =384 A__ : Optional[Any] =1_536 A__ : Optional[Any] =12 A__ : Union[str, Any] =6 # load original model from torch hub A__ : List[Any] =torch.hub.load("""facebookresearch/dino:main""", __snake_case ) original_model.eval() # load state_dict of original model, remove and rename some keys A__ : List[str] =original_model.state_dict() if base_model: remove_classification_head_(__snake_case ) A__ : Union[str, Any] =create_rename_keys(__snake_case, base_model=__snake_case ) for src, dest in rename_keys: rename_key(__snake_case, __snake_case, __snake_case ) read_in_q_k_v(__snake_case, __snake_case, __snake_case ) # load HuggingFace model if base_model: A__ : List[str] =ViTModel(__snake_case, add_pooling_layer=__snake_case ).eval() else: A__ : List[str] =ViTForImageClassification(__snake_case ).eval() model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by ViTImageProcessor A__ : Union[str, Any] =ViTImageProcessor() A__ : Optional[int] =image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Union[str, Any] =encoding["""pixel_values"""] A__ : Union[str, Any] =model(__snake_case ) if base_model: A__ : List[str] =original_model(__snake_case ) assert torch.allclose(__snake_case, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: A__ : Optional[int] =original_model(__snake_case ) assert logits.shape == outputs.logits.shape assert torch.allclose(__snake_case, outputs.logits, atol=1E-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __snake_case : Tuple = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
687
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = "Speech2TextFeatureExtractor" __lowerCamelCase : Optional[int] = "Speech2TextTokenizer" def __init__( self, lowerCamelCase__, lowerCamelCase__ ): super().__init__(lowerCamelCase__, lowerCamelCase__ ) A : Any = self.feature_extractor A : Optional[Any] = False def __call__( self, *lowerCamelCase__, **lowerCamelCase__ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCamelCase__, **lowerCamelCase__ ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) A : Optional[Any] = kwargs.pop("""raw_speech""" ) else: A : Optional[Any] = kwargs.pop("""audio""", lowerCamelCase__ ) A : Any = kwargs.pop("""sampling_rate""", lowerCamelCase__ ) A : Tuple = kwargs.pop("""text""", lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: A : List[str] = args[0] A : Any = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: A : List[str] = self.feature_extractor(lowerCamelCase__, *lowerCamelCase__, sampling_rate=lowerCamelCase__, **lowerCamelCase__ ) if text is not None: A : List[str] = self.tokenizer(lowerCamelCase__, **lowerCamelCase__ ) if text is None: return inputs elif audio is None: return encodings else: A : int = encodings["""input_ids"""] return inputs def _lowerCAmelCase ( self, *lowerCamelCase__, **lowerCamelCase__ ): return self.tokenizer.batch_decode(*lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, *lowerCamelCase__, **lowerCamelCase__ ): return self.tokenizer.decode(*lowerCamelCase__, **lowerCamelCase__ ) @contextmanager def _lowerCAmelCase ( self ): warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) A : Any = True A : Any = self.tokenizer yield A : Any = self.feature_extractor A : List[str] = False
662
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_:Tuple = logging.get_logger(__name__) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=False ) -> Any: """simple docstring""" A : Dict = """backbone.""" if is_semantic else """""" A : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', """beit.embeddings.cls_token"""), (f'''{prefix}patch_embed.proj.weight''', """beit.embeddings.patch_embeddings.projection.weight"""), (f'''{prefix}patch_embed.proj.bias''', """beit.embeddings.patch_embeddings.projection.bias"""), (f'''{prefix}pos_embed''', """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=False ) -> Any: """simple docstring""" for i in range(config.num_hidden_layers ): A : Dict = """backbone.""" if is_semantic else """""" # queries, keys and values A : Union[str, Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) A : Tuple = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) A : Optional[int] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) A : int = in_proj_weight[ : config.hidden_size, : ] A : Any = q_bias A : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A : Tuple = in_proj_weight[ -config.hidden_size :, : ] A : Union[str, Any] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained A : str = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) A : List[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) A : Dict = gamma_a A : Dict = gamma_a def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: """simple docstring""" A : List[str] = dct.pop(_lowerCAmelCase ) A : Optional[Any] = val def __UpperCamelCase ( ) -> List[str]: """simple docstring""" A : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" A : Optional[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> str: """simple docstring""" A : Dict = False if """rvlcdip""" in checkpoint_url else True A : Union[str, Any] = BeitConfig(use_absolute_position_embeddings=_lowerCAmelCase , use_mask_token=_lowerCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: A : Dict = 1024 A : List[Any] = 4096 A : int = 24 A : int = 16 # labels if "rvlcdip" in checkpoint_url: A : List[Any] = 16 A : List[Any] = """huggingface/label-files""" A : int = """rvlcdip-id2label.json""" A : Dict = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) A : List[str] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} A : int = idalabel A : Union[str, Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys A : List[str] = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="""cpu""" )["""model"""] A : str = create_rename_keys(_lowerCAmelCase , has_lm_head=_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , has_lm_head=_lowerCAmelCase ) # load HuggingFace model A : Any = BeitForMaskedImageModeling(_lowerCAmelCase ) if has_lm_head else BeitForImageClassification(_lowerCAmelCase ) model.eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image A : Any = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_lowerCAmelCase ) A : int = prepare_img() A : Tuple = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ) A : str = encoding["""pixel_values"""] A : Tuple = model(_lowerCAmelCase ) A : Optional[int] = outputs.logits # verify logits A : Tuple = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(_lowerCAmelCase ), "Shape of logits not as expected" Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: if has_lm_head: A : Any = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: A : List[Any] = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase , _lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=_lowerCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase , _lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=_lowerCAmelCase , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:Optional[int] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) SCREAMING_SNAKE_CASE_:Optional[Any] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
662
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer lowercase : str = logging.get_logger(__name__) lowercase : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase : Dict = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowercase : Any = { """yjernite/retribert-base-uncased""": 512, } lowercase : Optional[int] = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class __A( __UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = PRETRAINED_INIT_CONFIGURATION __A = RetriBertTokenizer __A = ["input_ids", "attention_mask"] def __init__( self, A=None, A=None, A=True, A="[UNK]", A="[SEP]", A="[PAD]", A="[CLS]", A="[MASK]", A=True, A=None, **A, ): """simple docstring""" super().__init__( A, tokenizer_file=A, do_lower_case=A, unk_token=A, sep_token=A, pad_token=A, cls_token=A, mask_token=A, tokenize_chinese_chars=A, strip_accents=A, **A, ) _UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', A ) != do_lower_case or normalizer_state.get('''strip_accents''', A ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', A ) != tokenize_chinese_chars ): _UpperCamelCase = getattr(A, normalizer_state.pop('''type''' ) ) _UpperCamelCase = do_lower_case _UpperCamelCase = strip_accents _UpperCamelCase = tokenize_chinese_chars _UpperCamelCase = normalizer_class(**A ) _UpperCamelCase = do_lower_case def _UpperCamelCase ( self, A, A=None ): """simple docstring""" _UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCamelCase ( self, A, A = None ): """simple docstring""" _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self, A, A = None ): """simple docstring""" _UpperCamelCase = self._tokenizer.model.save(A, name=A ) return tuple(A )
105
import datasets from .evaluate import evaluate lowercase : str = """\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } """ lowercase : Tuple = """ This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. """ lowercase : List[str] = """ Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the CUAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'aupr': Area Under the Precision-Recall curve 'prec_at_80_recall': Precision at 80% recall 'prec_at_90_recall': Precision at 90% recall Examples: >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}] >>> cuad_metric = datasets.load_metric(\"cuad\") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A( datasets.Metric ): def _UpperCamelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ), codebase_urls=['''https://www.atticusprojectai.org/cuad'''], reference_urls=['''https://www.atticusprojectai.org/cuad'''], ) def _UpperCamelCase ( self, A, A ): """simple docstring""" _UpperCamelCase = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} _UpperCamelCase = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] _UpperCamelCase = evaluate(dataset=A, predictions=A ) return score
105
1
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase = 50 ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"{solution() = }")
65
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowerCAmelCase : def _A ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : List[str] = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=a__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) lowerCAmelCase__ : Tuple = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _A ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowerCAmelCase__ : int = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCAmelCase__ : Tuple = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=a__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) lowerCAmelCase__ : Tuple = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) lowerCAmelCase__ : Dict = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _A ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a__ ) lowerCAmelCase__ : str = inputs["prompt"] lowerCAmelCase__ : Optional[Any] = inputs["generator"] lowerCAmelCase__ : str = inputs["num_inference_steps"] lowerCAmelCase__ : int = inputs["output_type"] if "image" in inputs: lowerCAmelCase__ : Optional[int] = inputs["image"] else: lowerCAmelCase__ : str = None if "mask_image" in inputs: lowerCAmelCase__ : List[str] = inputs["mask_image"] else: lowerCAmelCase__ : str = None if "original_image" in inputs: lowerCAmelCase__ : Optional[int] = inputs["original_image"] else: lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ , lowerCAmelCase__ : Dict = pipe.encode_prompt(a__ ) # inputs with prompt converted to embeddings lowerCAmelCase__ : Dict = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: lowerCAmelCase__ : Optional[Any] = image if mask_image is not None: lowerCAmelCase__ : Optional[int] = mask_image if original_image is not None: lowerCAmelCase__ : Optional[Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(a__ , a__ , a__ ) lowerCAmelCase__ : Optional[int] = pipe(**a__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a__ ) lowerCAmelCase__ : Tuple = self.pipeline_class.from_pretrained(a__ ) pipe_loaded.to(a__ ) pipe_loaded.set_progress_bar_config(disable=a__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(a__ , a__ ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) lowerCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(a__ ) lowerCAmelCase__ : Any = inputs["generator"] lowerCAmelCase__ : Union[str, Any] = inputs["num_inference_steps"] lowerCAmelCase__ : str = inputs["output_type"] # inputs with prompt converted to embeddings lowerCAmelCase__ : int = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: lowerCAmelCase__ : Tuple = image if mask_image is not None: lowerCAmelCase__ : int = mask_image if original_image is not None: lowerCAmelCase__ : List[Any] = original_image lowerCAmelCase__ : Dict = pipe_loaded(**a__ )[0] lowerCAmelCase__ : int = np.abs(to_np(a__ ) - to_np(a__ ) ).max() self.assertLess(a__ , 1e-4 ) def _A ( self : Any ): '''simple docstring''' lowerCAmelCase__ : str = self.get_dummy_components() lowerCAmelCase__ : int = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) lowerCAmelCase__ : Any = self.get_dummy_inputs(a__ ) lowerCAmelCase__ : Union[str, Any] = pipe(**a__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a__ ) lowerCAmelCase__ : str = self.pipeline_class.from_pretrained(a__ ) pipe_loaded.to(a__ ) pipe_loaded.set_progress_bar_config(disable=a__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowerCAmelCase__ : str = self.get_dummy_inputs(a__ ) lowerCAmelCase__ : Union[str, Any] = pipe_loaded(**a__ )[0] lowerCAmelCase__ : Union[str, Any] = np.abs(to_np(a__ ) - to_np(a__ ) ).max() self.assertLess(a__ , 1e-4 )
378
0
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif stress < 0: raise ValueError("""Stress cannot be negative""" ) elif tangential_force < 0: raise ValueError("""Tangential Force cannot be negative""" ) elif area < 0: raise ValueError("""Area cannot be negative""" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput __A ='scheduler_config.json' class _snake_case ( a__ ): lowerCAmelCase :Union[str, Any] = 1 lowerCAmelCase :Union[str, Any] = 2 lowerCAmelCase :Optional[int] = 3 lowerCAmelCase :Optional[int] = 4 lowerCAmelCase :Any = 5 lowerCAmelCase :Tuple = 6 lowerCAmelCase :List[Any] = 7 lowerCAmelCase :str = 8 lowerCAmelCase :List[Any] = 9 lowerCAmelCase :List[str] = 10 lowerCAmelCase :Union[str, Any] = 11 lowerCAmelCase :Optional[int] = 12 lowerCAmelCase :str = 13 lowerCAmelCase :Dict = 14 @dataclass class _snake_case ( a__ ): lowerCAmelCase :torch.FloatTensor class _snake_case : lowerCAmelCase :str = SCHEDULER_CONFIG_NAME lowerCAmelCase :Union[str, Any] = [] lowerCAmelCase :List[str] = True @classmethod def snake_case__ ( cls , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase=False , **_lowerCamelCase , ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = cls.load_config( pretrained_model_name_or_path=_lowerCamelCase , subfolder=_lowerCamelCase , return_unused_kwargs=_lowerCamelCase , return_commit_hash=_lowerCamelCase , **_lowerCamelCase , ) return cls.from_config(_lowerCamelCase , return_unused_kwargs=_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = False , **_lowerCamelCase): self.save_config(save_directory=_lowerCamelCase , push_to_hub=_lowerCamelCase , **_lowerCamelCase) @property def snake_case__ ( self): return self._get_compatibles() @classmethod def snake_case__ ( cls): UpperCAmelCase__ : List[Any] = list(set([cls.__name__] + cls._compatibles)) UpperCAmelCase__ : int = importlib.import_module(__name__.split(""".""")[0]) UpperCAmelCase__ : Dict = [ getattr(_lowerCamelCase , _lowerCamelCase) for c in compatible_classes_str if hasattr(_lowerCamelCase , _lowerCamelCase) ] return compatible_classes
113
0
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def SCREAMING_SNAKE_CASE__ ( ): with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" snake_case__ = [1, 2, 3] with pytest.raises(__lowerCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=2 ) with pytest.raises(__lowerCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): snake_case__ = [1, 2] snake_case__ = {"a": 1, "b": 2} snake_case__ = {"a": [1, 2], "b": [3, 4]} snake_case__ = {"a": {"1": 1}, "b": 2} snake_case__ = {"a": 1, "b": 2, "c": 3, "d": 4} snake_case__ = [2, 3] snake_case__ = {"a": 2, "b": 3} snake_case__ = {"a": [2, 3], "b": [4, 5]} snake_case__ = {"a": {"1": 2}, "b": 3} snake_case__ = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa
276
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers __magic_name__ = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
276
1
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : """simple docstring""" def __init__( self , a__ , a__=13 , a__=32 , a__=3 , a__=4 , a__=[10, 20, 30, 40] , a__=[2, 2, 3, 2] , a__=True , a__=True , a__=37 , a__="gelu" , a__=10 , a__=0.02 , a__=["stage2", "stage3", "stage4"] , a__=[2, 3, 4] , a__=None , ): """simple docstring""" _lowerCamelCase : List[str] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : List[str] = image_size _lowerCamelCase : Dict = num_channels _lowerCamelCase : Dict = num_stages _lowerCamelCase : Dict = hidden_sizes _lowerCamelCase : List[str] = depths _lowerCamelCase : Optional[int] = is_training _lowerCamelCase : Optional[Any] = use_labels _lowerCamelCase : int = intermediate_size _lowerCamelCase : str = hidden_act _lowerCamelCase : Optional[int] = num_labels _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : Any = out_features _lowerCamelCase : Union[str, Any] = out_indices _lowerCamelCase : Any = scope def __snake_case ( self): """simple docstring""" _lowerCamelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCamelCase : Optional[int] = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] , self.num_labels) _lowerCamelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __snake_case ( self): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __snake_case ( self , a__ , a__ , a__): """simple docstring""" _lowerCamelCase : Dict = ConvNextModel(config=a__) model.to(a__) model.eval() _lowerCamelCase : Dict = model(a__) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __snake_case ( self , a__ , a__ , a__): """simple docstring""" _lowerCamelCase : Tuple = ConvNextForImageClassification(a__) model.to(a__) model.eval() _lowerCamelCase : List[str] = model(a__ , labels=a__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __snake_case ( self , a__ , a__ , a__): """simple docstring""" _lowerCamelCase : Union[str, Any] = ConvNextBackbone(config=a__) model.to(a__) model.eval() _lowerCamelCase : List[str] = model(a__) # verify hidden states self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None _lowerCamelCase : str = None _lowerCamelCase : Optional[Any] = ConvNextBackbone(config=a__) model.to(a__) model.eval() _lowerCamelCase : List[Any] = model(a__) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def __snake_case ( self): """simple docstring""" _lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = config_and_inputs _lowerCamelCase : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( lowerCamelCase__ ,lowerCamelCase__ ,unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) UpperCAmelCase__ = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def __snake_case ( self): """simple docstring""" _lowerCamelCase : List[Any] = ConvNextModelTester(self) _lowerCamelCase : Tuple = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37) def __snake_case ( self): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self): """simple docstring""" return @unittest.skip(reason='''ConvNext does not use inputs_embeds''') def __snake_case ( self): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''') def __snake_case ( self): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''') def __snake_case ( self): """simple docstring""" pass def __snake_case ( self): """simple docstring""" _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(a__) _lowerCamelCase : Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : int = [*signature.parameters.keys()] _lowerCamelCase : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__) def __snake_case ( self): """simple docstring""" _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__) def __snake_case ( self): """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__) def __snake_case ( self): """simple docstring""" def check_hidden_states_output(a__ , a__ , a__): _lowerCamelCase : Any = model_class(a__) model.to(a__) model.eval() with torch.no_grad(): _lowerCamelCase : Tuple = model(**self._prepare_for_class(a__ , a__)) _lowerCamelCase : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(a__) , expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = True check_hidden_states_output(a__ , a__ , a__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase : Optional[Any] = True check_hidden_states_output(a__ , a__ , a__) def __snake_case ( self): """simple docstring""" _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__) @slow def __snake_case ( self): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[int] = ConvNextModel.from_pretrained(a__) self.assertIsNotNone(a__) def __UpperCAmelCase( ): _lowerCamelCase : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): """simple docstring""" @cached_property def __snake_case ( self): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''') if is_vision_available() else None @slow def __snake_case ( self): """simple docstring""" _lowerCamelCase : Any = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''').to(a__) _lowerCamelCase : List[str] = self.default_image_processor _lowerCamelCase : Optional[Any] = prepare_img() _lowerCamelCase : Any = image_processor(images=a__ , return_tensors='''pt''').to(a__) # forward pass with torch.no_grad(): _lowerCamelCase : Tuple = model(**a__) # verify the logits _lowerCamelCase : str = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , a__) _lowerCamelCase : int = torch.tensor([-0.0260, -0.4739, 0.1911]).to(a__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4)) @require_torch class __A ( unittest.TestCase ,lowerCamelCase__ ): """simple docstring""" UpperCAmelCase__ = (ConvNextBackbone,) if is_torch_available() else () UpperCAmelCase__ = ConvNextConfig UpperCAmelCase__ = False def __snake_case ( self): """simple docstring""" _lowerCamelCase : Optional[Any] = ConvNextModelTester(self)
613
import math def __UpperCAmelCase( lowercase_ , lowercase_ ): _lowerCamelCase : List[str] = len(lowercase_ ) _lowerCamelCase : Optional[int] = int(math.floor(math.sqrt(lowercase_ ) ) ) _lowerCamelCase : Tuple = 0 while arr[min(lowercase_ , lowercase_ ) - 1] < x: _lowerCamelCase : Optional[Any] = step step += int(math.floor(math.sqrt(lowercase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _lowerCamelCase : int = prev + 1 if prev == min(lowercase_ , lowercase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _lowerCamelCase = input('Enter numbers separated by a comma:\n').strip() _lowerCamelCase = [int(item) for item in user_input.split(',')] _lowerCamelCase = int(input('Enter the number to be searched:\n')) _lowerCamelCase = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F'''Number {x} is at index {res}''')
613
1
from __future__ import annotations class A : '''simple docstring''' def __init__( self : Dict , __lowerCAmelCase : int ) -> Optional[Any]: """simple docstring""" A__ = order # a_{0} ... a_{k} A__ = [1.0] + [0.0] * order # b_{0} ... b_{k} A__ = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A__ = [0.0] * self.order # y[n-1] ... y[n-k] A__ = [0.0] * self.order def a_ ( self : int , __lowerCAmelCase : list[float] , __lowerCAmelCase : list[float] ) -> Optional[Any]: """simple docstring""" if len(__lowerCamelCase ) < self.order: A__ = [1.0, *a_coeffs] if len(__lowerCamelCase ) != self.order + 1: A__ = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(__lowerCamelCase )}' ) raise ValueError(__lowerCamelCase ) if len(__lowerCamelCase ) != self.order + 1: A__ = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(__lowerCamelCase )}' ) raise ValueError(__lowerCamelCase ) A__ = a_coeffs A__ = b_coeffs def a_ ( self : Tuple , __lowerCAmelCase : float ) -> Optional[int]: """simple docstring""" A__ = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A__ = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A__ = self.input_history[:-1] A__ = self.output_history[:-1] A__ = sample A__ = result return result
176
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ : Optional[int] = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ (_a , unittest.TestCase ): lowercase_ : Optional[Any] = DebertaVaTokenizer lowercase_ : Any = DebertaVaTokenizerFast lowercase_ : List[str] = True lowercase_ : str = True def A__ ( self : Union[str, Any] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = DebertaVaTokenizer(__lowerCamelCase , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self : Dict , __lowerCamelCase : Any ): """simple docstring""" lowerCAmelCase__ = '''this is a test''' lowerCAmelCase__ = '''this is a test''' return input_text, output_text def A__ ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = '''<pad>''' lowerCAmelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def A__ ( self : Any ): """simple docstring""" lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(__lowerCamelCase ) , 3_00_01 ) def A__ ( self : Tuple ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def A__ ( self : str ): """simple docstring""" # fmt: off lowerCAmelCase__ = ''' \tHeLLo!how \n Are yoU? ''' lowerCAmelCase__ = ['''▁hello''', '''!''', '''how''', '''▁are''', '''▁you''', '''?'''] # fmt: on lowerCAmelCase__ = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase ) lowerCAmelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def A__ ( self : List[str] ): """simple docstring""" pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def A__ ( self : Dict ): """simple docstring""" pass def A__ ( self : str ): """simple docstring""" # fmt: off lowerCAmelCase__ = '''I was born in 92000, and this is falsé.''' lowerCAmelCase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowerCAmelCase__ = DebertaVaTokenizer(__lowerCamelCase , split_by_punct=__lowerCamelCase ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = DebertaVaTokenizerFast(__lowerCamelCase , split_by_punct=__lowerCamelCase ) lowerCAmelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def A__ ( self : Optional[int] ): """simple docstring""" # fmt: off lowerCAmelCase__ = '''I was born in 92000, and this is falsé.''' lowerCAmelCase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowerCAmelCase__ = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) lowerCAmelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def A__ ( self : Union[str, Any] ): """simple docstring""" # fmt: off lowerCAmelCase__ = '''I was born in 92000, and this is falsé.''' lowerCAmelCase__ = ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowerCAmelCase__ = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) lowerCAmelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def A__ ( self : Optional[int] ): """simple docstring""" # fmt: off lowerCAmelCase__ = '''I was born in 92000, and this is falsé.''' lowerCAmelCase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', '''▁''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''▁''', '''.''', ] # fmt: on lowerCAmelCase__ = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) lowerCAmelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def A__ ( self : Tuple ): """simple docstring""" # fmt: off lowerCAmelCase__ = ''' \tHeLLo!how \n Are yoU? ''' lowerCAmelCase__ = ['''▁''', '''<unk>''', '''e''', '''<unk>''', '''o''', '''!''', '''how''', '''▁''', '''<unk>''', '''re''', '''▁yo''', '''<unk>''', '''?'''] # fmt: on lowerCAmelCase__ = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) lowerCAmelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def A__ ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = '''I was born in 92000, and this is falsé.''' lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) lowerCAmelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) lowerCAmelCase__ = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = tokenizer.encode(__lowerCamelCase ) lowerCAmelCase__ = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def A__ ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = '''This is a test''' lowerCAmelCase__ = [13, 1, 43_98, 25, 21, 12_89] lowerCAmelCase__ = ['''▁''', '''T''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowerCAmelCase__ = ['''▁''', '''<unk>''', '''his''', '''▁is''', '''▁a''', '''▁test'''] lowerCAmelCase__ = DebertaVaTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) lowerCAmelCase__ = DebertaVaTokenizerFast(__lowerCamelCase , keep_accents=__lowerCamelCase ) lowerCAmelCase__ = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = rust_tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # fmt: off lowerCAmelCase__ = '''I was born in 92000, and this is falsé.''' lowerCAmelCase__ = [13, 1, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] lowerCAmelCase__ = ['''▁''', '''I''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.''', ] lowerCAmelCase__ = ['''▁''', '''<unk>''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.''', ] # fmt: on lowerCAmelCase__ = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = rust_tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def A__ ( self : Dict ): """simple docstring""" lowerCAmelCase__ = DebertaVaTokenizer(__lowerCamelCase ) lowerCAmelCase__ = tokenizer.encode('''sequence builders''' ) lowerCAmelCase__ = tokenizer.encode('''multi-sequence build''' ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __lowerCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __lowerCamelCase , ) @slow def A__ ( self : str ): """simple docstring""" # fmt: off lowerCAmelCase__ = {'''input_ids''': [[1, 3_98_67, 36, 1_93_90, 4_86, 27, 3_50_52, 8_14_36, 18, 6_06_85, 12_25, 7, 3_50_52, 8_14_36, 18, 93_67, 1_68_99, 18, 1_59_37, 53, 5_94, 7_73, 18, 1_62_87, 3_04_65, 36, 1_59_37, 6, 4_11_39, 38, 3_69_79, 6_07_63, 1_91, 6, 3_41_32, 99, 6, 5_05_38, 3_90, 4_32_30, 6, 3_41_32, 27_79, 2_08_50, 14, 6_99, 10_72, 11_94, 36, 3_82, 1_09_01, 53, 7, 6_99, 10_72, 20_84, 36, 2_04_22, 6_30, 53, 19, 1_05, 30_49, 18_96, 10_53, 1_68_99, 15_06, 11, 3_79_78, 42_43, 7, 12_37, 3_18_69, 2_00, 1_65_66, 6_54, 6, 3_50_52, 8_14_36, 7, 5_56_30, 1_35_93, 4, 2], [1, 26, 1_50_11, 13, 6_67, 8, 10_53, 18, 2_36_11, 12_37, 7_23_56, 1_28_20, 34, 10_41_34, 12_09, 35, 1_33_13, 66_27, 21, 2_02, 3_47, 7, 1_64, 23_99, 11, 46, 44_85, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 12_32, 28_64, 1_57_85, 1_49_51, 1_05, 5, 85_81, 12_50, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
615
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer snake_case : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case : Any = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } snake_case : Tuple = { """google/electra-small-generator""": 5_12, """google/electra-base-generator""": 5_12, """google/electra-large-generator""": 5_12, """google/electra-small-discriminator""": 5_12, """google/electra-base-discriminator""": 5_12, """google/electra-large-discriminator""": 5_12, } snake_case : List[Any] = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class snake_case_ (__UpperCAmelCase ): UpperCAmelCase__ : Dict = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[Any] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Dict = ElectraTokenizer def __init__( self :Tuple ,__snake_case :Any=None ,__snake_case :List[str]=None ,__snake_case :List[Any]=True ,__snake_case :str="[UNK]" ,__snake_case :Optional[Any]="[SEP]" ,__snake_case :Union[str, Any]="[PAD]" ,__snake_case :Optional[int]="[CLS]" ,__snake_case :Optional[Any]="[MASK]" ,__snake_case :Union[str, Any]=True ,__snake_case :Optional[int]=None ,**__snake_case :str ,) -> Optional[Any]: super().__init__( __snake_case ,tokenizer_file=__snake_case ,do_lower_case=__snake_case ,unk_token=__snake_case ,sep_token=__snake_case ,pad_token=__snake_case ,cls_token=__snake_case ,mask_token=__snake_case ,tokenize_chinese_chars=__snake_case ,strip_accents=__snake_case ,**__snake_case ,) a__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,__snake_case ) != do_lower_case or normalizer_state.get('strip_accents' ,__snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,__snake_case ) != tokenize_chinese_chars ): a__ = getattr(__snake_case ,normalizer_state.pop('type' ) ) a__ = do_lower_case a__ = strip_accents a__ = tokenize_chinese_chars a__ = normalizer_class(**__snake_case ) a__ = do_lower_case def lowerCamelCase__( self :List[Any] ,__snake_case :Union[str, Any] ,__snake_case :Dict=None ) -> Optional[Any]: a__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__( self :int ,__snake_case :Optional[int] ,__snake_case :Optional[Any] = None ) -> Any: a__ = [self.sep_token_id] a__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__( self :Any ,__snake_case :Dict ,__snake_case :int = None ) -> Any: a__ = self._tokenizer.model.save(__snake_case ,name=__snake_case ) return tuple(__snake_case )
717
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any=1_0 ): a__ = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]=1_0 ): a__ = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(__lowerCAmelCase , 'schedule.bin' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) a__ = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Union[str, Any] ) -> int: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> str: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(1_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def lowerCamelCase__( self :Tuple ) -> int: a__ = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=__snake_case ) a__ = torch.tensor([0.4, 0.2, -0.5] ) a__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping a__ = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=__snake_case ,weight_decay=0.0 ,relative_step=__snake_case ,scale_parameter=__snake_case ,warmup_init=__snake_case ,) for _ in range(10_00 ): a__ = criterion(__snake_case ,__snake_case ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class snake_case_ (unittest.TestCase ): UpperCAmelCase__ : str = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCAmelCase__ : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None UpperCAmelCase__ : Optional[Any] = 1_0 def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple ,__snake_case :int ,__snake_case :Any=None ) -> Optional[Any]: self.assertEqual(len(__snake_case ) ,len(__snake_case ) ) for a, b in zip(__snake_case ,__snake_case ): self.assertAlmostEqual(__snake_case ,__snake_case ,delta=__snake_case ,msg=__snake_case ) def lowerCamelCase__( self :Tuple ) -> List[Any]: a__ = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) a__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): a__ , a__ = data a__ = scheduler_func(self.optimizer ,**__snake_case ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) a__ = unwrap_schedule(__snake_case ,self.num_steps ) self.assertListAlmostEqual( __snake_case ,__snake_case ,tol=1E-2 ,msg=F'failed for {scheduler_func} in normal scheduler' ,) a__ = scheduler_func(self.optimizer ,**__snake_case ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__snake_case ) # wrap to test picklability of the schedule a__ = unwrap_and_save_reload_schedule(__snake_case ,self.num_steps ) self.assertListEqual(__snake_case ,__snake_case ,msg=F'failed for {scheduler_func} in save and reload' ) class snake_case_ : def __init__( self :Tuple ,__snake_case :str ) -> Any: a__ = fn def __call__( self :List[str] ,*__snake_case :Optional[Any] ,**__snake_case :Optional[int] ) -> Union[str, Any]: return self.fn(*__snake_case ,**__snake_case ) @classmethod def lowerCamelCase__( self :Tuple ,__snake_case :Union[str, Any] ) -> Dict: a__ = list(map(self ,scheduler.lr_lambdas ) )
657
0
a__ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a__ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a__ = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]: assert len(str(_SCREAMING_SNAKE_CASE ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _snake_case : Union[str, Any] = year // 100 _snake_case : Union[str, Any] = (5 * (century % 4) + 2) % 7 _snake_case : int = year % 100 _snake_case : Optional[int] = centurian % 12 _snake_case : int = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _snake_case : List[str] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) _snake_case : Optional[Any] = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
477
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCAmelCase = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCAmelCase = concatenate_datasets __lowerCAmelCase = DownloadConfig __lowerCAmelCase = DownloadManager __lowerCAmelCase = DownloadMode __lowerCAmelCase = DownloadConfig __lowerCAmelCase = DownloadMode __lowerCAmelCase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
585
0
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Dict = args.pruning_method _UpperCAmelCase : List[Any] = args.threshold _UpperCAmelCase : List[str] = args.model_name_or_path.rstrip("/" ) _UpperCAmelCase : str = args.target_model_path print(F"""Load fine-pruned model from {model_name_or_path}""" ) _UpperCAmelCase : Optional[Any] = torch.load(os.path.join(__lowerCAmelCase , "pytorch_model.bin" ) ) _UpperCAmelCase : List[Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _UpperCAmelCase : str = tensor print(F"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: _UpperCAmelCase : Union[str, Any] = tensor print(F"""Copied layer {name}""" ) elif "bias" in name: _UpperCAmelCase : Tuple = tensor print(F"""Copied layer {name}""" ) else: if pruning_method == "magnitude": _UpperCAmelCase : Optional[Any] = MagnitudeBinarizer.apply(inputs=__lowerCAmelCase , threshold=__lowerCAmelCase ) _UpperCAmelCase : List[Any] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue _UpperCAmelCase : Union[str, Any] = name[:-6] _UpperCAmelCase : List[str] = model[F"""{prefix_}mask_scores"""] _UpperCAmelCase : Tuple = TopKBinarizer.apply(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : List[Any] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _UpperCAmelCase : Union[str, Any] = name[:-6] _UpperCAmelCase : str = model[F"""{prefix_}mask_scores"""] _UpperCAmelCase : List[Any] = ThresholdBinarizer.apply(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Tuple = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue _UpperCAmelCase : str = name[:-6] _UpperCAmelCase : List[Any] = model[F"""{prefix_}mask_scores"""] _UpperCAmelCase , _UpperCAmelCase : Any = -0.1, 1.1 _UpperCAmelCase : Any = torch.sigmoid(__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = s * (r - l) + l _UpperCAmelCase : List[Any] = s_bar.clamp(min=0.0 , max=1.0 ) _UpperCAmelCase : List[Any] = tensor * mask print(F"""Pruned layer {name}""" ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: _UpperCAmelCase : List[Any] = os.path.join( os.path.dirname(__lowerCAmelCase ) , F"""bertarized_{os.path.basename(__lowerCAmelCase )}""" ) if not os.path.isdir(__lowerCAmelCase ): shutil.copytree(__lowerCAmelCase , __lowerCAmelCase ) print(F"""\nCreated folder {target_model_path}""" ) torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , "pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) lowerCamelCase__ = parser.parse_args() main(args)
40
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase__ = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __lowerCAmelCase (__lowerCAmelCase ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): from transformers.testing_utils import pytest_terminal_summary_main _UpperCAmelCase : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(__lowerCAmelCase , id=__lowerCAmelCase )
40
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase ( _a ,_a=False ) -> Any: try: UpperCAmelCase_: Any = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCAmelCase_: Optional[Any] = default else: # KEY is set, convert it to True or False. try: UpperCAmelCase_: int = strtobool(snake_case__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no." ) return _value _lowerCAmelCase = parse_flag_from_env("""RUN_SLOW""", default=False) def lowercase ( _a ) -> Dict: return unittest.skip("Test was skipped" )(snake_case__ ) def lowercase ( _a ) -> int: return unittest.skipUnless(_run_slow_tests ,"test is slow" )(snake_case__ ) def lowercase ( _a ) -> Tuple: return unittest.skipUnless(not torch.cuda.is_available() ,"test requires only a CPU" )(snake_case__ ) def lowercase ( _a ) -> Dict: return unittest.skipUnless(torch.cuda.is_available() ,"test requires a GPU" )(snake_case__ ) def lowercase ( _a ) -> List[Any]: return unittest.skipUnless(is_xpu_available() ,"test requires a XPU" )(snake_case__ ) def lowercase ( _a ) -> int: return unittest.skipUnless(is_mps_available() ,"test requires a `mps` backend support in `torch`" )(snake_case__ ) def lowercase ( _a ) -> str: return unittest.skipUnless( is_transformers_available() and is_datasets_available() ,"test requires the Hugging Face suite" )(snake_case__ ) def lowercase ( _a ) -> Any: return unittest.skipUnless(is_bnb_available() ,"test requires the bitsandbytes library" )(snake_case__ ) def lowercase ( _a ) -> Optional[int]: return unittest.skipUnless(is_tpu_available() ,"test requires TPU" )(snake_case__ ) def lowercase ( _a ) -> Union[str, Any]: return unittest.skipUnless(torch.cuda.device_count() == 1 ,"test requires a GPU" )(snake_case__ ) def lowercase ( _a ) -> List[Any]: return unittest.skipUnless(torch.xpu.device_count() == 1 ,"test requires a XPU" )(snake_case__ ) def lowercase ( _a ) -> Optional[int]: return unittest.skipUnless(torch.cuda.device_count() > 1 ,"test requires multiple GPUs" )(snake_case__ ) def lowercase ( _a ) -> Optional[int]: return unittest.skipUnless(torch.xpu.device_count() > 1 ,"test requires multiple XPUs" )(snake_case__ ) def lowercase ( _a ) -> str: return unittest.skipUnless(is_safetensors_available() ,"test requires safetensors" )(snake_case__ ) def lowercase ( _a ) -> Union[str, Any]: return unittest.skipUnless(is_deepspeed_available() ,"test requires DeepSpeed" )(snake_case__ ) def lowercase ( _a ) -> Optional[int]: return unittest.skipUnless(is_torch_version(">=" ,"1.12.0" ) ,"test requires torch version >= 1.12.0" )(snake_case__ ) def lowercase ( _a=None ,_a=None ) -> Optional[Any]: if test_case is None: return partial(snake_case__ ,version=snake_case__ ) return unittest.skipUnless(is_torch_version(">=" ,snake_case__ ) ,f"test requires torch version >= {version}" )(snake_case__ ) def lowercase ( _a ) -> str: return unittest.skipUnless(is_tensorboard_available() ,"test requires Tensorboard" )(snake_case__ ) def lowercase ( _a ) -> List[str]: return unittest.skipUnless(is_wandb_available() ,"test requires wandb" )(snake_case__ ) def lowercase ( _a ) -> str: return unittest.skipUnless(is_comet_ml_available() ,"test requires comet_ml" )(snake_case__ ) _lowerCAmelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase ( _a ) -> List[Any]: return unittest.skipUnless( _atleast_one_tracker_available ,"test requires at least one tracker to be available and for `comet_ml` to not be installed" ,)(snake_case__ ) class UpperCAmelCase__ ( unittest.TestCase ): snake_case_ = True @classmethod def snake_case_ ( cls ): """simple docstring""" UpperCAmelCase_: Optional[int] = tempfile.mkdtemp() @classmethod def snake_case_ ( cls ): """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def snake_case_ ( self ): """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowerCAmelCase_ ) class UpperCAmelCase__ ( unittest.TestCase ): def snake_case_ ( self ): """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCAmelCase__ ( unittest.TestCase ): def snake_case_ ( self , A__ ): """simple docstring""" UpperCAmelCase_: List[Any] = mocks if isinstance(lowerCAmelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase ( _a ) -> List[str]: UpperCAmelCase_: Dict = AcceleratorState() UpperCAmelCase_: Optional[Any] = tensor[None].clone().to(state.device ) UpperCAmelCase_: int = gather(snake_case__ ).cpu() UpperCAmelCase_: Dict = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] ,snake_case__ ): return False return True class UpperCAmelCase__ : def __init__( self , A__ , A__ , A__ ): """simple docstring""" UpperCAmelCase_: Dict = returncode UpperCAmelCase_: Optional[int] = stdout UpperCAmelCase_: List[Any] = stderr async def lowercase ( _a ,_a ) -> str: while True: UpperCAmelCase_: int = await stream.readline() if line: callback(snake_case__ ) else: break async def lowercase ( _a ,_a=None ,_a=None ,_a=None ,_a=False ,_a=False ) -> _RunOutput: if echo: print("\nRunning: " ," ".join(snake_case__ ) ) UpperCAmelCase_: List[Any] = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=snake_case__ ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=snake_case__ ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCAmelCase_: Dict = [] UpperCAmelCase_: Any = [] def tee(_a ,_a ,_a ,_a="" ): UpperCAmelCase_: List[str] = line.decode("utf-8" ).rstrip() sink.append(snake_case__ ) if not quiet: print(snake_case__ ,snake_case__ ,file=snake_case__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout ,lambda _a : tee(snake_case__ ,snake_case__ ,sys.stdout ,label="stdout:" ) ) ), asyncio.create_task(_read_stream(p.stderr ,lambda _a : tee(snake_case__ ,snake_case__ ,sys.stderr ,label="stderr:" ) ) ), ] ,timeout=snake_case__ ,) return _RunOutput(await p.wait() ,snake_case__ ,snake_case__ ) def lowercase ( _a ,_a=None ,_a=None ,_a=180 ,_a=False ,_a=True ) -> _RunOutput: UpperCAmelCase_: Any = asyncio.get_event_loop() UpperCAmelCase_: Optional[Any] = loop.run_until_complete( _stream_subprocess(snake_case__ ,env=snake_case__ ,stdin=snake_case__ ,timeout=snake_case__ ,quiet=snake_case__ ,echo=snake_case__ ) ) UpperCAmelCase_: Union[str, Any] = " ".join(snake_case__ ) if result.returncode > 0: UpperCAmelCase_: List[Any] = "\n".join(result.stderr ) raise RuntimeError( f"\'{cmd_str}\' failed with returncode {result.returncode}\n\n" f"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCAmelCase__ ( __lowerCAmelCase ): pass def lowercase ( _a ,_a=False ) -> Any: try: UpperCAmelCase_: Dict = subprocess.check_output(snake_case__ ,stderr=subprocess.STDOUT ) if return_stdout: if hasattr(snake_case__ ,"decode" ): UpperCAmelCase_: Any = output.decode("utf-8" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f"Command `{' '.join(snake_case__ )}` failed with the following error:\n\n{e.output.decode()}" ) from e
137
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger('transformers.models.speecht5') _SCREAMING_SNAKE_CASE = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } _SCREAMING_SNAKE_CASE = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } _SCREAMING_SNAKE_CASE = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } _SCREAMING_SNAKE_CASE = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } _SCREAMING_SNAKE_CASE = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } _SCREAMING_SNAKE_CASE = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } _SCREAMING_SNAKE_CASE = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } _SCREAMING_SNAKE_CASE = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } _SCREAMING_SNAKE_CASE = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _SCREAMING_SNAKE_CASE = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _SCREAMING_SNAKE_CASE = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] _SCREAMING_SNAKE_CASE = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] _SCREAMING_SNAKE_CASE = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] _SCREAMING_SNAKE_CASE = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def snake_case ( snake_case__ :Optional[Any] , snake_case__ :Tuple , snake_case__ :List[Any] , snake_case__ :int , snake_case__ :Any) -> Union[str, Any]: for attribute in key.split("""."""): _A = getattr(snake_case__ , snake_case__) if weight_type is not None: _A = getattr(snake_case__ , snake_case__).shape else: _A = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''') if weight_type == "weight": _A = value elif weight_type == "weight_g": _A = value elif weight_type == "weight_v": _A = value elif weight_type == "bias": _A = value elif weight_type == "running_mean": _A = value elif weight_type == "running_var": _A = value elif weight_type == "num_batches_tracked": _A = value else: _A = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''') def snake_case ( snake_case__ :str , snake_case__ :Union[str, Any]) -> List[Any]: for key in ignore_keys: if key.endswith(""".*"""): if name.startswith(key[:-1]): return True elif ".*." in key: _A , _A = key.split(""".*.""") if prefix in name and suffix in name: return True elif key in name: return True return False def snake_case ( snake_case__ :Tuple , snake_case__ :List[str] , snake_case__ :Union[str, Any]) -> Union[str, Any]: _A = [] if task == "s2t": _A = hf_model.speechta.encoder.prenet.feature_encoder _A = MAPPING_S2T _A = IGNORE_KEYS_S2T elif task == "t2s": _A = None _A = MAPPING_T2S _A = IGNORE_KEYS_T2S elif task == "s2s": _A = hf_model.speechta.encoder.prenet.feature_encoder _A = MAPPING_S2S _A = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''') for name, value in fairseq_dict.items(): if should_ignore(snake_case__ , snake_case__): logger.info(F'''{name} was ignored''') continue _A = False if "conv_layers" in name: load_conv_layer( snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == """group""" , ) _A = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _A , _A = key.split(""".*.""") if prefix in name and suffix in name: _A = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _A = True if "*" in mapped_key: _A = name.split(snake_case__)[0].split(""".""")[-2] _A = mapped_key.replace("""*""" , snake_case__) if "weight_g" in name: _A = """weight_g""" elif "weight_v" in name: _A = """weight_v""" elif "bias" in name: _A = """bias""" elif "weight" in name: _A = """weight""" elif "running_mean" in name: _A = """running_mean""" elif "running_var" in name: _A = """running_var""" elif "num_batches_tracked" in name: _A = """num_batches_tracked""" else: _A = None set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) continue if not is_used: unused_weights.append(snake_case__) logger.warning(F'''Unused weights: {unused_weights}''') def snake_case ( snake_case__ :Optional[Any] , snake_case__ :Optional[Any] , snake_case__ :List[Any] , snake_case__ :Optional[int] , snake_case__ :Optional[int]) -> List[str]: _A = full_name.split("""conv_layers.""")[-1] _A = name.split(""".""") _A = int(items[0]) _A = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''') _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''') _A = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''') _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''') _A = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(snake_case__) @torch.no_grad() def snake_case ( snake_case__ :List[Any] , snake_case__ :Tuple , snake_case__ :Optional[int] , snake_case__ :List[Any]=None , snake_case__ :Tuple=None , snake_case__ :Dict=None , ) -> Optional[Any]: if config_path is not None: _A = SpeechTaConfig.from_pretrained(snake_case__) else: _A = SpeechTaConfig() if task == "s2t": _A = config.max_text_positions _A = SpeechTaForSpeechToText(snake_case__) elif task == "t2s": _A = 1_876 _A = 600 _A = config.max_speech_positions _A = SpeechTaForTextToSpeech(snake_case__) elif task == "s2s": _A = 1_876 _A = config.max_speech_positions _A = SpeechTaForSpeechToSpeech(snake_case__) else: raise ValueError(F'''Unknown task name: {task}''') if vocab_path: _A = SpeechTaTokenizer(snake_case__ , model_max_length=config.max_text_positions) # Mask token behaves like a normal word, i.e. include the space before it _A = AddedToken("""<mask>""" , lstrip=snake_case__ , rstrip=snake_case__) _A = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token}) tokenizer.add_tokens(["""<ctc_blank>"""]) _A = SpeechTaFeatureExtractor() _A = SpeechTaProcessor(tokenizer=snake_case__ , feature_extractor=snake_case__) processor.save_pretrained(snake_case__) _A = torch.load(snake_case__) recursively_load_weights(fairseq_checkpoint["""model"""] , snake_case__ , snake_case__) model.save_pretrained(snake_case__) if repo_id: print("""Pushing to the hub...""") processor.push_to_hub(snake_case__) model.push_to_hub(snake_case__) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
401
0
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[Any] = 0 @slow def lowerCamelCase__ ( self : Dict ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(UpperCamelCase_ ) , 0 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : int = AutoConfig.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) # Check that tokenizer_type ≠ model_type lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , config=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def lowerCamelCase__ ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase : Any = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(UpperCamelCase_ , '''vocab.txt''' ) ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''bert''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(UpperCamelCase_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(UpperCamelCase_ , '''merges.txt''' ) ) lowerCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ , tokenizer_type='''gpt2''' ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): with pytest.raises(UpperCamelCase_ ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowerCamelCase__ ( self : str ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowerCAmelCase : Dict = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , UpperCamelCase_ ) else: self.assertEqual(tokenizer.do_lower_case , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def lowerCamelCase__ ( self : Optional[int] ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( UpperCamelCase_ , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): lowerCAmelCase : Any = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowerCamelCase__ ( self : Tuple ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai lowerCAmelCase : Optional[Any] = TOKENIZER_MAPPING.values() lowerCAmelCase : Optional[Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Any ): self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=UpperCamelCase_ ) , UpperCamelCase_ ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , UpperCamelCase_ ) @require_tokenizers def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = '''Hello, world. How are you?''' lowerCAmelCase : Optional[Any] = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = tokenizer.tokenize(UpperCamelCase_ ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowerCamelCase__ ( self : int ): lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict ): # Check we can load the tokenizer config of an online model. lowerCAmelCase : Any = get_tokenizer_config('''bert-base-cased''' ) lowerCAmelCase : Optional[int] = config.pop('''_commit_hash''' , UpperCamelCase_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(UpperCamelCase_ , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowerCAmelCase : Union[str, Any] = get_tokenizer_config(UpperCamelCase_ ) self.assertDictEqual(UpperCamelCase_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Dict = get_tokenizer_config(UpperCamelCase_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowerCamelCase__ ( self : Optional[int] ): try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = CustomTokenizer.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCamelCase__ ( self : str ): try: AutoConfig.register('''custom''' , UpperCamelCase_ ) # Can register in two steps AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Dict = BertTokenizerFast.from_pretrained(UpperCamelCase_ ) bert_tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : int = CustomTokenizerFast.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): lowerCAmelCase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowerCamelCase__ ( self : Optional[int] ): class snake_case_( a__ ): __UpperCamelCase = False class snake_case_( a__ ): __UpperCamelCase = NewTokenizer __UpperCamelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , slow_tokenizer_class=UpperCamelCase_ ) AutoTokenizer.register(UpperCamelCase_ , fast_tokenizer_class=UpperCamelCase_ ) # If remote code is not set, the default is to use local lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowerCAmelCase : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowerCAmelCase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) lowerCAmelCase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=UpperCamelCase_ , use_fast=UpperCamelCase_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowerCamelCase__ ( self : str ): with self.assertRaisesRegex( UpperCamelCase_ , '''bert-base is not a local folder and is not a valid model identifier''' ): lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''bert-base''' ) def lowerCamelCase__ ( self : int ): with self.assertRaisesRegex( UpperCamelCase_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ , revision='''aaaaaa''' ) def lowerCamelCase__ ( self : Optional[int] ): # Make sure we have cached the tokenizer. lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowerCAmelCase : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
704
"""simple docstring""" class snake_case_: def __init__( self : Union[str, Any] , UpperCamelCase_ : str ): lowerCAmelCase : Dict = val lowerCAmelCase : str = None lowerCAmelCase : Dict = None def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Dict ): if self.val: if val < self.val: if self.left is None: lowerCAmelCase : int = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowerCAmelCase : Any = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowerCAmelCase : Optional[Any] = val def _snake_case ( _snake_case : Tuple , _snake_case : str ): # Recursive traversal if root: inorder(root.left , _snake_case ) res.append(root.val ) inorder(root.right , _snake_case ) def _snake_case ( _snake_case : Optional[Any] ): # Build BST if len(_snake_case ) == 0: return arr lowerCAmelCase : Optional[Any] = Node(arr[0] ) for i in range(1 , len(_snake_case ) ): root.insert(arr[i] ) # Traverse BST in order. lowerCAmelCase : Optional[int] = [] inorder(_snake_case , _snake_case ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
637
0
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __magic_name__ = get_logger(__name__) class _SCREAMING_SNAKE_CASE : def __init__( self , lowerCamelCase = None ): snake_case__ = ( os.path.join(lowerCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case__ = Extractor def A_ ( self , lowerCamelCase ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case__ = os.path.abspath(lowerCamelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(lowerCamelCase ) ) def A_ ( self , lowerCamelCase , lowerCamelCase ): return force_extract or ( not os.path.isfile(lowerCamelCase ) and not (os.path.isdir(lowerCamelCase ) and os.listdir(lowerCamelCase )) ) def A_ ( self , lowerCamelCase , lowerCamelCase = False ): snake_case__ = self.extractor.infer_extractor_format(lowerCamelCase ) if not extractor_format: return input_path snake_case__ = self._get_output_path(lowerCamelCase ) if self._do_extract(lowerCamelCase , lowerCamelCase ): self.extractor.extract(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return output_path class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): @classmethod @abstractmethod def A_ ( cls , lowerCamelCase , **lowerCamelCase ): ... @staticmethod @abstractmethod def A_ ( lowerCamelCase , lowerCamelCase ): ... class _SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase ): _A : List[bytes] = [] @staticmethod def A_ ( lowerCamelCase , lowerCamelCase ): with open(lowerCamelCase , "rb" ) as f: return f.read(lowerCamelCase ) @classmethod def A_ ( cls , lowerCamelCase , lowerCamelCase = b"" ): if not magic_number: snake_case__ = max(len(lowerCamelCase ) for cls_magic_number in cls.magic_numbers ) try: snake_case__ = cls.read_magic_number(lowerCamelCase , lowerCamelCase ) except OSError: return False return any(magic_number.startswith(lowerCamelCase ) for cls_magic_number in cls.magic_numbers ) class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): @classmethod def A_ ( cls , lowerCamelCase , **lowerCamelCase ): return tarfile.is_tarfile(lowerCamelCase ) @staticmethod def A_ ( lowerCamelCase , lowerCamelCase ): def resolved(lowerCamelCase ) -> str: return os.path.realpath(os.path.abspath(lowerCamelCase ) ) def badpath(lowerCamelCase , lowerCamelCase ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowerCamelCase , lowerCamelCase ) ).startswith(lowerCamelCase ) def badlink(lowerCamelCase , lowerCamelCase ) -> bool: # Links are interpreted relative to the directory containing the link snake_case__ = resolved(os.path.join(lowerCamelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=lowerCamelCase ) snake_case__ = resolved(lowerCamelCase ) for finfo in members: if badpath(finfo.name , lowerCamelCase ): logger.error(F"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(lowerCamelCase , lowerCamelCase ): logger.error(F"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(lowerCamelCase , lowerCamelCase ): logger.error(F"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def A_ ( lowerCamelCase , lowerCamelCase ): os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) snake_case__ = tarfile.open(lowerCamelCase ) tar_file.extractall(lowerCamelCase , members=TarExtractor.safemembers(lowerCamelCase , lowerCamelCase ) ) tar_file.close() class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : List[str] = [b'\x1F\x8B'] @staticmethod def A_ ( lowerCamelCase , lowerCamelCase ): with gzip.open(lowerCamelCase , "rb" ) as gzip_file: with open(lowerCamelCase , "wb" ) as extracted_file: shutil.copyfileobj(lowerCamelCase , lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Optional[Any] = [ b'PK\x03\x04', b'PK\x05\x06', # empty archive b'PK\x07\x08', # spanned archive ] @classmethod def A_ ( cls , lowerCamelCase , lowerCamelCase = b"" ): if super().is_extractable(lowerCamelCase , magic_number=lowerCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowerCamelCase , "rb" ) as fp: snake_case__ = _EndRecData(lowerCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case__ = fp.read(lowerCamelCase ) # CD is where we expect it to be if len(lowerCamelCase ) == sizeCentralDir: snake_case__ = struct.unpack(lowerCamelCase , lowerCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def A_ ( lowerCamelCase , lowerCamelCase ): os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) with zipfile.ZipFile(lowerCamelCase , "r" ) as zip_file: zip_file.extractall(lowerCamelCase ) zip_file.close() class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Optional[int] = [b'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def A_ ( lowerCamelCase , lowerCamelCase ): with lzma.open(lowerCamelCase ) as compressed_file: with open(lowerCamelCase , "wb" ) as extracted_file: shutil.copyfileobj(lowerCamelCase , lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Any = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def A_ ( lowerCamelCase , lowerCamelCase ): if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile" ) import rarfile os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) snake_case__ = rarfile.RarFile(lowerCamelCase ) rf.extractall(lowerCamelCase ) rf.close() class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Union[str, Any] = [b'\x28\xb5\x2F\xFD'] @staticmethod def A_ ( lowerCamelCase , lowerCamelCase ): if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard" ) import zstandard as zstd snake_case__ = zstd.ZstdDecompressor() with open(lowerCamelCase , "rb" ) as ifh, open(lowerCamelCase , "wb" ) as ofh: dctx.copy_stream(lowerCamelCase , lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : str = [b'\x42\x5A\x68'] @staticmethod def A_ ( lowerCamelCase , lowerCamelCase ): with bza.open(lowerCamelCase , "rb" ) as compressed_file: with open(lowerCamelCase , "wb" ) as extracted_file: shutil.copyfileobj(lowerCamelCase , lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Tuple = [b'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def A_ ( lowerCamelCase , lowerCamelCase ): if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr" ) import pyazr os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) with pyazr.SevenZipFile(lowerCamelCase , "r" ) as archive: archive.extractall(lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Optional[int] = [b'\x04\x22\x4D\x18'] @staticmethod def A_ ( lowerCamelCase , lowerCamelCase ): if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4" ) import lza.frame with lza.frame.open(lowerCamelCase , "rb" ) as compressed_file: with open(lowerCamelCase , "wb" ) as extracted_file: shutil.copyfileobj(lowerCamelCase , lowerCamelCase ) class _SCREAMING_SNAKE_CASE : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) _A : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def A_ ( cls ): return max( len(lowerCamelCase ) for extractor in cls.extractors.values() if issubclass(lowerCamelCase , lowerCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def A_ ( lowerCamelCase , lowerCamelCase ): try: return MagicNumberBaseExtractor.read_magic_number(lowerCamelCase , magic_number_length=lowerCamelCase ) except OSError: return b"" @classmethod def A_ ( cls , lowerCamelCase , lowerCamelCase = False ): warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead." , category=lowerCamelCase , ) snake_case__ = cls.infer_extractor_format(lowerCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def A_ ( cls , lowerCamelCase ): # <Added version="2.4.0"/> snake_case__ = cls._get_magic_number_max_length() snake_case__ = cls._read_magic_number(lowerCamelCase , lowerCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowerCamelCase , magic_number=lowerCamelCase ): return extractor_format @classmethod def A_ ( cls , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = "deprecated" , ): os.makedirs(os.path.dirname(lowerCamelCase ) , exist_ok=lowerCamelCase ) # Prevent parallel extractions snake_case__ = str(Path(lowerCamelCase ).with_suffix(".lock" ) ) with FileLock(lowerCamelCase ): shutil.rmtree(lowerCamelCase , ignore_errors=lowerCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowerCamelCase , lowerCamelCase ): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead." , category=lowerCamelCase , ) snake_case__ = extractor if extractor != "deprecated" else extractor_format else: snake_case__ = cls.extractors[extractor_format] return extractor.extract(lowerCamelCase , lowerCamelCase ) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0." , category=lowerCamelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(lowerCamelCase ): return extractor.extract(lowerCamelCase , lowerCamelCase )
276
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=30 , lowerCamelCase=4_00 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=True , lowerCamelCase=1 / 2_55 , lowerCamelCase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case__ = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} snake_case__ = parent snake_case__ = batch_size snake_case__ = num_channels snake_case__ = min_resolution snake_case__ = max_resolution snake_case__ = do_resize snake_case__ = size snake_case__ = do_normalize snake_case__ = image_mean snake_case__ = image_std snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_pad def A_ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A_ ( self , lowerCamelCase , lowerCamelCase=False ): if not batched: snake_case__ = image_inputs[0] if isinstance(lowerCamelCase , Image.Image ): snake_case__ , snake_case__ = image.size else: snake_case__ , snake_case__ = image.shape[1], image.shape[2] if w < h: snake_case__ = int(self.size["shortest_edge"] * h / w ) snake_case__ = self.size["shortest_edge"] elif w > h: snake_case__ = self.size["shortest_edge"] snake_case__ = int(self.size["shortest_edge"] * w / h ) else: snake_case__ = self.size["shortest_edge"] snake_case__ = self.size["shortest_edge"] else: snake_case__ = [] for image in image_inputs: snake_case__ , snake_case__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ = max(lowerCamelCase , key=lambda lowerCamelCase : item[0] )[0] snake_case__ = max(lowerCamelCase , key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __UpperCamelCase , unittest.TestCase ): _A : List[str] = DetaImageProcessor if is_vision_available() else None def A_ ( self ): snake_case__ = DetaImageProcessingTester(self ) @property def A_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def A_ ( self ): snake_case__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_rescale" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_pad" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) def A_ ( self ): snake_case__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) def A_ ( self ): pass def A_ ( self ): # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) snake_case__ = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self ): # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A_ ( self ): # Initialize image_processing snake_case__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input snake_case__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case__ = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values snake_case__ , snake_case__ = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def A_ ( self ): # prepare image and target snake_case__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case__ = json.loads(f.read() ) snake_case__ = {"image_id": 3_97_69, "annotations": target} # encode them snake_case__ = DetaImageProcessor() snake_case__ = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , return_tensors="pt" ) # verify pixel values snake_case__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) snake_case__ = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1e-4 ) ) # verify area snake_case__ = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes snake_case__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) snake_case__ = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1e-3 ) ) # verify image_id snake_case__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd snake_case__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels snake_case__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify orig_size snake_case__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size snake_case__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) ) @slow def A_ ( self ): # prepare image, target and masks_path snake_case__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case__ = json.loads(f.read() ) snake_case__ = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} snake_case__ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case__ = DetaImageProcessor(format="coco_panoptic" ) snake_case__ = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , masks_path=lowerCamelCase , return_tensors="pt" ) # verify pixel values snake_case__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) snake_case__ = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1e-4 ) ) # verify area snake_case__ = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes snake_case__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) snake_case__ = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1e-3 ) ) # verify image_id snake_case__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd snake_case__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels snake_case__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify masks snake_case__ = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCamelCase ) # verify orig_size snake_case__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size snake_case__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) )
276
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) lowerCAmelCase_ = "CIDAS/clipseg-rd64-refined" lowerCAmelCase_ = "image_segmenter" lowerCAmelCase_ = CLIPSegForImageSegmentation lowerCAmelCase_ = ["image", "text"] lowerCAmelCase_ = ["image"] def __init__( self : List[Any] , *_lowercase : Dict , **_lowercase : Any ): """simple docstring""" requires_backends(self , ["""vision"""] ) super().__init__(*_lowercase , **_lowercase ) def __a ( self : Dict , _lowercase : "Image" , _lowercase : str ): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=_lowercase , return_tensors="""pt""" ) def __a ( self : Optional[int] , _lowercase : Union[str, Any] ): """simple docstring""" with torch.no_grad(): SCREAMING_SNAKE_CASE__ = self.model(**_lowercase ).logits return logits def __a ( self : Tuple , _lowercase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = outputs.cpu().detach().numpy() SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 return Image.fromarray((array * 2_55).astype(np.uinta ) )
379
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __snake_case ( unittest.TestCase ): def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = torch.nn.Linear(10 , 10 ) SCREAMING_SNAKE_CASE__ = torch.optim.SGD(model.parameters() , 0.1 ) SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
379
1
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , __SCREAMING_SNAKE_CASE , ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = RobertaConfig lowerCamelCase__ = '''roberta''' def __init__( self , __SCREAMING_SNAKE_CASE ): super().__init__(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = RobertaEmbeddings(__SCREAMING_SNAKE_CASE ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , __SCREAMING_SNAKE_CASE , ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = RobertaConfig lowerCamelCase__ = '''roberta''' def __init__( self , __SCREAMING_SNAKE_CASE ): super().__init__(__SCREAMING_SNAKE_CASE ) snake_case__ : int = config.num_labels snake_case__ : str = config.num_hidden_layers snake_case__ : Optional[int] = DeeRobertaModel(__SCREAMING_SNAKE_CASE ) snake_case__ : int = nn.Dropout(config.hidden_dropout_prob ) snake_case__ : Dict = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=-1 , __SCREAMING_SNAKE_CASE=False , ): snake_case__ : Tuple = self.num_layers try: snake_case__ : List[Any] = self.roberta( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , position_ids=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , inputs_embeds=__SCREAMING_SNAKE_CASE , ) snake_case__ : int = outputs[1] snake_case__ : str = self.dropout(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = self.classifier(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case__ : Optional[int] = e.message snake_case__ : Dict = e.exit_layer snake_case__ : Optional[int] = outputs[0] if not self.training: snake_case__ : Any = entropy(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = [] snake_case__ : List[str] = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case__ : str = MSELoss() snake_case__ : List[str] = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case__ : Optional[Any] = CrossEntropyLoss() snake_case__ : str = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case__ : Optional[int] = [] for highway_exit in outputs[-1]: snake_case__ : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(__SCREAMING_SNAKE_CASE ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case__ : Dict = MSELoss() snake_case__ : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case__ : int = CrossEntropyLoss() snake_case__ : Dict = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__SCREAMING_SNAKE_CASE ) if train_highway: snake_case__ : Any = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case__ : Union[str, Any] = (loss,) + outputs if not self.training: snake_case__ : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case__ : Optional[int] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
38
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Union[str, Any] = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Union[str, Any] = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
116
0
'''simple docstring''' from PIL import Image def __lowerCamelCase ( _lowerCAmelCase ) -> Image: _UpperCAmelCase , _UpperCAmelCase = image.size _UpperCAmelCase = 0 _UpperCAmelCase = image.load() for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): _UpperCAmelCase = pixels[j, i] mean += pixel mean //= width * height for j in range(_lowerCAmelCase ): for i in range(_lowerCAmelCase ): _UpperCAmelCase = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": __lowerCAmelCase = mean_threshold(Image.open("path_to_image").convert("L")) image.save("output_image_path")
720
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __lowerCAmelCase = "\\n\n" __lowerCAmelCase = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" __lowerCAmelCase = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __SCREAMING_SNAKE_CASE ( datasets.Metric): def UpperCAmelCase__ ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "input_texts": datasets.Value("string" ), } ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , ) def UpperCAmelCase__ ( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : int = 16 , __UpperCamelCase : bool = True , __UpperCamelCase : Tuple=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _UpperCAmelCase = "cuda" else: _UpperCAmelCase = "cuda" if torch.cuda.is_available() else "cpu" _UpperCAmelCase = AutoModelForCausalLM.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = model.to(__UpperCamelCase ) _UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _UpperCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__UpperCamelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _UpperCAmelCase = model.config.max_length - 1 else: _UpperCAmelCase = model.config.max_length _UpperCAmelCase = tokenizer( __UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors="pt" , return_attention_mask=__UpperCamelCase , ).to(__UpperCamelCase ) _UpperCAmelCase = encodings["input_ids"] _UpperCAmelCase = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _UpperCAmelCase = [] _UpperCAmelCase = CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0 , len(__UpperCamelCase ) , __UpperCamelCase ) ): _UpperCAmelCase = min(start_index + batch_size , len(__UpperCamelCase ) ) _UpperCAmelCase = encoded_texts[start_index:end_index] _UpperCAmelCase = attn_masks[start_index:end_index] if add_start_token: _UpperCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__UpperCamelCase ) _UpperCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _UpperCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(__UpperCamelCase ), attn_mask] , dim=1 ) _UpperCAmelCase = encoded_batch with torch.no_grad(): _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase ).logits _UpperCAmelCase = out_logits[..., :-1, :].contiguous() _UpperCAmelCase = labels[..., 1:].contiguous() _UpperCAmelCase = attn_mask[..., 1:].contiguous() _UpperCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , __UpperCamelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__UpperCamelCase )}
129
0
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : str, UpperCAmelCase_ : str ) -> str: """simple docstring""" if not (isinstance(UpperCAmelCase_, UpperCAmelCase_ ) and isinstance(UpperCAmelCase_, UpperCAmelCase_ )): raise ValueError("longest_common_substring() takes two strings for inputs" ) A__ = len(UpperCAmelCase_ ) A__ = len(UpperCAmelCase_ ) A__ = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] A__ = 0 A__ = 0 for i in range(1, texta_length + 1 ): for j in range(1, texta_length + 1 ): if texta[i - 1] == texta[j - 1]: A__ = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: A__ = i A__ = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
104
"""simple docstring""" from __future__ import annotations def _lowerCamelCase ( UpperCAmelCase_ : float, UpperCAmelCase_ : float, UpperCAmelCase_ : float, ) -> tuple: """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
104
1
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __a : __SCREAMING_SNAKE_CASE : int = BlenderbotConfig __SCREAMING_SNAKE_CASE : str = {} __SCREAMING_SNAKE_CASE : List[Any] = """gelu""" def __init__( self : List[str] , lowercase__ : List[str] , lowercase__ : Union[str, Any]=13 , lowercase__ : Union[str, Any]=7 , lowercase__ : Optional[int]=True , lowercase__ : Optional[int]=False , lowercase__ : List[str]=99 , lowercase__ : Optional[Any]=32 , lowercase__ : int=2 , lowercase__ : Any=4 , lowercase__ : Union[str, Any]=37 , lowercase__ : List[Any]=0.1 , lowercase__ : Optional[Any]=0.1 , lowercase__ : Tuple=20 , lowercase__ : Tuple=2 , lowercase__ : Optional[Any]=1 , lowercase__ : List[Any]=0 , ) ->Dict: """simple docstring""" _lowercase = parent _lowercase = batch_size _lowercase = seq_length _lowercase = is_training _lowercase = use_labels _lowercase = vocab_size _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = intermediate_size _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = max_position_embeddings _lowercase = eos_token_id _lowercase = pad_token_id _lowercase = bos_token_id def _UpperCAmelCase ( self : Optional[int]) ->Dict: """simple docstring""" _lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) _lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) _lowercase = tf.concat([input_ids, eos_tensor] , axis=1) _lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _lowercase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _lowercase = prepare_blenderbot_inputs_dict(lowercase__ , lowercase__ , lowercase__) return config, inputs_dict def _UpperCAmelCase ( self : Optional[Any] , lowercase__ : str , lowercase__ : List[Any]) ->Dict: """simple docstring""" _lowercase = TFBlenderbotModel(config=lowercase__).get_decoder() _lowercase = inputs_dict["""input_ids"""] _lowercase = input_ids[:1, :] _lowercase = inputs_dict["""attention_mask"""][:1, :] _lowercase = inputs_dict["""head_mask"""] _lowercase = 1 # first forward pass _lowercase = model(lowercase__ , attention_mask=lowercase__ , head_mask=lowercase__ , use_cache=lowercase__) _lowercase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size) _lowercase = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and _lowercase = tf.concat([input_ids, next_tokens] , axis=-1) _lowercase = tf.concat([attention_mask, next_attn_mask] , axis=-1) _lowercase = model(lowercase__ , attention_mask=lowercase__)[0] _lowercase = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice _lowercase = int(ids_tensor((1,) , output_from_past.shape[-1])) _lowercase = output_from_no_past[:, -3:, random_slice_idx] _lowercase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase__ , lowercase__ , rtol=1e-3) def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , ): if attention_mask is None: _lowercase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowercase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __a ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __SCREAMING_SNAKE_CASE : int = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __SCREAMING_SNAKE_CASE : Optional[Any] = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __SCREAMING_SNAKE_CASE : Optional[Any] = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE : str = True __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : Any = False def _UpperCAmelCase ( self : Tuple) ->Optional[int]: """simple docstring""" _lowercase = TFBlenderbotModelTester(self) _lowercase = ConfigTester(self , config_class=lowercase__) def _UpperCAmelCase ( self : Optional[Any]) ->Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[str]) ->int: """simple docstring""" _lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase__) @require_tokenizers @require_tf class __a ( unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = ["""My friends are cool but they eat too many carbs."""] __SCREAMING_SNAKE_CASE : int = """facebook/blenderbot-400M-distill""" @cached_property def _UpperCAmelCase ( self : Tuple) ->int: """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name) @cached_property def _UpperCAmelCase ( self : Optional[int]) ->Tuple: """simple docstring""" _lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model @slow def _UpperCAmelCase ( self : Optional[Any]) ->str: """simple docstring""" _lowercase = self.tokenizer(self.src_text , return_tensors="""tf""") _lowercase = self.model.generate( model_inputs.input_ids , ) _lowercase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase__)[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
704
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( snake_case_ = 100 ): _lowercase = set() _lowercase = 0 _lowercase = n + 1 # maximum limit for a in range(2 , snake_case_ ): for b in range(2 , snake_case_ ): _lowercase = a**b # calculates the current power collect_powers.add(snake_case_ ) # adds the result to the set return len(snake_case_ ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
572
0
def _SCREAMING_SNAKE_CASE ( __snake_case = 5_0_0_0_0_0_0_0 ) -> int: _UpperCAmelCase = set() _UpperCAmelCase = int((limit - 2_4) ** (1 / 2) ) _UpperCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , __snake_case ) ) ) for primea in primes: _UpperCAmelCase = primea * primea for primea in primes: _UpperCAmelCase = primea * primea * primea if square + cube >= limit - 1_6: break for primea in primes: _UpperCAmelCase = primea * primea * primea * primea _UpperCAmelCase = square + cube + tetr if total >= limit: break ret.add(__snake_case ) return len(__snake_case ) if __name__ == "__main__": print(F"{solution() = }")
108
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : Optional[Any] = AltDiffusionPipeline lowercase__ : Dict = TEXT_TO_IMAGE_PARAMS lowercase__ : str = TEXT_TO_IMAGE_BATCH_PARAMS lowercase__ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase__ : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def __SCREAMING_SNAKE_CASE ( self ) -> str: torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowerCAmelCase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_02 , ) lowerCAmelCase__ = CLIPTextModel(lowerCamelCase_ ) lowerCAmelCase__ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowerCAmelCase__ = 77 lowerCAmelCase__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=0 ) -> List[str]: if str(lowerCamelCase_ ).startswith('''mps''' ): lowerCAmelCase__ = torch.manual_seed(lowerCamelCase_ ) else: lowerCAmelCase__ = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCAmelCase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() torch.manual_seed(0 ) lowerCAmelCase__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCAmelCase__ = RobertaSeriesModelWithTransformation(lowerCamelCase_ ) lowerCAmelCase__ = text_encoder lowerCAmelCase__ = AltDiffusionPipeline(**lowerCamelCase_ ) lowerCAmelCase__ = alt_pipe.to(lowerCamelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = self.get_dummy_inputs(lowerCamelCase_ ) lowerCAmelCase__ = '''A photo of an astronaut''' lowerCAmelCase__ = alt_pipe(**lowerCamelCase_ ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) torch.manual_seed(0 ) lowerCAmelCase__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCAmelCase__ = RobertaSeriesModelWithTransformation(lowerCamelCase_ ) lowerCAmelCase__ = text_encoder lowerCAmelCase__ = AltDiffusionPipeline(**lowerCamelCase_ ) lowerCAmelCase__ = alt_pipe.to(lowerCamelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = self.get_dummy_inputs(lowerCamelCase_ ) lowerCAmelCase__ = alt_pipe(**lowerCamelCase_ ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # make sure here that pndm scheduler skips prk lowerCAmelCase__ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=lowerCamelCase_ ) lowerCAmelCase__ = alt_pipe.to(lowerCamelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = '''A painting of a squirrel eating a burger''' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = alt_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) lowerCAmelCase__ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ ) lowerCAmelCase__ = alt_pipe.to(lowerCamelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = '''A painting of a squirrel eating a burger''' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = alt_pipe([prompt] , generator=lowerCamelCase_ , num_inference_steps=2 , output_type='''numpy''' ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
90
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class a ( __magic_name__ ): _snake_case = 42 _snake_case = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.26.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(">=", "0.0.12") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class a ( __magic_name__ ): _snake_case = 42 _snake_case = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
701
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } UpperCAmelCase = { "Salesforce/codegen-350M-mono": 2_048, } class a ( __magic_name__ ): _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['''input_ids''', '''attention_mask'''] _snake_case = CodeGenTokenizer def __init__( self : Any, SCREAMING_SNAKE_CASE_ : Dict=None, SCREAMING_SNAKE_CASE_ : Optional[Any]=None, SCREAMING_SNAKE_CASE_ : Optional[Any]=None, SCREAMING_SNAKE_CASE_ : Optional[int]="<|endoftext|>", SCREAMING_SNAKE_CASE_ : List[Any]="<|endoftext|>", SCREAMING_SNAKE_CASE_ : List[str]="<|endoftext|>", SCREAMING_SNAKE_CASE_ : int=False, **SCREAMING_SNAKE_CASE_ : Optional[int], ): super().__init__( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, tokenizer_file=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, add_prefix_space=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) if kwargs.pop('''add_bos_token''', SCREAMING_SNAKE_CASE_ ): snake_case : Dict = kwargs.pop('''name_or_path''', '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' F"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" F"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) snake_case : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''', SCREAMING_SNAKE_CASE_ ) != add_prefix_space: snake_case : Optional[Any] = getattr(SCREAMING_SNAKE_CASE_, pre_tok_state.pop('''type''' ) ) snake_case : Union[str, Any] = add_prefix_space snake_case : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) snake_case : int = add_prefix_space def __snake_case ( self : List[Any], *SCREAMING_SNAKE_CASE_ : Tuple, **SCREAMING_SNAKE_CASE_ : int ): snake_case : Dict = kwargs.get('''is_split_into_words''', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : List[str], *SCREAMING_SNAKE_CASE_ : str, **SCREAMING_SNAKE_CASE_ : Optional[int] ): snake_case : Dict = kwargs.get('''is_split_into_words''', SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Tuple, SCREAMING_SNAKE_CASE_ : str, SCREAMING_SNAKE_CASE_ : Optional[str] = None ): snake_case : Optional[int] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_, name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Dict, SCREAMING_SNAKE_CASE_ : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], SCREAMING_SNAKE_CASE_ : bool = False, SCREAMING_SNAKE_CASE_ : bool = None, SCREAMING_SNAKE_CASE_ : Optional[List[str]] = None, **SCREAMING_SNAKE_CASE_ : Union[str, Any], ): snake_case : Dict = super().decode( token_ids=SCREAMING_SNAKE_CASE_, skip_special_tokens=SCREAMING_SNAKE_CASE_, clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) if truncate_before_pattern is not None and len(SCREAMING_SNAKE_CASE_ ) > 0: snake_case : Optional[int] = self.truncate(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return decoded_text def __snake_case ( self : int, SCREAMING_SNAKE_CASE_ : Optional[Any], SCREAMING_SNAKE_CASE_ : Tuple ): def find_re(SCREAMING_SNAKE_CASE_ : Optional[int], SCREAMING_SNAKE_CASE_ : Dict, SCREAMING_SNAKE_CASE_ : Optional[Any] ): snake_case : Optional[Any] = pattern.search(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return m.start() if m else -1 snake_case : Union[str, Any] = [re.compile(SCREAMING_SNAKE_CASE_, re.MULTILINE ) for pattern in truncate_before_pattern] snake_case : Union[str, Any] = list(re.finditer('''^print''', SCREAMING_SNAKE_CASE_, re.MULTILINE ) ) if len(SCREAMING_SNAKE_CASE_ ) > 1: snake_case : Tuple = completion[: prints[1].start()] snake_case : List[str] = list(re.finditer('''^def''', SCREAMING_SNAKE_CASE_, re.MULTILINE ) ) if len(SCREAMING_SNAKE_CASE_ ) > 1: snake_case : Optional[Any] = completion[: defs[1].start()] snake_case : Tuple = 0 snake_case : List[Any] = [ pos for pos in [find_re(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for terminal in terminals] if pos != -1 ] if len(SCREAMING_SNAKE_CASE_ ) > 0: return completion[: min(SCREAMING_SNAKE_CASE_ )] else: return completion
555
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class A ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : int , *_UpperCamelCase : str , **_UpperCamelCase : Optional[Any]): super().__init__(*_UpperCamelCase , **_UpperCamelCase) requires_backends(self , "vision") self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING) def UpperCAmelCase__ ( self : int , _UpperCamelCase : List[str]=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Optional[int]=None): _lowercase: Union[str, Any] = {} _lowercase: Union[str, Any] = {} if prompt is not None: _lowercase: str = prompt if generate_kwargs is not None: _lowercase: Any = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _lowercase: List[Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one") _lowercase: Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Any , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Optional[Any]): return super().__call__(_UpperCamelCase , **_UpperCamelCase) def UpperCAmelCase__ ( self : Optional[int] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int]=None): _lowercase: Tuple = load_image(_UpperCamelCase) if prompt is not None: if not isinstance(_UpperCamelCase , _UpperCamelCase): raise ValueError( f"Received an invalid text input, got - {type(_UpperCamelCase)} - but expected a single string. " "Note also that one single text can be provided for conditional image to text generation.") _lowercase: Dict = self.model.config.model_type if model_type == "git": _lowercase: Any = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework) _lowercase: Dict = self.tokenizer(text=_UpperCamelCase , add_special_tokens=_UpperCamelCase).input_ids _lowercase: int = [self.tokenizer.cls_token_id] + input_ids _lowercase: int = torch.tensor(_UpperCamelCase).unsqueeze(0) model_inputs.update({"input_ids": input_ids}) elif model_type == "pix2struct": _lowercase: str = self.image_processor(images=_UpperCamelCase , header_text=_UpperCamelCase , return_tensors=self.framework) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _lowercase: str = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework) _lowercase: Optional[Any] = self.tokenizer(_UpperCamelCase , return_tensors=self.framework) model_inputs.update(_UpperCamelCase) else: raise ValueError(f"Model type {model_type} does not support conditional text generation") else: _lowercase: Union[str, Any] = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework) if self.model.config.model_type == "git" and prompt is None: _lowercase: Dict = None return model_inputs def UpperCAmelCase__ ( self : Union[str, Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple=None): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , _UpperCamelCase) and all(x is None for x in model_inputs["input_ids"]) ): _lowercase: Union[str, Any] = None if generate_kwargs is None: _lowercase: str = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _lowercase: Optional[int] = model_inputs.pop(self.model.main_input_name) _lowercase: List[Any] = self.model.generate(_UpperCamelCase , **_UpperCamelCase , **_UpperCamelCase) return model_outputs def UpperCAmelCase__ ( self : Optional[int] , _UpperCamelCase : Any): _lowercase: Tuple = [] for output_ids in model_outputs: _lowercase: Union[str, Any] = { "generated_text": self.tokenizer.decode( _UpperCamelCase , skip_special_tokens=_UpperCamelCase , ) } records.append(_UpperCamelCase) return records
226
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) # General docstring _SCREAMING_SNAKE_CASE : Any = 'RegNetConfig' # Base docstring _SCREAMING_SNAKE_CASE : Optional[int] = 'facebook/regnet-y-040' _SCREAMING_SNAKE_CASE : List[str] = [1, 1_088, 7, 7] # Image classification docstring _SCREAMING_SNAKE_CASE : Union[str, Any] = 'facebook/regnet-y-040' _SCREAMING_SNAKE_CASE : List[Any] = 'tabby, tabby cat' _SCREAMING_SNAKE_CASE : Dict = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class A ( nn.Module ): '''simple docstring''' def __init__( self : Any , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int = 3 , _UpperCamelCase : int = 1 , _UpperCamelCase : int = 1 , _UpperCamelCase : Optional[str] = "relu" , ): super().__init__() _lowercase: Any = nn.Convad( _UpperCamelCase , _UpperCamelCase , kernel_size=_UpperCamelCase , stride=_UpperCamelCase , padding=kernel_size // 2 , groups=_UpperCamelCase , bias=_UpperCamelCase , ) _lowercase: Optional[Any] = nn.BatchNormad(_UpperCamelCase) _lowercase: Dict = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase__ ( self : List[str] , _UpperCamelCase : Dict): _lowercase: Any = self.convolution(_UpperCamelCase) _lowercase: int = self.normalization(_UpperCamelCase) _lowercase: Tuple = self.activation(_UpperCamelCase) return hidden_state class A ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCamelCase : RegNetConfig): super().__init__() _lowercase: Optional[int] = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _lowercase: List[str] = config.num_channels def UpperCAmelCase__ ( self : Optional[int] , _UpperCamelCase : List[Any]): _lowercase: int = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration.") _lowercase: List[str] = self.embedder(_UpperCamelCase) return hidden_state class A ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int = 2): super().__init__() _lowercase: Dict = nn.Convad(_UpperCamelCase , _UpperCamelCase , kernel_size=1 , stride=_UpperCamelCase , bias=_UpperCamelCase) _lowercase: Optional[int] = nn.BatchNormad(_UpperCamelCase) def UpperCAmelCase__ ( self : Any , _UpperCamelCase : Tensor): _lowercase: Union[str, Any] = self.convolution(_UpperCamelCase) _lowercase: Union[str, Any] = self.normalization(_UpperCamelCase) return hidden_state class A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , _UpperCamelCase : int , _UpperCamelCase : int): super().__init__() _lowercase: List[Any] = nn.AdaptiveAvgPoolad((1, 1)) _lowercase: Dict = nn.Sequential( nn.Convad(_UpperCamelCase , _UpperCamelCase , kernel_size=1) , nn.ReLU() , nn.Convad(_UpperCamelCase , _UpperCamelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCAmelCase__ ( self : str , _UpperCamelCase : Any): # b c h w -> b c 1 1 _lowercase: Tuple = self.pooler(_UpperCamelCase) _lowercase: Any = self.attention(_UpperCamelCase) _lowercase: List[str] = hidden_state * attention return hidden_state class A ( nn.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : RegNetConfig , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int = 1): super().__init__() _lowercase: Union[str, Any] = in_channels != out_channels or stride != 1 _lowercase: Any = max(1 , out_channels // config.groups_width) _lowercase: Dict = ( RegNetShortCut(_UpperCamelCase , _UpperCamelCase , stride=_UpperCamelCase) if should_apply_shortcut else nn.Identity() ) _lowercase: Any = nn.Sequential( RegNetConvLayer(_UpperCamelCase , _UpperCamelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(_UpperCamelCase , _UpperCamelCase , stride=_UpperCamelCase , groups=_UpperCamelCase , activation=config.hidden_act) , RegNetConvLayer(_UpperCamelCase , _UpperCamelCase , kernel_size=1 , activation=_UpperCamelCase) , ) _lowercase: Optional[Any] = ACTaFN[config.hidden_act] def UpperCAmelCase__ ( self : Dict , _UpperCamelCase : Optional[int]): _lowercase: Union[str, Any] = hidden_state _lowercase: Any = self.layer(_UpperCamelCase) _lowercase: Union[str, Any] = self.shortcut(_UpperCamelCase) hidden_state += residual _lowercase: Any = self.activation(_UpperCamelCase) return hidden_state class A ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : RegNetConfig , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int = 1): super().__init__() _lowercase: Tuple = in_channels != out_channels or stride != 1 _lowercase: Tuple = max(1 , out_channels // config.groups_width) _lowercase: Dict = ( RegNetShortCut(_UpperCamelCase , _UpperCamelCase , stride=_UpperCamelCase) if should_apply_shortcut else nn.Identity() ) _lowercase: Union[str, Any] = nn.Sequential( RegNetConvLayer(_UpperCamelCase , _UpperCamelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(_UpperCamelCase , _UpperCamelCase , stride=_UpperCamelCase , groups=_UpperCamelCase , activation=config.hidden_act) , RegNetSELayer(_UpperCamelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(_UpperCamelCase , _UpperCamelCase , kernel_size=1 , activation=_UpperCamelCase) , ) _lowercase: str = ACTaFN[config.hidden_act] def UpperCAmelCase__ ( self : Optional[int] , _UpperCamelCase : Optional[int]): _lowercase: Optional[Any] = hidden_state _lowercase: Tuple = self.layer(_UpperCamelCase) _lowercase: Optional[Any] = self.shortcut(_UpperCamelCase) hidden_state += residual _lowercase: int = self.activation(_UpperCamelCase) return hidden_state class A ( nn.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : RegNetConfig , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : int = 2 , _UpperCamelCase : int = 2 , ): super().__init__() _lowercase: Optional[int] = RegNetXLayer if config.layer_type == "x" else RegNetYLayer _lowercase: Dict = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , stride=_UpperCamelCase , ) , *[layer(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) for _ in range(depth - 1)] , ) def UpperCAmelCase__ ( self : int , _UpperCamelCase : List[str]): _lowercase: str = self.layers(_UpperCamelCase) return hidden_state class A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , _UpperCamelCase : RegNetConfig): super().__init__() _lowercase: Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _UpperCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _lowercase: Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(_UpperCamelCase , config.depths[1:]): self.stages.append(RegNetStage(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , depth=_UpperCamelCase)) def UpperCAmelCase__ ( self : Optional[int] , _UpperCamelCase : Tensor , _UpperCamelCase : bool = False , _UpperCamelCase : bool = True): _lowercase: int = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _lowercase: List[Any] = hidden_states + (hidden_state,) _lowercase: int = stage_module(_UpperCamelCase) if output_hidden_states: _lowercase: Union[str, Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCamelCase , hidden_states=_UpperCamelCase) class A ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase : int = RegNetConfig lowerCamelCase : Any = """regnet""" lowerCamelCase : int = """pixel_values""" lowerCamelCase : Tuple = True def UpperCAmelCase__ ( self : str , _UpperCamelCase : Dict): if isinstance(_UpperCamelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu") elif isinstance(_UpperCamelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCAmelCase__ ( self : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict=False): if isinstance(_UpperCamelCase , _UpperCamelCase): _lowercase: Dict = value _SCREAMING_SNAKE_CASE : Optional[int] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _SCREAMING_SNAKE_CASE : List[Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , lowerCamelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class A ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : Tuple): super().__init__(_UpperCamelCase) _lowercase: List[Any] = config _lowercase: List[Any] = RegNetEmbeddings(_UpperCamelCase) _lowercase: Optional[int] = RegNetEncoder(_UpperCamelCase) _lowercase: str = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCamelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCamelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase__ ( self : Tuple , _UpperCamelCase : Tensor , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : Optional[bool] = None): _lowercase: Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowercase: List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _lowercase: Optional[int] = self.embedder(_UpperCamelCase) _lowercase: Union[str, Any] = self.encoder( _UpperCamelCase , output_hidden_states=_UpperCamelCase , return_dict=_UpperCamelCase) _lowercase: Optional[Any] = encoder_outputs[0] _lowercase: List[Any] = self.pooler(_UpperCamelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCamelCase , pooler_output=_UpperCamelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , lowerCamelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class A ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : Tuple): super().__init__(_UpperCamelCase) _lowercase: List[Any] = config.num_labels _lowercase: Any = RegNetModel(_UpperCamelCase) # classification head _lowercase: List[str] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCamelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase__ ( self : List[str] , _UpperCamelCase : Optional[torch.FloatTensor] = None , _UpperCamelCase : Optional[torch.LongTensor] = None , _UpperCamelCase : Optional[bool] = None , _UpperCamelCase : Optional[bool] = None , ): _lowercase: str = return_dict if return_dict is not None else self.config.use_return_dict _lowercase: int = self.regnet(_UpperCamelCase , output_hidden_states=_UpperCamelCase , return_dict=_UpperCamelCase) _lowercase: Dict = outputs.pooler_output if return_dict else outputs[1] _lowercase: Union[str, Any] = self.classifier(_UpperCamelCase) _lowercase: Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _lowercase: Tuple = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _lowercase: Union[str, Any] = "single_label_classification" else: _lowercase: Optional[Any] = "multi_label_classification" if self.config.problem_type == "regression": _lowercase: Dict = MSELoss() if self.num_labels == 1: _lowercase: Union[str, Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _lowercase: int = loss_fct(_UpperCamelCase , _UpperCamelCase) elif self.config.problem_type == "single_label_classification": _lowercase: Dict = CrossEntropyLoss() _lowercase: List[str] = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _lowercase: List[str] = BCEWithLogitsLoss() _lowercase: Union[str, Any] = loss_fct(_UpperCamelCase , _UpperCamelCase) if not return_dict: _lowercase: Any = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_UpperCamelCase , logits=_UpperCamelCase , hidden_states=outputs.hidden_states)
226
1
'''simple docstring''' from statistics import mean import numpy as np def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> list: """simple docstring""" A__ = 0 # Number of processes finished A__ = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. A__ = [0] * no_of_process # List to include calculation results A__ = [0] * no_of_process # Sort by arrival time. A__ = [burst_time[i] for i in np.argsort(lowercase_ )] A__ = [process_name[i] for i in np.argsort(lowercase_ )] arrival_time.sort() while no_of_process > finished_process_count: A__ = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: A__ = arrival_time[i] A__ = 0 # Index showing the location of the process being performed A__ = 0 # Saves the current response ratio. A__ = 0 for i in range(0 , lowercase_ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: A__ = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: A__ = temp A__ = i # Calculate the turn around time A__ = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. A__ = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> list: """simple docstring""" A__ = [0] * no_of_process for i in range(0 , lowercase_ ): A__ = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _lowerCamelCase : Optional[int] = 5 _lowerCamelCase : str = ["""A""", """B""", """C""", """D""", """E"""] _lowerCamelCase : Optional[int] = [1, 2, 3, 4, 5] _lowerCamelCase : Tuple = [1, 2, 3, 4, 5] _lowerCamelCase : Union[str, Any] = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _lowerCamelCase : Dict = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("""Process name \tArrival time \tBurst time \tTurn around time \tWaiting time""") for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
704
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCamelCase_ : '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : Union[str, Any]=10 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : Optional[int]=32 * 4 , UpperCAmelCase__ : int=32 * 6 , UpperCAmelCase__ : List[str]=4 , UpperCAmelCase__ : Dict=32 , ) ->Optional[int]: '''simple docstring''' A__ = parent A__ = batch_size A__ = is_training A__ = use_auxiliary_loss A__ = num_queries A__ = num_channels A__ = min_size A__ = max_size A__ = num_labels A__ = mask_feature_size def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( UpperCAmelCase__) A__ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase__) A__ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase__) > 0.5 ).float() A__ = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase__) > 0.5).long() A__ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]: '''simple docstring''' A__ , A__ , A__ , A__ , A__ = self.prepare_config_and_inputs() A__ = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any]) ->int: '''simple docstring''' A__ = output.encoder_hidden_states A__ = output.pixel_decoder_hidden_states A__ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCAmelCase__) , len(config.backbone_config.depths)) self.parent.assertTrue(len(UpperCAmelCase__) , len(config.backbone_config.depths)) self.parent.assertTrue(len(UpperCAmelCase__) , config.decoder_config.decoder_layers) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any]=False) ->Optional[int]: '''simple docstring''' with torch.no_grad(): A__ = MaskFormerModel(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(pixel_values=UpperCAmelCase__ , pixel_mask=UpperCAmelCase__) A__ = model(UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : int) ->List[Any]: '''simple docstring''' A__ = MaskFormerForInstanceSegmentation(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() def comm_check_on_output(UpperCAmelCase__ : str): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): A__ = model(pixel_values=UpperCAmelCase__ , pixel_mask=UpperCAmelCase__) A__ = model(UpperCAmelCase__) comm_check_on_output(UpperCAmelCase__) A__ = model( pixel_values=UpperCAmelCase__ , pixel_mask=UpperCAmelCase__ , mask_labels=UpperCAmelCase__ , class_labels=UpperCAmelCase__) comm_check_on_output(UpperCAmelCase__) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCAmelCase__ = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]: '''simple docstring''' A__ = MaskFormerModelTester(self) A__ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase__ , **UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase__) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple: '''simple docstring''' pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''') def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''MaskFormer is not a generative model''') def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''MaskFormer does not use token embeddings''') def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''') def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' for model_name in ["facebook/maskformer-swin-small-coco"]: A__ = MaskFormerModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]: '''simple docstring''' A__ = (self.model_tester.min_size,) * 2 A__ = { '''pixel_values''': torch.randn((2, 3, *size) , device=UpperCAmelCase__), '''mask_labels''': torch.randn((2, 10, *size) , device=UpperCAmelCase__), '''class_labels''': torch.zeros(2 , 10 , device=UpperCAmelCase__).long(), } A__ = MaskFormerForInstanceSegmentation(MaskFormerConfig()).to(UpperCAmelCase__) A__ = model(**UpperCAmelCase__) self.assertTrue(outputs.loss is not None) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCAmelCase__ , **UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__).to(UpperCAmelCase__) A__ = model(**UpperCAmelCase__ , output_attentions=UpperCAmelCase__) self.assertTrue(outputs.attentions is not None) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: '''simple docstring''' if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss A__ = self.all_model_classes[1] A__ , A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() A__ = model_class(UpperCAmelCase__) model.to(UpperCAmelCase__) model.train() A__ = model(UpperCAmelCase__ , mask_labels=UpperCAmelCase__ , class_labels=UpperCAmelCase__).loss loss.backward() def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' A__ = self.all_model_classes[1] A__ , A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() A__ = True A__ = True A__ = model_class(UpperCAmelCase__) model.to(UpperCAmelCase__) model.train() A__ = model(UpperCAmelCase__ , mask_labels=UpperCAmelCase__ , class_labels=UpperCAmelCase__) A__ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A__ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't A__ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A__ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCAmelCase__) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) _lowerCamelCase : Tuple = 1E-4 def SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[str]: '''simple docstring''' return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''') if is_vision_available() else None ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]: '''simple docstring''' A__ = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''').to(UpperCAmelCase__) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(UpperCAmelCase__ , return_tensors='''pt''').to(UpperCAmelCase__) A__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(UpperCAmelCase__ , (1, 3, 800, 1_088)) with torch.no_grad(): A__ = model(**UpperCAmelCase__) A__ = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]]).to(UpperCAmelCase__) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__)) A__ = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]]).to(UpperCAmelCase__) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__)) A__ = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]]).to(UpperCAmelCase__) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__)) def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''') .to(UpperCAmelCase__) .eval() ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(UpperCAmelCase__ , return_tensors='''pt''').to(UpperCAmelCase__) A__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(UpperCAmelCase__ , (1, 3, 800, 1_088)) with torch.no_grad(): A__ = model(**UpperCAmelCase__) # masks_queries_logits A__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) A__ = [ [-1.3737124, -1.7724937, -1.9364233], [-1.5977281, -1.9867939, -2.1523695], [-1.5795398, -1.9269832, -2.093942], ] A__ = torch.tensor(UpperCAmelCase__).to(UpperCAmelCase__) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__)) # class_queries_logits A__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) A__ = torch.tensor( [ [1.65_12e00, -5.25_72e00, -3.35_19e00], [3.61_69e-02, -5.90_25e00, -2.93_13e00], [1.07_66e-04, -7.76_30e00, -5.12_63e00], ]).to(UpperCAmelCase__) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__)) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''') .to(UpperCAmelCase__) .eval() ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(UpperCAmelCase__ , return_tensors='''pt''').to(UpperCAmelCase__) A__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(UpperCAmelCase__ , (1, 3, 800, 1_088)) with torch.no_grad(): A__ = model(**UpperCAmelCase__) # masks_queries_logits A__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) A__ = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] A__ = torch.tensor(UpperCAmelCase__).to(UpperCAmelCase__) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__)) # class_queries_logits A__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) A__ = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]]).to(UpperCAmelCase__) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__)) def SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: '''simple docstring''' A__ = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''') .to(UpperCAmelCase__) .eval() ) A__ = self.default_image_processor A__ = image_processor( [np.zeros((3, 800, 1_333)), np.zeros((3, 800, 1_333))] , segmentation_maps=[np.zeros((384, 384)).astype(np.floataa), np.zeros((384, 384)).astype(np.floataa)] , return_tensors='''pt''' , ) A__ = inputs['''pixel_values'''].to(UpperCAmelCase__) A__ = [el.to(UpperCAmelCase__) for el in inputs['''mask_labels''']] A__ = [el.to(UpperCAmelCase__) for el in inputs['''class_labels''']] with torch.no_grad(): A__ = model(**UpperCAmelCase__) self.assertTrue(outputs.loss is not None)
177
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase_ ( __A , unittest.TestCase ): '''simple docstring''' _lowercase = KandinskyVaaImgaImgPipeline _lowercase = ['image_embeds', 'negative_image_embeds', 'image'] _lowercase = [ 'image_embeds', 'negative_image_embeds', 'image', ] _lowercase = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _lowercase = False @property def __lowerCamelCase ( self ): return 32 @property def __lowerCamelCase ( self ): return 32 @property def __lowerCamelCase ( self ): return self.time_input_dim @property def __lowerCamelCase ( self ): return self.time_input_dim * 4 @property def __lowerCamelCase ( self ): return 100 @property def __lowerCamelCase ( self ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict ={ 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } SCREAMING_SNAKE_CASE_ : str =UNetaDConditionModel(**__UpperCAmelCase ) return model @property def __lowerCamelCase ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCamelCase ( self ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str =VQModel(**self.dummy_movq_kwargs ) return model def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : int =self.dummy_unet SCREAMING_SNAKE_CASE_ : int =self.dummy_movq SCREAMING_SNAKE_CASE_ : Tuple ={ 'num_train_timesteps': 1_000, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } SCREAMING_SNAKE_CASE_ : int =DDIMScheduler(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] ={ 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): SCREAMING_SNAKE_CASE_ : str =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __UpperCAmelCase ) # create init_image SCREAMING_SNAKE_CASE_ : Optional[Any] =floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE_ : Optional[int] =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert('RGB' ).resize((256, 256) ) if str(__UpperCAmelCase ).startswith('mps' ): SCREAMING_SNAKE_CASE_ : Dict =torch.manual_seed(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Optional[int] =torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] ={ 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : str ='cpu' SCREAMING_SNAKE_CASE_ : Tuple =self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Optional[Any] =self.pipeline_class(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict =pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] =pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_ : str =output.images SCREAMING_SNAKE_CASE_ : List[Any] =pipe( **self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0] SCREAMING_SNAKE_CASE_ : Tuple =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : List[str] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ : Tuple =np.array( [0.6_199_778, 0.63_984_406, 0.46_145_785, 0.62_944_984, 0.5_622_215, 0.47_306_132, 0.47_441_456, 0.4_607_606, 0.48_719_263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : List[str] =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) SCREAMING_SNAKE_CASE_ : Dict =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) SCREAMING_SNAKE_CASE_ : Optional[Any] ='A red cartoon frog, 4k' SCREAMING_SNAKE_CASE_ : List[Any] =KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] =KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ : int =pipeline.to(__UpperCAmelCase ) pipeline.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : int =torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] =pipe_prior( __UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() SCREAMING_SNAKE_CASE_ : Optional[int] =pipeline( image=__UpperCAmelCase , image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) SCREAMING_SNAKE_CASE_ : List[Any] =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
220
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = 'Hello, World!' __SCREAMING_SNAKE_CASE = 'en_XX' def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : str ,lowerCAmelCase_ : str ,lowerCAmelCase_ : bool ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] =Path('data_bin' ) SCREAMING_SNAKE_CASE_ : Any =FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(lowerCAmelCase_ ).parent ) ,checkpoint_file=Path(lowerCAmelCase_ ).name ,_name='xmod_base' ,arch='xmod_base' ,task='multilingual_masked_lm' ,data_name_or_path=str(lowerCAmelCase_ ) ,bpe='sentencepiece' ,sentencepiece_model=str(Path(lowerCAmelCase_ ).parent / 'sentencepiece.bpe.model' ) ,src_dict=str(data_dir / 'dict.txt' ) ,) xmod.eval() # disable dropout print(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] =xmod.model.encoder.sentence_encoder SCREAMING_SNAKE_CASE_ : Union[str, Any] =XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings ,hidden_size=xmod.cfg.model.encoder_embed_dim ,num_hidden_layers=xmod.cfg.model.encoder_layers ,num_attention_heads=xmod.cfg.model.encoder_attention_heads ,intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1e-5 ,pre_norm=xmod.cfg.model.encoder_normalize_before ,adapter_reduction_factor=getattr(xmod.cfg.model ,'bottleneck' ,2 ) ,adapter_layer_norm=xmod.cfg.model.adapter_layer_norm ,adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm ,ln_before_adapter=xmod.cfg.model.ln_before_adapter ,languages=xmod.cfg.model.languages ,) if classification_head: SCREAMING_SNAKE_CASE_ : Any =xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' ,lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple =XmodForSequenceClassification(lowerCAmelCase_ ) if classification_head else XmodForMaskedLM(lowerCAmelCase_ ) model.eval() # Now let's copy all the weights. # Embeddings SCREAMING_SNAKE_CASE_ : Any =xmod_sent_encoder.embed_tokens.weight SCREAMING_SNAKE_CASE_ : Dict =xmod_sent_encoder.embed_positions.weight SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. SCREAMING_SNAKE_CASE_ : Dict =xmod_sent_encoder.layernorm_embedding.weight SCREAMING_SNAKE_CASE_ : Tuple =xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer SCREAMING_SNAKE_CASE_ : Dict =model.roberta.encoder.layer[i] SCREAMING_SNAKE_CASE_ : List[Any] =xmod_sent_encoder.layers[i] # self attention SCREAMING_SNAKE_CASE_ : int =layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) SCREAMING_SNAKE_CASE_ : Tuple =xmod_layer.self_attn.q_proj.weight SCREAMING_SNAKE_CASE_ : int =xmod_layer.self_attn.q_proj.bias SCREAMING_SNAKE_CASE_ : Any =xmod_layer.self_attn.k_proj.weight SCREAMING_SNAKE_CASE_ : Optional[int] =xmod_layer.self_attn.k_proj.bias SCREAMING_SNAKE_CASE_ : Union[str, Any] =xmod_layer.self_attn.v_proj.weight SCREAMING_SNAKE_CASE_ : int =xmod_layer.self_attn.v_proj.bias # self-attention output SCREAMING_SNAKE_CASE_ : Dict =layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) SCREAMING_SNAKE_CASE_ : Optional[Any] =xmod_layer.self_attn.out_proj.weight SCREAMING_SNAKE_CASE_ : Tuple =xmod_layer.self_attn.out_proj.bias SCREAMING_SNAKE_CASE_ : Any =xmod_layer.self_attn_layer_norm.weight SCREAMING_SNAKE_CASE_ : Optional[Any] =xmod_layer.self_attn_layer_norm.bias # intermediate SCREAMING_SNAKE_CASE_ : Optional[int] =layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) SCREAMING_SNAKE_CASE_ : int =xmod_layer.fca.weight SCREAMING_SNAKE_CASE_ : List[Any] =xmod_layer.fca.bias # output SCREAMING_SNAKE_CASE_ : Union[str, Any] =layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) SCREAMING_SNAKE_CASE_ : Any =xmod_layer.fca.weight SCREAMING_SNAKE_CASE_ : Dict =xmod_layer.fca.bias SCREAMING_SNAKE_CASE_ : str =xmod_layer.final_layer_norm.weight SCREAMING_SNAKE_CASE_ : List[str] =xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: SCREAMING_SNAKE_CASE_ : Dict =xmod_layer.adapter_layer_norm.weight SCREAMING_SNAKE_CASE_ : Union[str, Any] =xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): SCREAMING_SNAKE_CASE_ : Union[str, Any] =bert_output.adapter_modules[lang_code] SCREAMING_SNAKE_CASE_ : Tuple =xmod_layer.adapter_modules[lang_code] SCREAMING_SNAKE_CASE_ : int =from_adapter.fca.weight SCREAMING_SNAKE_CASE_ : Union[str, Any] =from_adapter.fca.bias SCREAMING_SNAKE_CASE_ : Optional[Any] =from_adapter.fca.weight SCREAMING_SNAKE_CASE_ : int =from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: SCREAMING_SNAKE_CASE_ : str =xmod_sent_encoder.layer_norm.weight SCREAMING_SNAKE_CASE_ : Optional[int] =xmod_sent_encoder.layer_norm.bias if classification_head: SCREAMING_SNAKE_CASE_ : List[Any] =xmod.model.classification_heads['mnli'].dense.weight SCREAMING_SNAKE_CASE_ : Optional[Any] =xmod.model.classification_heads['mnli'].dense.bias SCREAMING_SNAKE_CASE_ : Dict =xmod.model.classification_heads['mnli'].out_proj.weight SCREAMING_SNAKE_CASE_ : Optional[int] =xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head SCREAMING_SNAKE_CASE_ : Optional[int] =xmod.model.encoder.lm_head.dense.weight SCREAMING_SNAKE_CASE_ : Tuple =xmod.model.encoder.lm_head.dense.bias SCREAMING_SNAKE_CASE_ : Dict =xmod.model.encoder.lm_head.layer_norm.weight SCREAMING_SNAKE_CASE_ : Tuple =xmod.model.encoder.lm_head.layer_norm.bias SCREAMING_SNAKE_CASE_ : List[str] =xmod.model.encoder.lm_head.weight SCREAMING_SNAKE_CASE_ : Tuple =xmod.model.encoder.lm_head.bias # Let's check that we get the same results. SCREAMING_SNAKE_CASE_ : Optional[Any] =xmod.encode(lowerCAmelCase_ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] =model(lowerCAmelCase_ )[0] if classification_head: SCREAMING_SNAKE_CASE_ : Union[str, Any] =xmod.model.classification_heads['mnli'](xmod.extract_features(lowerCAmelCase_ ) ) else: SCREAMING_SNAKE_CASE_ : List[str] =xmod.model(lowerCAmelCase_ ,lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape ,their_output.shape ) SCREAMING_SNAKE_CASE_ : str =torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 SCREAMING_SNAKE_CASE_ : str =torch.allclose(lowerCAmelCase_ ,lowerCAmelCase_ ,atol=1e-3 ) print('Do both models output the same tensors?' ,'🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(lowerCAmelCase_ ).mkdir(parents=lowerCAmelCase_ ,exist_ok=lowerCAmelCase_ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
220
1
'''simple docstring''' def lowerCamelCase_ ( lowerCAmelCase: Optional[int] = 1_00 )-> List[Any]: _snake_case : Tuple = 0 _snake_case : Any = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
701
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
0
def UpperCamelCase ( _UpperCAmelCase : int ) -> list[int]: '''simple docstring''' if length <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(_UpperCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
461
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase_ : Tuple = logging.get_logger(__name__) class __lowercase ( __snake_case ): _A = ["pixel_values"] def __init__(self : List[str] , snake_case : bool = True , snake_case : Optional[Dict[str, int]] = None , snake_case : PILImageResampling = PILImageResampling.BILINEAR , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : bool = True , snake_case : Union[int, float] = 1 / 255 , snake_case : bool = True , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[float, List[float]]] = None , **snake_case : List[Any] , ) -> None: super().__init__(**snake_case ) _lowercase : List[str] = size if size is not None else {"shortest_edge": 256} _lowercase : Union[str, Any] = get_size_dict(snake_case , default_to_square=snake_case ) _lowercase : List[str] = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowercase : Dict = get_size_dict(snake_case , param_name="crop_size" ) _lowercase : List[Any] = do_resize _lowercase : Optional[Any] = size _lowercase : Tuple = resample _lowercase : Tuple = do_center_crop _lowercase : Any = crop_size _lowercase : str = do_rescale _lowercase : int = rescale_factor _lowercase : List[Any] = do_normalize _lowercase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _a(self : Tuple , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : PILImageResampling = PILImageResampling.BICUBIC , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : int , ) -> np.ndarray: _lowercase : Union[str, Any] = get_size_dict(snake_case , default_to_square=snake_case ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _lowercase : int = get_resize_output_image_size(snake_case , size=size["shortest_edge"] , default_to_square=snake_case ) return resize(snake_case , size=snake_case , resample=snake_case , data_format=snake_case , **snake_case ) def _a(self : str , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Union[str, Any] , ) -> np.ndarray: _lowercase : Union[str, Any] = get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(snake_case , size=(size["height"], size["width"]) , data_format=snake_case , **snake_case ) def _a(self : Union[str, Any] , snake_case : np.ndarray , snake_case : float , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : List[Any] ) -> np.ndarray: return rescale(snake_case , scale=snake_case , data_format=snake_case , **snake_case ) def _a(self : int , snake_case : np.ndarray , snake_case : Union[float, List[float]] , snake_case : Union[float, List[float]] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Tuple , ) -> np.ndarray: return normalize(snake_case , mean=snake_case , std=snake_case , data_format=snake_case , **snake_case ) def _a(self : Optional[int] , snake_case : ImageInput , snake_case : Optional[bool] = None , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = None , snake_case : bool = None , snake_case : Dict[str, int] = None , snake_case : Optional[bool] = None , snake_case : Optional[float] = None , snake_case : Optional[bool] = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[str, TensorType]] = None , snake_case : Union[str, ChannelDimension] = ChannelDimension.FIRST , **snake_case : Tuple , ) -> Union[str, Any]: _lowercase : Any = do_resize if do_resize is not None else self.do_resize _lowercase : List[str] = size if size is not None else self.size _lowercase : Optional[int] = get_size_dict(snake_case , default_to_square=snake_case ) _lowercase : Tuple = resample if resample is not None else self.resample _lowercase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowercase : int = crop_size if crop_size is not None else self.crop_size _lowercase : Dict = get_size_dict(snake_case , param_name="crop_size" ) _lowercase : Dict = do_rescale if do_rescale is not None else self.do_rescale _lowercase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Dict = image_mean if image_mean is not None else self.image_mean _lowercase : Optional[Any] = image_std if image_std is not None else self.image_std _lowercase : int = make_list_of_images(snake_case ) if not valid_images(snake_case ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _lowercase : Tuple = [to_numpy_array(snake_case ) for image in images] if do_resize: _lowercase : List[str] = [self.resize(image=snake_case , size=snake_case , resample=snake_case ) for image in images] if do_center_crop: _lowercase : List[str] = [self.center_crop(image=snake_case , size=snake_case ) for image in images] if do_rescale: _lowercase : Any = [self.rescale(image=snake_case , scale=snake_case ) for image in images] if do_normalize: _lowercase : Optional[Any] = [self.normalize(image=snake_case , mean=snake_case , std=snake_case ) for image in images] _lowercase : Any = [to_channel_dimension_format(snake_case , snake_case ) for image in images] _lowercase : Optional[Any] = {"pixel_values": images} return BatchFeature(data=snake_case , tensor_type=snake_case ) def _a(self : Dict , snake_case : List[str] , snake_case : List[Tuple] = None ) -> Optional[Any]: _lowercase : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(snake_case ) != len(snake_case ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(snake_case ): _lowercase : Dict = target_sizes.numpy() _lowercase : Tuple = [] for idx in range(len(snake_case ) ): _lowercase : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=snake_case ) _lowercase : int = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(snake_case ) else: _lowercase : Optional[int] = logits.argmax(dim=1 ) _lowercase : int = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
461
1
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int = 1 , __magic_name__ : int = 1000 ) -> int: """simple docstring""" UpperCamelCase :Optional[Any] = 1 UpperCamelCase :Any = 0 for divide_by_number in range(__magic_name__ , digit + 1 ): UpperCamelCase :list[int] = [] UpperCamelCase :List[Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__magic_name__ ): UpperCamelCase :int = len(__magic_name__ ) UpperCamelCase :Any = divide_by_number else: has_been_divided.append(__magic_name__ ) UpperCamelCase :List[str] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
590
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : jnp.ndarray snake_case__ : jnp.ndarray class _SCREAMING_SNAKE_CASE ( nn.Module ): snake_case__ : int snake_case__ : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) snake_case__ : jnp.dtype = jnp.floataa def _A ( self : Any ): UpperCamelCase :Union[str, Any] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCamelCase :List[str] = [] for i in range(len(self.block_out_channels ) - 1 ): UpperCamelCase :Optional[Any] = self.block_out_channels[i] UpperCamelCase :List[Any] = self.block_out_channels[i + 1] UpperCamelCase :List[Any] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__lowerCamelCase ) UpperCamelCase :List[str] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__lowerCamelCase ) UpperCamelCase :Tuple = blocks UpperCamelCase :Optional[Any] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Dict , __lowerCamelCase : Dict ): UpperCamelCase :Tuple = self.conv_in(__lowerCamelCase ) UpperCamelCase :Optional[Any] = nn.silu(__lowerCamelCase ) for block in self.blocks: UpperCamelCase :Tuple = block(__lowerCamelCase ) UpperCamelCase :List[str] = nn.silu(__lowerCamelCase ) UpperCamelCase :Dict = self.conv_out(__lowerCamelCase ) return embedding @flax_register_to_config class _SCREAMING_SNAKE_CASE ( nn.Module , _a , _a ): snake_case__ : int = 3_2 snake_case__ : int = 4 snake_case__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) snake_case__ : Union[bool, Tuple[bool]] = False snake_case__ : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) snake_case__ : int = 2 snake_case__ : Union[int, Tuple[int]] = 8 snake_case__ : Optional[Union[int, Tuple[int]]] = None snake_case__ : int = 1_2_8_0 snake_case__ : float = 0.0 snake_case__ : bool = False snake_case__ : jnp.dtype = jnp.floataa snake_case__ : bool = True snake_case__ : int = 0 snake_case__ : str = "rgb" snake_case__ : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def _A ( self : int , __lowerCamelCase : jax.random.KeyArray ): # init input tensors UpperCamelCase :int = (1, self.in_channels, self.sample_size, self.sample_size) UpperCamelCase :Union[str, Any] = jnp.zeros(__lowerCamelCase , dtype=jnp.floataa ) UpperCamelCase :int = jnp.ones((1,) , dtype=jnp.intaa ) UpperCamelCase :Tuple = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) UpperCamelCase :Tuple = (1, 3, self.sample_size * 8, self.sample_size * 8) UpperCamelCase :Tuple = jnp.zeros(__lowerCamelCase , dtype=jnp.floataa ) UpperCamelCase , UpperCamelCase :int = jax.random.split(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )["params"] def _A ( self : int ): UpperCamelCase :Dict = self.block_out_channels UpperCamelCase :Tuple = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCamelCase :List[Any] = self.num_attention_heads or self.attention_head_dim # input UpperCamelCase :Optional[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCamelCase :Tuple = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) UpperCamelCase :Tuple = FlaxTimestepEmbedding(__lowerCamelCase , dtype=self.dtype ) UpperCamelCase :List[Any] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) UpperCamelCase :Union[str, Any] = self.only_cross_attention if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase :List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase :str = (num_attention_heads,) * len(self.down_block_types ) # down UpperCamelCase :int = [] UpperCamelCase :str = [] UpperCamelCase :str = block_out_channels[0] UpperCamelCase :Optional[Any] = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCamelCase ) for i, down_block_type in enumerate(self.down_block_types ): UpperCamelCase :List[str] = output_channel UpperCamelCase :Optional[Any] = block_out_channels[i] UpperCamelCase :Tuple = i == len(__lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCamelCase :List[Any] = FlaxCrossAttnDownBlockaD( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: UpperCamelCase :List[Any] = FlaxDownBlockaD( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__lowerCamelCase ) for _ in range(self.layers_per_block ): UpperCamelCase :List[Any] = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCamelCase ) if not is_final_block: UpperCamelCase :str = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCamelCase ) UpperCamelCase :Optional[Any] = down_blocks UpperCamelCase :Optional[Any] = controlnet_down_blocks # mid UpperCamelCase :str = block_out_channels[-1] UpperCamelCase :Dict = FlaxUNetMidBlockaDCrossAttn( in_channels=__lowerCamelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) UpperCamelCase :List[str] = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : float = 1.0 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = False , ): UpperCamelCase :Dict = self.controlnet_conditioning_channel_order if channel_order == "bgr": UpperCamelCase :List[Any] = jnp.flip(__lowerCamelCase , axis=1 ) # 1. time if not isinstance(__lowerCamelCase , jnp.ndarray ): UpperCamelCase :Any = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: UpperCamelCase :Any = timesteps.astype(dtype=jnp.floataa ) UpperCamelCase :Optional[Any] = jnp.expand_dims(__lowerCamelCase , 0 ) UpperCamelCase :Optional[Any] = self.time_proj(__lowerCamelCase ) UpperCamelCase :Any = self.time_embedding(__lowerCamelCase ) # 2. pre-process UpperCamelCase :int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) UpperCamelCase :Dict = self.conv_in(__lowerCamelCase ) UpperCamelCase :Any = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) UpperCamelCase :Optional[int] = self.controlnet_cond_embedding(__lowerCamelCase ) sample += controlnet_cond # 3. down UpperCamelCase :int = (sample,) for down_block in self.down_blocks: if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase , UpperCamelCase :Optional[Any] = down_block(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , deterministic=not train ) else: UpperCamelCase , UpperCamelCase :Union[str, Any] = down_block(__lowerCamelCase , __lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid UpperCamelCase :List[str] = self.mid_block(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , deterministic=not train ) # 5. contronet blocks UpperCamelCase :str = () for down_block_res_sample, controlnet_block in zip(__lowerCamelCase , self.controlnet_down_blocks ): UpperCamelCase :Any = controlnet_block(__lowerCamelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) UpperCamelCase :Optional[Any] = controlnet_down_block_res_samples UpperCamelCase :str = self.controlnet_mid_block(__lowerCamelCase ) # 6. scaling UpperCamelCase :str = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__lowerCamelCase , mid_block_res_sample=__lowerCamelCase )
590
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : List[str] ="vit_msn" def __init__( self : List[str] , lowerCAmelCase : Optional[Any]=7_68 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : int=30_72 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : int=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Any=1e-06 , lowerCAmelCase : List[Any]=2_24 , lowerCAmelCase : List[str]=16 , lowerCAmelCase : Optional[Any]=3 , lowerCAmelCase : Optional[Any]=True , **lowerCAmelCase : int , ) -> Optional[int]: """simple docstring""" super().__init__(**lowerCAmelCase ) __lowerCAmelCase : Optional[int] = hidden_size __lowerCAmelCase : Optional[Any] = num_hidden_layers __lowerCAmelCase : Optional[int] = num_attention_heads __lowerCAmelCase : Optional[Any] = intermediate_size __lowerCAmelCase : Dict = hidden_act __lowerCAmelCase : Union[str, Any] = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : str = initializer_range __lowerCAmelCase : Any = layer_norm_eps __lowerCAmelCase : Optional[int] = image_size __lowerCAmelCase : Optional[Any] = patch_size __lowerCAmelCase : Optional[Any] = num_channels __lowerCAmelCase : Dict = qkv_bias
651
from typing import TYPE_CHECKING from ...utils import _LazyModule __UpperCAmelCase = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
651
1
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase =logging.get_logger(__name__) class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] def __init__( self , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = 1 / 2_5_5 , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = IMAGENET_DEFAULT_MEAN , __SCREAMING_SNAKE_CASE = IMAGENET_DEFAULT_STD , **__SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = size if size is not None else {'''shortest_edge''': 2_2_4} UpperCamelCase__ : Tuple = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} UpperCamelCase__ : List[str] = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) UpperCamelCase__ : Any = do_resize UpperCamelCase__ : List[Any] = size UpperCamelCase__ : List[str] = resample UpperCamelCase__ : str = do_center_crop UpperCamelCase__ : Dict = crop_size UpperCamelCase__ : Dict = do_rescale UpperCamelCase__ : Dict = rescale_factor UpperCamelCase__ : Union[str, Any] = do_normalize UpperCamelCase__ : str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCamelCase__ : Optional[int] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" UpperCamelCase__ : Optional[Any] = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: UpperCamelCase__ : str = int((2_5_6 / 2_2_4) * size['''shortest_edge'''] ) UpperCamelCase__ : Any = get_resize_output_image_size(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( __SCREAMING_SNAKE_CASE , size=(size_dict['''height'''], size_dict['''width''']) , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" UpperCamelCase__ : List[str] = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(__SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE , ) -> BatchFeature: """simple docstring""" UpperCamelCase__ : int = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ : Any = resample if resample is not None else self.resample UpperCamelCase__ : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ : int = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ : Tuple = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ : Dict = image_std if image_std is not None else self.image_std UpperCamelCase__ : List[str] = size if size is not None else self.size UpperCamelCase__ : int = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ : Tuple = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) UpperCamelCase__ : Any = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCamelCase__ : int = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: UpperCamelCase__ : Union[str, Any] = [self.resize(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: UpperCamelCase__ : Any = [self.center_crop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: UpperCamelCase__ : Union[str, Any] = [self.rescale(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: UpperCamelCase__ : int = [self.normalize(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase__ : str = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase__ : List[Any] = {'''pixel_values''': images} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
462
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowerCamelCase =logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(UpperCamelCase__ ): return ext raise Exception( f'''Unable to determine file format from file extension {path}. ''' f'''Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}''' ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): UpperCamelCase__ : Tuple = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) UpperCamelCase__ : Any = try_infer_format_from_ext(args.input ) if args.format == '''infer''' else args.format UpperCamelCase__ : Tuple = PipelineDataFormat.from_str( format=UpperCamelCase__ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(UpperCamelCase__ , UpperCamelCase__ ) class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = nlp UpperCamelCase__ : Dict = reader @staticmethod def __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase__ : Optional[Any] = parser.add_parser('''run''' , help='''Run a pipeline through the CLI''' ) run_parser.add_argument('''--task''' , choices=get_supported_tasks() , help='''Task to run''' ) run_parser.add_argument('''--input''' , type=__SCREAMING_SNAKE_CASE , help='''Path to the file to use for inference''' ) run_parser.add_argument('''--output''' , type=__SCREAMING_SNAKE_CASE , help='''Path to the file that will be used post to write results.''' ) run_parser.add_argument('''--model''' , type=__SCREAMING_SNAKE_CASE , help='''Name or path to the model to instantiate.''' ) run_parser.add_argument('''--config''' , type=__SCREAMING_SNAKE_CASE , help='''Name or path to the model\'s config to instantiate.''' ) run_parser.add_argument( '''--tokenizer''' , type=__SCREAMING_SNAKE_CASE , help='''Name of the tokenizer to use. (default: same as the model name)''' ) run_parser.add_argument( '''--column''' , type=__SCREAMING_SNAKE_CASE , help='''Name of the column to use as input. (For multi columns input as QA use column1,columns2)''' , ) run_parser.add_argument( '''--format''' , type=__SCREAMING_SNAKE_CASE , default='''infer''' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='''Input format to read from''' , ) run_parser.add_argument( '''--device''' , type=__SCREAMING_SNAKE_CASE , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) run_parser.add_argument('''--overwrite''' , action='''store_true''' , help='''Allow overwriting the output file.''' ) run_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = self._nlp, [] for entry in self._reader: UpperCamelCase__ : List[str] = nlp(**__SCREAMING_SNAKE_CASE ) if self._reader.is_multi_columns else nlp(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): outputs.append(__SCREAMING_SNAKE_CASE ) else: outputs += output # Saving data if self._nlp.binary_output: UpperCamelCase__ : Union[str, Any] = self._reader.save_binary(__SCREAMING_SNAKE_CASE ) logger.warning(F'''Current pipeline requires output to be in binary format, saving at {binary_path}''' ) else: self._reader.save(__SCREAMING_SNAKE_CASE )
462
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : List[str] =logging.get_logger(__name__) a__ : List[Any] ={ '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] ="unispeech" def __init__( self : Tuple , __A : int=3_2 , __A : Optional[Any]=7_6_8 , __A : int=1_2 , __A : Tuple=1_2 , __A : List[str]=3_0_7_2 , __A : int="gelu" , __A : Dict=0.1 , __A : Any=0.1 , __A : Any=0.1 , __A : Tuple=0.0 , __A : Optional[int]=0.0 , __A : Tuple=0.1 , __A : Union[str, Any]=0.1 , __A : Any=0.02 , __A : Any=1e-5 , __A : str="group" , __A : Optional[int]="gelu" , __A : int=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __A : str=(5, 2, 2, 2, 2, 2, 2) , __A : Any=(1_0, 3, 3, 3, 3, 2, 2) , __A : Any=False , __A : List[Any]=1_2_8 , __A : Dict=1_6 , __A : Tuple=False , __A : List[str]=True , __A : Union[str, Any]=0.05 , __A : Union[str, Any]=1_0 , __A : Union[str, Any]=2 , __A : List[Any]=0.0 , __A : List[Any]=1_0 , __A : int=0 , __A : Dict=3_2_0 , __A : List[str]=2 , __A : Any=0.1 , __A : Tuple=1_0_0 , __A : int=2_5_6 , __A : Any=2_5_6 , __A : int=0.1 , __A : Any="mean" , __A : Tuple=False , __A : Optional[int]=False , __A : Any=2_5_6 , __A : str=8_0 , __A : List[Any]=0 , __A : List[Any]=1 , __A : Dict=2 , __A : Dict=0.5 , **__A : Optional[int] , ): super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) __UpperCamelCase = hidden_size __UpperCamelCase = feat_extract_norm __UpperCamelCase = feat_extract_activation __UpperCamelCase = list(__A ) __UpperCamelCase = list(__A ) __UpperCamelCase = list(__A ) __UpperCamelCase = conv_bias __UpperCamelCase = num_conv_pos_embeddings __UpperCamelCase = num_conv_pos_embedding_groups __UpperCamelCase = len(self.conv_dim ) __UpperCamelCase = num_hidden_layers __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = feat_proj_dropout __UpperCamelCase = final_dropout __UpperCamelCase = layerdrop __UpperCamelCase = layer_norm_eps __UpperCamelCase = initializer_range __UpperCamelCase = num_ctc_classes __UpperCamelCase = vocab_size __UpperCamelCase = do_stable_layer_norm __UpperCamelCase = use_weighted_layer_sum __UpperCamelCase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase = apply_spec_augment __UpperCamelCase = mask_time_prob __UpperCamelCase = mask_time_length __UpperCamelCase = mask_time_min_masks __UpperCamelCase = mask_feature_prob __UpperCamelCase = mask_feature_length __UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __UpperCamelCase = num_codevectors_per_group __UpperCamelCase = num_codevector_groups __UpperCamelCase = contrastive_logits_temperature __UpperCamelCase = feat_quantizer_dropout __UpperCamelCase = num_negatives __UpperCamelCase = codevector_dim __UpperCamelCase = proj_codevector_dim __UpperCamelCase = diversity_loss_weight # ctc loss __UpperCamelCase = ctc_loss_reduction __UpperCamelCase = ctc_zero_infinity # pretraining loss __UpperCamelCase = replace_prob @property def _lowerCamelCase ( self : str ): return functools.reduce(operator.mul , self.conv_stride , 1 )
399
'''simple docstring''' def lowercase__ ( __lowercase : int , __lowercase : Tuple , __lowercase : Tuple ) -> Any: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__lowercase , n - 1 , __lowercase ) * a) % mod else: __UpperCamelCase = binary_exponentiation(__lowercase , n / 2 , __lowercase ) return (b * b) % mod # a prime number a__ : List[str] =701 a__ : Union[str, Any] =1_000_000_000 a__ : Union[str, Any] =10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
399
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase : Any = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = ["""PerceiverFeatureExtractor"""] lowerCAmelCase : List[str] = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
715
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCAmelCase : Any = 1.054571817E-34 # unit of ℏ : J * s lowerCAmelCase : List[str] = 3E8 # unit of c : m * s^-1 def _A ( A ,A ,A ) -> dict[str, float]: if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: lowercase : Dict = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_4_0 * (distance) ** 4 ) return {"force": force} elif area == 0: lowercase : Optional[int] = (2_4_0 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowercase : List[str] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
425
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=13 ,_lowerCamelCase=7 ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=99 ,_lowerCamelCase=[1, 1, 2] ,_lowerCamelCase=1 ,_lowerCamelCase=32 ,_lowerCamelCase=4 ,_lowerCamelCase=8 ,_lowerCamelCase=37 ,_lowerCamelCase="gelu_new" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.0 ,_lowerCamelCase=512 ,_lowerCamelCase=3 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=3 ,_lowerCamelCase=4 ,_lowerCamelCase=None ,_lowerCamelCase=False ,) -> int: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = block_sizes __lowercase = num_decoder_layers __lowercase = d_model __lowercase = n_head __lowercase = d_head __lowercase = d_inner __lowercase = hidden_act __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = 2 __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = initializer_std # Used in the tests to check the size of the first attention layer __lowercase = n_head # Used in the tests to check the size of the first hidden state __lowercase = self.d_model # Used in the tests to check the number of output hidden states/attentions __lowercase = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __lowercase = self.num_hidden_layers + 2 def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = FunnelConfig( vocab_size=self.vocab_size ,block_sizes=self.block_sizes ,num_decoder_layers=self.num_decoder_layers ,d_model=self.d_model ,n_head=self.n_head ,d_head=self.d_head ,d_inner=self.d_inner ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,activation_dropout=self.activation_dropout ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_std=self.initializer_std ,) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> int: '''simple docstring''' __lowercase = TFFunnelModel(config=_lowerCamelCase ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(_lowerCamelCase ) __lowercase = [input_ids, input_mask] __lowercase = model(_lowerCamelCase ) __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) __lowercase = False __lowercase = TFFunnelModel(config=_lowerCamelCase ) __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) __lowercase = False __lowercase = TFFunnelModel(config=_lowerCamelCase ) __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> Dict: '''simple docstring''' __lowercase = TFFunnelBaseModel(config=_lowerCamelCase ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(_lowerCamelCase ) __lowercase = [input_ids, input_mask] __lowercase = model(_lowerCamelCase ) __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) __lowercase = False __lowercase = TFFunnelBaseModel(config=_lowerCamelCase ) __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 3, self.d_model) ) __lowercase = False __lowercase = TFFunnelBaseModel(config=_lowerCamelCase ) __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> Optional[Any]: '''simple docstring''' __lowercase = TFFunnelForPreTraining(config=_lowerCamelCase ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> Dict: '''simple docstring''' __lowercase = TFFunnelForMaskedLM(config=_lowerCamelCase ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> Tuple: '''simple docstring''' __lowercase = self.num_labels __lowercase = TFFunnelForSequenceClassification(config=_lowerCamelCase ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> Tuple: '''simple docstring''' __lowercase = self.num_choices __lowercase = TFFunnelForMultipleChoice(config=_lowerCamelCase ) __lowercase = tf.tile(tf.expand_dims(_lowerCamelCase ,1 ) ,(1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_lowerCamelCase ,1 ) ,(1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_lowerCamelCase ,1 ) ,(1, self.num_choices, 1) ) __lowercase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> str: '''simple docstring''' __lowercase = self.num_labels __lowercase = TFFunnelForTokenClassification(config=_lowerCamelCase ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,) -> Dict: '''simple docstring''' __lowercase = TFFunnelForQuestionAnswering(config=_lowerCamelCase ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Optional[int] = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) a : Optional[Any] = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) a : int = False a : Union[str, Any] = False def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = TFFunnelModelTester(self ) __lowercase = ConfigTester(self ,config_class=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) @require_tf class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : str = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) a : Tuple = False a : Union[str, Any] = False def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = TFFunnelModelTester(self ,base=_lowerCamelCase ) __lowercase = ConfigTester(self ,config_class=_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCamelCase )
502
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : List[Any] = ["image_processor", "tokenizer"] a : Optional[int] = "ChineseCLIPImageProcessor" a : Dict = ("BertTokenizer", "BertTokenizerFast") def __init__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,**_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,_lowerCamelCase ,) __lowercase = kwargs.pop('''feature_extractor''' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_lowerCamelCase ,_lowerCamelCase ) __lowercase = self.image_processor def __call__(self ,_lowerCamelCase=None ,_lowerCamelCase=None ,_lowerCamelCase=None ,**_lowerCamelCase ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __lowercase = self.tokenizer(_lowerCamelCase ,return_tensors=_lowerCamelCase ,**_lowerCamelCase ) if images is not None: __lowercase = self.image_processor(_lowerCamelCase ,return_tensors=_lowerCamelCase ,**_lowerCamelCase ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCamelCase ) ,tensor_type=_lowerCamelCase ) def _UpperCAmelCase (self ,*_lowerCamelCase ,**_lowerCamelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_lowerCamelCase ,**_lowerCamelCase ) @property def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _UpperCAmelCase (self ) -> int: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_lowerCamelCase ,) return self.image_processor_class
502
1
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple = field(default=lowerCamelCase__ , metadata={"help": "Whether to use SortishSampler or not."} ) SCREAMING_SNAKE_CASE_: Tuple = field( default=lowerCamelCase__ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) SCREAMING_SNAKE_CASE_: List[str] = field( default=lowerCamelCase__ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) SCREAMING_SNAKE_CASE_: List[str] = field( default=lowerCamelCase__ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) SCREAMING_SNAKE_CASE_: List[Any] = field( default=lowerCamelCase__ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def __lowerCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = super().to_dict() for k, v in d.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase = v.to_dict() return d
702
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE: str ): """simple docstring""" _lowerCAmelCase = [int(SCREAMING_SNAKE_CASE ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(SCREAMING_SNAKE_CASE ) == 4 and all(0 <= int(SCREAMING_SNAKE_CASE ) <= 254 for octet in octets ) if __name__ == "__main__": _snake_case = input().strip() _snake_case = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(f'{ip} is a {valid_or_invalid} IP v4 address.')
491
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A = { '''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NezhaForNextSentencePrediction''', '''NezhaForMaskedLM''', '''NezhaForPreTraining''', '''NezhaForMultipleChoice''', '''NezhaForQuestionAnswering''', '''NezhaForSequenceClassification''', '''NezhaForTokenClassification''', '''NezhaModel''', '''NezhaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
431
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
413
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool _A = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class A ( __UpperCAmelCase ): __snake_case = 'facebook/nllb-200-distilled-600M' __snake_case = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __snake_case = 'translator' __snake_case = AutoTokenizer __snake_case = AutoModelForSeqaSeqLM __snake_case = LANGUAGE_CODES __snake_case = ['text', 'text', 'text'] __snake_case = ['text'] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(f"{src_lang} is not a supported language." ) if tgt_lang not in self.lang_to_code: raise ValueError(f"{tgt_lang} is not a supported language." ) lowerCAmelCase_ = self.lang_to_code[src_lang] lowerCAmelCase_ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCamelCase__, return_tensors='''pt''', src_lang=UpperCamelCase__, tgt_lang=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return self.model.generate(**UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return self.post_processor.decode(outputs[0].tolist(), skip_special_tokens=UpperCamelCase__ )
325
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A ( __UpperCAmelCase ): def __init__( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" super().__init__() self.register_modules(vqvae=UpperCamelCase__, unet=UpperCamelCase__, scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self, UpperCamelCase__ = 1, UpperCamelCase__ = None, UpperCamelCase__ = 0.0, UpperCamelCase__ = 50, UpperCamelCase__ = "pil", UpperCamelCase__ = True, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=UpperCamelCase__, ) lowerCAmelCase_ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase_ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(UpperCamelCase__ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature lowerCAmelCase_ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase_ = {} if accepts_eta: lowerCAmelCase_ = eta for t in self.progress_bar(self.scheduler.timesteps ): lowerCAmelCase_ = self.scheduler.scale_model_input(UpperCamelCase__, UpperCamelCase__ ) # predict the noise residual lowerCAmelCase_ = self.unet(UpperCamelCase__, UpperCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase_ = self.scheduler.step(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, **UpperCamelCase__ ).prev_sample # decode the image latents with the VAE lowerCAmelCase_ = self.vqvae.decode(UpperCamelCase__ ).sample lowerCAmelCase_ = (image / 2 + 0.5).clamp(0, 1 ) lowerCAmelCase_ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": lowerCAmelCase_ = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
325
1
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : List[str] = LongformerTokenizer _UpperCamelCase : Any = True _UpperCamelCase : Optional[Any] = LongformerTokenizerFast _UpperCamelCase : Union[str, Any] = True def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowercase = dict(zip(snake_case , range(len(snake_case ) ) ) ) lowercase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowercase = {'unk_token': '<unk>'} lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case ) ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = 'lower newer' lowercase = 'lower newer' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase = 'lower newer' lowercase = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] lowercase = tokenizer.tokenize(snake_case ) # , add_prefix_space=True) self.assertListEqual(snake_case , snake_case ) lowercase = tokens + [tokenizer.unk_token] lowercase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=snake_case ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=snake_case ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) lowercase = tokenizer.encode('sequence builders' , add_special_tokens=snake_case ) lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=snake_case ) lowercase = tokenizer.encode( 'sequence builders' , add_special_tokens=snake_case , add_prefix_space=snake_case ) lowercase = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=snake_case , add_prefix_space=snake_case ) lowercase = tokenizer.build_inputs_with_special_tokens(snake_case ) lowercase = tokenizer.build_inputs_with_special_tokens(snake_case , snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_tokenizer() lowercase = 'Encode this sequence.' lowercase = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments lowercase = tokenizer.encode(snake_case , add_special_tokens=snake_case , add_prefix_space=snake_case ) lowercase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(snake_case , snake_case ) lowercase = tokenizer.encode(snake_case , add_special_tokens=snake_case , add_prefix_space=snake_case ) lowercase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(snake_case , snake_case ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) lowercase = tokenizer.encode(snake_case , add_special_tokens=snake_case ) lowercase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(snake_case , snake_case ) # Testing spaces after special tokens lowercase = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case )} ) # mask token has a left space lowercase = tokenizer.convert_tokens_to_ids(snake_case ) lowercase = 'Encode <mask> sequence' lowercase = 'Encode <mask>sequence' lowercase = tokenizer.encode(snake_case ) lowercase = encoded.index(snake_case ) lowercase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(snake_case , snake_case ) lowercase = tokenizer.encode(snake_case ) lowercase = encoded.index(snake_case ) lowercase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase = self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case ) lowercase = self.tokenizer_class.from_pretrained(snake_case , **snake_case ) lowercase = 'A, <mask> AllenNLP sentence.' lowercase = tokenizer_r.encode_plus(snake_case , add_special_tokens=snake_case , return_token_type_ids=snake_case ) lowercase = tokenizer_p.encode_plus(snake_case , add_special_tokens=snake_case , return_token_type_ids=snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) lowercase = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) lowercase = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( snake_case , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( snake_case , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def SCREAMING_SNAKE_CASE__ ( self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowercase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case ) lowercase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowercase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , snake_case ) self.assertEqual(post_processor_state['add_prefix_space'] , snake_case ) self.assertEqual(post_processor_state['trim_offsets'] , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` lowercase = F'''{text_of_1_token} {text_of_1_token}''' lowercase = self.rust_tokenizer_class.from_pretrained( snake_case , use_fast=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case ) lowercase = tokenizer_r(snake_case , return_offsets_mapping=snake_case , add_special_tokens=snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(snake_case ) + 1, len(snake_case ) + 1 + len(snake_case )) , ) lowercase = self.rust_tokenizer_class.from_pretrained( snake_case , use_fast=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case ) lowercase = tokenizer_r(snake_case , return_offsets_mapping=snake_case , add_special_tokens=snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(snake_case ) + 1, len(snake_case ) + 1 + len(snake_case )) , ) lowercase = self.rust_tokenizer_class.from_pretrained( snake_case , use_fast=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case ) lowercase = tokenizer_r(snake_case , return_offsets_mapping=snake_case , add_special_tokens=snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(snake_case ), len(snake_case ) + 1 + len(snake_case )) , ) lowercase = self.rust_tokenizer_class.from_pretrained( snake_case , use_fast=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case ) lowercase = tokenizer_r(snake_case , return_offsets_mapping=snake_case , add_special_tokens=snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, len(snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (len(snake_case ), len(snake_case ) + 1 + len(snake_case )) , ) lowercase = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowercase = self.rust_tokenizer_class.from_pretrained( snake_case , use_fast=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case ) lowercase = tokenizer_r(snake_case , return_offsets_mapping=snake_case , add_special_tokens=snake_case ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(snake_case ) + 1, 1 + len(snake_case ) + 1 + len(snake_case )) , ) lowercase = self.rust_tokenizer_class.from_pretrained( snake_case , use_fast=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case ) lowercase = tokenizer_r(snake_case , return_offsets_mapping=snake_case , add_special_tokens=snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(snake_case ), 1 + len(snake_case ) + 1 + len(snake_case )) , ) lowercase = self.rust_tokenizer_class.from_pretrained( snake_case , use_fast=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case ) lowercase = tokenizer_r(snake_case , return_offsets_mapping=snake_case , add_special_tokens=snake_case ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(snake_case )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(snake_case ), 1 + len(snake_case ) + 1 + len(snake_case )) , )
84
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __a (UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :str = StableDiffusionInpaintPipeline _SCREAMING_SNAKE_CASE :Any = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS _SCREAMING_SNAKE_CASE :Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _SCREAMING_SNAKE_CASE :Optional[int] = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _SCREAMING_SNAKE_CASE :Dict = frozenset([]) def _a ( self ) -> Dict: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) SCREAMING_SNAKE_CASE__ : List[str] = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) SCREAMING_SNAKE_CASE__ : int = CLIPTextModel(_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE__ : int = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self , _a , _a=0 ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) SCREAMING_SNAKE_CASE__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ : Any = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((64, 64) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(_a ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(_a ) else: SCREAMING_SNAKE_CASE__ : str = torch.Generator(device=_a ).manual_seed(_a ) SCREAMING_SNAKE_CASE__ : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : List[str] = StableDiffusionInpaintPipeline(**_a ) SCREAMING_SNAKE_CASE__ : Any = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) SCREAMING_SNAKE_CASE__ : int = self.get_dummy_inputs(_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = sd_pipe(**_a ).images SCREAMING_SNAKE_CASE__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ : str = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) SCREAMING_SNAKE_CASE__ : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) SCREAMING_SNAKE_CASE__ : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = """stabilityai/stable-diffusion-2-inpainting""" SCREAMING_SNAKE_CASE__ : Any = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : int = """Face of a yellow cat, high resolution, sitting on a park bench""" SCREAMING_SNAKE_CASE__ : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) SCREAMING_SNAKE_CASE__ : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) SCREAMING_SNAKE_CASE__ : List[str] = """stabilityai/stable-diffusion-2-inpainting""" SCREAMING_SNAKE_CASE__ : List[Any] = StableDiffusionInpaintPipeline.from_pretrained( _a , torch_dtype=torch.floataa , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : Any = """Face of a yellow cat, high resolution, sitting on a park bench""" SCREAMING_SNAKE_CASE__ : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _a ( self ) -> Tuple: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE__ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) SCREAMING_SNAKE_CASE__ : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) SCREAMING_SNAKE_CASE__ : List[str] = """stabilityai/stable-diffusion-2-inpainting""" SCREAMING_SNAKE_CASE__ : Dict = PNDMScheduler.from_pretrained(_a , subfolder="""scheduler""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = StableDiffusionInpaintPipeline.from_pretrained( _a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ : Union[str, Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" SCREAMING_SNAKE_CASE__ : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
680
0
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Optional[Any] =CodeGenTokenizer a_ : Optional[int] =CodeGenTokenizerFast a_ : Optional[int] =True a_ : Union[str, Any] ={"""add_prefix_space""": True} a_ : int =False def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case : Tuple = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] _snake_case : Any = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) _snake_case : Dict = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case : Optional[int] = {'unk_token': '<unk>'} _snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase ) ) def UpperCamelCase_ ( self : Union[str, Any] , **UpperCamelCase : str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase_ ( self : int , UpperCamelCase : str ): '''simple docstring''' _snake_case : Optional[Any] = 'lower newer' _snake_case : int = 'lower newer' return input_text, output_text def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Any = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case : Any = 'lower newer' _snake_case : str = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] _snake_case : List[Any] = tokenizer.tokenize(UpperCamelCase , add_prefix_space=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) _snake_case : Any = tokens + [tokenizer.unk_token] _snake_case : Any = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return _snake_case : Any = self.get_tokenizer() _snake_case : Union[str, Any] = self.get_rust_tokenizer(add_prefix_space=UpperCamelCase ) _snake_case : Optional[int] = 'lower newer' # Testing tokenization _snake_case : Union[str, Any] = tokenizer.tokenize(UpperCamelCase , add_prefix_space=UpperCamelCase ) _snake_case : Union[str, Any] = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # Testing conversion to ids without special tokens _snake_case : Optional[Any] = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase , add_prefix_space=UpperCamelCase ) _snake_case : str = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # Testing conversion to ids with special tokens _snake_case : Tuple = self.get_rust_tokenizer(add_prefix_space=UpperCamelCase ) _snake_case : str = tokenizer.encode(UpperCamelCase , add_prefix_space=UpperCamelCase ) _snake_case : Union[str, Any] = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # Testing the unknown token _snake_case : Union[str, Any] = tokens + [rust_tokenizer.unk_token] _snake_case : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Dict=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) # Simple input _snake_case : Union[str, Any] = 'This is a simple input' _snake_case : Dict = ['This is a simple input 1', 'This is a simple input 2'] _snake_case : Optional[Any] = ('This is a simple input', 'This is a pair') _snake_case : int = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' ) # Simple input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' ) # Simple input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' , ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' ) # Pair input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' , ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input _snake_case : Optional[int] = 'This is a simple input' _snake_case : Optional[Any] = ['This is a simple input looooooooong', 'This is a simple input'] _snake_case : int = ('This is a simple input', 'This is a pair') _snake_case : List[str] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] _snake_case : Union[str, Any] = tokenizer.pad_token_id _snake_case : Any = tokenizer(UpperCamelCase , padding='max_length' , max_length=30 , return_tensors='np' ) _snake_case : Dict = tokenizer(UpperCamelCase , padding=UpperCamelCase , truncate=UpperCamelCase , return_tensors='np' ) _snake_case : Optional[Any] = tokenizer(*UpperCamelCase , padding='max_length' , max_length=60 , return_tensors='np' ) _snake_case : Optional[Any] = tokenizer(UpperCamelCase , padding=UpperCamelCase , truncate=UpperCamelCase , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : str = '$$$' _snake_case : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=UpperCamelCase , add_bos_token=UpperCamelCase ) _snake_case : Tuple = 'This is a simple input' _snake_case : Tuple = ['This is a simple input 1', 'This is a simple input 2'] _snake_case : List[Any] = tokenizer.bos_token_id _snake_case : int = tokenizer(UpperCamelCase ) _snake_case : Tuple = tokenizer(UpperCamelCase ) self.assertEqual(out_s.input_ids[0] , UpperCamelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _snake_case : Union[str, Any] = tokenizer.decode(out_s.input_ids ) _snake_case : Any = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , UpperCamelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Dict = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) _snake_case : Any = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' _snake_case : Optional[Any] = '\nif len_a > len_b: result = a\nelse: result = b' _snake_case : Optional[int] = tokenizer.encode(UpperCamelCase ) _snake_case : Optional[Any] = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] _snake_case : Optional[Any] = tokenizer.decode(UpperCamelCase , truncate_before_pattern=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass
669
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
1
import gc import threading import time import psutil import torch class _A : '''simple docstring''' def __init__( self ): '''simple docstring''' snake_case : Union[str, Any] = psutil.Process() snake_case : Union[str, Any] = False def snake_case_ ( self ): '''simple docstring''' snake_case : List[Any] = -1 while True: snake_case : List[str] = max(self.process.memory_info().rss ,self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[int] = True snake_case : Optional[Any] = threading.Thread(target=self.peak_monitor ) snake_case : int = True self.thread.start() def snake_case_ ( self ): '''simple docstring''' snake_case : str = False self.thread.join() return self.cpu_memory_peak __lowercase : int = PeakCPUMemory() def lowercase ( ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = {"""time""": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem snake_case : str = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): snake_case : Union[str, Any] = torch.cuda.memory_allocated(__A ) torch.cuda.reset_peak_memory_stats() return measures def lowercase ( __A : str ) -> List[str]: '''simple docstring''' snake_case : Any = {"""time""": time.time() - start_measures["""time"""]} gc.collect() torch.cuda.empty_cache() # CPU mem snake_case : Union[str, Any] = (psutil.Process().memory_info().rss - start_measures["""cpu"""]) / 2**20 snake_case : List[str] = (cpu_peak_tracker.stop() - start_measures["""cpu"""]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): snake_case : List[Any] = (torch.cuda.memory_allocated(__A ) - start_measures[str(__A )]) / 2**20 snake_case : Optional[int] = (torch.cuda.max_memory_allocated(__A ) - start_measures[str(__A )]) / 2**20 return measures def lowercase ( __A : Dict , __A : Optional[int] ) -> Dict: '''simple docstring''' print(f"""{description}:""" ) print(f"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(f"""- GPU {i} allocated: {measures[str(__A )]:.2f}MiB""" ) snake_case : Tuple = measures[f"""{i}-peak"""] print(f"""- GPU {i} peak: {peak:.2f}MiB""" ) print(f"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(f"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
36
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : List[Any] = tmp_path / '''cache''' lowercase__ : Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ : List[str] = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read() _check_sql_dataset(__lowerCamelCase , __lowerCamelCase ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : Dict = tmp_path / '''cache''' lowercase__ : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase__ : int = features.copy() if features else default_expected_features lowercase__ : Dict = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ : Dict = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_sql_dataset(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: with contextlib.closing(sqlitea.connect(__lowerCamelCase ) ) as con: lowercase__ : Dict = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : Optional[Any] = tmp_path / '''cache''' lowercase__ : Tuple = os.path.join(__lowerCamelCase , '''tmp.sql''' ) lowercase__ : Union[str, Any] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowerCamelCase ).read() SqlDatasetWriter(__lowerCamelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() lowercase__ : Any = iter_sql_file(__lowerCamelCase ) lowercase__ : Any = iter_sql_file(__lowerCamelCase ) for rowa, rowa in zip(__lowerCamelCase , __lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : Any = tmp_path / '''cache''' lowercase__ : int = os.path.join(__lowerCamelCase , '''tmp.sql''' ) lowercase__ : Optional[int] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowerCamelCase ).read() SqlDatasetWriter(__lowerCamelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() lowercase__ : Optional[Any] = iter_sql_file(__lowerCamelCase ) lowercase__ : List[str] = iter_sql_file(__lowerCamelCase ) for rowa, rowa in zip(__lowerCamelCase , __lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: lowercase__ : List[Any] = tmp_path / '''cache''' lowercase__ : Optional[int] = os.path.join(__lowerCamelCase , '''tmp.sql''' ) lowercase__ : Dict = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__lowerCamelCase ).read() with pytest.raises(__lowerCamelCase ): SqlDatasetWriter(__lowerCamelCase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
560
0
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
708
"""simple docstring""" from __future__ import annotations def a__ ( __lowercase , __lowercase ) -> float: _A = sorted(numsa + numsa ) _A , _A = divmod(len(__lowercase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() a_ = [float(x) for x in input("Enter the elements of first array: ").split()] a_ = [float(x) for x in input("Enter the elements of second array: ").split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
621
0
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _a : List[Any] = logging.getLogger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__=-1 ): # in NER datasets, the last column is usually reserved for NER label _lowerCAmelCase : Optional[int] = label_idx def __A ( self , a__ , a__ ): if isinstance(a__ , a__ ): _lowerCAmelCase : List[str] = mode.value _lowerCAmelCase : List[Any] = os.path.join(a__ , F"{mode}.txt" ) _lowerCAmelCase : List[Any] = 1 _lowerCAmelCase : Union[str, Any] = [] with open(a__ , encoding="""utf-8""" ) as f: _lowerCAmelCase : str = [] _lowerCAmelCase : Any = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=a__ , labels=a__ ) ) guid_index += 1 _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Dict = [] else: _lowerCAmelCase : str = line.split(""" """ ) words.append(splits[0] ) if len(a__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=a__ , labels=a__ ) ) return examples def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Union[str, Any] = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(a__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _lowerCAmelCase : List[Any] = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(a__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def __A ( self , a__ ): if path: with open(a__ , """r""" ) as f: _lowerCAmelCase : Any = f.read().splitlines() if "O" not in labels: _lowerCAmelCase : Tuple = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __A ( self , a__ ): if path: with open(a__ , """r""" ) as f: _lowerCAmelCase : str = f.read().splitlines() if "O" not in labels: _lowerCAmelCase : Any = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __A ( SCREAMING_SNAKE_CASE_ ): def __A ( self , a__ , a__ ): if isinstance(a__ , a__ ): _lowerCAmelCase : Any = mode.value _lowerCAmelCase : Union[str, Any] = os.path.join(a__ , F"{mode}.txt" ) _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : Optional[int] = [] with open(a__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(a__ ): _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : str = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(a__ ) == len(a__ ) if words: examples.append(InputExample(guid=F"{mode}-{guid_index}" , words=a__ , labels=a__ ) ) guid_index += 1 return examples def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : int = 0 for sentence in parse_incr(a__ ): _lowerCAmelCase : int = preds_list[example_id] _lowerCAmelCase : List[Any] = """""" for token in sentence: out += F"{token['form']} ({token['upos']}|{s_p.pop(0 )}) " out += "\n" writer.write(a__ ) example_id += 1 def __A ( self , a__ ): if path: with open(a__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
213
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[int] = logging.get_logger(__name__) _a : int = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = "big_bird" def __init__( self , a__=50358 , a__=768 , a__=12 , a__=12 , a__=3072 , a__="gelu_new" , a__=0.1 , a__=0.1 , a__=4096 , a__=2 , a__=0.0_2 , a__=1e-12 , a__=True , a__=0 , a__=1 , a__=2 , a__=66 , a__="block_sparse" , a__=True , a__=False , a__=64 , a__=3 , a__=None , **a__ , ): super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , sep_token_id=a__ , **a__ , ) _lowerCAmelCase : List[str] = vocab_size _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Optional[int] = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : int = attention_probs_dropout_prob _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Optional[int] = type_vocab_size _lowerCAmelCase : Optional[Any] = layer_norm_eps _lowerCAmelCase : Optional[int] = use_cache _lowerCAmelCase : List[Any] = rescale_embeddings _lowerCAmelCase : Any = attention_type _lowerCAmelCase : List[Any] = use_bias _lowerCAmelCase : Dict = block_size _lowerCAmelCase : Dict = num_random_blocks _lowerCAmelCase : str = classifier_dropout class __A ( SCREAMING_SNAKE_CASE_ ): @property def __A ( self ): if self.task == "multiple-choice": _lowerCAmelCase : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
213
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCAmelCase : Any =logging.get_logger(__name__) class _lowercase ( A__ ): '''simple docstring''' def __init__( self :Optional[Any] , *lowerCAmelCase__ :int , **lowerCAmelCase__ :Union[str, Any] ) -> None: warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
260
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Any =logging.get_logger(__name__) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) __SCREAMING_SNAKE_CASE : str = MaskFormerConfig(backbone_config=lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Optional[Any] = 847 __SCREAMING_SNAKE_CASE : Optional[int] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Dict = 150 __SCREAMING_SNAKE_CASE : Union[str, Any] = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Union[str, Any] = 171 __SCREAMING_SNAKE_CASE : Tuple = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO __SCREAMING_SNAKE_CASE : Dict = 133 __SCREAMING_SNAKE_CASE : Union[str, Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Optional[int] = 19 __SCREAMING_SNAKE_CASE : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Tuple = 65 __SCREAMING_SNAKE_CASE : Optional[Any] = '''mapillary-vistas-id2label.json''' __SCREAMING_SNAKE_CASE : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE : Any = {int(lowercase__ ): v for k, v in idalabel.items()} return config def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Any = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : int = dct.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = val def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __SCREAMING_SNAKE_CASE : List[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) __SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Dict = in_proj_weight[:dim, :] __SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias[: dim] __SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : Dict = in_proj_bias[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight[ -dim :, : ] __SCREAMING_SNAKE_CASE : Dict = in_proj_bias[-dim :] # fmt: on def _UpperCamelCase ( lowercase__ , lowercase__ ): # fmt: off __SCREAMING_SNAKE_CASE : Any = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __SCREAMING_SNAKE_CASE : List[Any] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) __SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[: hidden_size, :] __SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias[:config.hidden_size] __SCREAMING_SNAKE_CASE : Optional[int] = in_proj_weight[hidden_size : hidden_size * 2, :] __SCREAMING_SNAKE_CASE : Dict = in_proj_bias[hidden_size : hidden_size * 2] __SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[-hidden_size :, :] __SCREAMING_SNAKE_CASE : List[str] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __SCREAMING_SNAKE_CASE : Any = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) __SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[: hidden_size, :] __SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias[:config.hidden_size] __SCREAMING_SNAKE_CASE : Any = in_proj_weight[hidden_size : hidden_size * 2, :] __SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] __SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[-hidden_size :, :] __SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[-hidden_size :] # fmt: on def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = False ): __SCREAMING_SNAKE_CASE : Dict = get_maskformer_config(lowercase__ ) # load original state_dict with open(lowercase__ , '''rb''' ) as f: __SCREAMING_SNAKE_CASE : Any = pickle.load(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __SCREAMING_SNAKE_CASE : Dict = create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_swin_q_k_v(lowercase__ , config.backbone_config ) read_in_decoder_q_k_v(lowercase__ , lowercase__ ) # update to torch tensors for key, value in state_dict.items(): __SCREAMING_SNAKE_CASE : Any = torch.from_numpy(lowercase__ ) # load 🤗 model __SCREAMING_SNAKE_CASE : Union[str, Any] = MaskFormerForInstanceSegmentation(lowercase__ ) model.eval() for name, param in model.named_parameters(): print(lowercase__ , param.shape ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = model.load_state_dict(lowercase__ , strict=lowercase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowercase__ ) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results __SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() if "vistas" in model_name: __SCREAMING_SNAKE_CASE : Optional[int] = 65 elif "cityscapes" in model_name: __SCREAMING_SNAKE_CASE : str = 65535 else: __SCREAMING_SNAKE_CASE : Optional[Any] = 255 __SCREAMING_SNAKE_CASE : Dict = True if '''ade''' in model_name else False __SCREAMING_SNAKE_CASE : int = MaskFormerImageProcessor(ignore_index=lowercase__ , reduce_labels=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = image_processor(lowercase__ , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Any = model(**lowercase__ ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F'''nielsr/{model_name}''' ) image_processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase : Optional[int] =parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
260
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : str = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
653
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = 42 snake_case__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('>=', '0.0.12') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = 42 snake_case__ = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
61
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __a : Optional[int] = logging.get_logger(__name__) class UpperCAmelCase( snake_case_ ): """simple docstring""" a : Dict = ["""input_features""", """attention_mask"""] def __init__( self , lowerCamelCase=80 , lowerCamelCase=16000 , lowerCamelCase=0.0 , lowerCamelCase=10 , lowerCamelCase=25 , lowerCamelCase="hamming_window" , lowerCamelCase=32768.0 , lowerCamelCase=0.97 , lowerCamelCase=1.0 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=False , **lowerCamelCase , ) -> str: """simple docstring""" super().__init__(feature_size=lowerCamelCase , sampling_rate=lowerCamelCase , padding_value=lowerCamelCase , **lowerCamelCase ) lowercase__ : Tuple = feature_size lowercase__ : Union[str, Any] = sampling_rate lowercase__ : Any = padding_value lowercase__ : Optional[Any] = hop_length lowercase__ : Optional[int] = win_length lowercase__ : int = frame_signal_scale lowercase__ : Optional[int] = preemphasis_coeff lowercase__ : Optional[int] = mel_floor lowercase__ : Dict = normalize_means lowercase__ : Dict = normalize_vars lowercase__ : int = win_function lowercase__ : int = return_attention_mask lowercase__ : List[Any] = win_length * sampling_rate // 1000 lowercase__ : Optional[Any] = hop_length * sampling_rate // 1000 lowercase__ : Any = optimal_fft_length(self.sample_size ) lowercase__ : Optional[Any] = (self.n_fft // 2) + 1 def __a ( self , lowerCamelCase ) -> np.ndarray: """simple docstring""" if self.win_function == "hamming_window": lowercase__ : int = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCamelCase ) else: lowercase__ : str = window_function(window_length=self.sample_size , name=self.win_function ) lowercase__ : List[str] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) lowercase__ : Union[str, Any] = spectrogram( one_waveform * self.frame_signal_scale , window=lowerCamelCase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=lowerCamelCase , preemphasis=self.preemphasis_coeff , mel_filters=lowerCamelCase , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: """simple docstring""" if self.normalize_means: lowercase__ : List[str] = x[:input_length].mean(axis=0 ) lowercase__ : List[str] = np.subtract(lowerCamelCase , lowerCamelCase ) if self.normalize_vars: lowercase__ : int = x[:input_length].std(axis=0 ) lowercase__ : List[str] = np.divide(lowerCamelCase , lowerCamelCase ) if input_length < x.shape[0]: lowercase__ : Dict = padding_value # make sure array is in float32 lowercase__ : Dict = x.astype(np.floataa ) return x def __a ( self , lowerCamelCase , lowerCamelCase = None ) -> List[np.ndarray]: """simple docstring""" lowercase__ : Dict = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(lowerCamelCase , lowerCamelCase , self.padding_value ) for x, n in zip(lowerCamelCase , lowerCamelCase )] def __call__( self , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase__ : Tuple = isinstance(lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ : Tuple = is_batched_numpy or ( isinstance(lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ : str = [np.asarray(lowerCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase , np.ndarray ): lowercase__ : Union[str, Any] = np.asarray(lowerCamelCase , dtype=np.floataa ) elif isinstance(lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ : int = [raw_speech] # extract fbank features lowercase__ : int = [self._extract_mfsc_features(lowerCamelCase ) for one_waveform in raw_speech] # convert into correct format for padding lowercase__ : Dict = BatchFeature({"input_features": features} ) lowercase__ : Tuple = self.pad( lowerCamelCase , padding=lowerCamelCase , max_length=lowerCamelCase , truncation=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , **lowerCamelCase , ) # make sure list is in array format lowercase__ : Tuple = padded_inputs.get("input_features" ) if isinstance(input_features[0] , lowerCamelCase ): lowercase__ : Tuple = [np.asarray(lowerCamelCase , dtype=np.floataa ) for feature in input_features] lowercase__ : Tuple = padded_inputs.get("attention_mask" ) if attention_mask is not None: lowercase__ : Optional[Any] = [np.asarray(lowerCamelCase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: lowercase__ : Union[str, Any] = ( np.array(lowerCamelCase , dtype=np.intaa ) if self._get_padding_strategies(lowerCamelCase , max_length=lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) lowercase__ : Optional[Any] = self.normalize( padded_inputs["input_features"] , attention_mask=lowerCamelCase ) if return_tensors is not None: lowercase__ : int = padded_inputs.convert_to_tensors(lowerCamelCase ) return padded_inputs
700
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __a : int = logging.get_logger(__name__) __a : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __a : Any = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } __a : Optional[int] = {'''mobilebert-uncased''': 5_1_2} __a : Dict = {} class UpperCAmelCase( snake_case_ ): """simple docstring""" a : Optional[int] = VOCAB_FILES_NAMES a : Any = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_INIT_CONFIGURATION a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Any = MobileBertTokenizer def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase="[UNK]" , lowerCamelCase="[SEP]" , lowerCamelCase="[PAD]" , lowerCamelCase="[CLS]" , lowerCamelCase="[MASK]" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> Dict: """simple docstring""" super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , tokenize_chinese_chars=lowerCamelCase , strip_accents=lowerCamelCase , **lowerCamelCase , ) lowercase__ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ : List[str] = getattr(lowerCamelCase , normalizer_state.pop("type" ) ) lowercase__ : Dict = do_lower_case lowercase__ : Dict = strip_accents lowercase__ : List[Any] = tokenize_chinese_chars lowercase__ : Any = normalizer_class(**lowerCamelCase ) lowercase__ : Union[str, Any] = do_lower_case def __a ( self , lowerCamelCase , lowerCamelCase=None ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" lowercase__ : Optional[int] = [self.sep_token_id] lowercase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" lowercase__ : List[Any] = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase )
298
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _snake_case ( A__ ): '''simple docstring''' def __init__( self : str , snake_case : TransformeraDModel , snake_case : AutoencoderKL , snake_case : KarrasDiffusionSchedulers , snake_case : Optional[Dict[int, str]] = None , ): super().__init__() self.register_modules(transformer=snake_case , vae=snake_case , scheduler=snake_case ) # create a imagenet -> id dictionary for easier use UpperCAmelCase_ :Optional[int] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): UpperCAmelCase_ :Any = int(snake_case ) UpperCAmelCase_ :Optional[Any] = dict(sorted(self.labels.items() ) ) def snake_case_ ( self : str , snake_case : Union[str, List[str]] ): if not isinstance(snake_case , snake_case ): UpperCAmelCase_ :List[str] = list(snake_case ) for l in label: if l not in self.labels: raise ValueError( f'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Tuple , snake_case : List[int] , snake_case : float = 4.0 , snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case : int = 50 , snake_case : Optional[str] = "pil" , snake_case : bool = True , ): UpperCAmelCase_ :List[Any] = len(snake_case ) UpperCAmelCase_ :List[Any] = self.transformer.config.sample_size UpperCAmelCase_ :Dict = self.transformer.config.in_channels UpperCAmelCase_ :Tuple = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=snake_case , device=self.device , dtype=self.transformer.dtype , ) UpperCAmelCase_ :Optional[Any] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents UpperCAmelCase_ :Dict = torch.tensor(snake_case , device=self.device ).reshape(-1 ) UpperCAmelCase_ :Any = torch.tensor([1_000] * batch_size , device=self.device ) UpperCAmelCase_ :Optional[Any] = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: UpperCAmelCase_ :List[str] = latent_model_input[: len(snake_case ) // 2] UpperCAmelCase_ :Union[str, Any] = torch.cat([half, half] , dim=0 ) UpperCAmelCase_ :List[str] = self.scheduler.scale_model_input(snake_case , snake_case ) UpperCAmelCase_ :List[Any] = t if not torch.is_tensor(snake_case ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) UpperCAmelCase_ :Dict = latent_model_input.device.type == '''mps''' if isinstance(snake_case , snake_case ): UpperCAmelCase_ :Dict = torch.floataa if is_mps else torch.floataa else: UpperCAmelCase_ :int = torch.intaa if is_mps else torch.intaa UpperCAmelCase_ :List[Any] = torch.tensor([timesteps] , dtype=snake_case , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: UpperCAmelCase_ :Optional[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ :List[str] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output UpperCAmelCase_ :Tuple = self.transformer( snake_case , timestep=snake_case , class_labels=snake_case ).sample # perform guidance if guidance_scale > 1: UpperCAmelCase_ ,UpperCAmelCase_ :Dict = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] UpperCAmelCase_ ,UpperCAmelCase_ :List[Any] = torch.split(snake_case , len(snake_case ) // 2 , dim=0 ) UpperCAmelCase_ :Any = uncond_eps + guidance_scale * (cond_eps - uncond_eps) UpperCAmelCase_ :str = torch.cat([half_eps, half_eps] , dim=0 ) UpperCAmelCase_ :Any = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: UpperCAmelCase_ ,UpperCAmelCase_ :Optional[Any] = torch.split(snake_case , snake_case , dim=1 ) else: UpperCAmelCase_ :Optional[Any] = noise_pred # compute previous image: x_t -> x_t-1 UpperCAmelCase_ :Dict = self.scheduler.step(snake_case , snake_case , snake_case ).prev_sample if guidance_scale > 1: UpperCAmelCase_ ,UpperCAmelCase_ :int = latent_model_input.chunk(2 , dim=0 ) else: UpperCAmelCase_ :str = latent_model_input UpperCAmelCase_ :List[str] = 1 / self.vae.config.scaling_factor * latents UpperCAmelCase_ :Optional[int] = self.vae.decode(snake_case ).sample UpperCAmelCase_ :Any = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase_ :List[Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ :List[str] = self.numpy_to_pil(snake_case ) if not return_dict: return (samples,) return ImagePipelineOutput(images=snake_case )
608
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def a ( ): '''simple docstring''' UpperCAmelCase_ :List[str] = torch.nn.Linear(2, 4 ) UpperCAmelCase_ :Optional[int] = torch.optim.AdamW(model.parameters(), lr=1.0 ) UpperCAmelCase_ :List[str] = torch.optim.lr_scheduler.OneCycleLR(__snake_case, max_lr=0.01, steps_per_epoch=2, epochs=1 ) UpperCAmelCase_ :Union[str, Any] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) UpperCAmelCase_ :int = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def a ( __snake_case : int ): '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def a ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ :Optional[int] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(__snake_case ) class _snake_case ( A__ ): '''simple docstring''' @require_cuda def snake_case_ ( self : List[Any] ): UpperCAmelCase_ :List[Any] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(snake_case ): UpperCAmelCase_ :Dict = Accelerator(cpu=snake_case ) def snake_case_ ( self : Tuple ): UpperCAmelCase_ :Dict = Accelerator() UpperCAmelCase_ :Optional[Any] = GradientState() assert state.num_steps == 1 UpperCAmelCase_ :Dict = 4 assert state.num_steps == 4 assert state.sync_gradients is True UpperCAmelCase_ :Any = False assert state.sync_gradients is False GradientState._reset_state() def snake_case_ ( self : Tuple ): UpperCAmelCase_ :Union[str, Any] = Accelerator() UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ :List[str] = create_components() ( ( UpperCAmelCase_ ) ,( UpperCAmelCase_ ) ,( UpperCAmelCase_ ) ,( UpperCAmelCase_ ) ,( UpperCAmelCase_ ) , ) :Union[str, Any] = accelerator.prepare(snake_case , snake_case , snake_case , snake_case , snake_case ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def snake_case_ ( self : List[Any] ): UpperCAmelCase_ :Tuple = Accelerator() UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ :str = create_components() accelerator.prepare(snake_case , snake_case , snake_case , snake_case , snake_case ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def snake_case_ ( self : Dict ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*snake_case : int , **snake_case : Optional[Any] ): pass with patch('''torch.cuda.set_device''' , snake_case ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): UpperCAmelCase_ :List[str] = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def snake_case_ ( self : Union[str, Any] ): UpperCAmelCase_ :int = Accelerator() UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ :str = create_components() accelerator.prepare(snake_case , snake_case , snake_case , snake_case , snake_case ) UpperCAmelCase_ :Dict = get_signature(snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(snake_case ) # make sure random weights don't match load_random_weights(snake_case ) self.assertTrue(abs(model_signature - get_signature(snake_case ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(snake_case ) self.assertTrue(abs(model_signature - get_signature(snake_case ) ) < 1e-3 ) def snake_case_ ( self : str ): UpperCAmelCase_ :Union[str, Any] = Accelerator() UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ :Tuple = create_components() accelerator.prepare(snake_case , snake_case , snake_case , snake_case , snake_case ) UpperCAmelCase_ :Union[str, Any] = get_signature(snake_case ) # saving hook def save_config(snake_case : Tuple , snake_case : Any , snake_case : Tuple ): UpperCAmelCase_ :List[str] = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(snake_case , '''data.json''' ) , '''w''' ) as f: json.dump(snake_case , snake_case ) # loading hook def load_config(snake_case : Optional[int] , snake_case : Dict ): with open(os.path.join(snake_case , '''data.json''' ) , '''r''' ) as f: UpperCAmelCase_ :Dict = json.load(snake_case ) UpperCAmelCase_ :Any = config['''class_name'''] UpperCAmelCase_ :str = accelerator.register_save_state_pre_hook(snake_case ) UpperCAmelCase_ :Any = accelerator.register_load_state_pre_hook(snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(snake_case ) # make sure random weights don't match with hooks load_random_weights(snake_case ) self.assertTrue(abs(model_signature - get_signature(snake_case ) ) > 1e-3 ) # random class name to verify correct one is loaded UpperCAmelCase_ :Optional[Any] = '''random''' # make sure loaded weights match with hooks accelerator.load_state(snake_case ) self.assertTrue(abs(model_signature - get_signature(snake_case ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(snake_case ) # make sure random weights don't match with hooks removed load_random_weights(snake_case ) self.assertTrue(abs(model_signature - get_signature(snake_case ) ) > 1e-3 ) # random class name to verify correct one is loaded UpperCAmelCase_ :Optional[int] = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(snake_case ) self.assertTrue(abs(model_signature - get_signature(snake_case ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def snake_case_ ( self : Tuple ): UpperCAmelCase_ :str = Accelerator() UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ :Dict = create_components() UpperCAmelCase_ :int = None # This should work UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ :List[str] = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) self.assertTrue(dummy_obj is None ) def snake_case_ ( self : List[Any] ): UpperCAmelCase_ :Any = Accelerator() UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ :str = create_components() UpperCAmelCase_ :str = [1, 2, 3] # This should work UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ :int = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) self.assertEqual( getattr(snake_case , '''_is_accelerate_prepared''' , snake_case ) , snake_case , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(snake_case , '''_is_accelerate_prepared''' , snake_case ) , snake_case , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(snake_case , '''_is_accelerate_prepared''' , snake_case ) , snake_case , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(snake_case , '''_is_accelerate_prepared''' , snake_case ) , snake_case , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(snake_case , '''_is_accelerate_prepared''' , snake_case ) , snake_case , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(snake_case , '''_is_accelerate_prepared''' , snake_case ) , snake_case , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def snake_case_ ( self : Optional[Any] ): from transformers import AutoModelForCausalLM UpperCAmelCase_ :Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=snake_case , device_map={'''''': 0} , ) UpperCAmelCase_ :Optional[Any] = Accelerator() # This should work UpperCAmelCase_ :Optional[int] = accelerator.prepare(snake_case ) @slow @require_bnb def snake_case_ ( self : Union[str, Any] ): from transformers import AutoModelForCausalLM UpperCAmelCase_ :Dict = Accelerator() with init_empty_weights(): UpperCAmelCase_ :Tuple = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() UpperCAmelCase_ :Optional[Any] = infer_auto_device_map(snake_case ) UpperCAmelCase_ :List[Any] = '''cpu''' UpperCAmelCase_ :Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=snake_case , load_in_abit=snake_case , llm_inta_enable_fpaa_cpu_offload=snake_case ) # This should not work and get value error with self.assertRaises(snake_case ): UpperCAmelCase_ :Union[str, Any] = accelerator.prepare(snake_case ) @slow @require_bnb @require_multi_gpu def snake_case_ ( self : Union[str, Any] ): from transformers import AutoModelForCausalLM UpperCAmelCase_ :Optional[int] = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): UpperCAmelCase_ :List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() UpperCAmelCase_ :Optional[int] = infer_auto_device_map(snake_case ) UpperCAmelCase_ :Optional[Any] = 1 UpperCAmelCase_ :str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=snake_case , device_map=snake_case , ) UpperCAmelCase_ :Optional[Any] = Accelerator() # This should not work and get value error with self.assertRaises(snake_case ): UpperCAmelCase_ :Optional[int] = accelerator.prepare(snake_case ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def snake_case_ ( self : str ): from transformers import AutoModelForCausalLM with init_empty_weights(): UpperCAmelCase_ :Tuple = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) UpperCAmelCase_ :Union[str, Any] = infer_auto_device_map(snake_case ) UpperCAmelCase_ :List[Any] = 1 UpperCAmelCase_ :Tuple = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=snake_case , device_map=snake_case , ) UpperCAmelCase_ :Tuple = Accelerator() # This should work UpperCAmelCase_ :Dict = accelerator.prepare(snake_case ) @require_cuda def snake_case_ ( self : List[str] ): UpperCAmelCase_ :Any = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ :Tuple = torch.optim.SGD(model.parameters() , lr=0.01 ) UpperCAmelCase_ :Any = Accelerator(cpu=snake_case ) UpperCAmelCase_ :List[str] = accelerator.prepare(snake_case )
608
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _SCREAMING_SNAKE_CASE ( lowercase_ ): """simple docstring""" _a : int = '''poolformer''' def __init__( self , lowerCamelCase__=3 , lowerCamelCase__=16 , lowerCamelCase__=16 , lowerCamelCase__=3 , lowerCamelCase__=4.0 , lowerCamelCase__=[2, 2, 6, 2] , lowerCamelCase__=[64, 128, 320, 512] , lowerCamelCase__=[7, 3, 3, 3] , lowerCamelCase__=[4, 2, 2, 2] , lowerCamelCase__=[2, 1, 1, 1] , lowerCamelCase__=4 , lowerCamelCase__=0.0 , lowerCamelCase__="gelu" , lowerCamelCase__=True , lowerCamelCase__=1E-5 , lowerCamelCase__=0.02 , **lowerCamelCase__ , ) -> Optional[Any]: lowercase__ : Optional[Any] = num_channels lowercase__ : Union[str, Any] = patch_size lowercase__ : Union[str, Any] = stride lowercase__ : Optional[Any] = padding lowercase__ : Optional[Any] = pool_size lowercase__ : Tuple = hidden_sizes lowercase__ : Optional[Any] = mlp_ratio lowercase__ : List[Any] = depths lowercase__ : Union[str, Any] = patch_sizes lowercase__ : int = strides lowercase__ : Tuple = num_encoder_blocks lowercase__ : int = drop_path_rate lowercase__ : List[Any] = hidden_act lowercase__ : Any = use_layer_scale lowercase__ : Optional[int] = layer_scale_init_value lowercase__ : List[Any] = initializer_range super().__init__(**lowerCamelCase__ ) class _SCREAMING_SNAKE_CASE ( lowercase_ ): """simple docstring""" _a : Dict = version.parse('''1.11''' ) @property def UpperCAmelCase__( self ) -> str: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__( self ) -> Optional[Any]: return 2E-3
720
"""simple docstring""" from math import sqrt def _lowerCamelCase ( lowerCamelCase__ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( lowerCamelCase__ : int = 1_00_01 ): lowercase__ : List[str] = 0 lowercase__ : Optional[Any] = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase__ ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase__ ): count += 1 return number if __name__ == "__main__": print(F"{solution() = }")
128
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __a : Union[str, Any] = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def UpperCAmelCase ( lowercase ): """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase ) def UpperCAmelCase ( lowercase ): """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main __lowercase = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(lowercase , id=lowercase )
534
def UpperCAmelCase ( lowercase ): """simple docstring""" if not isinstance(lowercase , lowercase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
534
1
'''simple docstring''' from ... import PretrainedConfig UpperCamelCase_ : str = { """sijunhe/nezha-cn-base""": """https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json""", } class lowerCAmelCase ( __A ): """simple docstring""" UpperCamelCase__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP UpperCamelCase__ = '''nezha''' def __init__( self : Any ,a__ : List[str]=2_11_28 ,a__ : Dict=7_68 ,a__ : Tuple=12 ,a__ : Dict=12 ,a__ : List[str]=30_72 ,a__ : int="gelu" ,a__ : Dict=0.1 ,a__ : Union[str, Any]=0.1 ,a__ : int=5_12 ,a__ : Tuple=64 ,a__ : str=2 ,a__ : Any=0.02 ,a__ : List[Any]=1e-12 ,a__ : Union[str, Any]=0.1 ,a__ : List[str]=0 ,a__ : Optional[Any]=2 ,a__ : Tuple=3 ,a__ : Optional[Any]=True ,**a__ : Tuple ,): super().__init__(pad_token_id=a__ ,bos_token_id=a__ ,eos_token_id=a__ ,**a__ ) a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = hidden_act a__ = intermediate_size a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = max_relative_position a__ = type_vocab_size a__ = initializer_range a__ = layer_norm_eps a__ = classifier_dropout a__ = use_cache
704
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCamelCase_ : Optional[Any] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCamelCase_ : Tuple = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCamelCase_ : Optional[int] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" a__ = len([g for position, g in enumerate(_lowercase ) if g == main_target[position]] ) return (item, float(_lowercase )) def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" a__ = random.randint(0 , len(_lowercase ) - 1 ) a__ = parent_a[:random_slice] + parent_a[random_slice:] a__ = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" a__ = list(_lowercase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: a__ = random.choice(_lowercase ) return "".join(_lowercase ) def _lowerCAmelCase (_lowercase , _lowercase , _lowercase , ): """simple docstring""" a__ = [] # Generate more children proportionally to the fitness score. a__ = int(parent_a[1] * 1_00 ) + 1 a__ = 10 if child_n >= 10 else child_n for _ in range(_lowercase ): a__ = population_score[random.randint(0 , _lowercase )][0] a__ , a__ = crossover(parent_a[0] , _lowercase ) # Append new string to the population list. pop.append(mutate(_lowercase , _lowercase ) ) pop.append(mutate(_lowercase , _lowercase ) ) return pop def _lowerCAmelCase (_lowercase , _lowercase , _lowercase = True ): """simple docstring""" if N_POPULATION < N_SELECTED: a__ = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_lowercase ) # Verify that the target contains no genes besides the ones inside genes variable. a__ = sorted({c for c in target if c not in genes} ) if not_in_genes_list: a__ = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_lowercase ) # Generate random starting population. a__ = [] for _ in range(_lowercase ): population.append("".join([random.choice(_lowercase ) for i in range(len(_lowercase ) )] ) ) # Just some logs to know what the algorithms is doing. a__ , a__ = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_lowercase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. a__ = [evaluate(_lowercase , _lowercase ) for item in population] # Check if there is a matching evolution. a__ = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. a__ = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_lowercase ) # Normalize population score to be between 0 and 1. a__ = [ (item, score / len(_lowercase )) for item, score in population_score ] # This is selection for i in range(_lowercase ): population.extend(select(population_score[int(_lowercase )] , _lowercase , _lowercase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_lowercase ) > N_POPULATION: break if __name__ == "__main__": UpperCamelCase_ : Optional[Any] = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) UpperCamelCase_ : int = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\""" ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : Optional[int] = basic(target_str, genes_list) print( F"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}" )
394
0
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = DownBlockaD # noqa F405 lowercase_ = "down" def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ResnetDownsampleBlockaD # noqa F405 lowercase_ = "down" def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = AttnDownBlockaD # noqa F405 lowercase_ = "down" def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = CrossAttnDownBlockaD # noqa F405 lowercase_ = "down" def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = super().prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 32 return init_dict, inputs_dict def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = SimpleCrossAttnDownBlockaD # noqa F405 lowercase_ = "down" @property def lowerCAmelCase_ ( self : Optional[int] ): return super().get_dummy_input(include_encoder_hidden_states=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = super().prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = SkipDownBlockaD # noqa F405 lowercase_ = "down" @property def lowerCAmelCase_ ( self : Optional[Any] ): return super().get_dummy_input(include_skip_sample=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = AttnSkipDownBlockaD # noqa F405 lowercase_ = "down" @property def lowerCAmelCase_ ( self : int ): return super().get_dummy_input(include_skip_sample=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = DownEncoderBlockaD # noqa F405 lowercase_ = "down" @property def lowerCAmelCase_ ( self : List[str] ): return super().get_dummy_input(include_temb=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = { 'in_channels': 32, 'out_channels': 32, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = AttnDownEncoderBlockaD # noqa F405 lowercase_ = "down" @property def lowerCAmelCase_ ( self : Union[str, Any] ): return super().get_dummy_input(include_temb=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = { 'in_channels': 32, 'out_channels': 32, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = UNetMidBlockaD # noqa F405 lowercase_ = "mid" def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = { 'in_channels': 32, 'temb_channels': 128, } SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = UNetMidBlockaDCrossAttn # noqa F405 lowercase_ = "mid" def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = super().prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 32 return init_dict, inputs_dict def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowercase_ = "mid" @property def lowerCAmelCase_ ( self : List[Any] ): return super().get_dummy_input(include_encoder_hidden_states=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = super().prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 32 return init_dict, inputs_dict def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = UpBlockaD # noqa F405 lowercase_ = "up" @property def lowerCAmelCase_ ( self : List[Any] ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ResnetUpsampleBlockaD # noqa F405 lowercase_ = "up" @property def lowerCAmelCase_ ( self : Union[str, Any] ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = CrossAttnUpBlockaD # noqa F405 lowercase_ = "up" @property def lowerCAmelCase_ ( self : int ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = super().prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 32 return init_dict, inputs_dict def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = SimpleCrossAttnUpBlockaD # noqa F405 lowercase_ = "up" @property def lowerCAmelCase_ ( self : Tuple ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase , include_encoder_hidden_states=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = super().prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = 32 return init_dict, inputs_dict def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = AttnUpBlockaD # noqa F405 lowercase_ = "up" @property def lowerCAmelCase_ ( self : Optional[Any] ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) @unittest.skipIf(torch_device == 'mps' , 'MPS result is not consistent' ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = SkipUpBlockaD # noqa F405 lowercase_ = "up" @property def lowerCAmelCase_ ( self : Union[str, Any] ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = AttnSkipUpBlockaD # noqa F405 lowercase_ = "up" @property def lowerCAmelCase_ ( self : Dict ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = UpDecoderBlockaD # noqa F405 lowercase_ = "up" @property def lowerCAmelCase_ ( self : List[str] ): return super().get_dummy_input(include_temb=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = {'in_channels': 32, 'out_channels': 32} SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_lowerCAmelCase ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = AttnUpDecoderBlockaD # noqa F405 lowercase_ = "up" @property def lowerCAmelCase_ ( self : Optional[int] ): return super().get_dummy_input(include_temb=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = {'in_channels': 32, 'out_channels': 32} SCREAMING_SNAKE_CASE_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_lowerCAmelCase )
31
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever SCREAMING_SNAKE_CASE : Tuple = logging.getLogger(__name__) class __lowerCamelCase ( __lowercase ): def __init__(self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ): '''simple docstring''' super().__init__( lowerCamelCase , question_encoder_tokenizer=lowerCamelCase , generator_tokenizer=lowerCamelCase , index=lowerCamelCase , init_retrieval=lowerCamelCase , ) _lowerCAmelCase = None def A__ (self , lowerCamelCase ): '''simple docstring''' logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually _lowerCAmelCase = self._infer_socket_ifname() # avoid clash with the NCCL port _lowerCAmelCase = str(distributed_port + 1 ) _lowerCAmelCase = dist.new_group(ranks=lowerCamelCase , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def A__ (self ): '''simple docstring''' return dist.get_rank(group=self.process_group ) == 0 def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase=torch.floataa ): '''simple docstring''' _lowerCAmelCase = torch.empty(lowerCamelCase , dtype=lowerCamelCase ) dist.scatter(lowerCamelCase , src=0 , scatter_list=lowerCamelCase , group=self.process_group ) return target_tensor def A__ (self ): '''simple docstring''' _lowerCAmelCase = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _lowerCAmelCase = next((addr for addr in addrs if addr.startswith("""e""" )) , lowerCamelCase ) return ifname def A__ (self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not dist.is_initialized(): _lowerCAmelCase , _lowerCAmelCase = self._main_retrieve(lowerCamelCase , lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCamelCase ) # distributed training _lowerCAmelCase = dist.get_world_size(group=self.process_group ) # gather logic _lowerCAmelCase = None if self._is_main(): _lowerCAmelCase = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(lowerCamelCase )] dist.gather(torch.tensor(lowerCamelCase ) , dst=0 , gather_list=lowerCamelCase , group=self.process_group ) # scatter logic _lowerCAmelCase = question_hidden_states.shape[0] _lowerCAmelCase = [] _lowerCAmelCase = [] if self._is_main(): assert len(lowerCamelCase ) == world_size _lowerCAmelCase , _lowerCAmelCase = self._main_retrieve(torch.cat(lowerCamelCase ).numpy() , lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase = torch.tensor(lowerCamelCase ), torch.tensor(lowerCamelCase ) _lowerCAmelCase = self._chunk_tensor(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = self._chunk_tensor(lowerCamelCase , lowerCamelCase ) _lowerCAmelCase = self._scattered(lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa ) _lowerCAmelCase = self._scattered(lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCamelCase )
156
0
"""simple docstring""" import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = mock.Mock() _lowerCamelCase = 5_0_0 _lowerCamelCase = {} _lowerCamelCase = HTTPError _lowerCamelCase = {} # Download this model to make sure it's in the cache. _lowerCamelCase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=lowerCamelCase__ ) as mock_head: _lowerCamelCase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def snake_case__ ( self ): _lowerCamelCase = mock.Mock() _lowerCamelCase = 5_0_0 _lowerCamelCase = {} _lowerCamelCase = HTTPError _lowerCamelCase = {} # Download this model to make sure it's in the cache. _lowerCamelCase = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=lowerCamelCase__ ) as mock_head: _lowerCamelCase = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def snake_case__ ( self ): try: _lowerCamelCase = tempfile.mktemp() with open(lowerCamelCase__ , '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , lowerCamelCase__ ) _lowerCamelCase = AlbertTokenizer.from_pretrained(lowerCamelCase__ ) finally: os.remove(lowerCamelCase__ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , lowerCamelCase__ ) _lowerCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_0_0_0 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def snake_case__ ( self ): _lowerCamelCase = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' lowercase__ : Optional[int] = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def snake_case__ ( cls ): _lowerCamelCase = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def snake_case__ ( cls ): try: delete_repo(token=cls._token , repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def snake_case__ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase = os.path.join(lowerCamelCase__ , '''vocab.txt''' ) with open(lowerCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) _lowerCamelCase = BertTokenizer(lowerCamelCase__ ) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token ) _lowerCamelCase = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase__ , repo_id='''test-tokenizer''' , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _lowerCamelCase = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def snake_case__ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase = os.path.join(lowerCamelCase__ , '''vocab.txt''' ) with open(lowerCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) _lowerCamelCase = BertTokenizer(lowerCamelCase__ ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token ) _lowerCamelCase = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCamelCase__ , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) _lowerCamelCase = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def snake_case__ ( self ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase = os.path.join(lowerCamelCase__ , '''vocab.txt''' ) with open(lowerCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) _lowerCamelCase = CustomTokenizer(lowerCamelCase__ ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) _lowerCamelCase = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase = os.path.join(lowerCamelCase__ , '''vocab.txt''' ) with open(lowerCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) _lowerCamelCase = BertTokenizerFast.from_pretrained(lowerCamelCase__ ) bert_tokenizer.save_pretrained(lowerCamelCase__ ) _lowerCamelCase = CustomTokenizerFast.from_pretrained(lowerCamelCase__ ) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) _lowerCamelCase = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''' ) _lowerCamelCase = AutoTokenizer.from_pretrained( F"""{USER}/test-dynamic-tokenizer""" , use_fast=lowerCamelCase__ , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def snake_case__ ( self ): _lowerCamelCase = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def snake_case__ ( self ): _lowerCamelCase = Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ) , ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ) , ['''BC''', '''A'''] ) def snake_case__ ( self ): _lowerCamelCase = Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def snake_case__ ( self ): _lowerCamelCase = Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def snake_case__ ( self ): _lowerCamelCase = Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ) , ['''AB''', '''C'''] ) def snake_case__ ( self ): _lowerCamelCase = Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ) , ['''ABC''', '''D'''] ) def snake_case__ ( self ): _lowerCamelCase = Trie() _lowerCamelCase = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCamelCase__ , ['''AB''', '''C'''] )
703
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
623
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Tuple = logging.get_logger() @dataclass class _lowercase : _a : nn.Module _a : List[nn.Module] = field(default_factory=_A ) _a : list = field(default_factory=_A ) def lowercase__ ( self , a , a , a ): snake_case__ : Tuple =len(list(m.modules() ) ) == 1 or isinstance(a , nn.Convad ) or isinstance(a , nn.BatchNormad ) if has_not_submodules: self.traced.append(a ) def __call__( self , a ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a ) [x.remove() for x in self.handles] return self @property def lowercase__ ( self ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda a : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _lowercase : _a : nn.Module _a : nn.Module _a : int = 1 _a : List = field(default_factory=_A ) _a : List = field(default_factory=_A ) _a : bool = True def __call__( self , a ): snake_case__ : Any =Tracker(self.dest )(a ).parametrized snake_case__ : Optional[int] =Tracker(self.src )(a ).parametrized snake_case__ : str =list(filter(lambda a : type(a ) not in self.src_skip , a ) ) snake_case__ : Any =list(filter(lambda a : type(a ) not in self.dest_skip , a ) ) if len(a ) != len(a ) and self.raise_if_mismatch: raise Exception( F"Numbers of operations are different. Source module has {len(a )} operations while" F" destination module has {len(a )}." ) for dest_m, src_m in zip(a , a ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"Transfered from={src_m} to={dest_m}" ) class _lowercase ( nn.Module ): def __init__( self , a ): super().__init__() snake_case__ : List[Tuple[str, nn.Module]] =[] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), F"Unexpected layer name {k}" snake_case__ : Optional[int] =len(a ) + 1 feature_blocks.append((F"res{block_index}", v) ) snake_case__ : Dict =nn.ModuleDict(a ) def lowercase__ ( self , a ): return get_trunk_forward_outputs( a , out_feat_keys=a , feature_blocks=self._feature_blocks , ) class _lowercase ( _A ): def lowercase__ ( self , a ): snake_case__ : Optional[Any] =x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , a ): # default to timm! if x not in self: snake_case__ : Optional[int] =self.convert_name_to_timm(a ) snake_case__ : int =partial(lambda: (timm.create_model(a , pretrained=a ).eval(), None) ) else: snake_case__ : Optional[Any] =super().__getitem__(a ) return val class _lowercase ( _A ): def __getitem__( self , a ): if "seer" in x and "in1k" not in x: snake_case__ : Dict =RegNetModel else: snake_case__ : Optional[int] =RegNetForImageClassification return val def A__ ( _a : str , _a : int , _a : List[Tuple[str, str]] ): '''simple docstring''' for from_key, to_key in keys: snake_case__ : Dict =from_state_dict[from_key].clone() print(f"Copied key={from_key} to={to_key}" ) return to_state_dict def A__ ( _a : str , _a : Callable[[], nn.Module] , _a : Callable[[], nn.Module] , _a : RegNetConfig , _a : Path , _a : bool = True , ): '''simple docstring''' print(f"Converting {name}..." ) with torch.no_grad(): snake_case__ , snake_case__ : str =from_model_func() snake_case__ : Any =our_model_func(_a ).eval() snake_case__ : Dict =ModuleTransfer(src=_a , dest=_a , raise_if_mismatch=_a ) snake_case__ : List[Any] =torch.randn((1, 3, 224, 224) ) module_transfer(_a ) if from_state_dict is not None: snake_case__ : Any =[] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: snake_case__ : List[str] =[("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] snake_case__ : Optional[Any] =manually_copy_vissl_head(_a , our_model.state_dict() , _a ) our_model.load_state_dict(_a ) snake_case__ : Any =our_model(_a , output_hidden_states=_a ) snake_case__ : str =( our_outputs.logits if isinstance(_a , _a ) else our_outputs.last_hidden_state ) snake_case__ : Dict =from_model(_a ) snake_case__ : List[Any] =from_output[-1] if type(_a ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: snake_case__ : Optional[int] =our_outputs.hidden_states[-1] assert torch.allclose(_a , _a ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=_a , ) snake_case__ : Union[str, Any] =224 if """seer""" not in name else 384 # we can use the convnext one snake_case__ : str =AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=_a ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=_a , ) print(f"Pushed {name}" ) def A__ ( _a : Path , _a : str = None , _a : bool = True ): '''simple docstring''' snake_case__ : List[Any] ="""imagenet-1k-id2label.json""" snake_case__ : List[str] =1000 snake_case__ : Any =(1, num_labels) snake_case__ : int ="""huggingface/label-files""" snake_case__ : Any =num_labels snake_case__ : Any =json.load(open(cached_download(hf_hub_url(_a , _a , repo_type="""dataset""" ) ) , """r""" ) ) snake_case__ : Optional[int] ={int(_a ): v for k, v in idalabel.items()} snake_case__ : Dict =idalabel snake_case__ : Dict ={v: k for k, v in idalabel.items()} snake_case__ : Dict =partial(_a , num_labels=_a , idalabel=_a , labelaid=_a ) snake_case__ : Any ={ """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="""x""" ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="""x""" ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="""x""" ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="""x""" ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="""x""" ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="""x""" ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="""x""" ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="""x""" ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="""x""" ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="""x""" ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="""x""" ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="""x""" ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), } snake_case__ : Any =NameToOurModelFuncMap() snake_case__ : List[str] =NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_a : str , _a : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: snake_case__ : Tuple =torch.hub.load_state_dict_from_url(_a , model_dir=str(_a ) , map_location="""cpu""" ) snake_case__ : Dict =model_func() # check if we have a head, if yes add it snake_case__ : Any =files["""classy_state_dict"""]["""base_model"""]["""model"""] snake_case__ : Optional[Any] =model_state_dict["""trunk"""] model.load_state_dict(_a ) return model.eval(), model_state_dict["heads"] # pretrained snake_case__ : int =partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case__ : Optional[int] =partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case__ : List[Any] =partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) snake_case__ : Union[str, Any] =partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned snake_case__ : List[Any] =partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case__ : Union[str, Any] =partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case__ : Union[str, Any] =partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) snake_case__ : Optional[Any] =partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _a , _a , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _a , _a , _a , ) return config, expected_shape if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) __lowerCamelCase : Any = parser.parse_args() __lowerCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
385
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowerCamelCase : List[str] = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowerCamelCase : Optional[Any] = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowerCamelCase : List[str] = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowerCamelCase : Tuple = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowerCamelCase : List[Any] = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowerCamelCase : Any = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowerCamelCase : Tuple = ( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def A__ ( ): '''simple docstring''' snake_case__ , snake_case__ : Any =randrange(len(_a ) ), randrange(len(_a ) ) snake_case__ : Tuple =["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] snake_case__ , snake_case__ : Union[str, Any] =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def A__ ( _a : int = 100 ): '''simple docstring''' return (generate_random_hand() for _ in range(_a )) @pytest.mark.parametrize("""hand, expected""" , _a ) def A__ ( _a : List[Any] , _a : Any ): '''simple docstring''' assert PokerHand(_a )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , _a ) def A__ ( _a : Union[str, Any] , _a : int ): '''simple docstring''' assert PokerHand(_a )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , _a ) def A__ ( _a : Optional[int] , _a : Tuple , _a : Tuple ): '''simple docstring''' snake_case__ : Any =PokerHand(_a ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , _a ) def A__ ( _a : Any , _a : Tuple ): '''simple docstring''' assert PokerHand(_a )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , _a ) def A__ ( _a : Union[str, Any] , _a : Tuple ): '''simple docstring''' assert PokerHand(_a )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , _a ) def A__ ( _a : str , _a : Tuple , _a : Union[str, Any] ): '''simple docstring''' assert PokerHand(_a ).compare_with(PokerHand(_a ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def A__ ( _a : Any , _a : Optional[Any] , _a : str ): '''simple docstring''' assert PokerHand(_a ).compare_with(PokerHand(_a ) ) == expected def A__ ( ): '''simple docstring''' snake_case__ : str =[PokerHand(_a ) for hand in SORTED_HANDS] snake_case__ : List[str] =poker_hands.copy() shuffle(_a ) snake_case__ : Any =chain(sorted(_a ) ) for index, hand in enumerate(_a ): assert hand == poker_hands[index] def A__ ( ): '''simple docstring''' snake_case__ : Tuple =[PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=_a ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def A__ ( ): '''simple docstring''' snake_case__ : Optional[int] =PokerHand("""2C 4S AS 3D 5C""" ) snake_case__ : Optional[Any] =True snake_case__ : Any =[5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def A__ ( ): '''simple docstring''' snake_case__ : Tuple =0 snake_case__ : int =os.path.abspath(os.path.dirname(_a ) ) snake_case__ : List[Any] =os.path.join(_a , """poker_hands.txt""" ) with open(_a ) as file_hand: for line in file_hand: snake_case__ : List[Any] =line[:14].strip() snake_case__ : Any =line[15:].strip() snake_case__ , snake_case__ : str =PokerHand(_a ), PokerHand(_a ) snake_case__ : Optional[Any] =player.compare_with(_a ) if output == "Win": answer += 1 assert answer == 376
385
1
__UpperCAmelCase : int = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} __UpperCAmelCase : List[str] = ["a", "b", "c", "d", "e"] def lowercase_ ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Tuple ) -> Optional[int]: '''simple docstring''' snake_case__ :List[Any] = start # add current to visited visited.append(__snake_case ) snake_case__ :List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": __UpperCAmelCase : Tuple = topological_sort("a", [], []) print(sort)
57
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
57
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False ) -> Dict: UpperCAmelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: for i in range(config.num_hidden_layers ): UpperCAmelCase_ = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase_ = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ = in_proj_bias[: config.hidden_size] UpperCAmelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ = in_proj_bias[-config.hidden_size :] def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict: UpperCAmelCase_ = dct.pop(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = val @torch.no_grad() def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False if "vqa" in checkpoint_url: UpperCAmelCase_ = True UpperCAmelCase_ = 3129 UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "vqa2-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} UpperCAmelCase_ = ViltForQuestionAnswering(__SCREAMING_SNAKE_CASE ) elif "nlvr" in checkpoint_url: UpperCAmelCase_ = True UpperCAmelCase_ = 2 UpperCAmelCase_ = {0: "False", 1: "True"} UpperCAmelCase_ = {v: k for k, v in config.idalabel.items()} UpperCAmelCase_ = 3 UpperCAmelCase_ = ViltForImagesAndTextClassification(__SCREAMING_SNAKE_CASE ) elif "irtr" in checkpoint_url: UpperCAmelCase_ = True UpperCAmelCase_ = ViltForImageAndTextRetrieval(__SCREAMING_SNAKE_CASE ) elif "mlm_itm" in checkpoint_url: UpperCAmelCase_ = True UpperCAmelCase_ = ViltForMaskedLM(__SCREAMING_SNAKE_CASE ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys UpperCAmelCase_ = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location="cpu" )["state_dict"] UpperCAmelCase_ = create_rename_keys(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if mlm_model or irtr_model: UpperCAmelCase_ = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load state dict into HuggingFace model model.eval() if mlm_model: UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Define processor UpperCAmelCase_ = ViltImageProcessor(size=384 ) UpperCAmelCase_ = BertTokenizer.from_pretrained("bert-base-uncased" ) UpperCAmelCase_ = ViltProcessor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Forward pass on example inputs (image + text) if nlvr_model: UpperCAmelCase_ = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=__SCREAMING_SNAKE_CASE ).raw ) UpperCAmelCase_ = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=__SCREAMING_SNAKE_CASE ).raw ) UpperCAmelCase_ = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) UpperCAmelCase_ = processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors="pt" ) UpperCAmelCase_ = processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors="pt" ) UpperCAmelCase_ = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: UpperCAmelCase_ = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=__SCREAMING_SNAKE_CASE ).raw ) if mlm_model: UpperCAmelCase_ = "a bunch of [MASK] laying on a [MASK]." else: UpperCAmelCase_ = "How many cats are there?" UpperCAmelCase_ = processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors="pt" ) UpperCAmelCase_ = model(**__SCREAMING_SNAKE_CASE ) # Verify outputs if mlm_model: UpperCAmelCase_ = torch.Size([1, 11, 3_0522] ) UpperCAmelCase_ = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) # verify masked token prediction equals "cats" UpperCAmelCase_ = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: UpperCAmelCase_ = torch.Size([1, 3129] ) UpperCAmelCase_ = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) # verify vqa prediction equals "2" UpperCAmelCase_ = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: UpperCAmelCase_ = torch.Size([1, 2] ) UpperCAmelCase_ = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
579
from math import factorial def snake_case__ ( __SCREAMING_SNAKE_CASE = 20 ) -> int: UpperCAmelCase_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCAmelCase_ = n // 2 return int(factorial(__SCREAMING_SNAKE_CASE ) / (factorial(__SCREAMING_SNAKE_CASE ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: SCREAMING_SNAKE_CASE = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
579
1
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , UpperCamelCase__ , ) class _UpperCamelCase (UpperCamelCase__ ): snake_case_ = RobertaConfig snake_case_ = """roberta""" def __init__( self , __UpperCamelCase )-> int: super().__init__(_a ) __lowerCAmelCase = RobertaEmbeddings(_a ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. """ , UpperCamelCase__ , ) class _UpperCamelCase (UpperCamelCase__ ): snake_case_ = RobertaConfig snake_case_ = """roberta""" def __init__( self , __UpperCamelCase )-> Any: super().__init__(_a ) __lowerCAmelCase = config.num_labels __lowerCAmelCase = config.num_hidden_layers __lowerCAmelCase = DeeRobertaModel(_a ) __lowerCAmelCase = nn.Dropout(config.hidden_dropout_prob ) __lowerCAmelCase = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(_a ) def __UpperCAmelCase ( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=-1 , __UpperCamelCase=False , )-> List[str]: __lowerCAmelCase = self.num_layers try: __lowerCAmelCase = self.roberta( _a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , ) __lowerCAmelCase = outputs[1] __lowerCAmelCase = self.dropout(_a ) __lowerCAmelCase = self.classifier(_a ) __lowerCAmelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __lowerCAmelCase = e.message __lowerCAmelCase = e.exit_layer __lowerCAmelCase = outputs[0] if not self.training: __lowerCAmelCase = entropy(_a ) __lowerCAmelCase = [] __lowerCAmelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __lowerCAmelCase = MSELoss() __lowerCAmelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __lowerCAmelCase = CrossEntropyLoss() __lowerCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __lowerCAmelCase = [] for highway_exit in outputs[-1]: __lowerCAmelCase = highway_exit[0] if not self.training: highway_logits_all.append(_a ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __lowerCAmelCase = MSELoss() __lowerCAmelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __lowerCAmelCase = CrossEntropyLoss() __lowerCAmelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_a ) if train_highway: __lowerCAmelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __lowerCAmelCase = (loss,) + outputs if not self.training: __lowerCAmelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __lowerCAmelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
710
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCamelCase : int = 1.0_5457_1817E-34 # unit of ℏ : J * s lowerCamelCase : Union[str, Any] = 3E8 # unit of c : m * s^-1 def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: __lowerCAmelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __lowerCAmelCase = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __lowerCAmelCase = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
290
0
def _UpperCamelCase ( lowerCAmelCase_ ) ->bool: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(lowerCAmelCase_ ) == 0: raise ValueError("""Input list must be a non empty list""" ) if len(lowerCAmelCase_ ) == 1: return True UpperCAmelCase = series[1] - series[0] for index in range(len(lowerCAmelCase_ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _UpperCamelCase ( lowerCAmelCase_ ) ->float: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(lowerCAmelCase_ ) == 0: raise ValueError("""Input list must be a non empty list""" ) UpperCAmelCase = 0 for val in series: answer += val return answer / len(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
377
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __a = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
377
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _lowerCAmelCase ( _lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' if "cls_token" in name: __snake_case = name.replace("cls_token" , "vit.embeddings.cls_token" ) if "mask_token" in name: __snake_case = name.replace("mask_token" , "decoder.mask_token" ) if "decoder_pos_embed" in name: __snake_case = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: __snake_case = name.replace("pos_embed" , "vit.embeddings.position_embeddings" ) if "patch_embed.proj" in name: __snake_case = name.replace("patch_embed.proj" , "vit.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __snake_case = name.replace("patch_embed.norm" , "vit.embeddings.norm" ) if "decoder_blocks" in name: __snake_case = name.replace("decoder_blocks" , "decoder.decoder_layers" ) if "blocks" in name: __snake_case = name.replace("blocks" , "vit.encoder.layer" ) if "attn.proj" in name: __snake_case = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __snake_case = name.replace("attn" , "attention.self" ) if "norm1" in name: __snake_case = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __snake_case = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __snake_case = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __snake_case = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: __snake_case = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: __snake_case = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: __snake_case = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name: __snake_case = name.replace("norm.weight" , "vit.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name: __snake_case = name.replace("norm.bias" , "vit.layernorm.bias" ) return name def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> str: '''simple docstring''' for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: __snake_case = key.split("." ) __snake_case = int(key_split[1] ) if "decoder_blocks" in key: __snake_case = config.decoder_hidden_size __snake_case = "decoder.decoder_layers." if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[dim : dim * 2, :] __snake_case = val[-dim:, :] elif "bias" in key: __snake_case = val[:dim] __snake_case = val[dim : dim * 2] __snake_case = val[-dim:] else: __snake_case = config.hidden_size __snake_case = "vit.encoder.layer." if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[dim : dim * 2, :] __snake_case = val[-dim:, :] elif "bias" in key: __snake_case = val[:dim] __snake_case = val[dim : dim * 2] __snake_case = val[-dim:] else: __snake_case = val return orig_state_dict def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: '''simple docstring''' __snake_case = ViTMAEConfig() if "large" in checkpoint_url: __snake_case = 1024 __snake_case = 4096 __snake_case = 24 __snake_case = 16 elif "huge" in checkpoint_url: __snake_case = 14 __snake_case = 1280 __snake_case = 5120 __snake_case = 32 __snake_case = 16 __snake_case = ViTMAEForPreTraining(_lowerCAmelCase ) __snake_case = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="cpu" )["model"] __snake_case = ViTMAEImageProcessor(size=config.image_size ) __snake_case = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() __snake_case = "https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg" __snake_case = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) __snake_case = ViTMAEImageProcessor(size=config.image_size ) __snake_case = image_processor(images=_lowerCAmelCase , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) __snake_case = model(**_lowerCAmelCase ) __snake_case = outputs.logits if "large" in checkpoint_url: __snake_case = torch.tensor( [[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]] ) elif "huge" in checkpoint_url: __snake_case = torch.tensor( [[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]] ) else: __snake_case = torch.tensor( [[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) A : Optional[int] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
718
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCamelCase( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' __snake_case = 1 __snake_case = 3 __snake_case = (3_2, 3_2) __snake_case = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE ) return image @property def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) return model @property def SCREAMING_SNAKE_CASE_ ( self : Any ) -> str: '''simple docstring''' torch.manual_seed(0 ) __snake_case = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: '''simple docstring''' torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str: '''simple docstring''' def extract(*SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : List[Any] ): class UpperCamelCase: def __init__( self : Dict ) -> Union[str, Any]: '''simple docstring''' __snake_case = torch.ones([0] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: '''simple docstring''' self.pixel_values.to(SCREAMING_SNAKE_CASE ) return self return Out() return extract def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Dict: '''simple docstring''' __snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case = self.dummy_cond_unet __snake_case = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=SCREAMING_SNAKE_CASE , set_alpha_to_one=SCREAMING_SNAKE_CASE , ) __snake_case = self.dummy_vae __snake_case = self.dummy_text_encoder __snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk __snake_case = StableDiffusionPipeline( unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , vae=SCREAMING_SNAKE_CASE , text_encoder=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __snake_case = sd_pipe.to(SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) __snake_case = "A painting of a squirrel eating a burger" __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(0 ) __snake_case = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) __snake_case = output.images __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(0 ) __snake_case = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=SCREAMING_SNAKE_CASE , )[0] __snake_case = image[0, -3:, -3:, -1] __snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __snake_case = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple: '''simple docstring''' __snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case = self.dummy_cond_unet __snake_case = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE ) __snake_case = self.dummy_vae __snake_case = self.dummy_text_encoder __snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk __snake_case = StableDiffusionPipeline( unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , vae=SCREAMING_SNAKE_CASE , text_encoder=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __snake_case = sd_pipe.to(SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) __snake_case = "A painting of a squirrel eating a burger" __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(0 ) __snake_case = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) __snake_case = output.images __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(0 ) __snake_case = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=SCREAMING_SNAKE_CASE , )[0] __snake_case = image[0, -3:, -3:, -1] __snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __snake_case = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[Any]: '''simple docstring''' __snake_case = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=SCREAMING_SNAKE_CASE ) assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert isinstance(pipe.scheduler , SCREAMING_SNAKE_CASE ) assert pipe.safety_checker is None __snake_case = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(SCREAMING_SNAKE_CASE ) __snake_case = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE ) # sanity check that the pipeline still works assert pipe.safety_checker is None __snake_case = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int: '''simple docstring''' __snake_case = self.dummy_cond_unet __snake_case = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE ) __snake_case = self.dummy_vae __snake_case = self.dummy_text_encoder __snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 __snake_case = unet.half() __snake_case = vae.half() __snake_case = bert.half() # make sure here that pndm scheduler skips prk __snake_case = StableDiffusionPipeline( unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , vae=SCREAMING_SNAKE_CASE , text_encoder=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __snake_case = sd_pipe.to(SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) __snake_case = "A painting of a squirrel eating a burger" __snake_case = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class UpperCamelCase( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' __snake_case = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=SCREAMING_SNAKE_CASE ) __snake_case = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __snake_case = sd_pipe.to(SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) __snake_case = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) __snake_case = 4_0_0_3_6_6_0_3_4_6 __snake_case = 7 # without safety guidance (sld_guidance_scale = 0) __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE ) __snake_case = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] __snake_case = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE ) __snake_case = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] __snake_case = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[str]: '''simple docstring''' __snake_case = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=SCREAMING_SNAKE_CASE ) __snake_case = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __snake_case = sd_pipe.to(SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) __snake_case = "padme amidala taking a bath artwork, safe for work, no nudity" __snake_case = 2_7_3_4_9_7_1_7_5_5 __snake_case = 7 __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE ) __snake_case = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] __snake_case = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE ) __snake_case = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] __snake_case = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> int: '''simple docstring''' __snake_case = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) __snake_case = sd_pipe.to(SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) __snake_case = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) __snake_case = 1_0_4_4_3_5_5_2_3_4 __snake_case = 1_2 __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE ) __snake_case = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] __snake_case = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE ) __snake_case = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] __snake_case = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
473
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
118
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() __a :Any = logging.get_logger(__name__) __a :int = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear', 'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed', 'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } __a :Tuple = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ,__UpperCamelCase : Dict ,__UpperCamelCase : Any ,__UpperCamelCase : Optional[int] ): """simple docstring""" for attribute in key.split("." ): A_ = getattr(__UpperCamelCase ,__UpperCamelCase ) if weight_type is not None: A_ = getattr(__UpperCamelCase ,__UpperCamelCase ).shape else: A_ = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A_ = value elif weight_type == "weight_g": A_ = value elif weight_type == "weight_v": A_ = value elif weight_type == "bias": A_ = value else: A_ = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = [] A_ = fairseq_model.state_dict() A_ = hf_model.feature_extractor for name, value in fairseq_dict.items(): A_ = False if "conv_layers" in name: load_conv_layer( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,hf_model.config.feat_extract_norm == "group" ,) A_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A_ = True if "*" in mapped_key: A_ = name.split(__UpperCamelCase )[0].split("." )[-2] A_ = mapped_key.replace("*" ,__UpperCamelCase ) if "weight_g" in name: A_ = "weight_g" elif "weight_v" in name: A_ = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: A_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj A_ = "weight" else: A_ = None set_recursively(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Dict ,__UpperCamelCase : List[str] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[int] ): """simple docstring""" A_ = full_name.split("conv_layers." )[-1] A_ = name.split("." ) A_ = int(items[0] ) A_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A_ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A_ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) A_ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A_ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__UpperCamelCase ) @torch.no_grad() def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : str ,__UpperCamelCase : int=None ): """simple docstring""" A_ = torch.load(__UpperCamelCase ) A_ = WavLMConfigOrig(checkpoint["cfg"] ) A_ = WavLMOrig(__UpperCamelCase ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: A_ = WavLMConfig.from_pretrained(__UpperCamelCase ) else: A_ = WavLMConfig() A_ = WavLMModel(__UpperCamelCase ) recursively_load_weights(__UpperCamelCase ,__UpperCamelCase ) hf_wavlm.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __a :Optional[int] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
86
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _snake_case ( unittest.TestCase ): _lowercase : Union[str, Any] = MODEL_FOR_CAUSAL_LM_MAPPING _lowercase : Optional[Any] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt') # Using `do_sample=False` to force deterministic output SCREAMING_SNAKE_CASE = text_generator('This is a test' , do_sample=a) self.assertEqual( a , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) SCREAMING_SNAKE_CASE = text_generator(['This is a test', 'This is a second test']) self.assertEqual( a , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) SCREAMING_SNAKE_CASE = text_generator('This is a test' , do_sample=a , num_return_sequences=2 , return_tensors=a) self.assertEqual( a , [ {'generated_token_ids': ANY(a)}, {'generated_token_ids': ANY(a)}, ] , ) SCREAMING_SNAKE_CASE = text_generator.model.config.eos_token_id SCREAMING_SNAKE_CASE = '<pad>' SCREAMING_SNAKE_CASE = text_generator( ['This is a test', 'This is a second test'] , do_sample=a , num_return_sequences=2 , batch_size=2 , return_tensors=a , ) self.assertEqual( a , [ [ {'generated_token_ids': ANY(a)}, {'generated_token_ids': ANY(a)}, ], [ {'generated_token_ids': ANY(a)}, {'generated_token_ids': ANY(a)}, ], ] , ) @require_tf def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf') # Using `do_sample=False` to force deterministic output SCREAMING_SNAKE_CASE = text_generator('This is a test' , do_sample=a) self.assertEqual( a , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) SCREAMING_SNAKE_CASE = text_generator(['This is a test', 'This is a second test'] , do_sample=a) self.assertEqual( a , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Optional[int]: SCREAMING_SNAKE_CASE = TextGenerationPipeline(model=a , tokenizer=a) return text_generator, ["This is a test", "Another test"] def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = 'Hello I believe in' SCREAMING_SNAKE_CASE = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2') SCREAMING_SNAKE_CASE = text_generator(a) self.assertEqual( a , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) SCREAMING_SNAKE_CASE = text_generator(a , stop_sequence=' fe') self.assertEqual(a , [{'generated_text': 'Hello I believe in fe'}]) def SCREAMING_SNAKE_CASE__ ( self , a , a) -> str: SCREAMING_SNAKE_CASE = text_generator.model SCREAMING_SNAKE_CASE = text_generator.tokenizer SCREAMING_SNAKE_CASE = text_generator('This is a test') self.assertEqual(a , [{'generated_text': ANY(a)}]) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test')) SCREAMING_SNAKE_CASE = text_generator('This is a test' , return_full_text=a) self.assertEqual(a , [{'generated_text': ANY(a)}]) self.assertNotIn('This is a test' , outputs[0]['generated_text']) SCREAMING_SNAKE_CASE = pipeline(task='text-generation' , model=a , tokenizer=a , return_full_text=a) SCREAMING_SNAKE_CASE = text_generator('This is a test') self.assertEqual(a , [{'generated_text': ANY(a)}]) self.assertNotIn('This is a test' , outputs[0]['generated_text']) SCREAMING_SNAKE_CASE = text_generator('This is a test' , return_full_text=a) self.assertEqual(a , [{'generated_text': ANY(a)}]) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test')) SCREAMING_SNAKE_CASE = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=a) self.assertEqual( a , [ [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], ] , ) if text_generator.tokenizer.pad_token is not None: SCREAMING_SNAKE_CASE = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=a) self.assertEqual( a , [ [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], ] , ) with self.assertRaises(a): SCREAMING_SNAKE_CASE = text_generator('test' , return_full_text=a , return_text=a) with self.assertRaises(a): SCREAMING_SNAKE_CASE = text_generator('test' , return_full_text=a , return_tensors=a) with self.assertRaises(a): SCREAMING_SNAKE_CASE = text_generator('test' , return_text=a , return_tensors=a) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): SCREAMING_SNAKE_CASE = text_generator('') self.assertEqual(a , [{'generated_text': ANY(a)}]) else: with self.assertRaises((ValueError, AssertionError)): SCREAMING_SNAKE_CASE = text_generator('') if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. SCREAMING_SNAKE_CASE = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)): text_generator('This is a test' * 500 , max_new_tokens=20) SCREAMING_SNAKE_CASE = text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20) # Hole strategy cannot work with self.assertRaises(a): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self) -> int: import torch # Classic `model_kwargs` SCREAMING_SNAKE_CASE = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0)) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa) SCREAMING_SNAKE_CASE = pipe('This is a test') self.assertEqual( a , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) SCREAMING_SNAKE_CASE = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa) self.assertEqual(pipe.model.device , torch.device(0)) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa) SCREAMING_SNAKE_CASE = pipe('This is a test') self.assertEqual( a , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 SCREAMING_SNAKE_CASE = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto') self.assertEqual(pipe.model.device , torch.device(0)) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa) SCREAMING_SNAKE_CASE = pipe('This is a test') self.assertEqual( a , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: import torch SCREAMING_SNAKE_CASE = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa) pipe('This is a test') @require_torch @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: import torch SCREAMING_SNAKE_CASE = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa) pipe('This is a test' , do_sample=a , top_p=0.5) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = 'Hello world' SCREAMING_SNAKE_CASE = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2') if text_generator.model.framework == "tf": SCREAMING_SNAKE_CASE = logging.get_logger('transformers.generation.tf_utils') else: SCREAMING_SNAKE_CASE = logging.get_logger('transformers.generation.utils') SCREAMING_SNAKE_CASE = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(a) as cl: SCREAMING_SNAKE_CASE = text_generator(a , max_length=10 , max_new_tokens=1) self.assertIn(a , cl.out) # The user only sets one -> no warning with CaptureLogger(a) as cl: SCREAMING_SNAKE_CASE = text_generator(a , max_new_tokens=1) self.assertNotIn(a , cl.out) with CaptureLogger(a) as cl: SCREAMING_SNAKE_CASE = text_generator(a , max_length=10) self.assertNotIn(a , cl.out)
705
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') a_ : Union[str, Any] = logging.getLogger(__name__) @dataclass class _snake_case : _lowercase : Optional[int] = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : bool = field( default=A__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) _lowercase : bool = field( default=A__ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) _lowercase : Optional[int] = field( default=A__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _lowercase : Optional[int] = field( default=A__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) _lowercase : Optional[int] = field( default=A__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) @dataclass class _snake_case : _lowercase : str = field( default=A__ , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _lowercase : str = field( default=A__ , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _lowercase : Optional[bool] = field( default=A__ , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , ) _lowercase : bool = field( default=A__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) _lowercase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _lowercase : bool = field( default=A__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) _lowercase : bool = field( default=A__ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def lowerCamelCase__ (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli' , _UpperCAmelCase) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout)] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(_UpperCAmelCase) datasets.utils.logging.set_verbosity(_UpperCAmelCase) transformers.utils.logging.set_verbosity(_UpperCAmelCase) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}''') logger.info(F'''Training/evaluation parameters {training_args}''') # Detecting last checkpoint. SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.') elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.') # Set seed before initializing model. set_seed(training_args.seed) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: SCREAMING_SNAKE_CASE = load_dataset( 'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: SCREAMING_SNAKE_CASE = load_dataset( 'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE = train_dataset.features['label'].names if training_args.do_eval: SCREAMING_SNAKE_CASE = load_dataset( 'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE = eval_dataset.features['label'].names if training_args.do_predict: SCREAMING_SNAKE_CASE = load_dataset( 'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE = predict_dataset.features['label'].names # Labels SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCAmelCase , idalabel={str(_UpperCAmelCase): label for i, label in enumerate(_UpperCAmelCase)} , labelaid={label: i for i, label in enumerate(_UpperCAmelCase)} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch SCREAMING_SNAKE_CASE = False def preprocess_function(_UpperCAmelCase): # Tokenize the texts return tokenizer( examples['premise'] , examples['hypothesis'] , padding=_UpperCAmelCase , max_length=data_args.max_seq_length , truncation=_UpperCAmelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE = min(len(_UpperCAmelCase) , data_args.max_train_samples) SCREAMING_SNAKE_CASE = train_dataset.select(range(_UpperCAmelCase)) with training_args.main_process_first(desc='train dataset map pre-processing'): SCREAMING_SNAKE_CASE = train_dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , ) # Log a few random samples from the training set: for index in random.sample(range(len(_UpperCAmelCase)) , 3): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''') if training_args.do_eval: if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE = min(len(_UpperCAmelCase) , data_args.max_eval_samples) SCREAMING_SNAKE_CASE = eval_dataset.select(range(_UpperCAmelCase)) with training_args.main_process_first(desc='validation dataset map pre-processing'): SCREAMING_SNAKE_CASE = eval_dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: SCREAMING_SNAKE_CASE = min(len(_UpperCAmelCase) , data_args.max_predict_samples) SCREAMING_SNAKE_CASE = predict_dataset.select(range(_UpperCAmelCase)) with training_args.main_process_first(desc='prediction dataset map pre-processing'): SCREAMING_SNAKE_CASE = predict_dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , ) # Get the metric function SCREAMING_SNAKE_CASE = evaluate.load('xnli') # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCAmelCase): SCREAMING_SNAKE_CASE = p.predictions[0] if isinstance(p.predictions , _UpperCAmelCase) else p.predictions SCREAMING_SNAKE_CASE = np.argmax(_UpperCAmelCase , axis=1) return metric.compute(predictions=_UpperCAmelCase , references=p.label_ids) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE = default_data_collator elif training_args.fpaa: SCREAMING_SNAKE_CASE = DataCollatorWithPadding(_UpperCAmelCase , pad_to_multiple_of=8) else: SCREAMING_SNAKE_CASE = None # Initialize our Trainer SCREAMING_SNAKE_CASE = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_UpperCAmelCase , tokenizer=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE = last_checkpoint SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=_UpperCAmelCase) SCREAMING_SNAKE_CASE = train_result.metrics SCREAMING_SNAKE_CASE = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCAmelCase) ) SCREAMING_SNAKE_CASE = min(_UpperCAmelCase , len(_UpperCAmelCase)) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _UpperCAmelCase) trainer.save_metrics('train' , _UpperCAmelCase) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***') SCREAMING_SNAKE_CASE = trainer.evaluate(eval_dataset=_UpperCAmelCase) SCREAMING_SNAKE_CASE = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCAmelCase) SCREAMING_SNAKE_CASE = min(_UpperCAmelCase , len(_UpperCAmelCase)) trainer.log_metrics('eval' , _UpperCAmelCase) trainer.save_metrics('eval' , _UpperCAmelCase) # Prediction if training_args.do_predict: logger.info('*** Predict ***') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = trainer.predict(_UpperCAmelCase , metric_key_prefix='predict') SCREAMING_SNAKE_CASE = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_UpperCAmelCase) ) SCREAMING_SNAKE_CASE = min(_UpperCAmelCase , len(_UpperCAmelCase)) trainer.log_metrics('predict' , _UpperCAmelCase) trainer.save_metrics('predict' , _UpperCAmelCase) SCREAMING_SNAKE_CASE = np.argmax(_UpperCAmelCase , axis=1) SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , 'predictions.txt') if trainer.is_world_process_zero(): with open(_UpperCAmelCase , 'w') as writer: writer.write('index\tprediction\n') for index, item in enumerate(_UpperCAmelCase): SCREAMING_SNAKE_CASE = label_list[item] writer.write(F'''{index}\t{item}\n''') if __name__ == "__main__": main()
444
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : List[str] = { """tiiuae/falcon-40b""": """https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json""", """tiiuae/falcon-7b""": """https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json""", } class A__ ( A__ ): """simple docstring""" _lowercase = 'falcon' _lowercase = ['past_key_values'] def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any]=65_024 , lowerCamelCase__ : List[Any]=4_544 , lowerCamelCase__ : str=32 , lowerCamelCase__ : List[Any]=71 , lowerCamelCase__ : List[Any]=1E-5 , lowerCamelCase__ : List[Any]=0.02 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : Tuple=False , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : int=11 , lowerCamelCase__ : List[Any]=11 , **lowerCamelCase__ : int , ): a__ : Any = vocab_size # Backward compatibility with n_embed kwarg a__ : Dict = kwargs.pop("n_embed" , lowerCamelCase__ ) a__ : str = hidden_size if n_embed is None else n_embed a__ : Tuple = num_hidden_layers a__ : Dict = num_attention_heads a__ : Tuple = layer_norm_epsilon a__ : List[str] = initializer_range a__ : Dict = use_cache a__ : Tuple = hidden_dropout a__ : str = attention_dropout a__ : str = bos_token_id a__ : Any = eos_token_id a__ : Tuple = num_attention_heads if num_kv_heads is None else num_kv_heads a__ : Union[str, Any] = alibi a__ : List[str] = new_decoder_architecture a__ : Optional[Any] = multi_query # Ignored when new_decoder_architecture is True a__ : int = parallel_attn a__ : Any = bias super().__init__(bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) @property def _UpperCamelCase( self : Optional[Any] ): return self.hidden_size // self.num_attention_heads @property def _UpperCamelCase( self : Dict ): return not self.alibi
37
def _lowerCamelCase ( a_ : str): return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def _lowerCamelCase ( a_ : str): lowerCamelCase :Union[str, Any] = credit_card_number lowerCamelCase :Tuple = 0 lowerCamelCase :Any = len(a_) - 2 for i in range(a_ , -1 , -2): # double the value of every second digit lowerCamelCase :Any = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 lowerCamelCase :Optional[int] = cc_number[:i] + str(a_) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(a_) - 1 , -1 , -2): total += int(cc_number[i]) return total % 10 == 0 def _lowerCamelCase ( a_ : str): lowerCamelCase :Union[str, Any] = F"{credit_card_number} is an invalid credit card number because" if not credit_card_number.isdigit(): print(F"{error_message} it has nonnumerical characters.") return False if not 13 <= len(a_) <= 16: print(F"{error_message} of its length.") return False if not validate_initial_digits(a_): print(F"{error_message} of its first two digits.") return False if not luhn_validation(a_): print(F"{error_message} it fails the Luhn check.") return False print(F"{credit_card_number} is a valid credit card number.") return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
166
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_: str ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Optional[Any] =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Union[str, Any] =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: List[Any] =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Union[str, Any] =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: Dict =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
715
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class __A ( UpperCamelCase__ ): a__ : Optional[int] = """Wav2Vec2FeatureExtractor""" a__ : Dict = """AutoTokenizer""" def __init__(self : Any , __a : Union[str, Any] , __a : List[str] ): super().__init__(__a , __a ) UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False @classmethod def _lowercase (cls : List[str] , __a : Dict , **__a : int ): try: return super().from_pretrained(__a , **__a ) except OSError: warnings.warn( f"""Loading a tokenizer inside {cls.__name__} from a config that does not""" " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , __a , ) UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(__a , **__a ) UpperCAmelCase_ = WavaVecaCTCTokenizer.from_pretrained(__a , **__a ) return cls(feature_extractor=__a , tokenizer=__a ) def __call__(self : Optional[int] , *__a : int , **__a : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__a , **__a ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) UpperCAmelCase_ = kwargs.pop("raw_speech" ) else: UpperCAmelCase_ = kwargs.pop("audio" , __a ) UpperCAmelCase_ = kwargs.pop("sampling_rate" , __a ) UpperCAmelCase_ = kwargs.pop("text" , __a ) if len(__a ) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: UpperCAmelCase_ = self.feature_extractor(__a , *__a , sampling_rate=__a , **__a ) if text is not None: UpperCAmelCase_ = self.tokenizer(__a , **__a ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase_ = encodings["input_ids"] return inputs def _lowercase (self : List[Any] , *__a : Optional[Any] , **__a : Dict ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__a , **__a ) UpperCAmelCase_ = kwargs.pop("input_features" , __a ) UpperCAmelCase_ = kwargs.pop("labels" , __a ) if len(__a ) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if input_features is not None: UpperCAmelCase_ = self.feature_extractor.pad(__a , *__a , **__a ) if labels is not None: UpperCAmelCase_ = self.tokenizer.pad(__a , **__a ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase_ = labels["input_ids"] return input_features def _lowercase (self : Tuple , *__a : List[Any] , **__a : Optional[int] ): return self.tokenizer.batch_decode(*__a , **__a ) def _lowercase (self : Any , *__a : Any , **__a : str ): return self.tokenizer.decode(*__a , **__a ) @contextmanager def _lowercase (self : Optional[Any] ): warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) UpperCAmelCase_ = True UpperCAmelCase_ = self.tokenizer yield UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False
415
0