code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] ) -> Tuple: """simple docstring""" return f"""gaussian_noise_s={seed}_shape={"_".join([str(lowerCamelCase ) for s in shape] )}.npy""" def lowerCamelCase ( self : List[Any] ) -> Any: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCamelCase ( self : int , lowerCamelCase : List[Any]=0 , lowerCamelCase : Tuple=(4, 4, 64, 64) , lowerCamelCase : Tuple=False ) -> Tuple: """simple docstring""" _UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa _UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(lowerCamelCase , lowerCamelCase ) ) , dtype=lowerCamelCase ) return image def lowerCamelCase ( self : Optional[int] , lowerCamelCase : Tuple=False , lowerCamelCase : str="CompVis/stable-diffusion-v1-4" ) -> Any: """simple docstring""" _UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa _UpperCAmelCase = """bf16""" if fpaa else None _UpperCAmelCase , _UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( lowerCamelCase , subfolder="""unet""" , dtype=lowerCamelCase , revision=lowerCamelCase ) return model, params def lowerCamelCase ( self : Tuple , lowerCamelCase : Any=0 , lowerCamelCase : Any=(4, 77, 768) , lowerCamelCase : Optional[Any]=False ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa _UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(lowerCamelCase , lowerCamelCase ) ) , dtype=lowerCamelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def lowerCamelCase ( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : List[str] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=lowerCamelCase ) _UpperCAmelCase = self.get_latents(lowerCamelCase , fpaa=lowerCamelCase ) _UpperCAmelCase = self.get_encoder_hidden_states(lowerCamelCase , fpaa=lowerCamelCase ) _UpperCAmelCase = model.apply( {"""params""": params} , lowerCamelCase , jnp.array(lowerCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=lowerCamelCase , ).sample assert sample.shape == latents.shape _UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _UpperCAmelCase = jnp.array(lowerCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCamelCase , lowerCamelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def lowerCamelCase ( self : Any , lowerCamelCase : Any , lowerCamelCase : str , lowerCamelCase : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=lowerCamelCase ) _UpperCAmelCase = self.get_latents(lowerCamelCase , shape=(4, 4, 96, 96) , fpaa=lowerCamelCase ) _UpperCAmelCase = self.get_encoder_hidden_states(lowerCamelCase , shape=(4, 77, 1024) , fpaa=lowerCamelCase ) _UpperCAmelCase = model.apply( {"""params""": params} , lowerCamelCase , jnp.array(lowerCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=lowerCamelCase , ).sample assert sample.shape == latents.shape _UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _UpperCAmelCase = jnp.array(lowerCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCamelCase , lowerCamelCase , atol=1E-2 )
108
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase__ ) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str =field(default="""image-classification""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) __UpperCAmelCase : ClassVar[Features] =Features({"""image""": Image()} ) __UpperCAmelCase : ClassVar[Features] =Features({"""labels""": ClassLabel} ) __UpperCAmelCase : str ="image" __UpperCAmelCase : str ="labels" def snake_case ( self , __a ): if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , __a ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) __lowerCAmelCase = copy.deepcopy(self ) __lowerCAmelCase = self.label_schema.copy() __lowerCAmelCase = features[self.label_column] __lowerCAmelCase = label_schema return task_template @property def snake_case ( self ): return { self.image_column: "image", self.label_column: "labels", }
636
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _UpperCAmelCase ( A , A ): '''simple docstring''' UpperCAmelCase__ =k_size // 2 UpperCAmelCase__ , UpperCAmelCase__ =mgrid[0 - center : k_size - center, 0 - center : k_size - center] UpperCAmelCase__ =1 / (2 * pi * sigma) * exp(-(square(UpperCAmelCase__ ) + square(UpperCAmelCase__ )) / (2 * square(UpperCAmelCase__ )) ) return g def _UpperCAmelCase ( A , A , A ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ =image.shape[0], image.shape[1] # dst image height and width UpperCAmelCase__ =height - k_size + 1 UpperCAmelCase__ =width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows UpperCAmelCase__ =zeros((dst_height * dst_width, k_size * k_size) ) UpperCAmelCase__ =0 for i, j in product(range(UpperCAmelCase__ ) , range(UpperCAmelCase__ ) ): UpperCAmelCase__ =ravel(image[i : i + k_size, j : j + k_size] ) UpperCAmelCase__ =window row += 1 # turn the kernel into shape(k*k, 1) UpperCAmelCase__ =gen_gaussian_kernel(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase__ =ravel(UpperCAmelCase__ ) # reshape and get the dst image UpperCAmelCase__ =dot(UpperCAmelCase__ , UpperCAmelCase__ ).reshape(UpperCAmelCase__ , UpperCAmelCase__ ).astype(UpperCAmelCase__ ) return dst if __name__ == "__main__": # read original image UpperCamelCase_ = imread(R'../image_data/lena.jpg') # turn image in gray scale value UpperCamelCase_ = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size UpperCamelCase_ = gaussian_filter(gray, 3, sigma=1) UpperCamelCase_ = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('gaussian filter with 3x3 mask', gaussianaxa) imshow('gaussian filter with 5x5 mask', gaussianaxa) waitKey()
710
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case_ : '''simple docstring''' def __init__( self, A_, A_=13, A_=10, A_=3, A_=2, A_=2, A_=2, A_=True, A_=True, A_=32, A_=5, A_=4, A_=37, A_="gelu", A_=0.1, A_=0.1, A_=10, A_=0.02, A_=0.9, A_=None, ) -> int: UpperCAmelCase__ =parent UpperCAmelCase__ =batch_size UpperCAmelCase__ =image_size UpperCAmelCase__ =num_channels UpperCAmelCase__ =patch_size UpperCAmelCase__ =tubelet_size UpperCAmelCase__ =num_frames UpperCAmelCase__ =is_training UpperCAmelCase__ =use_labels UpperCAmelCase__ =hidden_size UpperCAmelCase__ =num_hidden_layers UpperCAmelCase__ =num_attention_heads UpperCAmelCase__ =intermediate_size UpperCAmelCase__ =hidden_act UpperCAmelCase__ =hidden_dropout_prob UpperCAmelCase__ =attention_probs_dropout_prob UpperCAmelCase__ =type_sequence_label_size UpperCAmelCase__ =initializer_range UpperCAmelCase__ =mask_ratio UpperCAmelCase__ =scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame UpperCAmelCase__ =(image_size // patch_size) ** 2 UpperCAmelCase__ =(num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos UpperCAmelCase__ =int(mask_ratio * self.seq_length ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase__ =floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ =None if self.use_labels: UpperCAmelCase__ =ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase__ =self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ) -> Union[str, Any]: return VideoMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_frames=self.num_frames, tubelet_size=self.tubelet_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=A_, initializer_range=self.initializer_range, ) def __UpperCAmelCase ( self, A_, A_, A_ ) -> Dict: UpperCAmelCase__ =VideoMAEModel(config=A_ ) model.to(A_ ) model.eval() UpperCAmelCase__ =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self, A_, A_, A_ ) -> Optional[Any]: UpperCAmelCase__ =VideoMAEForPreTraining(A_ ) model.to(A_ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch UpperCAmelCase__ =torch.ones((self.num_masks,) ) UpperCAmelCase__ =torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) UpperCAmelCase__ =mask.expand(self.batch_size, -1 ).bool() UpperCAmelCase__ =model(A_, A_ ) # model only returns predictions for masked patches UpperCAmelCase__ =mask.sum().item() UpperCAmelCase__ =3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_masked_patches, decoder_num_labels) ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase__ =self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =config_and_inputs UpperCAmelCase__ ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case_ ( a, a, unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __UpperCamelCase = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase__ =VideoMAEModelTester(self ) UpperCAmelCase__ =ConfigTester(self, config_class=A_, has_text_modality=A_, hidden_size=37 ) def __UpperCAmelCase ( self, A_, A_, A_=False ) -> Optional[int]: UpperCAmelCase__ =copy.deepcopy(A_ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch UpperCAmelCase__ =torch.ones((self.model_tester.num_masks,) ) UpperCAmelCase__ =torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) UpperCAmelCase__ =mask.expand(self.model_tester.batch_size, -1 ).bool() UpperCAmelCase__ =bool_masked_pos.to(A_ ) if return_labels: if model_class in [ *get_values(A_ ), ]: UpperCAmelCase__ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=A_ ) return inputs_dict def __UpperCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def __UpperCAmelCase ( self ) -> Any: pass def __UpperCAmelCase ( self ) -> int: UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ =model_class(A_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase__ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_, nn.Linear ) ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ =model_class(A_ ) UpperCAmelCase__ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ =[*signature.parameters.keys()] UpperCAmelCase__ =["pixel_values"] self.assertListEqual(arg_names[:1], A_ ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A_ ) @slow def __UpperCAmelCase ( self ) -> int: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ =VideoMAEModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def __UpperCAmelCase ( self ) -> Tuple: if not self.has_attentions: pass else: UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ =True for model_class in self.all_model_classes: UpperCAmelCase__ =self.model_tester.seq_length - self.model_tester.num_masks UpperCAmelCase__ =( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) UpperCAmelCase__ =True UpperCAmelCase__ =False UpperCAmelCase__ =True UpperCAmelCase__ =model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCAmelCase__ =model(**self._prepare_for_class(A_, A_ ) ) UpperCAmelCase__ =outputs.attentions self.assertEqual(len(A_ ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ =True UpperCAmelCase__ =model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCAmelCase__ =model(**self._prepare_for_class(A_, A_ ) ) UpperCAmelCase__ =outputs.attentions self.assertEqual(len(A_ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) UpperCAmelCase__ =len(A_ ) # Check attention is always last and order is fine UpperCAmelCase__ =True UpperCAmelCase__ =True UpperCAmelCase__ =model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCAmelCase__ =model(**self._prepare_for_class(A_, A_ ) ) self.assertEqual(out_len + 1, len(A_ ) ) UpperCAmelCase__ =outputs.attentions self.assertEqual(len(A_ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def __UpperCAmelCase ( self ) -> Dict: def check_hidden_states_output(A_, A_, A_ ): UpperCAmelCase__ =model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCAmelCase__ =model(**self._prepare_for_class(A_, A_ ) ) UpperCAmelCase__ =outputs.hidden_states UpperCAmelCase__ =self.model_tester.num_hidden_layers + 1 self.assertEqual(len(A_ ), A_ ) UpperCAmelCase__ =self.model_tester.seq_length - self.model_tester.num_masks UpperCAmelCase__ =num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ =True check_hidden_states_output(A_, A_, A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ =True check_hidden_states_output(A_, A_, A_ ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ =hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) UpperCAmelCase__ =np.load(A ) return list(A ) @require_torch @require_vision class snake_case_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ) -> Any: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase__ =VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( A_ ) UpperCAmelCase__ =self.default_image_processor UpperCAmelCase__ =prepare_video() UpperCAmelCase__ =image_processor(A_, return_tensors="pt" ).to(A_ ) # forward pass with torch.no_grad(): UpperCAmelCase__ =model(**A_ ) # verify the logits UpperCAmelCase__ =torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape, A_ ) UpperCAmelCase__ =torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], A_, atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase__ =VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(A_ ) UpperCAmelCase__ =self.default_image_processor UpperCAmelCase__ =prepare_video() UpperCAmelCase__ =image_processor(A_, return_tensors="pt" ).to(A_ ) # add boolean mask, indicating which patches to mask UpperCAmelCase__ =hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos", filename="bool_masked_pos.pt" ) UpperCAmelCase__ =torch.load(A_ ) # forward pass with torch.no_grad(): UpperCAmelCase__ =model(**A_ ) # verify the logits UpperCAmelCase__ =torch.Size([1, 1408, 1536] ) UpperCAmelCase__ =torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]], device=A_ ) self.assertEqual(outputs.logits.shape, A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], A_, atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) UpperCAmelCase__ =torch.tensor([0.51_42], device=A_ ) self.assertTrue(torch.allclose(outputs.loss, A_, atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) UpperCAmelCase__ =VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short", norm_pix_loss=A_ ).to( A_ ) with torch.no_grad(): UpperCAmelCase__ =model(**A_ ) UpperCAmelCase__ =torch.tensor(torch.tensor([0.64_69] ), device=A_ ) self.assertTrue(torch.allclose(outputs.loss, A_, atol=1E-4 ) )
510
0
from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[Any]: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __lowerCAmelCase ( _a ): @staticmethod def lowerCamelCase (__magic_name__ ) -> Tuple: '''simple docstring''' snake_case_ : Tuple = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=__magic_name__ , default=__magic_name__ , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=__magic_name__ , help='''Name of the model to download''' ) download_parser.set_defaults(func=__magic_name__ ) def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = model snake_case_ : List[str] = cache snake_case_ : List[str] = force snake_case_ : Optional[Any] = trust_remote_code def lowerCamelCase (self ) -> int: '''simple docstring''' from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
60
__a: List[Any] = { '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
108
0
"""simple docstring""" from collections import defaultdict from math import gcd def lowercase ( A_ = 1_500_000 )-> int: '''simple docstring''' a : defaultdict = defaultdict(A_ ) a : List[str] = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , A_ , 2 ): if gcd(A_ , A_ ) > 1: continue a : Optional[int] = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(A_ , limit + 1 , A_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
135
"""simple docstring""" # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers __lowercase = float("""nan""") class _A : """simple docstring""" def __init__( self : List[str] , __UpperCAmelCase : Optional[int]): a : Any = sys.stdout a : Any = open(__UpperCAmelCase , "a") def __getattr__( self : Dict , __UpperCAmelCase : List[Any]): return getattr(self.stdout , __UpperCAmelCase) def __snake_case ( self : Any , __UpperCAmelCase : Any): self.stdout.write(__UpperCAmelCase) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , __UpperCAmelCase , 0 , re.M)) def lowercase ( A_=80 , A_=False )-> List[str]: '''simple docstring''' a : List[Any] = [] # deal with critical env vars a : List[Any] = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: a : Any = os.environ.get(A_ , A_ ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) a : List[Any] = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(A_ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes a : Any = [] a : Any = "" while len(A_ ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(A_ ) == 0 or len(A_ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(A_ ) a : List[Any] = "" return "\\\n".join(A_ ) def lowercase ( A_ , A_ )-> Tuple: '''simple docstring''' a : List[str] = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own a : Optional[int] = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir a : Dict = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def lowercase ( A_ , A_ , A_ , A_ , A_ , A_ , A_ )-> int: '''simple docstring''' if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 1_0.3_1, 1_0_0.2, 5_5.6_6_6_6, 2_2_2.2_2_2_2_2_2_2_2] )} , ) a : Optional[Any] = subprocess.run(A_ , capture_output=A_ , text=A_ ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams a : List[str] = variation.replace(" " , "-" ) with open(Path(A_ ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(A_ ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: a : Dict = json.load(A_ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def lowercase ( A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , )-> Tuple: '''simple docstring''' a : List[Any] = [] a : List[str] = [] a : Union[str, Any] = F'''{id}: {variation:<{longest_variation_len}}''' a : Any = F'''{preamble}: ''' a : Optional[Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(A_ ) , desc=A_ , leave=A_ ): a : Dict = process_run_single( A_ , A_ , A_ , A_ , A_ , A_ , A_ ) a : Tuple = single_run_metrics[target_metric_key] if not math.isnan(A_ ): metrics.append(A_ ) results.append(A_ ) outcome += "✓" else: outcome += "✘" a : List[str] = F'''\33[2K\r{outcome}''' if len(A_ ) > 0: a : List[Any] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} a : Tuple = round(mean_metrics[target_metric_key] , 2 ) a : Optional[int] = F'''{outcome} {mean_target}''' if len(A_ ) > 1: results_str += F''' {tuple(round(A_ , 2 ) for x in results )}''' print(A_ ) a : Optional[int] = variation return mean_metrics else: print(A_ ) return {variation_key: variation, target_metric_key: nan} def lowercase ( )-> Any: '''simple docstring''' a : int = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def lowercase ( A_ , A_ , A_ , A_ , A_ )-> List[str]: '''simple docstring''' a : Optional[Any] = pd.DataFrame(A_ ) a : Tuple = "variation" a : Union[str, Any] = "diff_%" a : Optional[Any] = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan a : List[str] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(A_ ): # as a fallback, use the minimal value as the sentinel a : Optional[int] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(A_ ): a : Tuple = df.apply( lambda A_ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns a : str = [variation_key, target_metric_key, diff_key, *report_metric_keys] a : Tuple = df.reindex(A_ , axis="columns" ) # reorder cols # capitalize a : Tuple = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible a : Dict = df.rename(lambda A_ : c.replace("_" , "<br>" ) , axis="columns" ) a : Tuple = df.rename(lambda A_ : c.replace("_" , "\n" ) , axis="columns" ) a : Dict = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=A_ , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=A_ , floatfmt=".2f" )] print("\n\n".join(A_ ) ) def lowercase ( )-> List[str]: '''simple docstring''' a : str = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=A_ , type=A_ , required=A_ , help="Base cmd" , ) parser.add_argument( "--variations" , default=A_ , type=A_ , nargs="+" , required=A_ , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=A_ , type=A_ , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=A_ , type=A_ , required=A_ , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=A_ , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=A_ , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=A_ , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=A_ , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) a : int = parser.parse_args() a : str = args.output_dir Path(A_ ).mkdir(exist_ok=A_ ) a : Tuple = get_base_command(A_ , A_ ) # split each dimension into its --foo variations a : Optional[int] = [list(map(str.strip , re.split(R"\|" , A_ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty a : Union[str, Any] = list(map(str.strip , map(" ".join , itertools.product(*A_ ) ) ) ) a : str = max(len(A_ ) for x in variations ) # split wanted keys a : Tuple = args.report_metric_keys.split() # capture prints into a log file for convenience a : Optional[int] = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) a : str = Tee(A_ ) print(F'''\n*** Running {len(A_ )} benchmarks:''' ) print(F'''Base command: {" ".join(A_ )}''' ) a : str = "variation" a : List[Any] = [] for id, variation in enumerate(tqdm(A_ , desc="Total completion: " , leave=A_ ) ): a : List[Any] = base_cmd + variation.split() results.append( process_run( id + 1 , A_ , A_ , A_ , A_ , args.target_metric_key , A_ , args.repeat_times , A_ , args.verbose , ) ) process_results(A_ , args.target_metric_key , A_ , args.base_variation , A_ ) if __name__ == "__main__": main()
135
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class a (unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : int=7 , lowerCamelCase : Dict=3 , lowerCamelCase : Optional[Any]=18 , lowerCamelCase : Optional[Any]=30 , lowerCamelCase : Any=400 , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : List[str]=True , lowerCamelCase : Optional[int]=None , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : str=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , lowerCamelCase : Optional[int]=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , lowerCamelCase : Optional[int]=True , ) -> List[Any]: __snake_case : List[str] = size if size is not None else {"height": 224, "width": 224} __snake_case : List[str] = crop_size if crop_size is not None else {"height": 18, "width": 18} __snake_case : Tuple = parent __snake_case : List[str] = batch_size __snake_case : Union[str, Any] = num_channels __snake_case : Union[str, Any] = image_size __snake_case : Union[str, Any] = min_resolution __snake_case : str = max_resolution __snake_case : List[Any] = do_resize __snake_case : Optional[int] = size __snake_case : int = do_center_crop __snake_case : Dict = crop_size __snake_case : List[Any] = do_normalize __snake_case : str = image_mean __snake_case : Optional[int] = image_std __snake_case : Union[str, Any] = do_convert_rgb def __snake_case ( self : str ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __snake_case ( self : Optional[Any] , lowerCamelCase : List[Any]=False , lowerCamelCase : Optional[Any]=False , lowerCamelCase : List[str]=False ) -> Optional[int]: assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __snake_case : List[str] = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: __snake_case : List[str] = [] for i in range(self.batch_size ): __snake_case , __snake_case : Tuple = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __snake_case : str = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] if torchify: __snake_case : Dict = [torch.from_numpy(lowerCamelCase ) for x in image_inputs] return image_inputs @require_torch @require_vision class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = ChineseCLIPImageProcessor if is_vision_available() else None def __snake_case ( self : int ) -> str: __snake_case : Optional[Any] = ChineseCLIPImageProcessingTester(self , do_center_crop=lowerCamelCase ) @property def __snake_case ( self : List[str] ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : Union[str, Any] ) -> Optional[Any]: __snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_center_crop" ) ) self.assertTrue(hasattr(lowerCamelCase , "center_crop" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_convert_rgb" ) ) def __snake_case ( self : List[Any] ) -> Dict: __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 224, "width": 224} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def __snake_case ( self : str ) -> int: pass def __snake_case ( self : Optional[int] ) -> Any: # Initialize image_processing __snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : List[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __snake_case : Dict = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __snake_case ( self : Optional[Any] ) -> Optional[int]: # Initialize image_processing __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : Any = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __snake_case : List[str] = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __snake_case ( self : Any ) -> Dict: # Initialize image_processing __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : str = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __snake_case : Dict = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ChineseCLIPImageProcessor if is_vision_available() else None def __snake_case ( self : Tuple ) -> Optional[int]: __snake_case : Optional[int] = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=lowerCamelCase ) __snake_case : Any = 3 @property def __snake_case ( self : List[Any] ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : List[str] ) -> Union[str, Any]: __snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_center_crop" ) ) self.assertTrue(hasattr(lowerCamelCase , "center_crop" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_convert_rgb" ) ) def __snake_case ( self : int ) -> Tuple: pass def __snake_case ( self : List[Any] ) -> Any: # Initialize image_processing __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Union[str, Any] = self.image_processor_tester.prepare_inputs(equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __snake_case : List[Any] = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
81
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _snake_case : Optional[int] = logging.get_logger(__name__) class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Optional[Any] , *lowerCamelCase : Any , **lowerCamelCase : Union[str, Any] ) -> None: warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
81
1
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> np.ndarray: """simple docstring""" _UpperCAmelCase = cva.getAffineTransform(_A , _A ) return cva.warpAffine(_A , _A , (rows, cols) ) if __name__ == "__main__": # read original image a : List[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value a : Optional[Any] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape a , a : Dict = gray_img.shape # set different points to rotate image a : str = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) a : Union[str, Any] = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) a : Union[str, Any] = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) a : List[str] = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list a : Any = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations a : Optional[int] = plt.figure(1) a : Dict = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
19
"""simple docstring""" from collections.abc import Callable import numpy as np def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> np.array: """simple docstring""" _UpperCAmelCase = int(np.ceil((x_end - xa) / step_size ) ) _UpperCAmelCase = np.zeros((n + 1,) ) _UpperCAmelCase = ya _UpperCAmelCase = xa for k in range(_A ): _UpperCAmelCase = y[k] + step_size * ode_func(_A , y[k] ) _UpperCAmelCase = y[k] + ( (step_size / 2) * (ode_func(_A , y[k] ) + ode_func(x + step_size , _A )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
19
1
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ : def __init__( self : Tuple , _A : Any , _A : List[str]=13 , _A : Optional[int]=[30, 30] , _A : List[str]=2 , _A : Union[str, Any]=3 , _A : Union[str, Any]=True , _A : Optional[Any]=True , _A : Tuple=32 , _A : Optional[Any]=5 , _A : List[Any]=4 , _A : Any=37 , _A : List[str]="gelu" , _A : Tuple=0.1 , _A : str=0.1 , _A : Tuple=10 , _A : List[Any]=0.0_2 , _A : Any=3 , _A : Optional[int]=None , _A : Tuple=8 , _A : Optional[Any]=10 , ): '''simple docstring''' UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : Dict = batch_size UpperCAmelCase__ : str = image_size UpperCAmelCase__ : List[Any] = patch_size UpperCAmelCase__ : str = num_channels UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : Optional[int] = use_labels UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : Dict = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : List[str] = hidden_act UpperCAmelCase__ : str = hidden_dropout_prob UpperCAmelCase__ : List[str] = attention_probs_dropout_prob UpperCAmelCase__ : Optional[Any] = type_sequence_label_size UpperCAmelCase__ : List[str] = initializer_range UpperCAmelCase__ : str = num_labels UpperCAmelCase__ : List[str] = scope UpperCAmelCase__ : Union[str, Any] = n_targets UpperCAmelCase__ : int = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens UpperCAmelCase__ : Any = (image_size[1] // patch_size) * (image_size[0] // patch_size) UpperCAmelCase__ : Tuple = num_patches + 1 + self.num_detection_tokens def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) UpperCAmelCase__ : Optional[int] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) UpperCAmelCase__ : List[Any] = [] for i in range(self.batch_size ): UpperCAmelCase__ : str = {} UpperCAmelCase__ : Optional[Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_A ) UpperCAmelCase__ : Union[str, Any] = torch.rand(self.n_targets , 4 , device=_A ) labels.append(_A ) UpperCAmelCase__ : List[Any] = self.get_config() return config, pixel_values, labels def lowercase_ ( self : Tuple ): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def lowercase_ ( self : Union[str, Any] , _A : int , _A : List[str] , _A : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = YolosModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase__ : List[Any] = model(_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def lowercase_ ( self : List[Any] , _A : Union[str, Any] , _A : Dict , _A : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = YolosForObjectDetection(_A ) model.to(_A ) model.eval() UpperCAmelCase__ : Optional[Any] = model(pixel_values=_A ) UpperCAmelCase__ : Dict = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) UpperCAmelCase__ : Dict = model(pixel_values=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : int = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = config_and_inputs UpperCAmelCase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCAmelCase__ = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : Union[str, Any] , _A : List[str] , _A : Union[str, Any] , _A : Any=False ): '''simple docstring''' UpperCAmelCase__ : Tuple = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": UpperCAmelCase__ : int = [] for i in range(self.model_tester.batch_size ): UpperCAmelCase__ : str = {} UpperCAmelCase__ : str = torch.ones( size=(self.model_tester.n_targets,) , device=_A , dtype=torch.long ) UpperCAmelCase__ : str = torch.ones( self.model_tester.n_targets , 4 , device=_A , dtype=torch.float ) labels.append(_A ) UpperCAmelCase__ : str = labels return inputs_dict def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = YolosModelTester(self ) UpperCAmelCase__ : Optional[int] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' pass def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(_A ) UpperCAmelCase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : List[str] = [*signature.parameters.keys()] UpperCAmelCase__ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : List[Any] = True # in YOLOS, the seq_len is different UpperCAmelCase__ : Union[str, Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: UpperCAmelCase__ : Any = True UpperCAmelCase__ : Any = False UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Union[str, Any] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase__ : Any = outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : int = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase__ : Any = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase__ : str = outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) UpperCAmelCase__ : str = len(_A ) # Check attention is always last and order is fine UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Optional[int] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase__ : Any = 1 self.assertEqual(out_len + added_hidden_states , len(_A ) ) UpperCAmelCase__ : List[str] = outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' def check_hidden_states_output(_A : Optional[int] , _A : int , _A : List[str] ): UpperCAmelCase__ : Union[str, Any] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase__ : str = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase__ : Optional[int] = outputs.hidden_states UpperCAmelCase__ : List[str] = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_A ) , _A ) # YOLOS has a different seq_length UpperCAmelCase__ : Optional[Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : Any = True check_hidden_states_output(_A , _A , _A ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_A ) @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : str = YolosModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def a__ ( ) -> Dict: UpperCAmelCase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowercase_ ( self : List[str] ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(_A ) UpperCAmelCase__ : Optional[Any] = self.default_image_processor UpperCAmelCase__ : Dict = prepare_img() UpperCAmelCase__ : Dict = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(inputs.pixel_values ) # verify outputs UpperCAmelCase__ : Any = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase__ : Dict = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=_A , ) UpperCAmelCase__ : Optional[Any] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _A , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _A , atol=1e-4 ) ) # verify postprocessing UpperCAmelCase__ : Any = image_processor.post_process_object_detection( _A , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] UpperCAmelCase__ : str = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(_A ) UpperCAmelCase__ : Any = [75, 75, 17, 63, 17] UpperCAmelCase__ : int = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(_A ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , _A , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , _A ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , _A ) )
75
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": UpperCamelCase__ = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') UpperCamelCase__ = F"""https://www.google.com/search?q={query}&num=100""" UpperCamelCase__ = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: UpperCamelCase__ = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: UpperCamelCase__ = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
75
1
from collections.abc import Sequence def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = None ) -> Dict: if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) snake_case__ = nums[0] for i in range(1 , len(__lowerCAmelCase ) ): snake_case__ = nums[i] snake_case__ = max(__lowerCAmelCase , ans + num , __lowerCAmelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCamelCase__ : Optional[Any] = int(input("""Enter number of elements : """).strip()) lowerCamelCase__ : Union[str, Any] = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n] print(max_subsequence_sum(array))
701
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = abs(__lowerCAmelCase ) snake_case__ = 0 while n > 0: res += n % 10 n //= 10 return res def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: snake_case__ = abs(__lowerCAmelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: return sum(int(__lowerCAmelCase ) for c in str(abs(__lowerCAmelCase ) ) ) def SCREAMING_SNAKE_CASE ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) -> None: snake_case__ = F"""{func.__name__}({value})""" snake_case__ = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__lowerCAmelCase )} -- {timing:.4f} seconds""" ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
208
0
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = np.inf def set_batch_size(_SCREAMING_SNAKE_CASE ) -> None: nonlocal batch_size if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = min(_SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = min(_SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and feature.dtype == "binary": __lowercase = min(_SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return None if batch_size is np.inf else batch_size class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : NestedDataStructureLike[PathLike] , lowerCamelCase : Optional[NamedSplit] = None , lowerCamelCase : Optional[Features] = None , lowerCamelCase : str = None , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : Optional[int] = None , **lowerCamelCase : Tuple , ): '''simple docstring''' super().__init__( lowerCamelCase , split=lowerCamelCase , features=lowerCamelCase , cache_dir=lowerCamelCase , keep_in_memory=lowerCamelCase , streaming=lowerCamelCase , num_proc=lowerCamelCase , **lowerCamelCase , ) __lowercase = path_or_paths if isinstance(lowerCamelCase , lowerCamelCase ) else {self.split: path_or_paths} __lowercase = _PACKAGED_DATASETS_MODULES["parquet"][1] __lowercase = Parquet( cache_dir=lowerCamelCase , data_files=lowerCamelCase , features=lowerCamelCase , hash=lowerCamelCase , **lowerCamelCase , ) def _snake_case ( self : List[Any] ): '''simple docstring''' if self.streaming: __lowercase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowercase = None __lowercase = None __lowercase = None __lowercase = None self.builder.download_and_prepare( download_config=lowerCamelCase , download_mode=lowerCamelCase , verification_mode=lowerCamelCase , base_path=lowerCamelCase , num_proc=self.num_proc , ) __lowercase = self.builder.as_dataset( split=self.split , verification_mode=lowerCamelCase , in_memory=self.keep_in_memory ) return dataset class _A : '''simple docstring''' def __init__( self : Optional[Any] , lowerCamelCase : Dataset , lowerCamelCase : Union[PathLike, BinaryIO] , lowerCamelCase : Optional[int] = None , **lowerCamelCase : Tuple , ): '''simple docstring''' __lowercase = dataset __lowercase = path_or_buf __lowercase = batch_size or get_writer_batch_size(dataset.features ) __lowercase = parquet_writer_kwargs def _snake_case ( self : Any ): '''simple docstring''' __lowercase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: __lowercase = self._write(file_obj=lowerCamelCase , batch_size=lowerCamelCase , **self.parquet_writer_kwargs ) else: __lowercase = self._write(file_obj=self.path_or_buf , batch_size=lowerCamelCase , **self.parquet_writer_kwargs ) return written def _snake_case ( self : Tuple , lowerCamelCase : BinaryIO , lowerCamelCase : int , **lowerCamelCase : int ): '''simple docstring''' __lowercase = 0 __lowercase = parquet_writer_kwargs.pop("path_or_buf" , lowerCamelCase ) __lowercase = self.dataset.features.arrow_schema __lowercase = pq.ParquetWriter(lowerCamelCase , schema=lowerCamelCase , **lowerCamelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , lowerCamelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): __lowercase = query_table( table=self.dataset._data , key=slice(lowerCamelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(lowerCamelCase ) written += batch.nbytes writer.close() return written
402
from collections import defaultdict def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = 1 __lowercase = True for v in tree[start]: if v not in visited: ret += dfs(_SCREAMING_SNAKE_CASE ) if ret % 2 == 0: cuts.append(_SCREAMING_SNAKE_CASE ) return ret def snake_case_ ( ): dfs(1 ) if __name__ == "__main__": snake_case__ , snake_case__ : Optional[int] = 10, 9 snake_case__ : Optional[Any] = defaultdict(list) snake_case__ : dict[int, bool] = {} snake_case__ : list[int] = [] snake_case__ : List[str] = 0 snake_case__ : int = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
402
1
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCAmelCase__ = HUGGINGFACE_HUB_CACHE lowerCAmelCase__ = """config.json""" lowerCAmelCase__ = """diffusion_pytorch_model.bin""" lowerCAmelCase__ = """diffusion_flax_model.msgpack""" lowerCAmelCase__ = """model.onnx""" lowerCAmelCase__ = """diffusion_pytorch_model.safetensors""" lowerCAmelCase__ = """weights.pb""" lowerCAmelCase__ = """https://huggingface.co""" lowerCAmelCase__ = default_cache_path lowerCAmelCase__ = """diffusers_modules""" lowerCAmelCase__ = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) lowerCAmelCase__ = ["""fp16""", """non-ema"""] lowerCAmelCase__ = """.self_attn"""
700
from __future__ import annotations from dataclasses import dataclass @dataclass class snake_case : """simple docstring""" __lowerCAmelCase = 42 __lowerCAmelCase = None __lowerCAmelCase = None def __lowercase ( _UpperCAmelCase ) -> bool: '''simple docstring''' def is_valid_tree(_UpperCAmelCase ) -> bool: if node is None: return True if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(_UpperCAmelCase ): raise ValueError( "Each node should be type of TreeNode and data should be float." ) def is_binary_search_tree_recursive_check( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , _UpperCAmelCase , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , _UpperCAmelCase ) ) return is_binary_search_tree_recursive_check(_UpperCAmelCase , -float("inf" ) , float("inf" ) ) if __name__ == "__main__": import doctest doctest.testmod()
576
0
from __future__ import annotations from collections.abc import Generator def _a ( ): lowerCAmelCase__ : dict[int, int] = {} lowerCAmelCase__ : Dict = 2 while True: lowerCAmelCase__ : Optional[int] = factor_map.pop(__UpperCamelCase ,__UpperCamelCase ) if factor: lowerCAmelCase__ : Any = factor + prime while x in factor_map: x += factor lowerCAmelCase__ : Any = factor else: lowerCAmelCase__ : Tuple = prime yield prime prime += 1 def _a ( __UpperCamelCase : float = 1e10 ): lowerCAmelCase__ : Optional[int] = sieve() lowerCAmelCase__ : Tuple = 1 while True: lowerCAmelCase__ : int = next(__UpperCamelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCamelCase ) n += 2 if __name__ == "__main__": print(solution())
233
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Dict = logging.get_logger(__name__) A__ : Optional[Any] = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class lowercase ( __UpperCamelCase ): __a = """xmod""" def __init__( self , SCREAMING_SNAKE_CASE__=30522 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__="absolute" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=("en_XX",) , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Optional[int] = vocab_size lowerCAmelCase__ : str = hidden_size lowerCAmelCase__ : str = num_hidden_layers lowerCAmelCase__ : List[str] = num_attention_heads lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : str = intermediate_size lowerCAmelCase__ : List[str] = hidden_dropout_prob lowerCAmelCase__ : List[Any] = attention_probs_dropout_prob lowerCAmelCase__ : Tuple = max_position_embeddings lowerCAmelCase__ : Any = type_vocab_size lowerCAmelCase__ : Optional[Any] = initializer_range lowerCAmelCase__ : int = layer_norm_eps lowerCAmelCase__ : Tuple = position_embedding_type lowerCAmelCase__ : Any = use_cache lowerCAmelCase__ : Union[str, Any] = classifier_dropout lowerCAmelCase__ : List[str] = pre_norm lowerCAmelCase__ : str = adapter_reduction_factor lowerCAmelCase__ : Optional[int] = adapter_layer_norm lowerCAmelCase__ : List[Any] = adapter_reuse_layer_norm lowerCAmelCase__ : Optional[Any] = ln_before_adapter lowerCAmelCase__ : Optional[int] = list(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : List[str] = default_language class lowercase ( __UpperCamelCase ): @property def lowercase_ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase__ : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase__ : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
233
1
'''simple docstring''' import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[str] = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = os.path.abspath(UpperCamelCase__ ) logger.info(f"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model __UpperCAmelCase = tf.train.list_variables(UpperCamelCase__ ) __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") __UpperCAmelCase = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(f"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' __UpperCAmelCase = name[1:] # figure out how many levels deep the name is __UpperCAmelCase = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(UpperCamelCase__ ) # read data __UpperCAmelCase = tf.train.load_variable(UpperCamelCase__ , UpperCamelCase__ ) names.append('''/'''.join(UpperCamelCase__ ) ) arrays.append(UpperCamelCase__ ) logger.info(f"""Read a total of {len(UpperCamelCase__ ):,} layers""" ) # Sanity check if len(set(UpperCamelCase__ ) ) != 1: raise ValueError(f"""Found layer names with different depths (layer depth {list(set(UpperCamelCase__ ) )})""" ) __UpperCAmelCase = list(set(UpperCamelCase__ ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = full_name.split('''/''' ) __UpperCAmelCase = model __UpperCAmelCase = [] for i, m_name in enumerate(UpperCamelCase__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): __UpperCAmelCase = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''embeddings''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''encoder''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''layer''' ) __UpperCAmelCase = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''pooler''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''token_type_embeddings''' ) else: raise ValueError(f"""Unknown embedding layer with name {full_name}""" ) trace.append('''weight''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''attention''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''attention''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''output''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''attention''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''output''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''output''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''output''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''intermediate''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) __UpperCAmelCase = getattr(UpperCamelCase__ , '''weight''' ) else: logger.warning(f"""Ignored {m_name}""" ) # for certain layers reshape is necessary __UpperCAmelCase = '''.'''.join(UpperCamelCase__ ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , UpperCamelCase__ ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''' , UpperCamelCase__ ): __UpperCAmelCase = array.reshape(pointer.data.shape ) if "kernel" in full_name: __UpperCAmelCase = array.transpose() if pointer.shape == array.shape: __UpperCAmelCase = torch.from_numpy(UpperCamelCase__ ) else: raise ValueError( f"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" f""" {array.shape}""" ) logger.info(f"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any ): """simple docstring""" # Instantiate model logger.info(f"""Loading model based on config from {config_path}...""" ) __UpperCAmelCase = BertConfig.from_json_file(UpperCamelCase__ ) __UpperCAmelCase = BertModel(UpperCamelCase__ ) # Load weights from checkpoint logger.info(f"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model logger.info(f"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) __lowerCAmelCase : List[str] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
654
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] ): """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __UpperCAmelCase = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __UpperCAmelCase = in_proj_weight[ : encoder_config.hidden_size, : ] __UpperCAmelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __UpperCAmelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = dct.pop(UpperCamelCase__ ) __UpperCAmelCase = val def lowerCAmelCase ( UpperCamelCase__ : Dict ): """simple docstring""" if "handwritten" in checkpoint_url: __UpperCAmelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' __UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase = ViTConfig(image_size=3_8_4 , qkv_bias=UpperCamelCase__ ) __UpperCAmelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __UpperCAmelCase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = 4_0_9_6 __UpperCAmelCase = 2_4 __UpperCAmelCase = 1_6 __UpperCAmelCase = 1_0_2_4 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __UpperCAmelCase = False __UpperCAmelCase = '''relu''' __UpperCAmelCase = 1_0_2_4 __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False # load HuggingFace model __UpperCAmelCase = ViTModel(UpperCamelCase__ , add_pooling_layer=UpperCamelCase__ ) __UpperCAmelCase = TrOCRForCausalLM(UpperCamelCase__ ) __UpperCAmelCase = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) model.eval() # load state_dict of original model, rename some keys __UpperCAmelCase = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='''cpu''' , check_hash=UpperCamelCase__ )['''model'''] __UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __UpperCAmelCase = state_dict.pop(UpperCamelCase__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: __UpperCAmelCase = val else: __UpperCAmelCase = val # load state dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image __UpperCAmelCase = ViTImageProcessor(size=encoder_config.image_size ) __UpperCAmelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) __UpperCAmelCase = TrOCRProcessor(UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = processor(images=prepare_img(UpperCamelCase__ ) , return_tensors='''pt''' ).pixel_values # verify logits __UpperCAmelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __UpperCAmelCase = model(pixel_values=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ) __UpperCAmelCase = outputs.logits __UpperCAmelCase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: __UpperCAmelCase = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , UpperCamelCase__ , atol=1E-3 ), "First elements of logits not as expected" Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
654
1
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[int] = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class _snake_case ( A__ ): lowerCAmelCase_ : str = """efficientnet""" def __init__( self , a__ = 3 , a__ = 600 , a__ = 2.0 , a__ = 3.1 , a__ = 8 , a__ = [3, 3, 5, 3, 5, 5, 3] , a__ = [32, 16, 24, 40, 80, 112, 192] , a__ = [16, 24, 40, 80, 112, 192, 320] , a__ = [] , a__ = [1, 2, 2, 2, 1, 2, 1] , a__ = [1, 2, 2, 3, 3, 4, 1] , a__ = [1, 6, 6, 6, 6, 6, 6] , a__ = 0.2_5 , a__ = "swish" , a__ = 2_560 , a__ = "mean" , a__ = 0.0_2 , a__ = 0.0_0_1 , a__ = 0.9_9 , a__ = 0.5 , a__ = 0.2 , **a__ , ) -> Any: '''simple docstring''' super().__init__(**a_ ) snake_case_ = num_channels snake_case_ = image_size snake_case_ = width_coefficient snake_case_ = depth_coefficient snake_case_ = depth_divisor snake_case_ = kernel_sizes snake_case_ = in_channels snake_case_ = out_channels snake_case_ = depthwise_padding snake_case_ = strides snake_case_ = num_block_repeats snake_case_ = expand_ratios snake_case_ = squeeze_expansion_ratio snake_case_ = hidden_act snake_case_ = hidden_dim snake_case_ = pooling_type snake_case_ = initializer_range snake_case_ = batch_norm_eps snake_case_ = batch_norm_momentum snake_case_ = dropout_rate snake_case_ = drop_connect_rate snake_case_ = sum(a_ ) * 4 class _snake_case ( A__ ): lowerCAmelCase_ : Optional[int] = version.parse("1.11" ) @property def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return 1e-5
400
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase ( A__ , unittest.TestCase ): '''simple docstring''' a_ : str = GPTaTokenizer a_ : Dict = GPTaTokenizerFast a_ : List[Any] = True a_ : str = {"""add_prefix_space""": True} a_ : Dict = False def lowerCamelCase ( self : Tuple ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : List[Any] = dict(zip(a_ , range(len(a_ ) ) ) ) lowerCAmelCase_ : List[str] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : Optional[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def lowerCamelCase ( self : Optional[Any] , **a_ : Optional[Any] ): kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **a_ ) def lowerCamelCase ( self : List[Any] , **a_ : int ): kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **a_ ) def lowerCamelCase ( self : Tuple , a_ : Optional[Any] ): lowerCAmelCase_ : str = "lower newer" lowerCAmelCase_ : Dict = "lower newer" return input_text, output_text def lowerCamelCase ( self : int ): lowerCAmelCase_ : Any = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase_ : str = "lower newer" lowerCAmelCase_ : List[str] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Optional[Any] = tokenizer.tokenize(a_ , add_prefix_space=a_ ) self.assertListEqual(a_ , a_ ) lowerCAmelCase_ : List[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) def lowerCamelCase ( self : str ): if not self.test_rust_tokenizer: return lowerCAmelCase_ : int = self.get_tokenizer() lowerCAmelCase_ : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=a_ ) lowerCAmelCase_ : int = "lower newer" # Testing tokenization lowerCAmelCase_ : Optional[int] = tokenizer.tokenize(a_ , add_prefix_space=a_ ) lowerCAmelCase_ : int = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : List[str] = tokenizer.encode(a_ , add_special_tokens=a_ , add_prefix_space=a_ ) lowerCAmelCase_ : List[str] = rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : Any = self.get_rust_tokenizer(add_prefix_space=a_ ) lowerCAmelCase_ : List[Any] = tokenizer.encode(a_ , add_prefix_space=a_ ) lowerCAmelCase_ : str = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) # Testing the unknown token lowerCAmelCase_ : List[str] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a_ ) , a_ ) def lowerCamelCase ( self : Dict , *a_ : Optional[int] , **a_ : Union[str, Any] ): # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase ( self : Optional[int] , a_ : List[Any]=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : str = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) # Simple input lowerCAmelCase_ : Optional[int] = "This is a simple input" lowerCAmelCase_ : List[Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : List[str] = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(a_ , tokenizer_r.encode , a_ , max_length=a_ , padding="max_length" ) # Simple input self.assertRaises(a_ , tokenizer_r.encode_plus , a_ , max_length=a_ , padding="max_length" ) # Simple input self.assertRaises( a_ , tokenizer_r.batch_encode_plus , a_ , max_length=a_ , padding="max_length" , ) # Pair input self.assertRaises(a_ , tokenizer_r.encode , a_ , max_length=a_ , padding="max_length" ) # Pair input self.assertRaises(a_ , tokenizer_r.encode_plus , a_ , max_length=a_ , padding="max_length" ) # Pair input self.assertRaises( a_ , tokenizer_r.batch_encode_plus , a_ , max_length=a_ , padding="max_length" , ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Tuple = "This is a simple input" lowerCAmelCase_ : Any = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Union[str, Any] = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[Any] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : Dict = tokenizer.pad_token_id lowerCAmelCase_ : Union[str, Any] = tokenizer(a_ , padding="max_length" , max_length=30 , return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(a_ , padding=a_ , truncate=a_ , return_tensors="np" ) lowerCAmelCase_ : Dict = tokenizer(*a_ , padding="max_length" , max_length=60 , return_tensors="np" ) lowerCAmelCase_ : Union[str, Any] = tokenizer(a_ , padding=a_ , truncate=a_ , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : Tuple = "$$$" lowerCAmelCase_ : Optional[Any] = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=a_ , add_bos_token=a_ ) lowerCAmelCase_ : Tuple = "This is a simple input" lowerCAmelCase_ : Optional[int] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : Optional[Any] = tokenizer.bos_token_id lowerCAmelCase_ : int = tokenizer(a_ ) lowerCAmelCase_ : Optional[Any] = tokenizer(a_ ) self.assertEqual(out_s.input_ids[0] , a_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : int = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : List[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def lowerCamelCase ( self : List[str] ): pass def lowerCamelCase ( self : List[Any] ): # TODO: change to self.get_tokenizers() when the fast version is implemented lowerCAmelCase_ : int = [self.get_tokenizer(do_lower_case=a_ , add_bos_token=a_ )] for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase_ : Optional[Any] = "Encode this." lowerCAmelCase_ : List[str] = "This one too please." lowerCAmelCase_ : Tuple = tokenizer.encode(a_ , add_special_tokens=a_ ) encoded_sequence += tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCAmelCase_ : Dict = tokenizer.encode_plus( a_ , a_ , add_special_tokens=a_ , return_special_tokens_mask=a_ , ) lowerCAmelCase_ : List[str] = encoded_sequence_dict["input_ids"] lowerCAmelCase_ : Optional[Any] = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(a_ ) , len(a_ ) ) lowerCAmelCase_ : str = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(a_ ) ] lowerCAmelCase_ : List[Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(a_ , a_ ) @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : str ): # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 lowerCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=a_ ) lowerCAmelCase_ : List[Any] = "A photo of a cat" lowerCAmelCase_ : Union[str, Any] = tokenizer.encode( a_ , ) self.assertEqual(a_ , [2, 2_50, 13_45, 9, 10, 47_58] ) tokenizer.save_pretrained("test_opt" ) lowerCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained("./test_opt" ) lowerCAmelCase_ : Optional[int] = tokenizer.encode( a_ , ) self.assertEqual(a_ , [2, 2_50, 13_45, 9, 10, 47_58] ) def lowerCamelCase ( self : int ): lowerCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=a_ ) lowerCAmelCase_ : Any = "A photo of a cat" lowerCAmelCase_ : List[str] = tokenizer.encode( a_ , ) # Same as above self.assertEqual(a_ , [2, 2_50, 13_45, 9, 10, 47_58] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=a_ ) lowerCAmelCase_ : Tuple = "bos" lowerCAmelCase_ : Dict = tokenizer.get_vocab()["bos"] lowerCAmelCase_ : List[Any] = "A photo of a cat" lowerCAmelCase_ : Optional[Any] = tokenizer.encode( a_ , ) # We changed the bos token self.assertEqual(a_ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] ) tokenizer.save_pretrained("./tok" ) lowerCAmelCase_ : str = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) lowerCAmelCase_ : int = tokenizer.encode( a_ , ) self.assertEqual(a_ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] )
610
0
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) lowercase_ = None lowercase_ = { "7B": 11008, "13B": 13824, "30B": 17920, "65B": 22016, "70B": 28672, } lowercase_ = { "7B": 1, "7Bf": 1, "13B": 2, "13Bf": 2, "30B": 4, "65B": 8, "70B": 8, "70Bf": 8, } def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : List[str]=256 ) -> List[str]: '''simple docstring''' return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def _snake_case( SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int=True ) -> str: '''simple docstring''' os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) A__ = os.path.join(SCREAMING_SNAKE_CASE__ , 'tmp' ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) A__ = read_json(os.path.join(SCREAMING_SNAKE_CASE__ , 'params.json' ) ) A__ = NUM_SHARDS[model_size] A__ = params['n_layers'] A__ = params['n_heads'] A__ = n_heads // num_shards A__ = params['dim'] A__ = dim // n_heads A__ = 1_0000.0 A__ = 1.0 / (base ** (torch.arange(0 , SCREAMING_SNAKE_CASE__ , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: A__ = params['n_kv_heads'] # for GQA / MQA A__ = n_heads_per_shard // num_key_value_heads A__ = dim // num_key_value_heads else: # compatibility with other checkpoints A__ = n_heads A__ = n_heads_per_shard A__ = dim # permute for sliced rotary def permute(SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple=n_heads , SCREAMING_SNAKE_CASE__ : Dict=dim , SCREAMING_SNAKE_CASE__ : Any=dim ): return w.view(SCREAMING_SNAKE_CASE__ , dima // n_heads // 2 , 2 , SCREAMING_SNAKE_CASE__ ).transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) A__ = torch.load(os.path.join(SCREAMING_SNAKE_CASE__ , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded A__ = [ torch.load(os.path.join(SCREAMING_SNAKE_CASE__ , f'consolidated.{i:02d}.pth' ) , map_location='cpu' ) for i in range(SCREAMING_SNAKE_CASE__ ) ] A__ = 0 A__ = {'weight_map': {}} for layer_i in range(SCREAMING_SNAKE_CASE__ ): A__ = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded A__ = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. A__ = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } A__ = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ) ] , dim=0 , ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) A__ = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ) ] , dim=0 , ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) A__ = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ) ] , dim=0 , ).reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(SCREAMING_SNAKE_CASE__ )] , dim=1 ) A__ = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(SCREAMING_SNAKE_CASE__ )] , dim=0 ) A__ = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(SCREAMING_SNAKE_CASE__ )] , dim=1 ) A__ = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(SCREAMING_SNAKE_CASE__ )] , dim=0 ) A__ = inv_freq for k, v in state_dict.items(): A__ = filename param_count += v.numel() torch.save(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) A__ = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded A__ = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: A__ = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(SCREAMING_SNAKE_CASE__ )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(SCREAMING_SNAKE_CASE__ )] , dim=0 ), } for k, v in state_dict.items(): A__ = filename param_count += v.numel() torch.save(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # Write configs A__ = {'total_size': param_count * 2} write_json(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , 'pytorch_model.bin.index.json' ) ) A__ = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 A__ = params['multiple_of'] if 'multiple_of' in params else 256 A__ = LlamaConfig( hidden_size=SCREAMING_SNAKE_CASE__ , intermediate_size=compute_intermediate_size(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=SCREAMING_SNAKE_CASE__ , ) config.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) A__ = LlamaForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa , low_cpu_mem_usage=SCREAMING_SNAKE_CASE__ ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ , safe_serialization=SCREAMING_SNAKE_CASE__ ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: '''simple docstring''' A__ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) A__ = tokenizer_class(SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) def _snake_case( ) -> Dict: '''simple docstring''' A__ = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=SCREAMING_SNAKE_CASE__ , help='Whether or not to save using `safetensors`.' ) A__ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) A__ = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
586
from math import loga def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('Input value must be a \'int\' type' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
586
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): A_ = ShapEPipeline A_ = ["prompt"] A_ = ["prompt"] A_ = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] A_ = False @property def __UpperCAmelCase ( self ): '''simple docstring''' return 32 @property def __UpperCAmelCase ( self ): '''simple docstring''' return 32 @property def __UpperCAmelCase ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def __UpperCAmelCase ( self ): '''simple docstring''' return 8 @property def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def __UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __a : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__a ) @property def __UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __a : Union[str, Any] = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __a : Optional[Any] = PriorTransformer(**__a ) return model @property def __UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __a : Optional[int] = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __a : Optional[Any] = ShapERenderer(**__a ) return model def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = self.dummy_prior __a : int = self.dummy_text_encoder __a : Optional[int] = self.dummy_tokenizer __a : int = self.dummy_renderer __a : Tuple = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=__a , clip_sample=__a , clip_sample_range=1.0 , ) __a : int = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def __UpperCAmelCase ( self , __a , __a=0 ): '''simple docstring''' if str(__a ).startswith('mps' ): __a : Any = torch.manual_seed(__a ) else: __a : Dict = torch.Generator(device=__a ).manual_seed(__a ) __a : Optional[Any] = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = 'cpu' __a : Any = self.get_dummy_components() __a : List[Any] = self.pipeline_class(**__a ) __a : Optional[int] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __a : Union[str, Any] = pipe(**self.get_dummy_inputs(__a ) ) __a : Optional[Any] = output.images[0] __a : Dict = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __a : Optional[Any] = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = torch_device == 'cpu' __a : Union[str, Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__a , relax_max_difference=__a , ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = self.get_dummy_components() __a : Any = self.pipeline_class(**__a ) __a : Any = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __a : int = 1 __a : int = 2 __a : int = self.get_dummy_inputs(__a ) for key in inputs.keys(): if key in self.batch_params: __a : Any = batch_size * [inputs[key]] __a : List[Any] = pipe(**__a , num_images_per_prompt=__a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __a : Dict = ShapEPipeline.from_pretrained('openai/shap-e' ) __a : Optional[int] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __a : Optional[int] = torch.Generator(device=__a ).manual_seed(0 ) __a : Dict = pipe( 'a shark' , generator=__a , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__a , __a )
476
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __lowercase : Any = 8 def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict=BITS ): __a : Optional[int] = x.device __a : Optional[int] = (x * 255).int().clamp(0 , 255 ) __a : Dict = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE ) __a : Optional[int] = rearrange(_SCREAMING_SNAKE_CASE , 'd -> d 1 1' ) __a : Dict = rearrange(_SCREAMING_SNAKE_CASE , 'b c h w -> b c 1 h w' ) __a : Dict = ((x & mask) != 0).float() __a : Dict = rearrange(_SCREAMING_SNAKE_CASE , 'b c d h w -> b (c d) h w' ) __a : List[str] = bits * 2 - 1 return bits def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[str]=BITS ): __a : Union[str, Any] = x.device __a : List[Any] = (x > 0).int() __a : Any = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE , dtype=torch.intaa ) __a : Tuple = rearrange(_SCREAMING_SNAKE_CASE , 'd -> d 1 1' ) __a : List[str] = rearrange(_SCREAMING_SNAKE_CASE , 'b (c d) h w -> b c d h w' , d=8 ) __a : List[Any] = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def lowerCamelCase (self : Dict , _SCREAMING_SNAKE_CASE : torch.FloatTensor , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : torch.FloatTensor , _SCREAMING_SNAKE_CASE : float = 0.0 , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : bool = True , ): if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __a : Any = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __a : Optional[int] = self.alphas_cumprod[timestep] __a : Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __a : List[Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __a : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __a : Optional[int] = self.bit_scale if self.config.clip_sample: __a : int = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __a : List[Any] = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Optional[Any] = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __a : Optional[int] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __a : List[str] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __a : str = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __a : List[Any] = model_output.device if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else 'cpu' __a : Tuple = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) __a : int = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ** 0.5 * eta * noise __a : Union[str, Any] = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (self : Any , _SCREAMING_SNAKE_CASE : torch.FloatTensor , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : torch.FloatTensor , _SCREAMING_SNAKE_CASE : Optional[Any]="epsilon" , _SCREAMING_SNAKE_CASE : int=None , _SCREAMING_SNAKE_CASE : bool = True , ): __a : Optional[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __a , __a : Any = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 ) else: __a : Any = None # 1. compute alphas, betas __a : Union[str, Any] = self.alphas_cumprod[t] __a : Tuple = self.alphas_cumprod[t - 1] if t > 0 else self.one __a : List[Any] = 1 - alpha_prod_t __a : Dict = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __a : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __a : List[str] = model_output else: raise ValueError(F"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" __a : Any = self.bit_scale if self.config.clip_sample: __a : List[str] = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __a : Optional[Any] = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __a : Optional[int] = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __a : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __a : int = 0 if t > 0: __a : Dict = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_SCREAMING_SNAKE_CASE ).to(model_output.device ) __a : Dict = (self._get_variance(_SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE ) ** 0.5) * noise __a : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) class __UpperCamelCase ( lowerCAmelCase_ ): def __init__( self , __a , __a , __a = 1.0 , ): '''simple docstring''' super().__init__() __a : Union[str, Any] = bit_scale __a : Optional[int] = ( ddim_bit_scheduler_step if isinstance(__a , __a ) else ddpm_bit_scheduler_step ) self.register_modules(unet=__a , scheduler=__a ) @torch.no_grad() def __call__( self , __a = 256 , __a = 256 , __a = 50 , __a = None , __a = 1 , __a = "pil" , __a = True , **__a , ): '''simple docstring''' __a : Any = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=__a , ) __a : Optional[Any] = decimal_to_bits(__a ) * self.bit_scale __a : Any = latents.to(self.device ) self.scheduler.set_timesteps(__a ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __a : Any = self.unet(__a , __a ).sample # compute the previous noisy sample x_t -> x_t-1 __a : List[str] = self.scheduler.step(__a , __a , __a ).prev_sample __a : Dict = bits_to_decimal(__a ) if output_type == "pil": __a : Dict = self.numpy_to_pil(__a ) if not return_dict: return (image,) return ImagePipelineOutput(images=__a )
476
1
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class a : """simple docstring""" def __init__( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any]=13 , lowerCamelCase__ : str=7 , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : str=True , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : List[Any]=99 , lowerCamelCase__ : Optional[Any]=[1, 1, 2] , lowerCamelCase__ : str=1 , lowerCamelCase__ : str=32 , lowerCamelCase__ : Any=4 , lowerCamelCase__ : Tuple=8 , lowerCamelCase__ : int=37 , lowerCamelCase__ : Optional[int]="gelu_new" , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : List[str]=0.0 , lowerCamelCase__ : Optional[Any]=512 , lowerCamelCase__ : int=3 , lowerCamelCase__ : List[str]=0.0_2 , lowerCamelCase__ : Optional[int]=3 , lowerCamelCase__ : List[str]=4 , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Any=False , ) -> List[str]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = block_sizes __lowercase = num_decoder_layers __lowercase = d_model __lowercase = n_head __lowercase = d_head __lowercase = d_inner __lowercase = hidden_act __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = 2 __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = initializer_std # Used in the tests to check the size of the first attention layer __lowercase = n_head # Used in the tests to check the size of the first hidden state __lowercase = self.d_model # Used in the tests to check the number of output hidden states/attentions __lowercase = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __lowercase = self.num_hidden_layers + 2 def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase_ ( self : Dict , lowerCamelCase__ : int , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] , ) -> str: """simple docstring""" __lowercase = TFFunnelModel(config=lowerCamelCase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowerCamelCase__ ) __lowercase = [input_ids, input_mask] __lowercase = model(lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __lowercase = False __lowercase = TFFunnelModel(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __lowercase = False __lowercase = TFFunnelModel(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def UpperCAmelCase_ ( self : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , ) -> Dict: """simple docstring""" __lowercase = TFFunnelBaseModel(config=lowerCamelCase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowerCamelCase__ ) __lowercase = [input_ids, input_mask] __lowercase = model(lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) __lowercase = False __lowercase = TFFunnelBaseModel(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) __lowercase = False __lowercase = TFFunnelBaseModel(config=lowerCamelCase__ ) __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def UpperCAmelCase_ ( self : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : str , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[str] , ) -> Optional[Any]: """simple docstring""" __lowercase = TFFunnelForPreTraining(config=lowerCamelCase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : Tuple , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : Dict , ) -> List[Any]: """simple docstring""" __lowercase = TFFunnelForMaskedLM(config=lowerCamelCase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : str , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int , ) -> Dict: """simple docstring""" __lowercase = self.num_labels __lowercase = TFFunnelForSequenceClassification(config=lowerCamelCase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , ) -> List[Any]: """simple docstring""" __lowercase = self.num_choices __lowercase = TFFunnelForMultipleChoice(config=lowerCamelCase__ ) __lowercase = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) __lowercase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict , ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = TFFunnelForTokenClassification(config=lowerCamelCase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , ) -> Any: """simple docstring""" __lowercase = TFFunnelForQuestionAnswering(config=lowerCamelCase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class a ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Tuple = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase_ : Union[str, Any] = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ : int = False UpperCamelCase_ : Optional[int] = False def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = TFFunnelModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCamelCase__ ) def UpperCAmelCase_ ( self : Any ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : int ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase__ ) @require_tf class a ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) UpperCamelCase_ : List[str] = False UpperCamelCase_ : str = False def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = TFFunnelModelTester(self , base=lowerCamelCase__ ) __lowercase = ConfigTester(self , config_class=lowerCamelCase__ ) def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Any ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCamelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase__ )
714
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : int = ['image_processor', 'tokenizer'] UpperCamelCase_ : Dict = 'OwlViTImageProcessor' UpperCamelCase_ : List[str] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : str , lowerCamelCase__ : Any=None , lowerCamelCase__ : List[Any]=None , **lowerCamelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCamelCase__ , ) __lowercase = kwargs.pop('''feature_extractor''' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def __call__( self : List[Any] , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : int=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="max_length" , lowerCamelCase__ : Union[str, Any]="np" , **lowerCamelCase__ : Dict ) -> Union[str, Any]: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(lowerCamelCase__ , lowerCamelCase__ ) or (isinstance(lowerCamelCase__ , lowerCamelCase__ ) and not isinstance(text[0] , lowerCamelCase__ )): __lowercase = [self.tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ )] elif isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(text[0] , lowerCamelCase__ ): __lowercase = [] # Maximum number of queries across batch __lowercase = max([len(lowerCamelCase__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCamelCase__ ) != max_num_queries: __lowercase = t + [''' '''] * (max_num_queries - len(lowerCamelCase__ )) __lowercase = self.tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) encodings.append(lowerCamelCase__ ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": __lowercase = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) __lowercase = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __lowercase = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) __lowercase = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __lowercase = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) __lowercase = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __lowercase = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) __lowercase = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) __lowercase = BatchEncoding() __lowercase = input_ids __lowercase = attention_mask if query_images is not None: __lowercase = BatchEncoding() __lowercase = self.image_processor( lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ).pixel_values __lowercase = query_pixel_values if images is not None: __lowercase = self.image_processor(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase__ ) , tensor_type=lowerCamelCase__ ) def UpperCAmelCase_ ( self : int , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[int] ) -> Tuple: """simple docstring""" return self.image_processor.post_process(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , *lowerCamelCase__ : Tuple , **lowerCamelCase__ : Tuple ) -> Union[str, Any]: """simple docstring""" return self.image_processor.post_process_object_detection(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase_ ( self : List[str] , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Optional[Any] ) -> List[Any]: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , *lowerCamelCase__ : str , **lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase_ ( self : str , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Union[str, Any] ) -> List[str]: """simple docstring""" return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property def UpperCAmelCase_ ( self : Tuple ) -> List[str]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCamelCase__ , ) return self.image_processor_class @property def UpperCAmelCase_ ( self : str ) -> Any: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCamelCase__ , ) return self.image_processor
362
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class lowerCAmelCase_ ( __SCREAMING_SNAKE_CASE ): _UpperCamelCase : Union[str, Any] = "vit_msn" def __init__( self , _lowerCAmelCase=7_6_8 , _lowerCAmelCase=1_2 , _lowerCAmelCase=1_2 , _lowerCAmelCase=3_0_7_2 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-06 , _lowerCAmelCase=2_2_4 , _lowerCAmelCase=1_6 , _lowerCAmelCase=3 , _lowerCAmelCase=True , **_lowerCAmelCase , ): super().__init__(**lowerCAmelCase__ ) _lowercase : Tuple = hidden_size _lowercase : List[Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : List[str] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Optional[Any] = initializer_range _lowercase : Union[str, Any] = layer_norm_eps _lowercase : str = image_size _lowercase : Optional[Any] = patch_size _lowercase : Any = num_channels _lowercase : int = qkv_bias
66
from ...processing_utils import ProcessorMixin class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """WhisperFeatureExtractor""" _UpperCAmelCase = """WhisperTokenizer""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.feature_extractor SCREAMING_SNAKE_CASE_ : List[Any] = False def UpperCamelCase__ ( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ): """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=lowerCAmelCase__ , language=lowerCAmelCase__ , no_timestamps=lowerCAmelCase__ ) def __call__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop('audio' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = kwargs.pop('sampling_rate' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs.pop('text' , lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: SCREAMING_SNAKE_CASE_ : List[Any] = args[0] SCREAMING_SNAKE_CASE_ : List[Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extractor(lowerCAmelCase__ , *lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer(lowerCAmelCase__ , **lowerCAmelCase__ ) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ : Optional[int] = encodings['input_ids'] return inputs def UpperCamelCase__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__="np" ): """simple docstring""" return self.tokenizer.get_prompt_ids(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ )
101
0
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : Optional[int] = logging.get_logger(__name__) snake_case_ : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } snake_case_ : Union[str, Any] = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } snake_case_ : str = { 'ctrl': 2_5_6, } snake_case_ : Tuple = { 'Pregnancy': 1_6_8_6_2_9, 'Christianity': 7_6_7_5, 'Explain': 1_0_6_4_2_3, 'Fitness': 6_3_4_4_0, 'Saving': 6_3_1_6_3, 'Ask': 2_7_1_7_1, 'Ass': 9_5_9_8_5, 'Joke': 1_6_3_5_0_9, 'Questions': 4_5_6_2_2, 'Thoughts': 4_9_6_0_5, 'Retail': 5_2_3_4_2, 'Feminism': 1_6_4_3_3_8, 'Writing': 1_1_9_9_2, 'Atheism': 1_9_2_2_6_3, 'Netflix': 4_8_6_1_6, 'Computing': 3_9_6_3_9, 'Opinion': 4_3_2_1_3, 'Alone': 4_4_9_6_7, 'Funny': 5_8_9_1_7, 'Gaming': 4_0_3_5_8, 'Human': 4_0_8_8, 'India': 1_3_3_1, 'Joker': 7_7_1_3_8, 'Diet': 3_6_2_0_6, 'Legal': 1_1_8_5_9, 'Norman': 4_9_3_9, 'Tip': 7_2_6_8_9, 'Weight': 5_2_3_4_3, 'Movies': 4_6_2_7_3, 'Running': 2_3_4_2_5, 'Science': 2_0_9_0, 'Horror': 3_7_7_9_3, 'Confession': 6_0_5_7_2, 'Finance': 1_2_2_5_0, 'Politics': 1_6_3_6_0, 'Scary': 1_9_1_9_8_5, 'Support': 1_2_6_5_4, 'Technologies': 3_2_5_1_6, 'Teenage': 6_6_1_6_0, 'Event': 3_2_7_6_9, 'Learned': 6_7_4_6_0, 'Notion': 1_8_2_7_7_0, 'Wikipedia': 3_7_5_8_3, 'Books': 6_6_6_5, 'Extract': 7_6_0_5_0, 'Confessions': 1_0_2_7_0_1, 'Conspiracy': 7_5_9_3_2, 'Links': 6_3_6_7_4, 'Narcissus': 1_5_0_4_2_5, 'Relationship': 5_4_7_6_6, 'Relationships': 1_3_4_7_9_6, 'Reviews': 4_1_6_7_1, 'News': 4_2_5_6, 'Translation': 2_6_8_2_0, 'multilingual': 1_2_8_4_0_6, } def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = set() SCREAMING_SNAKE_CASE_ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ : List[str] = char SCREAMING_SNAKE_CASE_ : List[Any] = set(SCREAMING_SNAKE_CASE_ ) return pairs class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = CONTROL_CODES def __init__( self , lowercase__ , lowercase__ , lowercase__="<unk>" , **lowercase__ ): """simple docstring""" super().__init__(unk_token=lowercase__ , **lowercase__ ) with open(lowercase__ , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE_ : Union[str, Any] = json.load(lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(lowercase__ , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE_ : List[Any] = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE_ : int = [tuple(merge.split() ) for merge in merges] SCREAMING_SNAKE_CASE_ : str = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) SCREAMING_SNAKE_CASE_ : int = {} @property def __lowerCamelCase ( self ): """simple docstring""" return len(self.encoder ) def __lowerCamelCase ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ : List[str] = tuple(lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) SCREAMING_SNAKE_CASE_ : List[str] = get_pairs(lowercase__ ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ : str = min(lowercase__ , key=lambda lowercase__ : self.bpe_ranks.get(lowercase__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ : Union[str, Any] = bigram SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : int = 0 while i < len(lowercase__ ): try: SCREAMING_SNAKE_CASE_ : Optional[int] = word.index(lowercase__ , lowercase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ : List[Any] = j if word[i] == first and i < len(lowercase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = tuple(lowercase__ ) SCREAMING_SNAKE_CASE_ : List[str] = new_word if len(lowercase__ ) == 1: break else: SCREAMING_SNAKE_CASE_ : Optional[Any] = get_pairs(lowercase__ ) SCREAMING_SNAKE_CASE_ : List[str] = "@@ ".join(lowercase__ ) SCREAMING_SNAKE_CASE_ : str = word[:-4] SCREAMING_SNAKE_CASE_ : Tuple = word return word def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.findall(r"\S+\n?" , lowercase__ ) for token in words: split_tokens.extend(list(self.bpe(lowercase__ ).split(" " ) ) ) return split_tokens def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" return self.encoder.get(lowercase__ , self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" return self.decoder.get(lowercase__ , self.unk_token ) def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = " ".join(lowercase__ ).replace("@@ " , "" ).strip() return out_string def __lowerCamelCase ( self , lowercase__ , lowercase__ = None ): """simple docstring""" if not os.path.isdir(lowercase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ : Dict = os.path.join( lowercase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join( lowercase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowercase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase__ , ensure_ascii=lowercase__ ) + "\n" ) SCREAMING_SNAKE_CASE_ : Dict = 0 with open(lowercase__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase__ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE_ : Dict = token_index writer.write(" ".join(lowercase__ ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
712
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=5_1_2, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Dict: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"could not parse string as bool {string}" ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) snake_case_ = parser.parse_args() snake_case_ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
68
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _a (unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ) -> Union[str, Any]: snake_case : Union[str, Any] = """laion/clap-htsat-unfused""" snake_case : List[str] = tempfile.mkdtemp() def snake_case_ ( self ,**__a ) -> Union[str, Any]: return RobertaTokenizer.from_pretrained(self.checkpoint ,**__a ) def snake_case_ ( self ,**__a ) -> str: return ClapFeatureExtractor.from_pretrained(self.checkpoint ,**__a ) def snake_case_ ( self ) -> Dict: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self ) -> Optional[int]: snake_case : int = self.get_tokenizer() snake_case : Any = self.get_feature_extractor() snake_case : List[str] = ClapProcessor(tokenizer=__a ,feature_extractor=__a ) processor.save_pretrained(self.tmpdirname ) snake_case : List[Any] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,__a ) self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,__a ) def snake_case_ ( self ) -> Any: snake_case : Any = ClapProcessor(tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) snake_case : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) snake_case : int = self.get_feature_extractor(do_normalize=__a ,padding_value=1.0 ) snake_case : Tuple = ClapProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=__a ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,__a ) self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,__a ) def snake_case_ ( self ) -> Any: snake_case : Union[str, Any] = self.get_feature_extractor() snake_case : Union[str, Any] = self.get_tokenizer() snake_case : Optional[Any] = ClapProcessor(tokenizer=__a ,feature_extractor=__a ) snake_case : List[Any] = floats_list((3, 1_000) ) snake_case : Dict = feature_extractor(__a ,return_tensors="""np""" ) snake_case : Dict = processor(audios=__a ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def snake_case_ ( self ) -> List[str]: snake_case : List[str] = self.get_feature_extractor() snake_case : List[Any] = self.get_tokenizer() snake_case : Tuple = ClapProcessor(tokenizer=__a ,feature_extractor=__a ) snake_case : str = """This is a test string""" snake_case : List[Any] = processor(text=__a ) snake_case : Union[str, Any] = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def snake_case_ ( self ) -> Dict: snake_case : Any = self.get_feature_extractor() snake_case : Tuple = self.get_tokenizer() snake_case : List[Any] = ClapProcessor(tokenizer=__a ,feature_extractor=__a ) snake_case : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case : Optional[Any] = processor.batch_decode(__a ) snake_case : List[str] = tokenizer.batch_decode(__a ) self.assertListEqual(__a ,__a ) def snake_case_ ( self ) -> Optional[int]: snake_case : Any = self.get_feature_extractor() snake_case : List[str] = self.get_tokenizer() snake_case : Dict = ClapProcessor(tokenizer=__a ,feature_extractor=__a ) self.assertListEqual( processor.model_input_names[2:] ,feature_extractor.model_input_names ,msg="""`processor` and `feature_extractor` model input names do not match""" ,)
116
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCamelCase__ ( __lowercase ): snake_case : List[Any] = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case : str = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case : Any = 0.01 with locka.acquire(): with pytest.raises(__lowercase ): snake_case : Union[str, Any] = time.time() locka.acquire(__lowercase ) assert time.time() - _start > timeout def lowerCamelCase__ ( __lowercase ): snake_case : List[Any] = """a""" * 1_000 + """.lock""" snake_case : List[str] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(__lowercase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 snake_case : Any = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__lowercase ): locka.acquire(0 )
116
1
'''simple docstring''' import numpy as np from transformers import Pipeline def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[Any] = np.max(__UpperCamelCase , axis=-1 , keepdims=__UpperCamelCase ) A_ : List[str] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=__UpperCamelCase ) class _lowerCAmelCase ( UpperCAmelCase_ ): def _a (self , **lowercase ): A_ : List[Any] = {} if "second_text" in kwargs: A_ : Tuple = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def _a (self , lowercase , lowercase=None ): return self.tokenizer(_snake_case , text_pair=_snake_case , return_tensors=self.framework ) def _a (self , lowercase ): return self.model(**_snake_case ) def _a (self , lowercase ): A_ : str = model_outputs.logits[0].numpy() A_ : Optional[int] = softmax(_snake_case ) A_ : int = np.argmax(_snake_case ) A_ : Optional[int] = self.model.config.idalabel[best_class] A_ : List[Any] = probabilities[best_class].item() A_ : Tuple = logits.tolist() return {"label": label, "score": score, "logits": logits}
708
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCamelCase :Any = [ '''kernels/rwkv/wkv_cuda.cu''', '''kernels/rwkv/wkv_op.cpp''', '''kernels/deformable_detr/ms_deform_attn.h''', '''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''', '''models/graphormer/algos_graphormer.pyx''', ] def a ( lowerCamelCase__ ): '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCamelCase :Tuple = argparse.ArgumentParser() parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''') lowerCamelCase :List[Any] = parser.parse_args() if args.check_lib: lowerCamelCase :Union[str, Any] = importlib.import_module('''transformers''') lowerCamelCase :Union[str, Any] = Path(transformers_module.__file__).parent else: lowerCamelCase :List[str] = Path.cwd() / '''build/lib/transformers''' if not test_custom_files_are_present(transformers_path): raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
686
0
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } _UpperCamelCase = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } _UpperCamelCase = { "ctrl": 2_56, } _UpperCamelCase = { "Pregnancy": 16_86_29, "Christianity": 76_75, "Explain": 10_64_23, "Fitness": 6_34_40, "Saving": 6_31_63, "Ask": 2_71_71, "Ass": 9_59_85, "Joke": 16_35_09, "Questions": 4_56_22, "Thoughts": 4_96_05, "Retail": 5_23_42, "Feminism": 16_43_38, "Writing": 1_19_92, "Atheism": 19_22_63, "Netflix": 4_86_16, "Computing": 3_96_39, "Opinion": 4_32_13, "Alone": 4_49_67, "Funny": 5_89_17, "Gaming": 4_03_58, "Human": 40_88, "India": 13_31, "Joker": 7_71_38, "Diet": 3_62_06, "Legal": 1_18_59, "Norman": 49_39, "Tip": 7_26_89, "Weight": 5_23_43, "Movies": 4_62_73, "Running": 2_34_25, "Science": 20_90, "Horror": 3_77_93, "Confession": 6_05_72, "Finance": 1_22_50, "Politics": 1_63_60, "Scary": 19_19_85, "Support": 1_26_54, "Technologies": 3_25_16, "Teenage": 6_61_60, "Event": 3_27_69, "Learned": 6_74_60, "Notion": 18_27_70, "Wikipedia": 3_75_83, "Books": 66_65, "Extract": 7_60_50, "Confessions": 10_27_01, "Conspiracy": 7_59_32, "Links": 6_36_74, "Narcissus": 15_04_25, "Relationship": 5_47_66, "Relationships": 13_47_96, "Reviews": 4_16_71, "News": 42_56, "Translation": 2_68_20, "multilingual": 12_84_06, } def _A( lowerCAmelCase ): A__ : Dict = set() A__ : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ : List[Any] = char A__ : List[str] = set(lowerCAmelCase ) return pairs class __UpperCAmelCase (__A ): '''simple docstring''' _UpperCamelCase : int = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : str = CONTROL_CODES def __init__( self , snake_case_ , snake_case_ , snake_case_="<unk>" , **snake_case_ ): '''simple docstring''' super().__init__(unk_token=snake_case_ , **snake_case_ ) with open(snake_case_ , encoding="""utf-8""" ) as vocab_handle: A__ : Union[str, Any] = json.load(snake_case_ ) A__ : Tuple = {v: k for k, v in self.encoder.items()} with open(snake_case_ , encoding="""utf-8""" ) as merges_handle: A__ : Tuple = merges_handle.read().split("""\n""" )[1:-1] A__ : str = [tuple(merge.split() ) for merge in merges] A__ : List[str] = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) A__ : Union[str, Any] = {} @property def lowerCamelCase ( self ): '''simple docstring''' return len(self.encoder ) def lowerCamelCase ( self ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase ( self , snake_case_ ): '''simple docstring''' if token in self.cache: return self.cache[token] A__ : Optional[int] = tuple(snake_case_ ) A__ : Dict = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A__ : Tuple = get_pairs(snake_case_ ) if not pairs: return token while True: A__ : Optional[int] = min(snake_case_ , key=lambda snake_case_ : self.bpe_ranks.get(snake_case_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ : str = bigram A__ : str = [] A__ : str = 0 while i < len(snake_case_ ): try: A__ : List[str] = word.index(snake_case_ , snake_case_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ : int = j if word[i] == first and i < len(snake_case_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ : Dict = tuple(snake_case_ ) A__ : int = new_word if len(snake_case_ ) == 1: break else: A__ : Any = get_pairs(snake_case_ ) A__ : Any = """@@ """.join(snake_case_ ) A__ : List[Any] = word[:-4] A__ : Any = word return word def lowerCamelCase ( self , snake_case_ ): '''simple docstring''' A__ : Optional[int] = [] A__ : List[str] = re.findall(r"""\S+\n?""" , snake_case_ ) for token in words: split_tokens.extend(list(self.bpe(snake_case_ ).split(""" """ ) ) ) return split_tokens def lowerCamelCase ( self , snake_case_ ): '''simple docstring''' return self.encoder.get(snake_case_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase ( self , snake_case_ ): '''simple docstring''' return self.decoder.get(snake_case_ , self.unk_token ) def lowerCamelCase ( self , snake_case_ ): '''simple docstring''' A__ : Optional[Any] = """ """.join(snake_case_ ).replace("""@@ """ , """""" ).strip() return out_string def lowerCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' if not os.path.isdir(snake_case_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A__ : int = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Union[str, Any] = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(snake_case_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case_ , ensure_ascii=snake_case_ ) + """\n""" ) A__ : str = 0 with open(snake_case_ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) A__ : List[str] = token_index writer.write(""" """.join(snake_case_ ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
363
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {"vocab_file": "sentencepiece.model"} _UpperCamelCase = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } _UpperCamelCase = { "google/rembert": 2_56, } class __UpperCAmelCase (__A ): '''simple docstring''' _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , snake_case_ , snake_case_=False , snake_case_=True , snake_case_=True , snake_case_="[CLS]" , snake_case_="[SEP]" , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , **snake_case_ , ): '''simple docstring''' super().__init__( do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , **snake_case_ , ) A__ : List[Any] = do_lower_case A__ : Dict = remove_space A__ : Optional[int] = keep_accents A__ : Tuple = vocab_file A__ : List[str] = spm.SentencePieceProcessor() self.sp_model.Load(snake_case_ ) @property def lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def lowerCamelCase ( self ): '''simple docstring''' A__ : Optional[Any] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' A__ : str = self.__dict__.copy() A__ : Tuple = None return state def __setstate__( self , snake_case_ ): '''simple docstring''' A__ : Dict = d A__ : int = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def lowerCamelCase ( self , snake_case_ , snake_case_=False ): '''simple docstring''' A__ : Tuple = self.sp_model.EncodeAsPieces(snake_case_ ) return pieces def lowerCamelCase ( self , snake_case_ ): '''simple docstring''' return self.sp_model.PieceToId(snake_case_ ) def lowerCamelCase ( self , snake_case_ ): '''simple docstring''' return self.sp_model.IdToPiece(snake_case_ ) def lowerCamelCase ( self , snake_case_ ): '''simple docstring''' A__ : str = self.sp_model.decode_pieces(snake_case_ ) return out_string def lowerCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' A__ : List[Any] = [self.sep_token_id] A__ : str = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1] def lowerCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' A__ : int = [self.sep_token_id] A__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' if not os.path.isdir(snake_case_ ): logger.error("""Vocabulary path ({}) should be a directory""".format(snake_case_ ) ) return A__ : Any = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
363
1
def snake_case_ ( lowercase__ : int ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""only integers accepted as input""" ) else: _lowerCAmelCase =str(abs(lowercase__ ) ) _lowerCAmelCase =[list(lowercase__ ) for char in range(len(lowercase__ ) )] for index in range(len(lowercase__ ) ): num_transpositions[index].pop(lowercase__ ) return max( int("""""".join(list(lowercase__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
149
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) # TODO Update this __SCREAMING_SNAKE_CASE : int = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class __lowerCamelCase ( lowerCamelCase_ ): """simple docstring""" a_: Any = """esm""" def __init__( self : Dict , lowerCamelCase_ : Any=None , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Tuple=768 , lowerCamelCase_ : List[str]=12 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Optional[Any]=3072 , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : int=0.1 , lowerCamelCase_ : List[Any]=1026 , lowerCamelCase_ : List[str]=0.02 , lowerCamelCase_ : str=1e-12 , lowerCamelCase_ : int="absolute" , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Any=False , lowerCamelCase_ : Dict=False , lowerCamelCase_ : Any=None , lowerCamelCase_ : Union[str, Any]=None , **lowerCamelCase_ : Union[str, Any] , ): super().__init__(pad_token_id=lowerCamelCase_ , mask_token_id=lowerCamelCase_ , **lowerCamelCase_ ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =use_cache _lowerCAmelCase =emb_layer_norm_before _lowerCAmelCase =token_dropout _lowerCAmelCase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) _lowerCAmelCase =EsmFoldConfig() elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): _lowerCAmelCase =EsmFoldConfig(**lowerCamelCase_ ) _lowerCAmelCase =esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) _lowerCAmelCase =get_default_vocab_list() else: _lowerCAmelCase =vocab_list else: _lowerCAmelCase =None _lowerCAmelCase =None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , lowerCamelCase_ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase =super().to_dict() if isinstance(self.esmfold_config , lowerCamelCase_ ): _lowerCAmelCase =self.esmfold_config.to_dict() return output @dataclass class __lowerCamelCase : """simple docstring""" a_: str = None a_: bool = True a_: bool = False a_: bool = False a_: bool = False a_: float = 0 a_: bool = True a_: bool = False a_: int = 1_28 a_: "TrunkConfig" = None def lowerCAmelCase__ ( self : str ): if self.trunk is None: _lowerCAmelCase =TrunkConfig() elif isinstance(self.trunk , lowerCamelCase_ ): _lowerCAmelCase =TrunkConfig(**self.trunk ) def lowerCAmelCase__ ( self : str ): _lowerCAmelCase =asdict(self ) _lowerCAmelCase =self.trunk.to_dict() return output @dataclass class __lowerCamelCase : """simple docstring""" a_: int = 48 a_: int = 10_24 a_: int = 1_28 a_: int = 32 a_: int = 32 a_: int = 32 a_: float = 0 a_: float = 0 a_: bool = False a_: int = 4 a_: Optional[int] = 1_28 a_: "StructureModuleConfig" = None def lowerCAmelCase__ ( self : Optional[Any] ): if self.structure_module is None: _lowerCAmelCase =StructureModuleConfig() elif isinstance(self.structure_module , lowerCamelCase_ ): _lowerCAmelCase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowerCAmelCase =self.sequence_state_dim // self.sequence_head_width _lowerCAmelCase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(F"`dropout` should not be greater than 0.4, got {self.dropout}." ) def lowerCAmelCase__ ( self : Any ): _lowerCAmelCase =asdict(self ) _lowerCAmelCase =self.structure_module.to_dict() return output @dataclass class __lowerCamelCase : """simple docstring""" a_: int = 3_84 a_: int = 1_28 a_: int = 16 a_: int = 1_28 a_: int = 12 a_: int = 4 a_: int = 8 a_: float = 0.1 a_: int = 8 a_: int = 1 a_: int = 2 a_: int = 7 a_: int = 10 a_: float = 1e-8 a_: float = 1e5 def lowerCAmelCase__ ( self : int ): return asdict(self ) def snake_case_ ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
149
1
from math import ceil, sqrt def UpperCamelCase ( lowercase_ = 1_00_00_00 ) -> int: '''simple docstring''' lowercase__ : str = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowercase__ : Union[str, Any] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowercase__ : str = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
12
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py UpperCamelCase_ = '''.''' if __name__ == "__main__": UpperCamelCase_ = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') UpperCamelCase_ = [] UpperCamelCase_ = [] with open(doctest_file_path) as fp: for line in fp: UpperCamelCase_ = line.strip() UpperCamelCase_ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: UpperCamelCase_ = '''\n'''.join(non_existent_paths) raise ValueError(f"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}") if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
209
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class __snake_case ( a__): _lowerCAmelCase = '''xlm''' _lowerCAmelCase = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self, A=3_0145, A=2048, A=12, A=16, A=0.1, A=0.1, A=True, A=False, A=False, A=False, A=1, A=True, A=512, A=2048**-0.5, A=1e-12, A=0.02, A=0, A=1, A=2, A=3, A=5, A=True, A="first", A=True, A=None, A=True, A=0.1, A=5, A=5, A=0, A=0, A=2, A=0, **A, ): """simple docstring""" lowerCamelCase : Union[str, Any] = vocab_size lowerCamelCase : Tuple = emb_dim lowerCamelCase : str = n_layers lowerCamelCase : Tuple = n_heads lowerCamelCase : List[str] = dropout lowerCamelCase : int = attention_dropout lowerCamelCase : Optional[Any] = gelu_activation lowerCamelCase : List[str] = sinusoidal_embeddings lowerCamelCase : Optional[Any] = causal lowerCamelCase : Optional[Any] = asm lowerCamelCase : List[str] = n_langs lowerCamelCase : Dict = use_lang_emb lowerCamelCase : Dict = layer_norm_eps lowerCamelCase : Union[str, Any] = bos_index lowerCamelCase : List[str] = eos_index lowerCamelCase : int = pad_index lowerCamelCase : Optional[Any] = unk_index lowerCamelCase : Optional[Any] = mask_index lowerCamelCase : Tuple = is_encoder lowerCamelCase : Dict = max_position_embeddings lowerCamelCase : Optional[Any] = embed_init_std lowerCamelCase : str = init_std lowerCamelCase : Optional[Any] = summary_type lowerCamelCase : Any = summary_use_proj lowerCamelCase : Optional[Any] = summary_activation lowerCamelCase : Any = summary_proj_to_labels lowerCamelCase : Union[str, Any] = summary_first_dropout lowerCamelCase : Tuple = start_n_top lowerCamelCase : List[str] = end_n_top lowerCamelCase : Dict = mask_token_id lowerCamelCase : int = lang_id if "n_words" in kwargs: lowerCamelCase : Union[str, Any] = kwargs['n_words'] super().__init__(pad_token_id=A, bos_token_id=A, **A ) class __snake_case ( a__): @property def UpperCAmelCase_ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCamelCase : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
449
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A = { 'configuration_clip': [ 'CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPConfig', 'CLIPOnnxConfig', 'CLIPTextConfig', 'CLIPVisionConfig', ], 'processing_clip': ['CLIPProcessor'], 'tokenization_clip': ['CLIPTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['CLIPTokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['CLIPFeatureExtractor'] A = ['CLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPModel', 'CLIPPreTrainedModel', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CLIPVisionModel', 'CLIPVisionModelWithProjection', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCLIPModel', 'TFCLIPPreTrainedModel', 'TFCLIPTextModel', 'TFCLIPVisionModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'FlaxCLIPModel', 'FlaxCLIPPreTrainedModel', 'FlaxCLIPTextModel', 'FlaxCLIPTextPreTrainedModel', 'FlaxCLIPVisionModel', 'FlaxCLIPVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
449
1
'''simple docstring''' from math import pi def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
358
'''simple docstring''' def __lowerCamelCase ( ) -> Union[str, Any]: _a : Optional[Any] = [] _a : List[str] = 1 while len(lowerCAmelCase_ ) < 1E6: constant.append(str(lowerCAmelCase_ ) ) i += 1 _a : Optional[Any] = ''.join(lowerCAmelCase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
358
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __magic_name__ : """simple docstring""" def __init__( self : List[str] , _lowercase : Any , _lowercase : Dict=2 , _lowercase : Any=3 , _lowercase : Tuple=4 , _lowercase : Tuple=2 , _lowercase : List[Any]=7 , _lowercase : Tuple=True , _lowercase : int=True , _lowercase : List[Any]=True , _lowercase : List[str]=True , _lowercase : Optional[Any]=99 , _lowercase : Optional[int]=36 , _lowercase : List[str]=3 , _lowercase : Optional[int]=4 , _lowercase : Tuple=37 , _lowercase : str="gelu" , _lowercase : str=0.1 , _lowercase : Optional[int]=0.1 , _lowercase : List[Any]=512 , _lowercase : Optional[Any]=16 , _lowercase : Any=2 , _lowercase : Optional[Any]=0.02 , _lowercase : List[str]=6 , _lowercase : Optional[int]=6 , _lowercase : Any=3 , _lowercase : Optional[Any]=4 , _lowercase : int=None , _lowercase : Tuple=1_000 , ): """simple docstring""" _UpperCamelCase: Union[str, Any] = parent _UpperCamelCase: Union[str, Any] = batch_size _UpperCamelCase: Any = num_channels _UpperCamelCase: str = image_size _UpperCamelCase: str = patch_size _UpperCamelCase: Dict = text_seq_length _UpperCamelCase: Optional[int] = is_training _UpperCamelCase: Any = use_input_mask _UpperCamelCase: Dict = use_token_type_ids _UpperCamelCase: Optional[int] = use_labels _UpperCamelCase: Optional[int] = vocab_size _UpperCamelCase: Union[str, Any] = hidden_size _UpperCamelCase: str = num_hidden_layers _UpperCamelCase: int = num_attention_heads _UpperCamelCase: int = intermediate_size _UpperCamelCase: Union[str, Any] = hidden_act _UpperCamelCase: str = hidden_dropout_prob _UpperCamelCase: Optional[int] = attention_probs_dropout_prob _UpperCamelCase: Tuple = max_position_embeddings _UpperCamelCase: List[str] = type_vocab_size _UpperCamelCase: Optional[int] = type_sequence_label_size _UpperCamelCase: Optional[int] = initializer_range _UpperCamelCase: str = coordinate_size _UpperCamelCase: Optional[Any] = shape_size _UpperCamelCase: Optional[int] = num_labels _UpperCamelCase: Any = num_choices _UpperCamelCase: List[Any] = scope _UpperCamelCase: List[str] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _UpperCamelCase: str = text_seq_length _UpperCamelCase: int = (image_size // patch_size) ** 2 + 1 _UpperCamelCase: Union[str, Any] = self.text_seq_length + self.image_seq_length def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" _UpperCamelCase: str = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _UpperCamelCase: Any = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCamelCase: Union[str, Any] = bbox[i, j, 3] _UpperCamelCase: Optional[int] = bbox[i, j, 1] _UpperCamelCase: str = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCamelCase: Optional[int] = bbox[i, j, 2] _UpperCamelCase: Optional[Any] = bbox[i, j, 0] _UpperCamelCase: List[Any] = t _UpperCamelCase: int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase: Any = None if self.use_input_mask: _UpperCamelCase: Dict = random_attention_mask([self.batch_size, self.text_seq_length] ) _UpperCamelCase: Optional[int] = None if self.use_token_type_ids: _UpperCamelCase: int = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _UpperCamelCase: str = None _UpperCamelCase: str = None if self.use_labels: _UpperCamelCase: Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase: int = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _UpperCamelCase: Tuple = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowerCAmelCase ( self : Tuple , _lowercase : Dict , _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Optional[int] , _lowercase : str , _lowercase : Dict , _lowercase : Optional[int] ): """simple docstring""" _UpperCamelCase: Tuple = LayoutLMvaModel(config=_lowercase ) model.to(_lowercase ) model.eval() # text + image _UpperCamelCase: Dict = model(_lowercase , pixel_values=_lowercase ) _UpperCamelCase: Optional[Any] = model( _lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase ) _UpperCamelCase: Dict = model(_lowercase , bbox=_lowercase , pixel_values=_lowercase , token_type_ids=_lowercase ) _UpperCamelCase: Union[str, Any] = model(_lowercase , bbox=_lowercase , pixel_values=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _UpperCamelCase: Tuple = model(_lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _UpperCamelCase: Optional[Any] = model(pixel_values=_lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[int] , _lowercase : Dict , _lowercase : Optional[int] , _lowercase : List[str] , _lowercase : Optional[int] ): """simple docstring""" _UpperCamelCase: int = self.num_labels _UpperCamelCase: int = LayoutLMvaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() _UpperCamelCase: Any = model( _lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : List[Any] , _lowercase : Dict , _lowercase : Dict , _lowercase : int , _lowercase : int , _lowercase : Tuple , _lowercase : Dict ): """simple docstring""" _UpperCamelCase: Any = self.num_labels _UpperCamelCase: Any = LayoutLMvaForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() _UpperCamelCase: Dict = model( _lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowerCAmelCase ( self : int , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Optional[int] , _lowercase : List[Any] , _lowercase : Optional[int] , _lowercase : int , _lowercase : Optional[int] , _lowercase : int ): """simple docstring""" _UpperCamelCase: str = LayoutLMvaForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() _UpperCamelCase: Any = model( _lowercase , bbox=_lowercase , pixel_values=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ): List[str] = config_and_inputs _UpperCamelCase: Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __magic_name__ ( __a , __a , unittest.TestCase ): """simple docstring""" lowerCAmelCase : Optional[Any] = False lowerCAmelCase : Any = False lowerCAmelCase : str = False lowerCAmelCase : str = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase : Dict = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def lowerCAmelCase ( self : Union[str, Any] , _lowercase : str , _lowercase : Dict , _lowercase : List[str] , _lowercase : Any , _lowercase : Dict ): """simple docstring""" return True def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" _UpperCamelCase: List[str] = LayoutLMvaModelTester(self ) _UpperCamelCase: Optional[int] = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def lowerCAmelCase ( self : List[Any] , _lowercase : str , _lowercase : Dict , _lowercase : Union[str, Any]=False ): """simple docstring""" _UpperCamelCase: Any = copy.deepcopy(_lowercase ) if model_class in get_values(_lowercase ): _UpperCamelCase: Any = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(_lowercase , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_lowercase ): _UpperCamelCase: Optional[Any] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) elif model_class in get_values(_lowercase ): _UpperCamelCase: Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) _UpperCamelCase: Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) elif model_class in [ *get_values(_lowercase ), ]: _UpperCamelCase: Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) elif model_class in [ *get_values(_lowercase ), ]: _UpperCamelCase: Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_lowercase , ) return inputs_dict def lowerCAmelCase ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" _UpperCamelCase: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCamelCase: Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCamelCase: int = type self.model_tester.create_and_check_model(*_lowercase ) def lowerCAmelCase ( self : int ): """simple docstring""" _UpperCamelCase: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def lowerCAmelCase ( self : int ): """simple docstring""" _UpperCamelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) def lowerCAmelCase ( self : Tuple ): """simple docstring""" _UpperCamelCase: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) @slow def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase: Optional[int] = LayoutLMvaModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def lowerCAmelCase_ ( ) -> Any: '''simple docstring''' _UpperCamelCase: int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase ( self : Tuple ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=_lowercase ) if is_vision_available() else None @slow def lowerCAmelCase ( self : List[str] ): """simple docstring""" _UpperCamelCase: str = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(_lowercase ) _UpperCamelCase: Optional[int] = self.default_image_processor _UpperCamelCase: str = prepare_img() _UpperCamelCase: Tuple = image_processor(images=_lowercase , return_tensors='''pt''' ).pixel_values.to(_lowercase ) _UpperCamelCase: int = torch.tensor([[1, 2]] ) _UpperCamelCase: List[Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _UpperCamelCase: Optional[int] = model( input_ids=input_ids.to(_lowercase ) , bbox=bbox.to(_lowercase ) , pixel_values=pixel_values.to(_lowercase ) , ) # verify the logits _UpperCamelCase: Union[str, Any] = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , _lowercase ) _UpperCamelCase: int = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowercase , atol=1E-4 ) )
264
def lowerCAmelCase_ ( lowercase: int = 600_851_475_143 ) -> int: '''simple docstring''' try: _UpperCamelCase: Optional[int] = int(lowercase ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) _UpperCamelCase: Dict = 1 _UpperCamelCase: Tuple = 2 while i * i <= n: while n % i == 0: _UpperCamelCase: List[Any] = i n //= i i += 1 if n > 1: _UpperCamelCase: Any = n return int(lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
264
1
import string import numpy def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->int: return b if a == 0 else greatest_common_divisor(b % a , lowerCAmelCase_ ) class __lowercase : UpperCamelCase = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCamelCase = numpy.vectorize(lambda __snake_case : x % 36 ) UpperCamelCase = numpy.vectorize(__snake_case ) def __init__( self : Union[str, Any] , __lowerCamelCase : numpy.ndarray ) -> None: """simple docstring""" UpperCAmelCase = self.modulus(__lowerCamelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key UpperCAmelCase = encrypt_key.shape[0] def _lowercase ( self : List[str] , __lowerCamelCase : str ) -> int: """simple docstring""" return self.key_string.index(__lowerCamelCase ) def _lowercase ( self : str , __lowerCamelCase : int ) -> str: """simple docstring""" return self.key_string[round(__lowerCamelCase )] def _lowercase ( self : Optional[Any] ) -> None: """simple docstring""" UpperCAmelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: UpperCAmelCase = det % len(self.key_string ) UpperCAmelCase = len(self.key_string ) if greatest_common_divisor(__lowerCamelCase , len(self.key_string ) ) != 1: UpperCAmelCase = ( F"""determinant modular {req_l} of encryption key({det}) """ F"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(__lowerCamelCase ) def _lowercase ( self : Dict , __lowerCamelCase : str ) -> str: """simple docstring""" UpperCAmelCase = [char for char in text.upper() if char in self.key_string] UpperCAmelCase = chars[-1] while len(__lowerCamelCase ) % self.break_key != 0: chars.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) def _lowercase ( self : int , __lowerCamelCase : str ) -> str: """simple docstring""" UpperCAmelCase = self.process_text(text.upper() ) UpperCAmelCase = """""" for i in range(0 , len(__lowerCamelCase ) - self.break_key + 1 , self.break_key ): UpperCAmelCase = text[i : i + self.break_key] UpperCAmelCase = [self.replace_letters(__lowerCamelCase ) for char in batch] UpperCAmelCase = numpy.array([vec] ).T UpperCAmelCase = self.modulus(self.encrypt_key.dot(__lowerCamelCase ) ).T.tolist()[ 0 ] UpperCAmelCase = """""".join( self.replace_digits(__lowerCamelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def _lowercase ( self : Any ) -> numpy.ndarray: """simple docstring""" UpperCAmelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: UpperCAmelCase = det % len(self.key_string ) UpperCAmelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: UpperCAmelCase = i break UpperCAmelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__lowerCamelCase ) ) def _lowercase ( self : List[Any] , __lowerCamelCase : str ) -> str: """simple docstring""" UpperCAmelCase = self.make_decrypt_key() UpperCAmelCase = self.process_text(text.upper() ) UpperCAmelCase = """""" for i in range(0 , len(__lowerCamelCase ) - self.break_key + 1 , self.break_key ): UpperCAmelCase = text[i : i + self.break_key] UpperCAmelCase = [self.replace_letters(__lowerCamelCase ) for char in batch] UpperCAmelCase = numpy.array([vec] ).T UpperCAmelCase = self.modulus(decrypt_key.dot(__lowerCamelCase ) ).T.tolist()[0] UpperCAmelCase = """""".join( self.replace_digits(__lowerCamelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def _UpperCamelCase ( ) ->None: UpperCAmelCase = int(input("""Enter the order of the encryption key: """ ) ) UpperCAmelCase = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(lowerCAmelCase_ ): UpperCAmelCase = [int(lowerCAmelCase_ ) for x in input().split()] hill_matrix.append(lowerCAmelCase_ ) UpperCAmelCase = HillCipher(numpy.array(lowerCAmelCase_ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) UpperCAmelCase = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": UpperCAmelCase = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(lowerCAmelCase_ ) ) elif option == "2": UpperCAmelCase = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(lowerCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
377
def _UpperCamelCase ( lowerCAmelCase_ ) ->int: if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return 0 elif n == 2: return 1 else: UpperCAmelCase = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _UpperCamelCase ( lowerCAmelCase_ ) ->int: UpperCAmelCase = 0 UpperCAmelCase = 2 while digits < n: index += 1 UpperCAmelCase = len(str(fibonacci(lowerCAmelCase_ ) ) ) return index def _UpperCamelCase ( lowerCAmelCase_ = 1_0_0_0 ) ->int: return fibonacci_digits_index(lowerCAmelCase_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
377
1
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) __lowercase = logging.getLogger(__name__) __lowercase = '''Hello world! cécé herlolip''' __lowercase = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def snake_case__ ( _A: Dict , _A: Dict ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = BertAbsConfig( temp_dir=""".""" , finetune_bert=_A , large=_A , share_emb=_A , use_bert_emb=_A , encoder="""bert""" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) lowerCAmelCase = torch.load(_A , lambda _A , _A : storage ) lowerCAmelCase = AbsSummarizer(_A , torch.device("""cpu""" ) , _A ) original.eval() lowerCAmelCase = BertAbsSummarizer(_A , torch.device("""cpu""" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("""convert the model""" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("""Make sure that the models' outputs are identical""" ) lowerCAmelCase = BertTokenizer.from_pretrained("""bert-base-uncased""" ) # prepare the model inputs lowerCAmelCase = tokenizer.encode("""This is sample éàalj'-.""" ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_A )) ) lowerCAmelCase = torch.tensor(_A ).unsqueeze(0 ) lowerCAmelCase = tokenizer.encode("""This is sample 3 éàalj'-.""" ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_A )) ) lowerCAmelCase = torch.tensor(_A ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass lowerCAmelCase = encoder_input_ids lowerCAmelCase = decoder_input_ids lowerCAmelCase = lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = lowerCAmelCase = None lowerCAmelCase = lowerCAmelCase = None lowerCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical lowerCAmelCase = original(_A , _A , _A , _A , _A , _A , _A )[0] lowerCAmelCase = original.generator(_A ) lowerCAmelCase = new_model( _A , _A , _A , _A , _A )[0] lowerCAmelCase = new_model.generator(_A ) lowerCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(_A ) ) lowerCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("""Maximum absolute difference beween weights: {:.2f}""".format(_A ) ) lowerCAmelCase = torch.allclose(_A , _A , atol=1e-3 ) if are_identical: logging.info("""all weights are equal up to 1e-3""" ) else: raise ValueError("""the weights are different. The new model is likely different from the original one.""" ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("""saving the model's state dictionary""" ) torch.save( new_model.state_dict() , """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) __lowercase = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
605
'''simple docstring''' from __future__ import annotations from typing import Any def snake_case__ ( _A: list ) -> int: '''simple docstring''' if not postfix_notation: return 0 lowerCAmelCase = {"""+""", """-""", """*""", """/"""} lowerCAmelCase = [] for token in postfix_notation: if token in operations: lowerCAmelCase , lowerCAmelCase = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_A ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
605
1
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __snake_case = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: List[str],A_: str,A_: bool,A_: str = None,A_: list = None ): '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = os.path.abspath(os.path.join('examples','by_feature' ) ) __UpperCamelCase = os.path.abspath('examples' ) for item in os.listdir(A_ ): if item not in EXCLUDE_EXAMPLES: __UpperCamelCase = os.path.join(A_,A_ ) if os.path.isfile(A_ ) and ".py" in item_path: with self.subTest( tested_script=A_,feature_script=A_,tested_section='main()' if parser_only else 'training_function()',): __UpperCamelCase = compare_against_test( os.path.join(A_,A_ ),A_,A_,A_ ) __UpperCamelCase = '\n'.join(A_ ) if special_strings is not None: for string in special_strings: __UpperCamelCase = diff.replace(A_,'' ) self.assertEqual(A_,'' ) def snake_case_ ( self: int ): '''simple docstring''' self.one_complete_example('complete_nlp_example.py',A_ ) self.one_complete_example('complete_nlp_example.py',A_ ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = os.path.abspath(os.path.join('examples','cv_example.py' ) ) __UpperCamelCase = [ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py',A_,A_,A_ ) self.one_complete_example('complete_cv_example.py',A_,A_,A_ ) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} ) class __lowerCamelCase (_a ): _lowercase = False @classmethod def snake_case_ ( cls: int ): '''simple docstring''' super().setUpClass() __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = os.path.join(cls._tmpdir,'default_config.yml' ) write_basic_config(save_location=cls.configPath ) __UpperCamelCase = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def snake_case_ ( cls: Optional[Any] ): '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = F''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir,'epoch_0' ) ) ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = F''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() __UpperCamelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir,'step_2' ) ) ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = F''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir,'epoch_0' )} '''.split() __UpperCamelCase = run_command(self._launch_args + testargs,return_stdout=A_ ) self.assertNotIn('epoch 0:',A_ ) self.assertIn('epoch 1:',A_ ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = F''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir,'step_2' )} '''.split() __UpperCamelCase = run_command(self._launch_args + testargs,return_stdout=A_ ) if torch.cuda.is_available(): __UpperCamelCase = torch.cuda.device_count() else: __UpperCamelCase = 1 if num_processes > 1: self.assertNotIn('epoch 0:',A_ ) self.assertIn('epoch 1:',A_ ) else: self.assertIn('epoch 0:',A_ ) self.assertIn('epoch 1:',A_ ) @slow def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ,{'TESTING_MOCKED_DATALOADERS': '0'} ): __UpperCamelCase = run_command(self._launch_args + testargs,return_stdout=A_ ) __UpperCamelCase = re.findall('({.+})',A_ ) __UpperCamelCase = [r for r in results if 'accuracy' in r][-1] __UpperCamelCase = ast.literal_eval(A_ ) self.assertGreaterEqual(results['accuracy'],0.7_5 ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ,{'WANDB_MODE': 'offline'} ) def snake_case_ ( self: Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: __UpperCamelCase = F''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(A_,'tracking' ) ) ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs )
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { """configuration_clap""": [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapAudioConfig""", """ClapConfig""", """ClapTextConfig""", ], """processing_clap""": ["""ClapProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapModel""", """ClapPreTrainedModel""", """ClapTextModel""", """ClapTextModelWithProjection""", """ClapAudioModel""", """ClapAudioModelWithProjection""", ] __lowerCAmelCase = ["""ClapFeatureExtractor"""] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
229
0
'''simple docstring''' def snake_case ( a_ : Union[str, Any] ) -> float: """simple docstring""" UpperCamelCase_ : str = 0 while len(__lowerCAmelCase ) > 1: UpperCamelCase_ : List[str] = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): UpperCamelCase_ : int = files.index(min(__lowerCAmelCase ) ) temp += files[min_index] files.pop(__lowerCAmelCase ) files.append(__lowerCAmelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
712
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins UpperCamelCase =["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def snake_case ( a_ : List[str] , a_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ["""integration""", """unit"""] ): continue item.add_marker(pytest.mark.unit ) def snake_case ( a_ : Optional[int] ) -> Optional[Any]: """simple docstring""" config.addinivalue_line("""markers""" , """torchaudio_latest: mark test to run with torchaudio>=0.12""" ) @pytest.fixture(autouse=a_ ) def snake_case ( a_ : Any , a_ : Optional[int] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Optional[Any] = tmp_path_factory.getbasetemp() / """cache""" UpperCamelCase_ : str = test_hf_cache_home / """datasets""" UpperCamelCase_ : Any = test_hf_cache_home / """metrics""" UpperCamelCase_ : List[Any] = test_hf_cache_home / """modules""" monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""" , str(a_ ) ) monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""" , str(a_ ) ) monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""" , str(a_ ) ) UpperCamelCase_ : List[Any] = test_hf_datasets_cache / """downloads""" monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""" , str(a_ ) ) UpperCamelCase_ : Any = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(a_ ) ) @pytest.fixture(autouse=a_ , scope="""session""" ) def snake_case ( ) -> Any: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=a_ ) def snake_case ( a_ : Optional[int] ) -> Union[str, Any]: """simple docstring""" monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""" , a_ ) @pytest.fixture def snake_case ( a_ : int ) -> Union[str, Any]: """simple docstring""" monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""" , a_ )
543
0
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def __lowerCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : str ) -> List[str]: __lowerCAmelCase ={ """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1E-5, """token_type_vocab_size""": 2, } __lowerCAmelCase =bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __lowerCAmelCase =BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=__lowerCamelCase , output_all_encodings=__lowerCamelCase , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , __lowerCamelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __lowerCAmelCase ="""openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab __lowerCAmelCase =os.path.join(get_home_dir() , """models""" ) __lowerCAmelCase =_load_vocab(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , cls=__lowerCamelCase ) __lowerCAmelCase =nlp.model.BERTModel( __lowerCamelCase , len(__lowerCamelCase ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=__lowerCamelCase , use_token_type_embed=__lowerCamelCase , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=__lowerCamelCase , use_decoder=__lowerCamelCase , ) original_bort.load_parameters(__lowerCamelCase , cast_dtype=__lowerCamelCase , ignore_extra=__lowerCamelCase ) __lowerCAmelCase =original_bort._collect_params_with_prefix() # Build our config 🤗 __lowerCAmelCase ={ """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(__lowerCamelCase ), } __lowerCAmelCase =BertConfig.from_dict(__lowerCamelCase ) __lowerCAmelCase =BertForMaskedLM(__lowerCamelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__lowerCamelCase : Dict ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__lowerCamelCase : Optional[Any] , __lowerCamelCase : int ): __lowerCAmelCase =hf_param.shape __lowerCAmelCase =to_torch(params[gluon_param] ) __lowerCAmelCase =gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param __lowerCAmelCase =check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) __lowerCAmelCase =check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) __lowerCAmelCase =check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) __lowerCAmelCase =check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __lowerCAmelCase =torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __lowerCAmelCase =hf_bort_model.bert.encoder.layer[i] # self attention __lowerCAmelCase =layer.attention.self __lowerCAmelCase =check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) __lowerCAmelCase =check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) __lowerCAmelCase =check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) __lowerCAmelCase =check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) __lowerCAmelCase =check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) __lowerCAmelCase =check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output __lowerCAmelCase =layer.attention.output __lowerCAmelCase =check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) __lowerCAmelCase =check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) __lowerCAmelCase =check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) __lowerCAmelCase =check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate __lowerCAmelCase =layer.intermediate __lowerCAmelCase =check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) __lowerCAmelCase =check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output __lowerCAmelCase =layer.output __lowerCAmelCase =check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) __lowerCAmelCase =check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) __lowerCAmelCase =check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) __lowerCAmelCase =check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __lowerCAmelCase =RobertaTokenizer.from_pretrained("""roberta-base""" ) __lowerCAmelCase =tokenizer.encode_plus(__lowerCamelCase )["""input_ids"""] # Get gluon output __lowerCAmelCase =mx.nd.array([input_ids] ) __lowerCAmelCase =original_bort(inputs=__lowerCamelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__lowerCamelCase ) __lowerCAmelCase =BertModel.from_pretrained(__lowerCamelCase ) hf_bort_model.eval() __lowerCAmelCase =tokenizer.encode_plus(__lowerCamelCase , return_tensors="""pt""" ) __lowerCAmelCase =hf_bort_model(**__lowerCamelCase )[0] __lowerCAmelCase =output_gluon[0].asnumpy() __lowerCAmelCase =output_hf[0].detach().numpy() __lowerCAmelCase =np.max(np.abs(hf_layer - gluon_layer ) ).item() __lowerCAmelCase =np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , __lowerCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
354
def __lowerCAmelCase ( __lowerCamelCase : int ) -> bool: if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
354
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : List[str] = '''▁''' _lowerCamelCase : Optional[int] = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } _lowerCamelCase : Optional[Any] = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } _lowerCamelCase : Tuple = { '''facebook/s2t-small-librispeech-asr''': 10_24, } _lowerCamelCase : Optional[int] = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] _lowerCamelCase : str = {'''mustc''': MUSTC_LANGS} class lowercase ( a__ ): lowercase__ : Optional[Any] = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : List[Any] = MAX_MODEL_INPUT_SIZES lowercase__ : List[str] = ["""input_ids""", """attention_mask"""] lowercase__ : List[int] = [] def __init__( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]="<s>" , _UpperCamelCase : Union[str, Any]="</s>" , _UpperCamelCase : Optional[int]="<pad>" , _UpperCamelCase : Dict="<unk>" , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : Optional[int]=False , _UpperCamelCase : Tuple=None , _UpperCamelCase : int=None , _UpperCamelCase : Optional[Any] = None , **_UpperCamelCase : List[Any] , ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , do_upper_case=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , lang_codes=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = do_upper_case SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = load_json(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = spm_file SCREAMING_SNAKE_CASE = load_spm(lowerCAmelCase__ , self.sp_model_kwargs ) if lang_codes is not None: SCREAMING_SNAKE_CASE = lang_codes SCREAMING_SNAKE_CASE = LANGUAGES[lang_codes] SCREAMING_SNAKE_CASE = [F"<lang:{lang}>" for lang in self.langs] SCREAMING_SNAKE_CASE = {lang: self.sp_model.PieceToId(F"<lang:{lang}>" ) for lang in self.langs} SCREAMING_SNAKE_CASE = self.lang_tokens SCREAMING_SNAKE_CASE = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: SCREAMING_SNAKE_CASE = {} @property def __snake_case( self : int ) -> int: '''simple docstring''' return len(self.encoder ) @property def __snake_case( self : Optional[Any] ) -> str: '''simple docstring''' return self._tgt_lang @tgt_lang.setter def __snake_case( self : str , _UpperCamelCase : List[Any] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = new_tgt_lang self.set_tgt_lang_special_tokens(lowerCAmelCase__ ) def __snake_case( self : Optional[Any] , _UpperCamelCase : Dict ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = self.lang_code_to_id[tgt_lang] SCREAMING_SNAKE_CASE = [lang_code_id] def __snake_case( self : str , _UpperCamelCase : int ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __snake_case( self : Dict , _UpperCamelCase : Any ) -> Any: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ , self.encoder[self.unk_token] ) def __snake_case( self : int , _UpperCamelCase : Optional[int] ) -> str: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ , self.unk_token ) def __snake_case( self : Tuple , _UpperCamelCase : Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: SCREAMING_SNAKE_CASE = self.sp_model.decode(lowerCAmelCase__ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.sp_model.decode(lowerCAmelCase__ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __snake_case( self : Any , _UpperCamelCase : int , _UpperCamelCase : Optional[int]=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __snake_case( self : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Any = None , _UpperCamelCase : Any = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE = [1] if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def __snake_case( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self : Dict , _UpperCamelCase : str ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = load_spm(self.spm_file , self.sp_model_kwargs ) def __snake_case( self : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] = None ) -> Tuple[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = Path(lowerCAmelCase__ ) assert save_dir.is_dir(), F"{save_directory} should be a directory" SCREAMING_SNAKE_CASE = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) SCREAMING_SNAKE_CASE = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , lowerCAmelCase__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowerCAmelCase__ ) elif not os.path.isfile(self.spm_file ): with open(lowerCAmelCase__ , "wb" ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (str(lowerCAmelCase__ ), str(lowerCAmelCase__ )) def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : Dict[str, Any] ): SCREAMING_SNAKE_CASE = sentencepiece.SentencePieceProcessor(**_lowercase ) spm.Load(str(_lowercase ) ) return spm def __lowerCamelCase (UpperCAmelCase__ : str ): with open(_lowercase , "r" ) as f: return json.load(_lowercase ) def __lowerCamelCase (UpperCAmelCase__ : Dict , UpperCAmelCase__ : str ): with open(_lowercase , "w" ) as f: json.dump(_lowercase , _lowercase , indent=2 )
709
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys _lowerCamelCase : List[Any] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
647
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1_0_0 , ): '''simple docstring''' _a : Any = x_start _a : Union[str, Any] = fnc(UpperCamelCase__ ) _a : Optional[Any] = 0.0 for _ in range(UpperCamelCase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _a : str = (x_end - x_start) / steps + xa _a : Union[str, Any] = fnc(UpperCamelCase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _a : List[Any] = xa _a : List[Any] = fxa return area if __name__ == "__main__": def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') _snake_case = 10 while i <= 10_0000: print(F'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
389
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCamelCase : def __init__( self : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict=13 , UpperCAmelCase__ : str=32 , UpperCAmelCase__ : Tuple=2 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : List[str]=16 , UpperCAmelCase__ : str=[1, 2, 1] , UpperCAmelCase__ : Union[str, Any]=[2, 2, 4] , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : List[str]=2.0 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : int=0.0 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : List[Any]="gelu" , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : str=True , UpperCAmelCase__ : List[str]=0.0_2 , UpperCAmelCase__ : List[str]=1E-5 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Dict=10 , UpperCAmelCase__ : str=8 , UpperCAmelCase__ : Tuple=["stage1", "stage2", "stage3"] , UpperCAmelCase__ : Union[str, Any]=[1, 2, 3] , ) -> str: _a : Union[str, Any] = parent _a : str = batch_size _a : int = image_size _a : Optional[Any] = patch_size _a : Tuple = num_channels _a : str = embed_dim _a : int = depths _a : List[Any] = num_heads _a : int = window_size _a : Optional[int] = mlp_ratio _a : Optional[int] = qkv_bias _a : Dict = hidden_dropout_prob _a : Any = attention_probs_dropout_prob _a : Tuple = drop_path_rate _a : List[Any] = hidden_act _a : List[Any] = use_absolute_embeddings _a : Optional[Any] = patch_norm _a : Dict = layer_norm_eps _a : Dict = initializer_range _a : Union[str, Any] = is_training _a : List[str] = scope _a : Any = use_labels _a : Any = type_sequence_label_size _a : Dict = encoder_stride _a : Optional[int] = out_features _a : Any = out_indices def _lowercase ( self : Optional[Any] ) -> int: _a : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Tuple = None if self.use_labels: _a : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Any = self.get_config() return config, pixel_values, labels def _lowercase ( self : Optional[int] ) -> List[str]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowercase ( self : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple ) -> List[str]: _a : int = MaskFormerSwinModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : Any = model(UpperCAmelCase__ ) _a : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _a : List[str] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[Any]: _a : Optional[Any] = MaskFormerSwinBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : Union[str, Any] = model(UpperCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(UpperCAmelCase__ ): _a : Dict = ["""stem"""] _a : Optional[int] = MaskFormerSwinBackbone(config=UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ) -> Tuple: _a : Optional[int] = self.prepare_config_and_inputs() _a , _a , _a : str = config_and_inputs _a : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : str = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) UpperCamelCase : Optional[Any] = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} UpperCamelCase : str = False UpperCamelCase : List[str] = False UpperCamelCase : str = False UpperCamelCase : Tuple = False UpperCamelCase : Optional[int] = False def _lowercase ( self : Any ) -> int: _a : Optional[int] = MaskFormerSwinModelTester(self ) _a : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase__ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def _lowercase ( self : int ) -> str: pass def _lowercase ( self : Dict ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self : Tuple ) -> Union[str, Any]: return def _lowercase ( self : List[Any] ) -> Optional[Any]: _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self : str ) -> Tuple: _a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase__ ) @unittest.skip("""Swin does not use inputs_embeds""" ) def _lowercase ( self : Dict ) -> List[str]: pass @unittest.skip("""Swin does not support feedforward chunking""" ) def _lowercase ( self : Optional[Any] ) -> Dict: pass def _lowercase ( self : int ) -> Union[str, Any]: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Tuple = model_class(UpperCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase__ , nn.Linear ) ) def _lowercase ( self : Any ) -> Tuple: _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(UpperCAmelCase__ ) _a : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Dict = [*signature.parameters.keys()] _a : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def _lowercase ( self : Optional[Any] ) -> int: pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def _lowercase ( self : Any ) -> List[Any]: pass def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str ) -> Union[str, Any]: _a : Optional[Any] = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): _a : Tuple = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) _a : Dict = outputs.hidden_states _a : Optional[int] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) # Swin has a different seq_length _a : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _lowercase ( self : str ) -> Dict: _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _a : Optional[Any] = True self.check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : str = True self.check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) -> Optional[Any]: _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : Tuple = 3 _a : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _a : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a : Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _a : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _a : Optional[int] = True self.check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Union[str, Any] = True self.check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def _lowercase ( self : Any ) -> Any: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _lowercase ( self : List[str] ) -> Optional[int]: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _lowercase ( self : Union[str, Any] ) -> Tuple: pass def _lowercase ( self : Dict ) -> List[str]: _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(UpperCAmelCase__ : List[Any] ): _a : int = 0 return t def check_equivalence(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any]={} ): with torch.no_grad(): _a : Union[str, Any] = model(**UpperCAmelCase__ , return_dict=UpperCAmelCase__ , **UpperCAmelCase__ ) _a : Any = model(**UpperCAmelCase__ , return_dict=UpperCAmelCase__ , **UpperCAmelCase__ ).to_tuple() def recursive_check(UpperCAmelCase__ : int , UpperCAmelCase__ : str ): if isinstance(UpperCAmelCase__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase__ , UpperCAmelCase__ ): recursive_check(UpperCAmelCase__ , UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(UpperCAmelCase__ , UpperCAmelCase__ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(UpperCAmelCase__ ) , set_nan_tensor_to_zero(UpperCAmelCase__ ) , atol=1E-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(UpperCAmelCase__ ).any()} and `inf`: {torch.isinf(UpperCAmelCase__ )}. Dict has""" f""" `nan`: {torch.isnan(UpperCAmelCase__ ).any()} and `inf`: {torch.isinf(UpperCAmelCase__ )}.""" ) , ) recursive_check(UpperCAmelCase__ , UpperCAmelCase__ ) for model_class in self.all_model_classes: _a : Any = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : Dict = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Any = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) check_equivalence(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) _a : List[Any] = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) check_equivalence(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) _a : Any = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Union[str, Any] = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) check_equivalence(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , {"""output_hidden_states""": True} ) _a : int = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) _a : Tuple = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) check_equivalence(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , {"""output_hidden_states""": True} ) @require_torch class UpperCamelCase ( unittest.TestCase , snake_case_ ): UpperCamelCase : Tuple = (MaskFormerSwinBackbone,) if is_torch_available() else () UpperCamelCase : Dict = MaskFormerSwinConfig def _lowercase ( self : int ) -> int: _a : Union[str, Any] = MaskFormerSwinModelTester(self ) def _lowercase ( self : List[Any] ) -> Optional[Any]: _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() _a : str = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: _a : Optional[int] = backbone_class(UpperCAmelCase__ ) backbone.to(UpperCAmelCase__ ) backbone.eval() _a : Any = backbone(**UpperCAmelCase__ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , UpperCAmelCase__ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _a : Union[str, Any] = backbone(**UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _a , _a , _a : Optional[int] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _a : Any = backbone(**UpperCAmelCase__ , output_attentions=UpperCAmelCase__ ) self.assertIsNotNone(outputs.attentions )
389
1
def A_ ( lowercase_ ) ->List[Any]: """simple docstring""" def merge(lowercase_ , lowercase_ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(__A ) <= 1: return collection SCREAMING_SNAKE_CASE = len(__A ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = input("Enter numbers separated by a comma:\n").strip() __UpperCAmelCase = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
715
__UpperCAmelCase = 9.80_665 def A_ ( lowercase_ , lowercase_ , lowercase_ = g ) ->float: """simple docstring""" if fluid_density <= 0: raise ValueError('Impossible fluid density' ) if volume < 0: raise ValueError('Impossible Object volume' ) if gravity <= 0: raise ValueError('Impossible Gravity' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
259
0
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __snake_case : @staticmethod def SCREAMING_SNAKE_CASE_ ( *a_ ,**a_ ): """simple docstring""" pass def UpperCAmelCase_ ( snake_case__ ) -> int: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _lowerCAmelCase : int = ( "https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png" ) @is_pipeline_test @require_torch @require_vision class __snake_case ( unittest.TestCase ): SCREAMING_SNAKE_CASE__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = pipeline( 'document-question-answering' ,model=a_ ,tokenizer=a_ ,image_processor=a_ ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = list(zip(*apply_tesseract(load_image(a_ ) ,a_ ,'' ) ) ) lowerCAmelCase__ = 'What is the placebo?' lowerCAmelCase__ = [ { 'image': load_image(a_ ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ): """simple docstring""" lowerCAmelCase__ = dqa_pipeline(a_ ,top_k=2 ) self.assertEqual( a_ ,[ [ {'score': ANY(a_ ), 'answer': ANY(a_ ), 'start': ANY(a_ ), 'end': ANY(a_ )}, {'score': ANY(a_ ), 'answer': ANY(a_ ), 'start': ANY(a_ ), 'end': ANY(a_ )}, ] ] * 3 ,) @require_torch @require_detectrona @require_pytesseract def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = pipeline('document-question-answering' ,model='hf-internal-testing/tiny-random-layoutlmv2' ) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'How many cats are there?' lowerCAmelCase__ = [ {'score': 0.0001, 'answer': 'oy 2312/2019', 'start': 38, 'end': 39}, {'score': 0.0001, 'answer': 'oy 2312/2019 DUE', 'start': 38, 'end': 40}, ] lowerCAmelCase__ = dqa_pipeline(image=a_ ,question=a_ ,top_k=2 ) self.assertEqual(nested_simplify(a_ ,decimals=4 ) ,a_ ) lowerCAmelCase__ = dqa_pipeline({'image': image, 'question': question} ,top_k=2 ) self.assertEqual(nested_simplify(a_ ,decimals=4 ) ,a_ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCAmelCase__ = './tests/fixtures/tests_samples/COCO/000000039769.png' lowerCAmelCase__ = dqa_pipeline(image=a_ ,question=a_ ,top_k=2 ) self.assertEqual(a_ ,[] ) # We can optionnally pass directly the words and bounding boxes lowerCAmelCase__ = './tests/fixtures/tests_samples/COCO/000000039769.png' lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = dqa_pipeline(image=a_ ,question=a_ ,words=a_ ,boxes=a_ ,top_k=2 ) self.assertEqual(a_ ,[] ) @slow @require_torch @require_detectrona @require_pytesseract def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = pipeline( 'document-question-answering' ,model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' ,revision='9977165' ,) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=a_ ,question=a_ ,top_k=2 ) self.assertEqual( nested_simplify(a_ ,decimals=4 ) ,[ {'score': 0.9944, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0009, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ,) lowerCAmelCase__ = dqa_pipeline({'image': image, 'question': question} ,top_k=2 ) self.assertEqual( nested_simplify(a_ ,decimals=4 ) ,[ {'score': 0.9944, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0009, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ,) lowerCAmelCase__ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] ,top_k=2 ) self.assertEqual( nested_simplify(a_ ,decimals=4 ) ,[ [ {'score': 0.9944, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0009, 'answer': 'us-001', 'start': 16, 'end': 16}, ], ] * 2 ,) @slow @require_torch @require_detectrona @require_pytesseract def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = pipeline( 'document-question-answering' ,model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' ,revision='9977165' ,max_seq_len=50 ,) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=a_ ,question=a_ ,top_k=2 ) self.assertEqual( nested_simplify(a_ ,decimals=4 ) ,[ {'score': 0.9974, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9948, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ,) lowerCAmelCase__ = dqa_pipeline({'image': image, 'question': question} ,top_k=2 ) self.assertEqual( nested_simplify(a_ ,decimals=4 ) ,[ {'score': 0.9974, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9948, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ,) lowerCAmelCase__ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] ,top_k=2 ) self.assertEqual( nested_simplify(a_ ,decimals=4 ) ,[ [ {'score': 0.9974, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9948, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 ,) @slow @require_torch @require_pytesseract @require_vision def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' ,revision='3dc6de3' ,add_prefix_space=a_ ) lowerCAmelCase__ = pipeline( 'document-question-answering' ,model='impira/layoutlm-document-qa' ,tokenizer=a_ ,revision='3dc6de3' ,) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=a_ ,question=a_ ,top_k=2 ) self.assertEqual( nested_simplify(a_ ,decimals=4 ) ,[ {'score': 0.4251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ,) lowerCAmelCase__ = dqa_pipeline({'image': image, 'question': question} ,top_k=2 ) self.assertEqual( nested_simplify(a_ ,decimals=4 ) ,[ {'score': 0.4251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ,) lowerCAmelCase__ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] ,top_k=2 ) self.assertEqual( nested_simplify(a_ ,decimals=4 ) ,[ [ {'score': 0.4251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ] * 2 ,) lowerCAmelCase__ = list(zip(*apply_tesseract(load_image(a_ ) ,a_ ,'' ) ) ) # This model should also work if `image` is set to None lowerCAmelCase__ = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} ,top_k=2 ) self.assertEqual( nested_simplify(a_ ,decimals=4 ) ,[ {'score': 0.4251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ,) @slow @require_torch @require_pytesseract @require_vision def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' ,revision='3dc6de3' ,add_prefix_space=a_ ) lowerCAmelCase__ = pipeline( 'document-question-answering' ,model='impira/layoutlm-document-qa' ,tokenizer=a_ ,revision='3dc6de3' ,max_seq_len=50 ,) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=a_ ,question=a_ ,top_k=2 ) self.assertEqual( nested_simplify(a_ ,decimals=4 ) ,[ {'score': 0.9999, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9998, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ,) lowerCAmelCase__ = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] ,top_k=2 ) self.assertEqual( nested_simplify(a_ ,decimals=4 ) ,[ [ {'score': 0.9999, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9998, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 ,) lowerCAmelCase__ = list(zip(*apply_tesseract(load_image(a_ ) ,a_ ,'' ) ) ) # This model should also work if `image` is set to None lowerCAmelCase__ = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} ,top_k=2 ) self.assertEqual( nested_simplify(a_ ,decimals=4 ) ,[ {'score': 0.9999, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9998, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ,) @slow @require_torch def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = pipeline( 'document-question-answering' ,model='naver-clova-ix/donut-base-finetuned-docvqa' ,tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) ,feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' ,) lowerCAmelCase__ = INVOICE_URL lowerCAmelCase__ = 'What is the invoice number?' lowerCAmelCase__ = dqa_pipeline(image=a_ ,question=a_ ,top_k=2 ) self.assertEqual(nested_simplify(a_ ,decimals=4 ) ,[{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass
193
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase : List[str] = {"UserAgent": UserAgent().random} def UpperCAmelCase_ ( snake_case__ ) -> dict: """simple docstring""" lowerCAmelCase__ = script.contents[0] lowerCAmelCase__ = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __snake_case : def __init__( self ,a_ ): """simple docstring""" lowerCAmelCase__ = f'https://www.instagram.com/{username}/' lowerCAmelCase__ = self.get_json() def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = requests.get(self.url ,headers=a_ ).text lowerCAmelCase__ = BeautifulSoup(a_ ,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): """simple docstring""" return f'{self.__class__.__name__}(\'{self.username}\')' def __str__( self ): """simple docstring""" return f'{self.fullname} ({self.username}) is {self.biography}' @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["username"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["full_name"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["biography"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["business_email"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["external_url"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["edge_follow"]["count"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["is_verified"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["is_private"] def UpperCAmelCase_ ( snake_case__ = "github" ) -> None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions lowerCAmelCase__ = InstagramUser(snake_case__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , snake_case__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Optional[int] = InstagramUser("github") print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
193
1
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class UpperCamelCase_ ( UpperCamelCase ): lowercase = 42 class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase ): @register_to_config def __init__( self , lowercase = 16 , lowercase = 88 , lowercase = None , lowercase = None , lowercase = 1 , lowercase = 0.0 , lowercase = 32 , lowercase = None , lowercase = False , lowercase = None , lowercase = "geglu" , lowercase = True , lowercase = True , ) -> List[Any]: super().__init__() _a : Optional[int] = num_attention_heads _a : Any = attention_head_dim _a : Tuple = num_attention_heads * attention_head_dim _a : Tuple = in_channels _a : Dict = torch.nn.GroupNorm(num_groups=lowercase , num_channels=lowercase , eps=1e-6 , affine=lowercase ) _a : str = nn.Linear(lowercase , lowercase ) # 3. Define transformers blocks _a : int = nn.ModuleList( [ BasicTransformerBlock( lowercase , lowercase , lowercase , dropout=lowercase , cross_attention_dim=lowercase , activation_fn=lowercase , attention_bias=lowercase , double_self_attention=lowercase , norm_elementwise_affine=lowercase , ) for d in range(lowercase ) ] ) _a : List[Any] = nn.Linear(lowercase , lowercase ) def snake_case__( self , lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=1 , lowercase=None , lowercase = True , ) -> int: _a : Optional[Any] = hidden_states.shape _a : Dict = batch_frames // num_frames _a : Union[str, Any] = hidden_states _a : Optional[int] = hidden_states[None, :].reshape(lowercase , lowercase , lowercase , lowercase , lowercase ) _a : List[str] = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) _a : Optional[Any] = self.norm(lowercase ) _a : List[Any] = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , lowercase , lowercase ) _a : Any = self.proj_in(lowercase ) # 2. Blocks for block in self.transformer_blocks: _a : Tuple = block( lowercase , encoder_hidden_states=lowercase , timestep=lowercase , cross_attention_kwargs=lowercase , class_labels=lowercase , ) # 3. Output _a : Optional[Any] = self.proj_out(lowercase ) _a : List[Any] = ( hidden_states[None, None, :] .reshape(lowercase , lowercase , lowercase , lowercase , lowercase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) _a : Optional[Any] = hidden_states.reshape(lowercase , lowercase , lowercase , lowercase ) _a : List[Any] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=lowercase )
704
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase ): lowercase = ['''input_features''', '''is_longer'''] def __init__( self , lowercase=64 , lowercase=48_000 , lowercase=480 , lowercase=10 , lowercase=1_024 , lowercase=0.0 , lowercase=False , lowercase = 0 , lowercase = 14_000 , lowercase = None , lowercase = "fusion" , lowercase = "repeatpad" , **lowercase , ) -> str: super().__init__( feature_size=lowercase , sampling_rate=lowercase , padding_value=lowercase , return_attention_mask=lowercase , **lowercase , ) _a : int = top_db _a : Union[str, Any] = truncation _a : Optional[int] = padding _a : List[Any] = fft_window_size _a : str = (fft_window_size >> 1) + 1 _a : Optional[Any] = hop_length _a : Tuple = max_length_s _a : Optional[Any] = max_length_s * sampling_rate _a : Dict = sampling_rate _a : int = frequency_min _a : Union[str, Any] = frequency_max _a : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowercase , min_frequency=lowercase , max_frequency=lowercase , sampling_rate=lowercase , norm=lowercase , mel_scale='''htk''' , ) _a : int = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowercase , min_frequency=lowercase , max_frequency=lowercase , sampling_rate=lowercase , norm='''slaney''' , mel_scale='''slaney''' , ) def snake_case__( self ) -> Dict[str, Any]: _a : int = copy.deepcopy(self.__dict__ ) _a : str = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def snake_case__( self , lowercase , lowercase = None ) -> np.ndarray: _a : List[str] = spectrogram( lowercase , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowercase , log_mel='''dB''' , ) return log_mel_spectrogram.T def snake_case__( self , lowercase , lowercase , lowercase ) -> Union[str, Any]: _a : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _a : Optional[int] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _a : str = [0] # randomly choose index for each part _a : str = np.random.choice(ranges[0] ) _a : Optional[int] = np.random.choice(ranges[1] ) _a : Tuple = np.random.choice(ranges[2] ) _a : Optional[int] = mel[idx_front : idx_front + chunk_frames, :] _a : List[Any] = mel[idx_middle : idx_middle + chunk_frames, :] _a : Tuple = mel[idx_back : idx_back + chunk_frames, :] _a : List[str] = torch.tensor(mel[None, None, :] ) _a : str = torch.nn.functional.interpolate( lowercase , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=lowercase ) _a : Dict = mel_shrink[0][0].numpy() _a : Any = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def snake_case__( self , lowercase , lowercase , lowercase , lowercase ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": _a : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _a : List[Any] = len(lowercase ) - max_length _a : Union[str, Any] = np.random.randint(0 , overflow + 1 ) _a : Optional[int] = waveform[idx : idx + max_length] _a : Optional[int] = self._np_extract_fbank_features(lowercase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _a : str = self._np_extract_fbank_features(lowercase , self.mel_filters ) _a : Any = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _a : str = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _a : Dict = np.stack([mel, mel, mel, mel] , axis=0 ) _a : Tuple = False else: _a : List[str] = self._random_mel_fusion(lowercase , lowercase , lowercase ) _a : Tuple = True else: raise NotImplementedError(F'data_truncating {truncation} not implemented' ) else: _a : Optional[Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _a : Tuple = int(max_length / len(lowercase ) ) _a : str = np.stack(np.tile(lowercase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _a : int = int(max_length / len(lowercase ) ) _a : Optional[Any] = np.stack(np.tile(lowercase , lowercase ) ) _a : str = np.pad(lowercase , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": _a : List[Any] = self._np_extract_fbank_features(lowercase , self.mel_filters ) _a : int = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _a : Optional[int] = self._np_extract_fbank_features(lowercase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , **lowercase , ) -> BatchFeature: _a : str = truncation if truncation is not None else self.truncation _a : Any = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) _a : List[str] = isinstance(lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) _a : Dict = is_batched_numpy or ( isinstance(lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _a : List[str] = [np.asarray(lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowercase , np.ndarray ): _a : Any = np.asarray(lowercase , dtype=np.floataa ) elif isinstance(lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _a : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _a : int = [np.asarray(lowercase )] # convert to mel spectrogram, truncate and pad if needed. _a : Union[str, Any] = [ self._get_input_mel(lowercase , max_length if max_length else self.nb_max_samples , lowercase , lowercase ) for waveform in raw_speech ] _a : Tuple = [] _a : int = [] for mel, longer in padded_inputs: input_mel.append(lowercase ) is_longer.append(lowercase ) if truncation == "fusion" and sum(lowercase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _a : str = np.random.randint(0 , len(lowercase ) ) _a : Optional[int] = True if isinstance(input_mel[0] , lowercase ): _a : Union[str, Any] = [np.asarray(lowercase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _a : Dict = [[longer] for longer in is_longer] _a : int = {'''input_features''': input_mel, '''is_longer''': is_longer} _a : str = BatchFeature(lowercase ) if return_tensors is not None: _a : Dict = input_features.convert_to_tensors(lowercase ) return input_features
307
0
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS lowercase_ : Dict = logging.get_logger(__name__) lowercase_ : Dict = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , snake_case__=None , snake_case__=None , *snake_case__ , **snake_case__ ): """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) if config is None: assert isinstance(self.model , snake_case__ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) _SCREAMING_SNAKE_CASE : Tuple = self.model.config else: _SCREAMING_SNAKE_CASE : List[str] = config _SCREAMING_SNAKE_CASE : int = data_args _SCREAMING_SNAKE_CASE : Tuple = self.config.tgt_vocab_size if isinstance(self.config , snake_case__ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' " padding.." ) if self.args.label_smoothing == 0: _SCREAMING_SNAKE_CASE : Optional[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _SCREAMING_SNAKE_CASE : Optional[Any] = label_smoothed_nll_loss def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" if self.optimizer is None: _SCREAMING_SNAKE_CASE : Any = ["bias", "LayerNorm.weight"] _SCREAMING_SNAKE_CASE : Tuple = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] _SCREAMING_SNAKE_CASE : int = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _SCREAMING_SNAKE_CASE : Union[str, Any] = Adafactor _SCREAMING_SNAKE_CASE : Union[str, Any] = {"scale_parameter": False, "relative_step": False} else: _SCREAMING_SNAKE_CASE : Optional[Any] = AdamW _SCREAMING_SNAKE_CASE : str = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } _SCREAMING_SNAKE_CASE : Dict = self.args.learning_rate if self.sharded_ddp: _SCREAMING_SNAKE_CASE : Optional[int] = OSS( params=snake_case__ , optim=snake_case__ , **snake_case__ , ) else: _SCREAMING_SNAKE_CASE : List[Any] = optimizer_cls(snake_case__ , **snake_case__ ) if self.lr_scheduler is None: _SCREAMING_SNAKE_CASE : List[Any] = self._get_lr_scheduler(snake_case__ ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _SCREAMING_SNAKE_CASE : List[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _SCREAMING_SNAKE_CASE : Any = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _SCREAMING_SNAKE_CASE : Optional[int] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=snake_case__ ) return scheduler def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _SCREAMING_SNAKE_CASE : Dict = model(**snake_case__ , use_cache=snake_case__ )[0] _SCREAMING_SNAKE_CASE : Optional[Any] = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = model(**snake_case__ , labels=snake_case__ , use_cache=snake_case__ )[:2] else: # compute label smoothed loss _SCREAMING_SNAKE_CASE : str = model(**snake_case__ , use_cache=snake_case__ )[0] _SCREAMING_SNAKE_CASE : Any = torch.nn.functional.log_softmax(snake_case__ , dim=-1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = self.loss_fn(snake_case__ , snake_case__ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = inputs.pop("labels" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = self._compute_loss(snake_case__ , snake_case__ , snake_case__ ) return loss def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = self._prepare_inputs(snake_case__ ) _SCREAMING_SNAKE_CASE : List[Any] = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _SCREAMING_SNAKE_CASE : int = self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **snake_case__ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _SCREAMING_SNAKE_CASE : Any = self._pad_tensors_to_max_len(snake_case__ , gen_kwargs["max_length"] ) _SCREAMING_SNAKE_CASE : Optional[int] = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = self._compute_loss(snake_case__ , snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _SCREAMING_SNAKE_CASE : int = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _SCREAMING_SNAKE_CASE : str = self._pad_tensors_to_max_len(snake_case__ , gen_kwargs["max_length"] ) return (loss, logits, labels) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" F''' padded to `max_length`={max_length}''' ) _SCREAMING_SNAKE_CASE : List[str] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _SCREAMING_SNAKE_CASE : int = tensor return padded_tensor
572
"""simple docstring""" def _lowerCAmelCase ( lowerCamelCase__ : int ) -> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : List[str] = 1 while repunit: _SCREAMING_SNAKE_CASE : Tuple = (1_0 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _lowerCAmelCase ( lowerCamelCase__ : int = 1_0_0_0_0_0_0 ) -> int: _SCREAMING_SNAKE_CASE : Optional[Any] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(lowerCamelCase__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'{solution() = }')
572
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__lowerCAmelCase ) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization UpperCAmelCase : str = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCAmelCase : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) UpperCAmelCase : ClassVar[Features] = Features({'''summary''': Value('''string''' )} ) UpperCAmelCase : str = "text" UpperCAmelCase : str = "summary" @property def lowerCAmelCase_ ( self : List[str] ): return {self.text_column: "text", self.summary_column: "summary"}
505
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging a = logging.get_logger(__name__) a = { '''Visual-Attention-Network/van-base''': ( '''https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json''' ), } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[str] = '''van''' def __init__( self : Optional[Any] , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : Optional[Any]=[7, 3, 3, 3] , _UpperCAmelCase : Optional[int]=[4, 2, 2, 2] , _UpperCAmelCase : Tuple=[64, 128, 320, 512] , _UpperCAmelCase : Optional[int]=[3, 3, 12, 3] , _UpperCAmelCase : Union[str, Any]=[8, 8, 4, 4] , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : List[Any]=1E-6 , _UpperCAmelCase : Optional[Any]=1E-2 , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Union[str, Any]=0.0 , **_UpperCAmelCase : str , ): super().__init__(**_UpperCAmelCase ) _A = image_size _A = num_channels _A = patch_sizes _A = strides _A = hidden_sizes _A = depths _A = mlp_ratios _A = hidden_act _A = initializer_range _A = layer_norm_eps _A = layer_scale_init_value _A = drop_path_rate _A = dropout_rate
505
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class a ( lowercase__ ): """simple docstring""" a : Union[str, Any] = 'timesformer' def __init__( self : List[Any] , __lowercase : Optional[Any]=224 , __lowercase : List[Any]=16 , __lowercase : int=3 , __lowercase : Tuple=8 , __lowercase : str=768 , __lowercase : List[Any]=12 , __lowercase : List[Any]=12 , __lowercase : Dict=3072 , __lowercase : Dict="gelu" , __lowercase : Dict=0.0 , __lowercase : Dict=0.0 , __lowercase : int=0.02 , __lowercase : List[str]=1e-6 , __lowercase : Tuple=True , __lowercase : Tuple="divided_space_time" , __lowercase : Any=0 , **__lowercase : List[Any] , ) -> Tuple: super().__init__(**__lowercase ) __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : Dict = patch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : str = num_frames __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = layer_norm_eps __UpperCAmelCase : List[Any] = qkv_bias __UpperCAmelCase : Union[str, Any] = attention_type __UpperCAmelCase : Dict = drop_path_rate
63
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
99
0
from __future__ import annotations import time snake_case__ = list[tuple[int, int]] snake_case__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] snake_case__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_ , A_ , A_ , A_ ) -> Dict: """simple docstring""" _lowerCamelCase = pos_x _lowerCamelCase = pos_y _lowerCamelCase = (pos_y, pos_x) _lowerCamelCase = goal_x _lowerCamelCase = goal_y _lowerCamelCase = parent class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_ ) -> str: """simple docstring""" _lowerCamelCase = Node(start[1] , start[0] , goal[1] , goal[0] , _SCREAMING_SNAKE_CASE ) _lowerCamelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , _SCREAMING_SNAKE_CASE ) _lowerCamelCase = [self.start] _lowerCamelCase = False def UpperCamelCase_ ( self ) -> Path | None: """simple docstring""" while self.node_queue: _lowerCamelCase = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _lowerCamelCase = True return self.retrace_path(_SCREAMING_SNAKE_CASE ) _lowerCamelCase = self.get_successors(_SCREAMING_SNAKE_CASE ) for node in successors: self.node_queue.append(_SCREAMING_SNAKE_CASE ) if not self.reached: return [self.start.pos] return None def UpperCamelCase_ ( self , A_ ) -> list[Node]: """simple docstring""" _lowerCamelCase = [] for action in delta: _lowerCamelCase = parent.pos_x + action[1] _lowerCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , _SCREAMING_SNAKE_CASE ) ) return successors def UpperCamelCase_ ( self , A_ ) -> Path: """simple docstring""" _lowerCamelCase = node _lowerCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCamelCase = current_node.parent path.reverse() return path class UpperCamelCase : '''simple docstring''' def __init__( self , A_ , A_ ) -> Any: """simple docstring""" _lowerCamelCase = BreadthFirstSearch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCamelCase = BreadthFirstSearch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCamelCase = False def UpperCamelCase_ ( self ) -> Path | None: """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _lowerCamelCase = self.fwd_bfs.node_queue.pop(0 ) _lowerCamelCase = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _lowerCamelCase = True return self.retrace_bidirectional_path( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCamelCase = current_bwd_node _lowerCamelCase = current_fwd_node _lowerCamelCase = { self.fwd_bfs: self.fwd_bfs.get_successors(_SCREAMING_SNAKE_CASE ), self.bwd_bfs: self.bwd_bfs.get_successors(_SCREAMING_SNAKE_CASE ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_SCREAMING_SNAKE_CASE ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCamelCase_ ( self , A_ , A_ ) -> Path: """simple docstring""" _lowerCamelCase = self.fwd_bfs.retrace_path(_SCREAMING_SNAKE_CASE ) _lowerCamelCase = self.bwd_bfs.retrace_path(_SCREAMING_SNAKE_CASE ) bwd_path.pop() bwd_path.reverse() _lowerCamelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() snake_case__ = (0, 0) snake_case__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) snake_case__ = time.time() snake_case__ = BreadthFirstSearch(init, goal) snake_case__ = bfs.search() snake_case__ = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) snake_case__ = time.time() snake_case__ = BidirectionalBreadthFirstSearch(init, goal) snake_case__ = bd_bfs.search() snake_case__ = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
709
def __magic_name__( __UpperCAmelCase , __UpperCAmelCase ) -> bool: '''simple docstring''' _lowerCamelCase = len(__UpperCAmelCase ) _lowerCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCamelCase = subset[i - 1][j] if arr[i - 1] <= j: _lowerCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
638
0
from math import factorial __magic_name__ = {str(d): factorial(d) for d in range(10)} def UpperCAmelCase__( __UpperCAmelCase : int ): return sum(DIGIT_FACTORIAL[d] for d in str(__UpperCAmelCase ) ) def UpperCAmelCase__( ): __snake_case : Dict = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , __UpperCAmelCase ) if sum_of_digit_factorial(__UpperCAmelCase ) == i ) if __name__ == "__main__": print(F'''{solution() = }''')
576
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict ): __snake_case : List[str] = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""encoder.deit.blocks.{i}.norm1.weight""", F"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm1.bias""", F"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.weight""", F"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.bias""", F"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.norm2.weight""", F"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm2.bias""", F"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.weight""", F"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.bias""", F"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc2.weight""", F"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.mlp.fc2.bias""", F"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('encoder.deit.cls_token', 'encoder.embeddings.cls_token'), ('encoder.deit.pos_embed', 'encoder.embeddings.position_embeddings'), ('encoder.deit.patch_embed.proj.weight', 'encoder.embeddings.patch_embeddings.projection.weight'), ('encoder.deit.patch_embed.proj.bias', 'encoder.embeddings.patch_embeddings.projection.bias'), ('encoder.deit.norm.weight', 'encoder.layernorm.weight'), ('encoder.deit.norm.bias', 'encoder.layernorm.bias'), ] ) return rename_keys def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple ): for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) __snake_case : int = state_dict.pop(F"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) __snake_case : Tuple = in_proj_weight[ : encoder_config.hidden_size, : ] __snake_case : Tuple = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] __snake_case : int = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] ): __snake_case : Any = dct.pop(__UpperCAmelCase ) __snake_case : Optional[int] = val def UpperCAmelCase__( __UpperCAmelCase : Tuple ): if "handwritten" in checkpoint_url: __snake_case : Any = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: __snake_case : Union[str, Any] = 'https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg' __snake_case : Any = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ).convert('RGB' ) return im @torch.no_grad() def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : str ): __snake_case : List[Any] = ViTConfig(image_size=3_84 , qkv_bias=__UpperCAmelCase ) __snake_case : int = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: __snake_case : List[Any] = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder __snake_case : str = 10_24 __snake_case : List[Any] = 40_96 __snake_case : Tuple = 24 __snake_case : Dict = 16 __snake_case : Union[str, Any] = 10_24 else: raise ValueError('Should either find \'base\' or \'large\' in checkpoint URL' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: __snake_case : Optional[Any] = False __snake_case : List[Any] = 'relu' __snake_case : List[str] = 10_24 __snake_case : Union[str, Any] = True __snake_case : Tuple = False __snake_case : Optional[Any] = False # load HuggingFace model __snake_case : List[Any] = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ) __snake_case : Dict = TrOCRForCausalLM(__UpperCAmelCase ) __snake_case : Optional[Any] = VisionEncoderDecoderModel(encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) model.eval() # load state_dict of original model, rename some keys __snake_case : Any = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location='cpu' , check_hash=__UpperCAmelCase )['model'] __snake_case : int = create_rename_keys(__UpperCAmelCase , __UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): __snake_case : Dict = state_dict.pop(__UpperCAmelCase ) if key.startswith('decoder' ) and "output_projection" not in key: __snake_case : Optional[int] = val else: __snake_case : Tuple = val # load state dict model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image __snake_case : Dict = ViTImageProcessor(size=encoder_config.image_size ) __snake_case : Union[str, Any] = RobertaTokenizer.from_pretrained('roberta-large' ) __snake_case : List[Any] = TrOCRProcessor(__UpperCAmelCase , __UpperCAmelCase ) __snake_case : Optional[Any] = processor(images=prepare_img(__UpperCAmelCase ) , return_tensors='pt' ).pixel_values # verify logits __snake_case : List[Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) __snake_case : List[Any] = model(pixel_values=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ) __snake_case : List[Any] = outputs.logits __snake_case : Dict = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: __snake_case : List[str] = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: __snake_case : Dict = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: __snake_case : str = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: __snake_case : int = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , __UpperCAmelCase , atol=1E-3 ), "First elements of logits not as expected" Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCAmelCase ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
576
1
def _UpperCAmelCase ( A = 1000 ): '''simple docstring''' return sum(e for e in range(3 , A ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f"""{solution() = }""")
510
import math def _UpperCAmelCase ( A , A ): '''simple docstring''' if ( not isinstance(A , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def _UpperCAmelCase ( A , A ): '''simple docstring''' if ( not isinstance(A , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
510
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=3 , __lowerCAmelCase=2_2_4 , __lowerCAmelCase=3_0 , __lowerCAmelCase=4_0_0 , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=[0.5, 0.5, 0.5] , __lowerCAmelCase=[0.5, 0.5, 0.5] , ): """simple docstring""" __magic_name__ :int = size if size is not None else {'''height''': 1_8, '''width''': 1_8} __magic_name__ :Tuple = parent __magic_name__ :Tuple = batch_size __magic_name__ :Any = num_channels __magic_name__ :List[Any] = image_size __magic_name__ :Union[str, Any] = min_resolution __magic_name__ :Optional[Any] = max_resolution __magic_name__ :List[str] = do_resize __magic_name__ :Any = size __magic_name__ :Optional[Any] = do_normalize __magic_name__ :Union[str, Any] = image_mean __magic_name__ :str = image_std def A ( self ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowerCamelCase_ ( lowerCamelCase , unittest.TestCase ): a__ = ViTImageProcessor if is_vision_available() else None def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = EfficientFormerImageProcessorTester(self ) @property def A ( self ): """simple docstring""" return self.image_proc_tester.prepare_image_processor_dict() def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) def A ( self ): """simple docstring""" pass def A ( self ): """simple docstring""" # Initialize image_processor __magic_name__ :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ :Tuple = prepare_image_inputs(self.image_proc_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input __magic_name__ :List[str] = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __magic_name__ :int = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def A ( self ): """simple docstring""" # Initialize image_processor __magic_name__ :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ :Union[str, Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input __magic_name__ :Tuple = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __magic_name__ :Optional[Any] = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def A ( self ): """simple docstring""" # Initialize image_processor __magic_name__ :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ :Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input __magic_name__ :Any = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __magic_name__ :List[str] = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
0
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCamelCase_ ( lowerCamelCase , unittest.TestCase ): a__ = MobileBertTokenizer a__ = MobileBertTokenizerFast a__ = True a__ = True a__ = filter_non_english a__ = '''google/mobilebert-uncased''' def A ( self ): """simple docstring""" super().setUp() __magic_name__ :Tuple = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __magic_name__ :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __magic_name__ :List[str] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def A ( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Union[str, Any] = '''UNwant\u00E9d,running''' __magic_name__ :int = '''unwanted, running''' return input_text, output_text def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = self.tokenizer_class(self.vocab_file ) __magic_name__ :List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__lowerCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def A ( self ): """simple docstring""" if not self.test_rust_tokenizer: return __magic_name__ :int = self.get_tokenizer() __magic_name__ :Tuple = self.get_rust_tokenizer() __magic_name__ :List[str] = '''UNwant\u00E9d,running''' __magic_name__ :Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) __magic_name__ :List[Any] = rust_tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :int = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) __magic_name__ :str = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :List[Any] = self.get_rust_tokenizer() __magic_name__ :Any = tokenizer.encode(__lowerCAmelCase ) __magic_name__ :Any = rust_tokenizer.encode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # With lower casing __magic_name__ :Any = self.get_tokenizer(do_lower_case=__lowerCAmelCase ) __magic_name__ :List[Any] = self.get_rust_tokenizer(do_lower_case=__lowerCAmelCase ) __magic_name__ :Dict = '''UNwant\u00E9d,running''' __magic_name__ :Tuple = tokenizer.tokenize(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = rust_tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :Optional[Any] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) __magic_name__ :Dict = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :Tuple = self.get_rust_tokenizer() __magic_name__ :Dict = tokenizer.encode(__lowerCAmelCase ) __magic_name__ :List[Any] = rust_tokenizer.encode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def A ( self ): """simple docstring""" __magic_name__ :List[Any] = BasicTokenizer(do_lower_case=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def A ( self ): """simple docstring""" __magic_name__ :Dict = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = BasicTokenizer(do_lower_case=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A ( self ): """simple docstring""" __magic_name__ :List[str] = BasicTokenizer(do_lower_case=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A ( self ): """simple docstring""" __magic_name__ :int = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = BasicTokenizer(do_lower_case=__lowerCAmelCase , strip_accents=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = BasicTokenizer(do_lower_case=__lowerCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def A ( self ): """simple docstring""" __magic_name__ :int = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __magic_name__ :Union[str, Any] = {} for i, token in enumerate(__lowerCAmelCase ): __magic_name__ :Tuple = i __magic_name__ :List[Any] = WordpieceTokenizer(vocab=__lowerCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def A ( self ): """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def A ( self ): """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def A ( self ): """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def A ( self ): """simple docstring""" __magic_name__ :Any = self.get_tokenizer() __magic_name__ :Any = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__lowerCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(__lowerCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) __magic_name__ :Optional[int] = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowerCAmelCase ) __magic_name__ :List[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowerCAmelCase ) __magic_name__ :Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase ) __magic_name__ :List[Any] = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def A ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __magic_name__ :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __magic_name__ :Optional[int] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __magic_name__ :Optional[Any] = tokenizer_r.encode_plus( __lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , ) __magic_name__ :Any = tokenizer_r.do_lower_case if hasattr(__lowerCAmelCase , '''do_lower_case''' ) else False __magic_name__ :Optional[int] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''Allen'''), ((2_1, 2_3), '''##NL'''), ((2_3, 2_4), '''##P'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''allen'''), ((2_1, 2_3), '''##nl'''), ((2_3, 2_4), '''##p'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def A ( self ): """simple docstring""" __magic_name__ :Dict = ['''的''', '''人''', '''有'''] __magic_name__ :Any = ''''''.join(__lowerCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __magic_name__ :Optional[Any] = True __magic_name__ :Optional[int] = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __magic_name__ :Tuple = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __magic_name__ :Dict = tokenizer_p.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) __magic_name__ :List[str] = tokenizer_r.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) __magic_name__ :Dict = tokenizer_r.convert_ids_to_tokens(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__lowerCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :List[str] = False __magic_name__ :Tuple = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __magic_name__ :List[str] = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) __magic_name__ :Optional[Any] = tokenizer_r.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) __magic_name__ :Union[str, Any] = tokenizer_p.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) __magic_name__ :List[str] = tokenizer_r.convert_ids_to_tokens(__lowerCAmelCase ) __magic_name__ :Optional[int] = tokenizer_p.convert_ids_to_tokens(__lowerCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". __magic_name__ :Dict = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__lowerCAmelCase ) ] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
0
1
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging A : Optional[Any] = logging.get_logger(__name__) class _lowercase ( lowercase__): """simple docstring""" def __init__( self : Dict , __lowerCamelCase : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() lowerCamelCase__ : List[str] = nn.ModuleList(__lowerCamelCase ) def lowerCAmelCase ( self : int , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : Union[torch.Tensor, float, int] , __lowerCamelCase : torch.Tensor , __lowerCamelCase : List[torch.tensor] , __lowerCamelCase : List[float] , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[Dict[str, Any]] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(__lowerCamelCase , __lowerCamelCase , self.nets ) ): lowerCamelCase__ : int = controlnet( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) # merge samples if i == 0: lowerCamelCase__ : Union[str, Any] = down_samples, mid_sample else: lowerCamelCase__ : Tuple = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__lowerCamelCase , __lowerCamelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, os.PathLike] , __lowerCamelCase : bool = True , __lowerCamelCase : Callable = None , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[str] = None , ): '''simple docstring''' lowerCamelCase__ : Any = 0 lowerCamelCase__ : Tuple = save_directory for controlnet in self.nets: controlnet.save_pretrained( __lowerCamelCase , is_main_process=__lowerCamelCase , save_function=__lowerCamelCase , safe_serialization=__lowerCamelCase , variant=__lowerCamelCase , ) idx += 1 lowerCamelCase__ : Optional[Any] = model_path_to_save + f"_{idx}" @classmethod def lowerCAmelCase ( cls : Dict , __lowerCamelCase : Optional[Union[str, os.PathLike]] , **__lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : List[str] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowerCamelCase__ : int = pretrained_model_path while os.path.isdir(__lowerCamelCase ): lowerCamelCase__ : int = ControlNetModel.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) controlnets.append(__lowerCamelCase ) idx += 1 lowerCamelCase__ : int = pretrained_model_path + f"_{idx}" logger.info(f"{len(__lowerCamelCase )} controlnets loaded from {pretrained_model_path}." ) if len(__lowerCamelCase ) == 0: raise ValueError( f"No ControlNets found under {os.path.dirname(__lowerCamelCase )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(__lowerCamelCase )
703
import os from datetime import datetime as dt from github import Github A : Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] ) lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" ) lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" ) for issue in open_issues: lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A ) lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
5
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowercase__ :Optional[int] = logging.get_logger(__name__) lowercase__ :List[str] = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : Union[str, Any] = 'layoutlmv3' def __init__( self : Union[str, Any] , __lowercase : Dict=50_265 , __lowercase : int=768 , __lowercase : Union[str, Any]=12 , __lowercase : str=12 , __lowercase : List[str]=3_072 , __lowercase : str="gelu" , __lowercase : Union[str, Any]=0.1 , __lowercase : List[Any]=0.1 , __lowercase : Tuple=512 , __lowercase : List[str]=2 , __lowercase : Tuple=0.0_2 , __lowercase : str=1e-5 , __lowercase : List[str]=1 , __lowercase : List[str]=0 , __lowercase : List[str]=2 , __lowercase : Union[str, Any]=1_024 , __lowercase : List[str]=128 , __lowercase : Union[str, Any]=128 , __lowercase : List[str]=True , __lowercase : Union[str, Any]=32 , __lowercase : Optional[int]=128 , __lowercase : List[Any]=64 , __lowercase : Any=256 , __lowercase : List[str]=True , __lowercase : List[str]=True , __lowercase : Optional[Any]=True , __lowercase : Dict=224 , __lowercase : str=3 , __lowercase : Union[str, Any]=16 , __lowercase : Dict=None , **__lowercase : Dict , ): '''simple docstring''' super().__init__( vocab_size=__lowercase , hidden_size=__lowercase , num_hidden_layers=__lowercase , num_attention_heads=__lowercase , intermediate_size=__lowercase , hidden_act=__lowercase , hidden_dropout_prob=__lowercase , attention_probs_dropout_prob=__lowercase , max_position_embeddings=__lowercase , type_vocab_size=__lowercase , initializer_range=__lowercase , layer_norm_eps=__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase , ) __UpperCAmelCase : Optional[int] = max_ad_position_embeddings __UpperCAmelCase : List[Any] = coordinate_size __UpperCAmelCase : Tuple = shape_size __UpperCAmelCase : Dict = has_relative_attention_bias __UpperCAmelCase : str = rel_pos_bins __UpperCAmelCase : str = max_rel_pos __UpperCAmelCase : int = has_spatial_attention_bias __UpperCAmelCase : str = rel_ad_pos_bins __UpperCAmelCase : Optional[int] = max_rel_ad_pos __UpperCAmelCase : Any = text_embed __UpperCAmelCase : Union[str, Any] = visual_embed __UpperCAmelCase : int = input_size __UpperCAmelCase : int = num_channels __UpperCAmelCase : List[Any] = patch_size __UpperCAmelCase : List[Any] = classifier_dropout class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : int = version.parse('1.12' ) @property def A_ ( self : List[Any] ): '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def A_ ( self : Union[str, Any] ): '''simple docstring''' return 1e-5 @property def A_ ( self : Dict ): '''simple docstring''' return 12 def A_ ( self : Union[str, Any] , __lowercase : "ProcessorMixin" , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional["TensorType"] = None , __lowercase : int = 3 , __lowercase : int = 40 , __lowercase : int = 40 , ): '''simple docstring''' setattr(processor.image_processor , '''apply_ocr''' , __lowercase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __UpperCAmelCase : List[str] = compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __UpperCAmelCase : Dict = processor.tokenizer.num_special_tokens_to_add(__lowercase ) __UpperCAmelCase : int = compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowercase ) # Generate dummy inputs according to compute batch and sequence __UpperCAmelCase : Tuple = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __UpperCAmelCase : str = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __UpperCAmelCase : str = self._generate_dummy_images(__lowercase , __lowercase , __lowercase , __lowercase ) __UpperCAmelCase : Tuple = dict( processor( __lowercase , text=__lowercase , boxes=__lowercase , return_tensors=__lowercase , ) ) return inputs
522
"""simple docstring""" from __future__ import annotations lowercase__ :Dict = '#' class snake_case : '''simple docstring''' def __init__( self : List[str] ): '''simple docstring''' __UpperCAmelCase : dict = {} def A_ ( self : Optional[int] , __lowercase : str ): '''simple docstring''' __UpperCAmelCase : Any = self._trie for char in text: if char not in trie: __UpperCAmelCase : int = {} __UpperCAmelCase : Dict = trie[char] __UpperCAmelCase : int = True def A_ ( self : List[Any] , __lowercase : str ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self._trie for char in prefix: if char in trie: __UpperCAmelCase : Optional[int] = trie[char] else: return [] return self._elements(__lowercase ) def A_ ( self : Optional[int] , __lowercase : dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = [] for c, v in d.items(): __UpperCAmelCase : Optional[int] = [''' '''] if c == END else [(c + s) for s in self._elements(__lowercase )] result.extend(__lowercase ) return tuple(__lowercase ) lowercase__ :Union[str, Any] = Trie() lowercase__ :Union[str, Any] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def lowerCamelCase_ ( UpperCAmelCase_ ) ->tuple: """simple docstring""" __UpperCAmelCase : int = trie.find_word(UpperCAmelCase_ ) return tuple(string + word for word in suffixes ) def lowerCamelCase_ ( ) ->None: """simple docstring""" print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
522
1
"""simple docstring""" import tensorflow as tf from ...tf_utils import shape_list class _UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=1 , snake_case_=False , **snake_case_ ): """simple docstring""" super().__init__(**_snake_case ) A_ : List[Any] = vocab_size A_ : List[str] = d_embed A_ : Optional[Any] = d_proj A_ : str = cutoffs + [vocab_size] A_ : Tuple = [0] + self.cutoffs A_ : Tuple = div_val A_ : Optional[int] = self.cutoffs[0] A_ : int = len(self.cutoffs ) - 1 A_ : int = self.shortlist_size + self.n_clusters A_ : List[Any] = keep_order A_ : str = [] A_ : Union[str, Any] = [] def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" if self.n_clusters > 0: A_ : Union[str, Any] = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='zeros' , trainable=_snake_case , name='cluster_weight' ) A_ : List[Any] = self.add_weight( shape=(self.n_clusters,) , initializer='zeros' , trainable=_snake_case , name='cluster_bias' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ : List[str] = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='zeros' , trainable=_snake_case , name=F"""out_projs_._{i}""" , ) self.out_projs.append(_snake_case ) else: self.out_projs.append(_snake_case ) A_ : Optional[Any] = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='zeros' , trainable=_snake_case , name=F"""out_layers_._{i}_._weight""" , ) A_ : str = self.add_weight( shape=(self.vocab_size,) , initializer='zeros' , trainable=_snake_case , name=F"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ : Dict = self.d_embed // (self.div_val**i) A_ : Union[str, Any] = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='zeros' , trainable=_snake_case , name=F"""out_projs_._{i}""" ) self.out_projs.append(_snake_case ) A_ : Optional[Any] = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='zeros' , trainable=_snake_case , name=F"""out_layers_._{i}_._weight""" , ) A_ : List[Any] = self.add_weight( shape=(r_idx - l_idx,) , initializer='zeros' , trainable=_snake_case , name=F"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) super().build(_snake_case ) @staticmethod def lowerCamelCase_ ( snake_case_ , snake_case_ , snake_case_ , snake_case_=None ): """simple docstring""" A_ : List[str] = x if proj is not None: A_ : Any = tf.einsum('ibd,ed->ibe' , _snake_case , _snake_case ) return tf.einsum('ibd,nd->ibn' , _snake_case , _snake_case ) + b @staticmethod def lowerCamelCase_ ( snake_case_ , snake_case_ ): """simple docstring""" A_ : Any = shape_list(_snake_case ) A_ : List[Any] = tf.range(lp_size[0] , dtype=target.dtype ) A_ : Optional[int] = tf.stack([r, target] , 1 ) return tf.gather_nd(_snake_case , _snake_case ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_=True , snake_case_=False ): """simple docstring""" A_ : Optional[Any] = 0 if self.n_clusters == 0: A_ : List[Any] = self._logit(_snake_case , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ : Optional[Any] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_snake_case , logits=_snake_case ) A_ : Dict = tf.nn.log_softmax(_snake_case , axis=-1 ) else: A_ : str = shape_list(_snake_case ) A_ : Dict = [] A_ : List[Any] = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ : str = (target >= l_idx) & (target < r_idx) A_ : Any = tf.where(_snake_case ) A_ : List[Any] = tf.boolean_mask(_snake_case , _snake_case ) - l_idx if self.div_val == 1: A_ : int = self.out_layers[0][0][l_idx:r_idx] A_ : Tuple = self.out_layers[0][1][l_idx:r_idx] else: A_ : Tuple = self.out_layers[i][0] A_ : List[Any] = self.out_layers[i][1] if i == 0: A_ : Any = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ : Optional[int] = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ : Any = self._logit(_snake_case , _snake_case , _snake_case , self.out_projs[0] ) A_ : Dict = tf.nn.log_softmax(_snake_case ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ : Any = tf.boolean_mask(_snake_case , _snake_case ) A_ : Any = self._gather_logprob(_snake_case , _snake_case ) else: A_ : Any = self._logit(_snake_case , _snake_case , _snake_case , self.out_projs[i] ) A_ : Tuple = tf.nn.log_softmax(_snake_case ) A_ : Union[str, Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ : int = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(_snake_case ) if target is not None: A_ : List[Any] = tf.boolean_mask(_snake_case , _snake_case ) A_ : Optional[Any] = tf.boolean_mask(_snake_case , _snake_case ) A_ : int = self._gather_logprob(_snake_case , _snake_case ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(_snake_case , -cur_logprob , shape_list(_snake_case ) ) A_ : List[str] = tf.concat(_snake_case , axis=-1 ) if target is not None: if return_mean: A_ : str = tf.reduce_mean(_snake_case ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(_snake_case ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(_snake_case , name=self.name , aggregation='mean' if return_mean else '' ) return out
708
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase=0.999 , _UpperCAmelCase="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCAmelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) A_ : str = [] for i in range(_UpperCAmelCase ): A_ : Optional[Any] = i / num_diffusion_timesteps A_ : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_UpperCAmelCase ) / alpha_bar_fn(_UpperCAmelCase ) , _UpperCAmelCase ) ) return torch.tensor(_UpperCAmelCase , dtype=torch.floataa ) class _UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' lowercase_ : List[Any] = [e.name for e in KarrasDiffusionSchedulers] lowercase_ : List[Any] = 2 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = 0.0_00_85 , snake_case_ = 0.0_12 , snake_case_ = "linear" , snake_case_ = None , snake_case_ = "epsilon" , snake_case_ = False , snake_case_ = False , snake_case_ = 1.0 , snake_case_ = "linspace" , snake_case_ = 0 , ): """simple docstring""" if trained_betas is not None: A_ : Optional[int] = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": A_ : List[Any] = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A_ : List[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A_ : List[str] = betas_for_alpha_bar(snake_case_ , alpha_transform_type='cosine' ) elif beta_schedule == "exp": A_ : Union[str, Any] = betas_for_alpha_bar(snake_case_ , alpha_transform_type='exp' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) A_ : Dict = 1.0 - self.betas A_ : Any = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case_ , snake_case_ , snake_case_ ) A_ : List[Any] = use_karras_sigmas def lowerCamelCase_ ( self , snake_case_ , snake_case_=None ): """simple docstring""" if schedule_timesteps is None: A_ : List[str] = self.timesteps A_ : Any = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: A_ : Tuple = 1 if len(snake_case_ ) > 1 else 0 else: A_ : Optional[int] = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep A_ : Tuple = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCamelCase_ ( self ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCamelCase_ ( self , snake_case_ , snake_case_ , ): """simple docstring""" A_ : Optional[int] = self.index_for_timestep(snake_case_ ) A_ : Union[str, Any] = self.sigmas[step_index] A_ : List[str] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCamelCase_ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , ): """simple docstring""" A_ : Tuple = num_inference_steps A_ : Any = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": A_ : Dict = np.linspace(0 , num_train_timesteps - 1 , snake_case_ , dtype=snake_case_ )[::-1].copy() elif self.config.timestep_spacing == "leading": A_ : int = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A_ : str = (np.arange(0 , snake_case_ ) * step_ratio).round()[::-1].copy().astype(snake_case_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": A_ : Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A_ : Optional[Any] = (np.arange(snake_case_ , 0 , -step_ratio )).round().copy().astype(snake_case_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) A_ : List[Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) A_ : int = np.log(snake_case_ ) A_ : str = np.interp(snake_case_ , np.arange(0 , len(snake_case_ ) ) , snake_case_ ) if self.config.use_karras_sigmas: A_ : Union[str, Any] = self._convert_to_karras(in_sigmas=snake_case_ , num_inference_steps=self.num_inference_steps ) A_ : Dict = np.array([self._sigma_to_t(snake_case_ , snake_case_ ) for sigma in sigmas] ) A_ : Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) A_ : List[Any] = torch.from_numpy(snake_case_ ).to(device=snake_case_ ) A_ : str = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) A_ : int = torch.from_numpy(snake_case_ ) A_ : Dict = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(snake_case_ ).startswith('mps' ): # mps does not support float64 A_ : int = timesteps.to(snake_case_ , dtype=torch.floataa ) else: A_ : Tuple = timesteps.to(device=snake_case_ ) # empty dt and derivative A_ : Optional[int] = None A_ : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter A_ : Any = defaultdict(snake_case_ ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ ): """simple docstring""" A_ : List[str] = np.log(snake_case_ ) # get distribution A_ : Union[str, Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range A_ : Optional[Any] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) A_ : Tuple = low_idx + 1 A_ : Dict = log_sigmas[low_idx] A_ : Optional[Any] = log_sigmas[high_idx] # interpolate sigmas A_ : Any = (low - log_sigma) / (low - high) A_ : Optional[int] = np.clip(snake_case_ , 0 , 1 ) # transform interpolation to time range A_ : str = (1 - w) * low_idx + w * high_idx A_ : Optional[int] = t.reshape(sigma.shape ) return t def lowerCamelCase_ ( self , snake_case_ , snake_case_ ): """simple docstring""" A_ : float = in_sigmas[-1].item() A_ : float = in_sigmas[0].item() A_ : str = 7.0 # 7.0 is the value used in the paper A_ : str = np.linspace(0 , 1 , snake_case_ ) A_ : List[str] = sigma_min ** (1 / rho) A_ : int = sigma_max ** (1 / rho) A_ : str = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowerCamelCase_ ( self ): """simple docstring""" return self.dt is None def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ): """simple docstring""" A_ : Dict = self.index_for_timestep(snake_case_ ) # advance index counter by 1 A_ : Tuple = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: A_ : Tuple = self.sigmas[step_index] A_ : List[str] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method A_ : str = self.sigmas[step_index - 1] A_ : Optional[Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API A_ : Tuple = 0 A_ : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": A_ : str = sigma_hat if self.state_in_first_order else sigma_next A_ : Tuple = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": A_ : Tuple = sigma_hat if self.state_in_first_order else sigma_next A_ : Optional[int] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": A_ : Optional[int] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: A_ : Union[str, Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order A_ : str = (sample - pred_original_sample) / sigma_hat # 3. delta timestep A_ : str = sigma_next - sigma_hat # store for 2nd order step A_ : Optional[Any] = derivative A_ : Union[str, Any] = dt A_ : Optional[Any] = sample else: # 2. 2nd order / Heun's method A_ : List[Any] = (sample - pred_original_sample) / sigma_next A_ : Optional[Any] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample A_ : List[Any] = self.dt A_ : Optional[Any] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" A_ : List[str] = None A_ : Tuple = None A_ : str = None A_ : Optional[int] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ , ): """simple docstring""" A_ : Optional[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case_ ): # mps does not support float64 A_ : str = self.timesteps.to(original_samples.device , dtype=torch.floataa ) A_ : List[str] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: A_ : List[str] = self.timesteps.to(original_samples.device ) A_ : int = timesteps.to(original_samples.device ) A_ : Union[str, Any] = [self.index_for_timestep(snake_case_ , snake_case_ ) for t in timesteps] A_ : int = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): A_ : List[Any] = sigma.unsqueeze(-1 ) A_ : List[Any] = original_samples + noise * sigma return noisy_samples def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
302
0
def __a ( A__ : int = 1000 ): SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'{solution() = }')
16
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
25
0
"""simple docstring""" import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , ) ->Optional[int]: """simple docstring""" if attention_mask is None: __UpperCAmelCase : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __UpperCAmelCase : Dict = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __UpperCAmelCase : List[Any] = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=UpperCAmelCase_ ) if decoder_head_mask is None: __UpperCAmelCase : Optional[Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=UpperCAmelCase_ ) if cross_attn_head_mask is None: __UpperCAmelCase : Any = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=UpperCAmelCase_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class snake_case : '''simple docstring''' def __init__( self : List[str] , __lowercase : List[str] , __lowercase : Optional[Any]=13 , __lowercase : Tuple=7 , __lowercase : str=True , __lowercase : Dict=False , __lowercase : Tuple=99 , __lowercase : List[Any]=16 , __lowercase : int=2 , __lowercase : Optional[Any]=4 , __lowercase : Tuple=4 , __lowercase : Any="relu" , __lowercase : Any=0.1 , __lowercase : List[Any]=0.1 , __lowercase : Tuple=0.0 , __lowercase : List[str]=0.0 , __lowercase : Optional[int]=20 , __lowercase : int=2 , __lowercase : Tuple=1 , __lowercase : Tuple=0 , ): '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Tuple = batch_size __UpperCAmelCase : Optional[int] = seq_length __UpperCAmelCase : Any = is_training __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : int = vocab_size __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : int = hidden_act __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Any = encoder_layerdrop __UpperCAmelCase : List[str] = decoder_layerdrop __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Optional[Any] = eos_token_id __UpperCAmelCase : Tuple = pad_token_id __UpperCAmelCase : str = bos_token_id def A_ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Union[str, Any] = self.eos_token_id # Eos Token __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __UpperCAmelCase : Dict = input_ids.clamp(self.pad_token_id + 1 ) __UpperCAmelCase : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) __UpperCAmelCase : List[Any] = self.get_config() __UpperCAmelCase : Tuple = prepare_mam_aaa_inputs_dict(__lowercase , __lowercase , __lowercase ) return config, inputs_dict def A_ ( self : Any ): '''simple docstring''' return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def A_ ( self : Dict ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def A_ ( self : str , __lowercase : Optional[int] , __lowercase : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = MaMaaaModel(config=__lowercase ).get_decoder().to(__lowercase ).eval() __UpperCAmelCase : Optional[Any] = inputs_dict['''input_ids'''] __UpperCAmelCase : Dict = inputs_dict['''attention_mask'''] __UpperCAmelCase : List[Any] = inputs_dict['''head_mask'''] # first forward pass __UpperCAmelCase : Dict = model(__lowercase , attention_mask=__lowercase , head_mask=__lowercase , use_cache=__lowercase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __UpperCAmelCase : int = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Optional[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __UpperCAmelCase : Dict = model(__lowercase , attention_mask=__lowercase )['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(__lowercase , attention_mask=__lowercase , past_key_values=__lowercase )[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1e-2 ) ) def A_ ( self : int , __lowercase : Dict , __lowercase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = MaMaaaModel(config=__lowercase ).to(__lowercase ).eval() __UpperCAmelCase : Optional[int] = model(**__lowercase ) __UpperCAmelCase : Optional[int] = outputs.encoder_last_hidden_state __UpperCAmelCase : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Union[str, Any] = model.get_encoder() encoder.save_pretrained(__lowercase ) __UpperCAmelCase : Optional[Any] = MaMaaaEncoder.from_pretrained(__lowercase ).to(__lowercase ) __UpperCAmelCase : List[str] = encoder(inputs_dict['''input_ids'''] , attention_mask=inputs_dict['''attention_mask'''] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Optional[int] = model.get_decoder() decoder.save_pretrained(__lowercase ) __UpperCAmelCase : Any = MaMaaaDecoder.from_pretrained(__lowercase ).to(__lowercase ) __UpperCAmelCase : str = decoder( input_ids=inputs_dict['''decoder_input_ids'''] , attention_mask=inputs_dict['''decoder_attention_mask'''] , encoder_hidden_states=__lowercase , encoder_attention_mask=inputs_dict['''attention_mask'''] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class snake_case ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _A : Dict = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) _A : Tuple = (MaMaaaForConditionalGeneration,) if is_torch_available() else () _A : Tuple = ( { 'conversational': MaMaaaForConditionalGeneration, 'feature-extraction': MaMaaaModel, 'summarization': MaMaaaForConditionalGeneration, 'text2text-generation': MaMaaaForConditionalGeneration, 'translation': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) _A : Union[str, Any] = True _A : int = True _A : Tuple = False _A : Tuple = False def A_ ( self : List[str] , __lowercase : List[str] , __lowercase : Any , __lowercase : List[str] , __lowercase : str , __lowercase : List[Any] ): '''simple docstring''' if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def A_ ( self : Any ): '''simple docstring''' __UpperCAmelCase : str = MaMaaaModelTester(self ) __UpperCAmelCase : List[str] = ConfigTester(self , config_class=__lowercase ) def A_ ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A_ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __UpperCAmelCase : int = model_class(__lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = model_class.from_pretrained(__lowercase , output_loading_info=__lowercase ) self.assertEqual(info['''missing_keys'''] , [] ) def A_ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__lowercase ) def A_ ( self : str ): '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__lowercase ) def A_ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): __UpperCAmelCase : Tuple = model_class(__lowercase ) model.to(__lowercase ) model.eval() __UpperCAmelCase : str = copy.deepcopy(self._prepare_for_class(__lowercase , __lowercase ) ) if not self.is_encoder_decoder: __UpperCAmelCase : str = inputs['''input_ids'''] del inputs["input_ids"] else: __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''] __UpperCAmelCase : Tuple = inputs.get('''decoder_input_ids''' , __lowercase ) del inputs["input_ids"] inputs.pop('''decoder_input_ids''' , __lowercase ) __UpperCAmelCase : Union[str, Any] = model.get_input_embeddings() if not self.is_encoder_decoder: __UpperCAmelCase : int = wte(__lowercase ) else: __UpperCAmelCase : Union[str, Any] = wte(__lowercase ) __UpperCAmelCase : Optional[Any] = wte(__lowercase ) with torch.no_grad(): model(**__lowercase )[0] def A_ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase : int = input_dict['''input_ids'''] __UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__lowercase ) __UpperCAmelCase : Optional[Any] = MaMaaaForConditionalGeneration(__lowercase ).eval().to(__lowercase ) if torch_device == "cuda": model.half() model.generate(__lowercase , attention_mask=__lowercase ) model.generate(num_beams=4 , do_sample=__lowercase , early_stopping=__lowercase , num_return_sequences=3 ) def lowerCamelCase_ ( UpperCAmelCase_ ) ->Optional[Any]: """simple docstring""" return torch.tensor(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) lowercase__ :Dict = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A_ ( self : Tuple ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' ) def A_ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''' ).to(__lowercase ) __UpperCAmelCase : Dict = _long_tensor([[128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38, 2]] ) __UpperCAmelCase : Optional[Any] = _long_tensor([[2, 128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38]] ) __UpperCAmelCase : str = prepare_mam_aaa_inputs_dict(model.config , __lowercase , __lowercase ) with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**__lowercase )[0] __UpperCAmelCase : str = torch.Size((1, 11, 1_024) ) self.assertEqual(output.shape , __lowercase ) # change to expected output here __UpperCAmelCase : str = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=__lowercase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=__lowercase ) ) def A_ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : int = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(__lowercase ) # change to intended input __UpperCAmelCase : Any = _long_tensor([[128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38, 2]] ) __UpperCAmelCase : Union[str, Any] = _long_tensor([[2, 128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38]] ) __UpperCAmelCase : Optional[Any] = prepare_mam_aaa_inputs_dict(model.config , __lowercase , __lowercase ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**__lowercase )[0] __UpperCAmelCase : Optional[int] = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , __lowercase ) # change to expected output here __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=__lowercase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=__lowercase ) ) def A_ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[str] = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(__lowercase ) __UpperCAmelCase : Tuple = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' , src_lang='''fr''' , tgt_lang='''en''' ) __UpperCAmelCase : Optional[Any] = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams __UpperCAmelCase : Tuple = tokenizer(__lowercase , padding=__lowercase , return_tensors='''pt''' ) __UpperCAmelCase : List[Any] = model.generate( input_ids=dct['''input_ids'''].to(__lowercase ) , attention_mask=dct['''attention_mask'''].to(__lowercase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('''en''' ) , ) __UpperCAmelCase : Any = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] __UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__lowercase , skip_special_tokens=__lowercase ) assert generated == expected_en
374
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Optional[int]: """simple docstring""" __UpperCAmelCase : Dict = LxmertConfig.from_json_file(UpperCAmelCase_ ) print(f'''Building PyTorch model from configuration: {config}''' ) __UpperCAmelCase : Tuple = LxmertForPreTraining(UpperCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase_ ) if __name__ == "__main__": lowercase__ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase__ :Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
374
1
'''simple docstring''' from manim import * class _a (_lowerCamelCase): """simple docstring""" def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 ) _SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE = VGroup(*A__ ).arrange(A__ , buff=0 ) _SCREAMING_SNAKE_CASE = VGroup(*A__ ).arrange(A__ , buff=0 ) _SCREAMING_SNAKE_CASE = VGroup(A__ , A__ ).arrange(A__ , buff=0 ) _SCREAMING_SNAKE_CASE = Text("""CPU""" , font_size=24 ) _SCREAMING_SNAKE_CASE = Group(A__ , A__ ).arrange(A__ , buff=0.5 , aligned_edge=A__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(A__ ) _SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )] _SCREAMING_SNAKE_CASE = VGroup(*A__ ).arrange(A__ , buff=0 ) _SCREAMING_SNAKE_CASE = Text("""GPU""" , font_size=24 ) _SCREAMING_SNAKE_CASE = Group(A__ , A__ ).arrange(A__ , buff=0.5 , aligned_edge=A__ ) gpu.move_to([-1, -1, 0] ) self.add(A__ ) _SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE = VGroup(*A__ ).arrange(A__ , buff=0 ) _SCREAMING_SNAKE_CASE = Text("""Model""" , font_size=24 ) _SCREAMING_SNAKE_CASE = Group(A__ , A__ ).arrange(A__ , buff=0.5 , aligned_edge=A__ ) model.move_to([3, -1.0, 0] ) self.add(A__ ) _SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(A__ ): rect.set_stroke(A__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(A__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=A__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=A__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=A__ , buff=0.0 ) self.add(A__ ) cpu_targs.append(A__ ) _SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE = VGroup(*A__ ).arrange(A__ , buff=0 ) _SCREAMING_SNAKE_CASE = Text("""Loaded Checkpoint""" , font_size=24 ) _SCREAMING_SNAKE_CASE = Group(A__ , A__ ).arrange(A__ , aligned_edge=A__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _SCREAMING_SNAKE_CASE = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _SCREAMING_SNAKE_CASE = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(A__ , A__ ) _SCREAMING_SNAKE_CASE = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(A__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _SCREAMING_SNAKE_CASE = MarkupText( F"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(A__ ) , Write(A__ ) ) self.play(Write(A__ , run_time=1 ) , Create(A__ , run_time=1 ) ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(A__ ): _SCREAMING_SNAKE_CASE = fill.copy().set_fill(A__ , opacity=0.7 ) target.move_to(A__ ) first_animations.append(GrowFromCenter(A__ , run_time=1 ) ) _SCREAMING_SNAKE_CASE = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(A__ , run_time=1.5 ) ) self.play(*A__ ) self.play(*A__ ) self.wait()
591
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> float: """simple docstring""" _SCREAMING_SNAKE_CASE = np.array([[1, item, train_mtch[i]] for i, item in enumerate(SCREAMING_SNAKE_CASE_ )] ) _SCREAMING_SNAKE_CASE = np.array(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , SCREAMING_SNAKE_CASE_ ) ) , x.transpose() ) , SCREAMING_SNAKE_CASE_ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> float: """simple docstring""" _SCREAMING_SNAKE_CASE = (1, 2, 1) _SCREAMING_SNAKE_CASE = (1, 1, 0, 7) _SCREAMING_SNAKE_CASE = SARIMAX( SCREAMING_SNAKE_CASE_ , exog=SCREAMING_SNAKE_CASE_ , order=SCREAMING_SNAKE_CASE_ , seasonal_order=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = model.fit(disp=SCREAMING_SNAKE_CASE_ , maxiter=6_00 , method="""nm""" ) _SCREAMING_SNAKE_CASE = model_fit.predict(1 , len(SCREAMING_SNAKE_CASE_ ) , exog=[test_match] ) return result[0] def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> float: """simple docstring""" _SCREAMING_SNAKE_CASE = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = regressor.predict(SCREAMING_SNAKE_CASE_ ) return y_pred[0] def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> float: """simple docstring""" train_user.sort() _SCREAMING_SNAKE_CASE = np.percentile(SCREAMING_SNAKE_CASE_ , 25 ) _SCREAMING_SNAKE_CASE = np.percentile(SCREAMING_SNAKE_CASE_ , 75 ) _SCREAMING_SNAKE_CASE = qa - qa _SCREAMING_SNAKE_CASE = qa - (iqr * 0.1) return low_lim def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 for i in list_vote: if i > actual_result: _SCREAMING_SNAKE_CASE = not_safe + 1 else: if abs(abs(SCREAMING_SNAKE_CASE_ ) - abs(SCREAMING_SNAKE_CASE_ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) UpperCamelCase__ : Tuple = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] UpperCamelCase__ : Tuple = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) UpperCamelCase__ : Dict = Normalizer().fit_transform(data_input_df.values) # split data UpperCamelCase__ : Tuple = normalize_df[:, 2].tolist() UpperCamelCase__ : str = normalize_df[:, 0].tolist() UpperCamelCase__ : Optional[int] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) UpperCamelCase__ : str = normalize_df[:, [1, 2]].tolist() UpperCamelCase__ : Optional[int] = x[: len(x) - 1] UpperCamelCase__ : Tuple = x[len(x) - 1 :] # for linear regression & sarimax UpperCamelCase__ : List[Any] = total_date[: len(total_date) - 1] UpperCamelCase__ : str = total_user[: len(total_user) - 1] UpperCamelCase__ : Union[str, Any] = total_match[: len(total_match) - 1] UpperCamelCase__ : Optional[Any] = total_date[len(total_date) - 1 :] UpperCamelCase__ : List[str] = total_user[len(total_user) - 1 :] UpperCamelCase__ : Optional[Any] = total_match[len(total_match) - 1 :] # voting system with forecasting UpperCamelCase__ : Union[str, Any] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data UpperCamelCase__ : str = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
591
1
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger('transformers.models.encodec') SCREAMING_SNAKE_CASE__ = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } SCREAMING_SNAKE_CASE__ = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } SCREAMING_SNAKE_CASE__ = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } SCREAMING_SNAKE_CASE__ = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } SCREAMING_SNAKE_CASE__ = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } SCREAMING_SNAKE_CASE__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } SCREAMING_SNAKE_CASE__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Dict: for attribute in key.split(""".""" ): UpperCamelCase = getattr(__UpperCamelCase , __UpperCamelCase ) if weight_type is not None: UpperCamelCase = getattr(__UpperCamelCase , __UpperCamelCase ).shape else: UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCamelCase = value elif weight_type == "weight_g": UpperCamelCase = value elif weight_type == "weight_v": UpperCamelCase = value elif weight_type == "bias": UpperCamelCase = value elif weight_type == "running_mean": UpperCamelCase = value elif weight_type == "running_var": UpperCamelCase = value elif weight_type == "num_batches_tracked": UpperCamelCase = value elif weight_type == "weight_ih_l0": UpperCamelCase = value elif weight_type == "weight_hh_l0": UpperCamelCase = value elif weight_type == "bias_ih_l0": UpperCamelCase = value elif weight_type == "bias_hh_l0": UpperCamelCase = value elif weight_type == "weight_ih_l1": UpperCamelCase = value elif weight_type == "weight_hh_l1": UpperCamelCase = value elif weight_type == "bias_ih_l1": UpperCamelCase = value elif weight_type == "bias_hh_l1": UpperCamelCase = value else: UpperCamelCase = value logger.info(F"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Optional[Any]: for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCamelCase = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Tuple: UpperCamelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": UpperCamelCase = MAPPING_24K elif model_name == "encodec_48khz": UpperCamelCase = MAPPING_48K else: raise ValueError(F"Unsupported model: {model_name}" ) for name, value in orig_dict.items(): if should_ignore(__UpperCamelCase , __UpperCamelCase ): logger.info(F"{name} was ignored" ) continue UpperCamelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: UpperCamelCase = key.split(""".*.""" ) if prefix in name and suffix in name: UpperCamelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue UpperCamelCase = True if "*" in mapped_key: UpperCamelCase = name.split(__UpperCamelCase )[0].split(""".""" )[-2] UpperCamelCase = mapped_key.replace("""*""" , __UpperCamelCase ) if "weight_g" in name: UpperCamelCase = 'weight_g' elif "weight_v" in name: UpperCamelCase = 'weight_v' elif "weight_ih_l0" in name: UpperCamelCase = 'weight_ih_l0' elif "weight_hh_l0" in name: UpperCamelCase = 'weight_hh_l0' elif "bias_ih_l0" in name: UpperCamelCase = 'bias_ih_l0' elif "bias_hh_l0" in name: UpperCamelCase = 'bias_hh_l0' elif "weight_ih_l1" in name: UpperCamelCase = 'weight_ih_l1' elif "weight_hh_l1" in name: UpperCamelCase = 'weight_hh_l1' elif "bias_ih_l1" in name: UpperCamelCase = 'bias_ih_l1' elif "bias_hh_l1" in name: UpperCamelCase = 'bias_hh_l1' elif "bias" in name: UpperCamelCase = 'bias' elif "weight" in name: UpperCamelCase = 'weight' elif "running_mean" in name: UpperCamelCase = 'running_mean' elif "running_var" in name: UpperCamelCase = 'running_var' elif "num_batches_tracked" in name: UpperCamelCase = 'num_batches_tracked' else: UpperCamelCase = None set_recursively(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) @torch.no_grad() def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , )-> List[Any]: if config_path is not None: UpperCamelCase = EncodecConfig.from_pretrained(__UpperCamelCase ) else: UpperCamelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": UpperCamelCase = [8, 5, 4, 4] UpperCamelCase = [2.2] UpperCamelCase = 64 UpperCamelCase = 32000 UpperCamelCase = 2048 UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False elif model_name == "encodec_48khz": UpperCamelCase = [8, 5, 4, 2] UpperCamelCase = [3.0, 6.0, 12.0, 24.0] UpperCamelCase = 48000 UpperCamelCase = 2 UpperCamelCase = False UpperCamelCase = 'time_group_norm' UpperCamelCase = True UpperCamelCase = 1.0 UpperCamelCase = 0.01 else: raise ValueError(F"Unknown model name: {model_name}" ) UpperCamelCase = EncodecModel(__UpperCamelCase ) UpperCamelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__UpperCamelCase ) UpperCamelCase = torch.load(__UpperCamelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights UpperCamelCase = original_checkpoint['best_state'] recursively_load_weights(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(__UpperCamelCase ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
716
'''simple docstring''' def lowercase__ ( __UpperCamelCase )-> str: if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) UpperCamelCase = """""" while len(__UpperCamelCase ) % 3 != 0: UpperCamelCase = """0""" + bin_string UpperCamelCase = [ bin_string[index : index + 3] for index in range(len(__UpperCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: UpperCamelCase = 0 for index, val in enumerate(__UpperCamelCase ): oct_val += int(2 ** (2 - index) * int(__UpperCamelCase ) ) oct_string += str(__UpperCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
35
0
import heapq import sys import numpy as np lowercase : Any = tuple[int, int] class UpperCAmelCase_ : '''simple docstring''' def __init__( self ) -> int: snake_case_ : Any = [] snake_case_ : Any = set() def _lowerCAmelCase ( self ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float("inf" ) def _lowerCAmelCase ( self ) -> int: return len(self.elements ) == 0 def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_SCREAMING_SNAKE_CASE ) else: # update # print("update", item) snake_case_ : List[Any] = [] ((snake_case_) , (snake_case_)) : Dict = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((snake_case_) , (snake_case_)) : Optional[int] = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Any: if item in self.set: self.set.remove(_SCREAMING_SNAKE_CASE ) snake_case_ : Any = [] ((snake_case_) , (snake_case_)) : Any = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((snake_case_) , (snake_case_)) : Optional[Any] = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _lowerCAmelCase ( self ) -> Optional[Any]: return self.elements[0][1] def _lowerCAmelCase ( self ) -> Any: ((snake_case_) , (snake_case_)) : Dict = heapq.heappop(self.elements ) self.set.remove(_SCREAMING_SNAKE_CASE ) return (priority, item) def lowerCAmelCase__ ( _a : TPos , _a : TPos ): # euclidean distance snake_case_ : List[Any] = np.array(_a ) snake_case_ : str = np.array(_a ) return np.linalg.norm(a - b ) def lowerCAmelCase__ ( _a : TPos , _a : TPos ): # integer division by time variable return consistent_heuristic(_a , _a ) // t def lowerCAmelCase__ ( _a : TPos , _a : TPos ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase__ ( _a : TPos , _a : int , _a : TPos , _a : dict[TPos, float] ): snake_case_ : List[Any] = g_function[start] + Wa * heuristics[i](_a , _a ) return ans def lowerCAmelCase__ ( _a : Tuple , _a : List[Any] , _a : List[Any] ): snake_case_ : Union[str, Any] = np.chararray((n, n) ) for i in range(_a ): for j in range(_a ): snake_case_ : Tuple = "*" for i in range(_a ): for j in range(_a ): if (j, (n - 1) - i) in blocks: snake_case_ : Optional[int] = "#" snake_case_ : int = "-" snake_case_ : Union[str, Any] = back_pointer[goal] while x != start: ((snake_case_) , (snake_case_)) : str = x # print(x) snake_case_ : str = "-" snake_case_ : Optional[int] = back_pointer[x] snake_case_ : List[str] = "-" for i in range(_a ): for j in range(_a ): if (i, j) == (0, n - 1): print(grid[i][j] , end=" " ) print("<-- End position" , end=" " ) else: print(grid[i][j] , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) print("PATH TAKEN BY THE ALGORITHM IS:-" ) snake_case_ : int = back_pointer[goal] while x != start: print(_a , end=" " ) snake_case_ : List[str] = back_pointer[x] print(_a ) sys.exit() def lowerCAmelCase__ ( _a : TPos ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase__ ( _a : Dict , _a : Tuple , _a : int , _a : Tuple , _a : Dict , _a : Any , _a : Union[str, Any] , _a : List[Any] , ): for itera in range(_a ): open_list[itera].remove_element(_a ) # print("s", s) # print("j", j) ((snake_case_) , (snake_case_)) : Any = s snake_case_ : Optional[int] = (x - 1, y) snake_case_ : List[Any] = (x + 1, y) snake_case_ : Union[str, Any] = (x, y + 1) snake_case_ : Dict = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_a ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_a ) snake_case_ : List[str] = -1 snake_case_ : List[Any] = float("inf" ) if valid(_a ) and g_function[neighbours] > g_function[s] + 1: snake_case_ : List[str] = g_function[s] + 1 snake_case_ : str = s if neighbours not in close_list_anchor: open_list[0].put(_a , key(_a , 0 , _a , _a ) ) if neighbours not in close_list_inad: for var in range(1 , _a ): if key(_a , _a , _a , _a ) <= Wa * key( _a , 0 , _a , _a ): open_list[j].put( _a , key(_a , _a , _a , _a ) ) def lowerCAmelCase__ ( ): snake_case_ : List[str] = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list lowercase : Union[str, Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} lowercase : str = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] lowercase : List[Any] = make_common_ground() lowercase : Union[str, Any] = blocks_blk # hyper parameters lowercase : Dict = 1 lowercase : Tuple = 1 lowercase : str = 20 lowercase : List[str] = 3 # one consistent and two other inconsistent # start and end destination lowercase : Any = (0, 0) lowercase : Union[str, Any] = (n - 1, n - 1) lowercase : Optional[int] = 1 def lowerCAmelCase__ ( _a : TPos , _a : TPos , _a : int ): snake_case_ : Optional[Any] = {start: 0, goal: float("inf" )} snake_case_ : Optional[Any] = {start: -1, goal: -1} snake_case_ : Tuple = [] snake_case_ : Union[str, Any] = set() for i in range(_a ): open_list.append(PriorityQueue() ) open_list[i].put(_a , key(_a , _a , _a , _a ) ) snake_case_ : list[int] = [] snake_case_ : list[int] = [] while open_list[0].minkey() < float("inf" ): for i in range(1 , _a ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf" ): do_something(_a , _a , _a ) else: snake_case_ , snake_case_ : str = open_list[i].top_show() visited.add(_a ) expand_state( _a , _a , _a , _a , _a , _a , _a , _a , ) close_list_inad.append(_a ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf" ): do_something(_a , _a , _a ) else: snake_case_ : Optional[Any] = open_list[0].top_show() visited.add(_a ) expand_state( _a , 0 , _a , _a , _a , _a , _a , _a , ) close_list_anchor.append(_a ) print("No path found to goal" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_a ): if (j, i) in blocks: print("#" , end=" " ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("*" , end=" " ) else: print("-" , end=" " ) else: print("*" , end=" " ) if (j, i) == (n - 1, n - 1): print("<-- End position" , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
568
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowercase : int = None lowercase : str = logging.get_logger(__name__) lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase : Dict = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } lowercase : Dict = { '''google/rembert''': 2_56, } lowercase : Dict = '''▁''' class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : Any = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = RemBertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , **_SCREAMING_SNAKE_CASE , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ : Optional[int] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) snake_case_ : Any = do_lower_case snake_case_ : Dict = remove_space snake_case_ : Optional[Any] = keep_accents snake_case_ : Tuple = vocab_file snake_case_ : Union[str, Any] = False if not self.vocab_file else True def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: snake_case_ : Dict = [self.sep_token_id] snake_case_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error("Vocabulary path ({}) should be a directory".format(_SCREAMING_SNAKE_CASE ) ) return snake_case_ : str = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
568
1
'''simple docstring''' _lowercase = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
427
'''simple docstring''' import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowerCamelCase__ ( ): __snake_case = torch.nn.Linear(2 , 4 ) __snake_case = torch.optim.AdamW(model.parameters() , lr=1.0 ) __snake_case = torch.optim.lr_scheduler.OneCycleLR(a , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __snake_case = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __snake_case = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowerCamelCase__ ( a ): return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowerCamelCase__ ( a ): __snake_case = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(a ) class a_ ( UpperCAmelCase__ ): @require_cuda def lowercase__ ( self : List[str] ): __snake_case = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__lowerCAmelCase ): __snake_case = Accelerator(cpu=__lowerCAmelCase ) def lowercase__ ( self : Optional[int] ): __snake_case = Accelerator() __snake_case = GradientState() assert state.num_steps == 1 __snake_case = 4 assert state.num_steps == 4 assert state.sync_gradients is True __snake_case = False assert state.sync_gradients is False GradientState._reset_state() def lowercase__ ( self : Optional[Any] ): __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = create_components() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def lowercase__ ( self : Optional[int] ): __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = create_components() accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def lowercase__ ( self : Union[str, Any] ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__lowerCAmelCase : List[str] , **__lowerCAmelCase : Any ): pass with patch('torch.cuda.set_device' , __lowerCAmelCase ), patch_environment(ACCELERATE_TORCH_DEVICE='cuda:64' ): __snake_case = Accelerator() self.assertEqual(str(accelerator.state.device ) , 'cuda:64' ) def lowercase__ ( self : List[str] ): __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = create_components() accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __snake_case = get_signature(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowerCAmelCase ) # make sure random weights don't match load_random_weights(__lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__lowerCAmelCase ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(__lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__lowerCAmelCase ) ) < 1E-3 ) def lowercase__ ( self : List[str] ): __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = create_components() accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __snake_case = get_signature(__lowerCAmelCase ) # saving hook def save_config(__lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str ): __snake_case = {'class_name': models[0].__class__.__name__} with open(os.path.join(__lowerCAmelCase , 'data.json' ) , 'w' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) # loading hook def load_config(__lowerCAmelCase : int , __lowerCAmelCase : str ): with open(os.path.join(__lowerCAmelCase , 'data.json' ) , 'r' ) as f: __snake_case = json.load(__lowerCAmelCase ) __snake_case = config['class_name'] __snake_case = accelerator.register_save_state_pre_hook(__lowerCAmelCase ) __snake_case = accelerator.register_load_state_pre_hook(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowerCAmelCase ) # make sure random weights don't match with hooks load_random_weights(__lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__lowerCAmelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case = 'random' # make sure loaded weights match with hooks accelerator.load_state(__lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__lowerCAmelCase ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowerCAmelCase ) # make sure random weights don't match with hooks removed load_random_weights(__lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__lowerCAmelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case = 'random' # make sure loaded weights match with hooks removed accelerator.load_state(__lowerCAmelCase ) self.assertTrue(abs(model_signature - get_signature(__lowerCAmelCase ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def lowercase__ ( self : Union[str, Any] ): __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = create_components() __snake_case = None # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.assertTrue(dummy_obj is None ) def lowercase__ ( self : List[str] ): __snake_case = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = create_components() __snake_case = [1, 2, 3] # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.assertEqual( getattr(__lowerCAmelCase , '_is_accelerate_prepared' , __lowerCAmelCase ) , __lowerCAmelCase , 'Dummy object should have `_is_accelerate_prepared` set to `True`' , ) self.assertEqual( getattr(__lowerCAmelCase , '_is_accelerate_prepared' , __lowerCAmelCase ) , __lowerCAmelCase , 'Model is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(__lowerCAmelCase , '_is_accelerate_prepared' , __lowerCAmelCase ) , __lowerCAmelCase , 'Optimizer is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(__lowerCAmelCase , '_is_accelerate_prepared' , __lowerCAmelCase ) , __lowerCAmelCase , 'Scheduler is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(__lowerCAmelCase , '_is_accelerate_prepared' , __lowerCAmelCase ) , __lowerCAmelCase , 'Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(__lowerCAmelCase , '_is_accelerate_prepared' , __lowerCAmelCase ) , __lowerCAmelCase , 'Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) @slow @require_bnb def lowercase__ ( self : Optional[int] ): from transformers import AutoModelForCausalLM __snake_case = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=__lowerCAmelCase , device_map={'': 0} , ) __snake_case = Accelerator() # This should work __snake_case = accelerator.prepare(__lowerCAmelCase ) @slow @require_bnb def lowercase__ ( self : List[Any] ): from transformers import AutoModelForCausalLM __snake_case = Accelerator() with init_empty_weights(): __snake_case = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() __snake_case = infer_auto_device_map(__lowerCAmelCase ) __snake_case = 'cpu' __snake_case = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , device_map=__lowerCAmelCase , load_in_abit=__lowerCAmelCase , llm_inta_enable_fpaa_cpu_offload=__lowerCAmelCase ) # This should not work and get value error with self.assertRaises(__lowerCAmelCase ): __snake_case = accelerator.prepare(__lowerCAmelCase ) @slow @require_bnb @require_multi_gpu def lowercase__ ( self : Any ): from transformers import AutoModelForCausalLM __snake_case = {'distributed_type': DistributedType.MULTI_GPU} with init_empty_weights(): __snake_case = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() __snake_case = infer_auto_device_map(__lowerCAmelCase ) __snake_case = 1 __snake_case = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=__lowerCAmelCase , device_map=__lowerCAmelCase , ) __snake_case = Accelerator() # This should not work and get value error with self.assertRaises(__lowerCAmelCase ): __snake_case = accelerator.prepare(__lowerCAmelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def lowercase__ ( self : Any ): from transformers import AutoModelForCausalLM with init_empty_weights(): __snake_case = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) __snake_case = infer_auto_device_map(__lowerCAmelCase ) __snake_case = 1 __snake_case = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=__lowerCAmelCase , device_map=__lowerCAmelCase , ) __snake_case = Accelerator() # This should work __snake_case = accelerator.prepare(__lowerCAmelCase ) @require_cuda def lowercase__ ( self : str ): __snake_case = torch.nn.Linear(1_0 , 1_0 ) __snake_case = torch.optim.SGD(model.parameters() , lr=0.01 ) __snake_case = Accelerator(cpu=__lowerCAmelCase ) __snake_case = accelerator.prepare(__lowerCAmelCase )
427
1
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowercase__ = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 10_00, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } lowercase__ = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 10_00, '''block_out_channels''': [1_92, 1_92 * 2, 1_92 * 3, 1_92 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } lowercase__ = { '''sample_size''': 2_56, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [2_56, 2_56, 2_56 * 2, 2_56 * 2, 2_56 * 4, 2_56 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } lowercase__ = { '''num_train_timesteps''': 40, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } lowercase__ = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } lowercase__ = { '''num_train_timesteps''': 1_51, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def __snake_case ( lowercase : int ): if isinstance(lowercase , lowercase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected" ) def __snake_case ( lowercase : List[Any] , lowercase : List[Any] , lowercase : Any , lowercase : int , lowercase : Optional[int]=False ): snake_case_ = checkpoint[f'''{old_prefix}.in_layers.0.weight'''] snake_case_ = checkpoint[f'''{old_prefix}.in_layers.0.bias'''] snake_case_ = checkpoint[f'''{old_prefix}.in_layers.2.weight'''] snake_case_ = checkpoint[f'''{old_prefix}.in_layers.2.bias'''] snake_case_ = checkpoint[f'''{old_prefix}.emb_layers.1.weight'''] snake_case_ = checkpoint[f'''{old_prefix}.emb_layers.1.bias'''] snake_case_ = checkpoint[f'''{old_prefix}.out_layers.0.weight'''] snake_case_ = checkpoint[f'''{old_prefix}.out_layers.0.bias'''] snake_case_ = checkpoint[f'''{old_prefix}.out_layers.3.weight'''] snake_case_ = checkpoint[f'''{old_prefix}.out_layers.3.bias'''] if has_skip: snake_case_ = checkpoint[f'''{old_prefix}.skip_connection.weight'''] snake_case_ = checkpoint[f'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def __snake_case ( lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Any , lowercase : Union[str, Any] , lowercase : Dict=None ): snake_case_ , snake_case_ , snake_case_ = checkpoint[f'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) snake_case_ , snake_case_ , snake_case_ = checkpoint[f'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) snake_case_ = checkpoint[f'''{old_prefix}.norm.weight'''] snake_case_ = checkpoint[f'''{old_prefix}.norm.bias'''] snake_case_ = weight_q.squeeze(-1 ).squeeze(-1 ) snake_case_ = bias_q.squeeze(-1 ).squeeze(-1 ) snake_case_ = weight_k.squeeze(-1 ).squeeze(-1 ) snake_case_ = bias_k.squeeze(-1 ).squeeze(-1 ) snake_case_ = weight_v.squeeze(-1 ).squeeze(-1 ) snake_case_ = bias_v.squeeze(-1 ).squeeze(-1 ) snake_case_ = ( checkpoint[f'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) snake_case_ = checkpoint[f'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def __snake_case ( lowercase : str , lowercase : Optional[int] ): snake_case_ = torch.load(lowercase , map_location="cpu" ) snake_case_ = {} snake_case_ = checkpoint["time_embed.0.weight"] snake_case_ = checkpoint["time_embed.0.bias"] snake_case_ = checkpoint["time_embed.2.weight"] snake_case_ = checkpoint["time_embed.2.bias"] if unet_config["num_class_embeds"] is not None: snake_case_ = checkpoint["label_emb.weight"] snake_case_ = checkpoint["input_blocks.0.0.weight"] snake_case_ = checkpoint["input_blocks.0.0.bias"] snake_case_ = unet_config["down_block_types"] snake_case_ = unet_config["layers_per_block"] snake_case_ = unet_config["attention_head_dim"] snake_case_ = unet_config["block_out_channels"] snake_case_ = 1 snake_case_ = channels_list[0] for i, layer_type in enumerate(lowercase ): snake_case_ = channels_list[i] snake_case_ = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(lowercase ): snake_case_ = f'''down_blocks.{i}.resnets.{j}''' snake_case_ = f'''input_blocks.{current_layer}.0''' snake_case_ = True if j == 0 and downsample_block_has_skip else False snake_case_ = convert_resnet(lowercase , lowercase , lowercase , lowercase , has_skip=lowercase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(lowercase ): snake_case_ = f'''down_blocks.{i}.resnets.{j}''' snake_case_ = f'''input_blocks.{current_layer}.0''' snake_case_ = True if j == 0 and downsample_block_has_skip else False snake_case_ = convert_resnet(lowercase , lowercase , lowercase , lowercase , has_skip=lowercase ) snake_case_ = f'''down_blocks.{i}.attentions.{j}''' snake_case_ = f'''input_blocks.{current_layer}.1''' snake_case_ = convert_attention( lowercase , lowercase , lowercase , lowercase , lowercase ) current_layer += 1 if i != len(lowercase ) - 1: snake_case_ = f'''down_blocks.{i}.downsamplers.0''' snake_case_ = f'''input_blocks.{current_layer}.0''' snake_case_ = convert_resnet(lowercase , lowercase , lowercase , lowercase ) current_layer += 1 snake_case_ = current_channels # hardcoded the mid-block for now snake_case_ = "mid_block.resnets.0" snake_case_ = "middle_block.0" snake_case_ = convert_resnet(lowercase , lowercase , lowercase , lowercase ) snake_case_ = "mid_block.attentions.0" snake_case_ = "middle_block.1" snake_case_ = convert_attention(lowercase , lowercase , lowercase , lowercase , lowercase ) snake_case_ = "mid_block.resnets.1" snake_case_ = "middle_block.2" snake_case_ = convert_resnet(lowercase , lowercase , lowercase , lowercase ) snake_case_ = 0 snake_case_ = unet_config["up_block_types"] for i, layer_type in enumerate(lowercase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): snake_case_ = f'''up_blocks.{i}.resnets.{j}''' snake_case_ = f'''output_blocks.{current_layer}.0''' snake_case_ = convert_resnet(lowercase , lowercase , lowercase , lowercase , has_skip=lowercase ) current_layer += 1 if i != len(lowercase ) - 1: snake_case_ = f'''up_blocks.{i}.upsamplers.0''' snake_case_ = f'''output_blocks.{current_layer-1}.1''' snake_case_ = convert_resnet(lowercase , lowercase , lowercase , lowercase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): snake_case_ = f'''up_blocks.{i}.resnets.{j}''' snake_case_ = f'''output_blocks.{current_layer}.0''' snake_case_ = convert_resnet(lowercase , lowercase , lowercase , lowercase , has_skip=lowercase ) snake_case_ = f'''up_blocks.{i}.attentions.{j}''' snake_case_ = f'''output_blocks.{current_layer}.1''' snake_case_ = convert_attention( lowercase , lowercase , lowercase , lowercase , lowercase ) current_layer += 1 if i != len(lowercase ) - 1: snake_case_ = f'''up_blocks.{i}.upsamplers.0''' snake_case_ = f'''output_blocks.{current_layer-1}.2''' snake_case_ = convert_resnet(lowercase , lowercase , lowercase , lowercase ) snake_case_ = checkpoint["out.0.weight"] snake_case_ = checkpoint["out.0.bias"] snake_case_ = checkpoint["out.2.weight"] snake_case_ = checkpoint["out.2.bias"] return new_checkpoint if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') lowercase__ = parser.parse_args() lowercase__ = strabool(args.class_cond) lowercase__ = os.path.basename(args.unet_path) print(f"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: lowercase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowercase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowercase__ = TEST_UNET_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: lowercase__ = None lowercase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowercase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowercase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowercase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowercase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") lowercase__ = CMStochasticIterativeScheduler(**scheduler_config) lowercase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
508
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
508
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'unispeech' def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1e-5 , lowercase="group" , lowercase="gelu" , lowercase=(512, 512, 512, 512, 512, 512, 512) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(10, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=128 , lowercase=16 , lowercase=False , lowercase=True , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase=320 , lowercase=2 , lowercase=0.1 , lowercase=100 , lowercase=256 , lowercase=256 , lowercase=0.1 , lowercase="mean" , lowercase=False , lowercase=False , lowercase=256 , lowercase=80 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=0.5 , **lowercase , ) -> Tuple: '''simple docstring''' super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) A__ = hidden_size A__ = feat_extract_norm A__ = feat_extract_activation A__ = list(lowercase ) A__ = list(lowercase ) A__ = list(lowercase ) A__ = conv_bias A__ = num_conv_pos_embeddings A__ = num_conv_pos_embedding_groups A__ = len(self.conv_dim ) A__ = num_hidden_layers A__ = intermediate_size A__ = hidden_act A__ = num_attention_heads A__ = hidden_dropout A__ = attention_dropout A__ = activation_dropout A__ = feat_proj_dropout A__ = final_dropout A__ = layerdrop A__ = layer_norm_eps A__ = initializer_range A__ = num_ctc_classes A__ = vocab_size A__ = do_stable_layer_norm A__ = use_weighted_layer_sum A__ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A__ = apply_spec_augment A__ = mask_time_prob A__ = mask_time_length A__ = mask_time_min_masks A__ = mask_feature_prob A__ = mask_feature_length A__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations A__ = num_codevectors_per_group A__ = num_codevector_groups A__ = contrastive_logits_temperature A__ = feat_quantizer_dropout A__ = num_negatives A__ = codevector_dim A__ = proj_codevector_dim A__ = diversity_loss_weight # ctc loss A__ = ctc_loss_reduction A__ = ctc_zero_infinity # pretraining loss A__ = replace_prob @property def UpperCamelCase ( self ) -> str: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
626
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") lowerCAmelCase__ = logging.getLogger(__name__) @dataclass class a__ : """simple docstring""" __lowerCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __lowerCamelCase = field( default=snake_case , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowerCamelCase = field( default=snake_case , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowerCamelCase = field( default=snake_case , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __lowerCamelCase = field( default=snake_case , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) __lowerCamelCase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowerCamelCase = field( default=snake_case , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) @dataclass class a__ : """simple docstring""" __lowerCamelCase = field(default=snake_case , metadata={'help': 'The input training data file (a text file).'} ) __lowerCamelCase = field( default=snake_case , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __lowerCamelCase = field( default=snake_case , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __lowerCamelCase = field( default=snake_case , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) __lowerCamelCase = field( default=snake_case , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. If passed, sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase = field( default=snake_case , metadata={ 'help': ( 'Whether to pad all samples to the maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' ) } , ) __lowerCamelCase = field( default=snake_case , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowerCamelCase = field( default=snake_case , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' if self.train_file is not None: A__ = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: A__ = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class a__ : """simple docstring""" __lowerCamelCase = 42 __lowerCamelCase = True __lowerCamelCase = None __lowerCamelCase = None def __call__( self , lowercase ) -> Tuple: '''simple docstring''' A__ = "label" if "label" in features[0].keys() else "labels" A__ = [feature.pop(lowercase ) for feature in features] A__ = len(lowercase ) A__ = len(features[0]["input_ids"] ) A__ = [ [{k: v[i] for k, v in feature.items()} for i in range(lowercase )] for feature in features ] A__ = list(chain(*lowercase ) ) A__ = self.tokenizer.pad( lowercase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten A__ = {k: v.view(lowercase , lowercase , -1 ) for k, v in batch.items()} # Add back labels A__ = torch.tensor(lowercase , dtype=torch.intaa ) return batch def lowerCAmelCase__ ( ) -> List[Any]: '''simple docstring''' A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A__ , A__ , A__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A__ , A__ , A__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag" , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A__ = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE_ ) datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. A__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: A__ = {} if data_args.train_file is not None: A__ = data_args.train_file if data_args.validation_file is not None: A__ = data_args.validation_file A__ = data_args.train_file.split("." )[-1] A__ = load_dataset( SCREAMING_SNAKE_CASE_ , data_files=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. A__ = load_dataset( "swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A__ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. A__ = [F'ending{i}' for i in range(4 )] A__ = "sent1" A__ = "sent2" if data_args.max_seq_length is None: A__ = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) A__ = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) A__ = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(SCREAMING_SNAKE_CASE_: Optional[Any] ): A__ = [[context] * 4 for context in examples[context_name]] A__ = examples[question_header_name] A__ = [ [F'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(SCREAMING_SNAKE_CASE_ ) ] # Flatten out A__ = list(chain(*SCREAMING_SNAKE_CASE_ ) ) A__ = list(chain(*SCREAMING_SNAKE_CASE_ ) ) # Tokenize A__ = tokenizer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding="max_length" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) A__ = raw_datasets["train"] if data_args.max_train_samples is not None: A__ = min(len(SCREAMING_SNAKE_CASE_ ) , data_args.max_train_samples ) A__ = train_dataset.select(range(SCREAMING_SNAKE_CASE_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): A__ = train_dataset.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) A__ = raw_datasets["validation"] if data_args.max_eval_samples is not None: A__ = min(len(SCREAMING_SNAKE_CASE_ ) , data_args.max_eval_samples ) A__ = eval_dataset.select(range(SCREAMING_SNAKE_CASE_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): A__ = eval_dataset.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator A__ = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(SCREAMING_SNAKE_CASE_: str ): A__ , A__ = eval_predictions A__ = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer A__ = Trainer( model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE_ , data_collator=SCREAMING_SNAKE_CASE_ , compute_metrics=SCREAMING_SNAKE_CASE_ , ) # Training if training_args.do_train: A__ = None if training_args.resume_from_checkpoint is not None: A__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A__ = last_checkpoint A__ = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE_ ) trainer.save_model() # Saves the tokenizer too for easy upload A__ = train_result.metrics A__ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE_ ) ) A__ = min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) trainer.log_metrics("train" , SCREAMING_SNAKE_CASE_ ) trainer.save_metrics("train" , SCREAMING_SNAKE_CASE_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) A__ = trainer.evaluate() A__ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE_ ) A__ = min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) trainer.log_metrics("eval" , SCREAMING_SNAKE_CASE_ ) trainer.save_metrics("eval" , SCREAMING_SNAKE_CASE_ ) A__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE_ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
626
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''', } class lowercase ( snake_case__): """simple docstring""" a__ : Any = "git_vision_model" def __init__( self : str , __UpperCAmelCase : Any=768 , __UpperCAmelCase : Optional[int]=3_072 , __UpperCAmelCase : int=12 , __UpperCAmelCase : List[str]=12 , __UpperCAmelCase : Any=3 , __UpperCAmelCase : int=224 , __UpperCAmelCase : Optional[Any]=16 , __UpperCAmelCase : int="quick_gelu" , __UpperCAmelCase : Optional[int]=1E-5 , __UpperCAmelCase : List[str]=0.0 , __UpperCAmelCase : Union[str, Any]=0.02 , **__UpperCAmelCase : int , ) -> Tuple: super().__init__(**__UpperCAmelCase ) UpperCAmelCase_= hidden_size UpperCAmelCase_= intermediate_size UpperCAmelCase_= num_hidden_layers UpperCAmelCase_= num_attention_heads UpperCAmelCase_= num_channels UpperCAmelCase_= patch_size UpperCAmelCase_= image_size UpperCAmelCase_= initializer_range UpperCAmelCase_= attention_dropout UpperCAmelCase_= layer_norm_eps UpperCAmelCase_= hidden_act @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , __UpperCAmelCase : Union[str, os.PathLike] , **__UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase ) UpperCAmelCase_, UpperCAmelCase_= cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": UpperCAmelCase_= config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class lowercase ( snake_case__): """simple docstring""" a__ : Optional[int] = "git" def __init__( self : List[str] , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Tuple=30_522 , __UpperCAmelCase : List[Any]=768 , __UpperCAmelCase : Any=6 , __UpperCAmelCase : List[str]=12 , __UpperCAmelCase : Optional[int]=3_072 , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Any=1_024 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : str=1E-12 , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : Optional[Any]="absolute" , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Any=False , __UpperCAmelCase : str=101 , __UpperCAmelCase : int=102 , __UpperCAmelCase : Any=None , **__UpperCAmelCase : Optional[int] , ) -> Union[str, Any]: super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) if vision_config is None: UpperCAmelCase_= {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) UpperCAmelCase_= GitVisionConfig(**__UpperCAmelCase ) UpperCAmelCase_= vocab_size UpperCAmelCase_= hidden_size UpperCAmelCase_= num_hidden_layers UpperCAmelCase_= num_attention_heads UpperCAmelCase_= hidden_act UpperCAmelCase_= intermediate_size UpperCAmelCase_= hidden_dropout_prob UpperCAmelCase_= attention_probs_dropout_prob UpperCAmelCase_= max_position_embeddings UpperCAmelCase_= initializer_range UpperCAmelCase_= layer_norm_eps UpperCAmelCase_= position_embedding_type UpperCAmelCase_= use_cache UpperCAmelCase_= tie_word_embeddings UpperCAmelCase_= num_image_with_embedding UpperCAmelCase_= bos_token_id UpperCAmelCase_= eos_token_id def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: UpperCAmelCase_= copy.deepcopy(self.__dict__ ) UpperCAmelCase_= self.vision_config.to_dict() UpperCAmelCase_= self.__class__.model_type return output
593
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase ( snake_case__): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: UpperCAmelCase_= self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase , """width_multiplier""" ) ) class lowercase : """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : List[str]=13 , __UpperCAmelCase : Optional[int]=64 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : Any=3 , __UpperCAmelCase : List[str]="swish" , __UpperCAmelCase : Optional[int]=3 , __UpperCAmelCase : int=32 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Dict=10 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : List[str]=0.25 , __UpperCAmelCase : Optional[int]=0.0 , __UpperCAmelCase : Any=0.0 , ) -> List[str]: UpperCAmelCase_= parent UpperCAmelCase_= batch_size UpperCAmelCase_= image_size UpperCAmelCase_= patch_size UpperCAmelCase_= num_channels UpperCAmelCase_= make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase_= hidden_act UpperCAmelCase_= conv_kernel_size UpperCAmelCase_= output_stride UpperCAmelCase_= classifier_dropout_prob UpperCAmelCase_= use_labels UpperCAmelCase_= is_training UpperCAmelCase_= num_labels UpperCAmelCase_= initializer_range UpperCAmelCase_= scope UpperCAmelCase_= width_multiplier UpperCAmelCase_= ffn_dropout UpperCAmelCase_= attn_dropout def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_= floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_= None UpperCAmelCase_= None if self.use_labels: UpperCAmelCase_= ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_= ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_= self.get_config() return config, pixel_values, labels, pixel_labels def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) -> Optional[int]: UpperCAmelCase_= MobileViTVaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] ) -> List[Any]: UpperCAmelCase_= self.num_labels UpperCAmelCase_= MobileViTVaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any ) -> str: UpperCAmelCase_= self.num_labels UpperCAmelCase_= MobileViTVaForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_= model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: UpperCAmelCase_= self.prepare_config_and_inputs() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= config_and_inputs UpperCAmelCase_= {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" a__ : List[str] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) a__ : str = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) a__ : Any = False a__ : int = False a__ : Optional[int] = False a__ : Union[str, Any] = False def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: UpperCAmelCase_= MobileViTVaModelTester(self ) UpperCAmelCase_= MobileViTVaConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: pass def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: UpperCAmelCase_, UpperCAmelCase_= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_= model_class(__UpperCAmelCase ) UpperCAmelCase_= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_= [*signature.parameters.keys()] UpperCAmelCase_= ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: def check_hidden_states_output(__UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] ): UpperCAmelCase_= model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_= model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) UpperCAmelCase_= outputs.hidden_states UpperCAmelCase_= 5 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_= 2 for i in range(len(__UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase_, UpperCAmelCase_= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_= True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_= True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) @slow def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_= MobileViTVaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __a ( ) -> Tuple: '''simple docstring''' UpperCAmelCase_= Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_= MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( __UpperCAmelCase ) UpperCAmelCase_= self.default_image_processor UpperCAmelCase_= prepare_img() UpperCAmelCase_= image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_= model(**__UpperCAmelCase ) # verify the logits UpperCAmelCase_= torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) UpperCAmelCase_= torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: UpperCAmelCase_= MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) UpperCAmelCase_= model.to(__UpperCAmelCase ) UpperCAmelCase_= MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) UpperCAmelCase_= prepare_img() UpperCAmelCase_= image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_= model(**__UpperCAmelCase ) UpperCAmelCase_= outputs.logits # verify the logits UpperCAmelCase_= torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __UpperCAmelCase ) UpperCAmelCase_= torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: UpperCAmelCase_= MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) UpperCAmelCase_= model.to(__UpperCAmelCase ) UpperCAmelCase_= MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) UpperCAmelCase_= prepare_img() UpperCAmelCase_= image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_= model(**__UpperCAmelCase ) UpperCAmelCase_= outputs.logits.detach().cpu() UpperCAmelCase_= image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(50, 60)] ) UpperCAmelCase_= torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) UpperCAmelCase_= image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) UpperCAmelCase_= torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
593
1
"""simple docstring""" from __future__ import annotations def A_ ( __lowercase , __lowercase ): UpperCamelCase_ : Dict =get_failure_array(__lowercase ) # 2) Step through text searching for pattern UpperCamelCase_ , UpperCamelCase_ : Optional[Any] =0, 0 # index into text, pattern while i < len(__lowercase ): if pattern[j] == text[i]: if j == (len(__lowercase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCamelCase_ : Optional[Any] =failure[j - 1] continue i += 1 return False def A_ ( __lowercase ): UpperCamelCase_ : List[str] =[0] UpperCamelCase_ : List[str] =0 UpperCamelCase_ : List[Any] =1 while j < len(__lowercase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCamelCase_ : Dict =failure[i - 1] continue j += 1 failure.append(__lowercase ) return failure if __name__ == "__main__": # Test 1) __SCREAMING_SNAKE_CASE = 'abc1abc12' __SCREAMING_SNAKE_CASE = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __SCREAMING_SNAKE_CASE = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __SCREAMING_SNAKE_CASE = 'ABABX' __SCREAMING_SNAKE_CASE = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) __SCREAMING_SNAKE_CASE = 'AAAB' __SCREAMING_SNAKE_CASE = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) __SCREAMING_SNAKE_CASE = 'abcdabcy' __SCREAMING_SNAKE_CASE = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) __SCREAMING_SNAKE_CASE = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
395
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def A_ ( __lowercase ): UpperCamelCase_ : int =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCamelCase_ : Union[str, Any] =1_92 UpperCamelCase_ : Optional[Any] =7_68 UpperCamelCase_ : Optional[int] =12 UpperCamelCase_ : Tuple =3 UpperCamelCase_ : List[str] =[8_00, 13_33] UpperCamelCase_ : List[str] =False elif yolos_name == "yolos_s_dWr": UpperCamelCase_ : str =3_30 UpperCamelCase_ : Dict =14 UpperCamelCase_ : List[str] =6 UpperCamelCase_ : List[str] =13_20 elif "yolos_s" in yolos_name: UpperCamelCase_ : Optional[int] =3_84 UpperCamelCase_ : str =15_36 UpperCamelCase_ : List[Any] =12 UpperCamelCase_ : Union[str, Any] =6 elif "yolos_b" in yolos_name: UpperCamelCase_ : Optional[Any] =[8_00, 13_44] UpperCamelCase_ : Union[str, Any] =91 UpperCamelCase_ : Optional[Any] ='huggingface/label-files' UpperCamelCase_ : Union[str, Any] ='coco-detection-id2label.json' UpperCamelCase_ : Optional[Any] =json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='dataset' ) , 'r' ) ) UpperCamelCase_ : str ={int(__lowercase ): v for k, v in idalabel.items()} UpperCamelCase_ : str =idalabel UpperCamelCase_ : Optional[int] ={v: k for k, v in idalabel.items()} return config def A_ ( __lowercase , __lowercase , __lowercase = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase_ : Optional[Any] =state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) UpperCamelCase_ : str =state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase_ : int =in_proj_weight[: config.hidden_size, :] UpperCamelCase_ : Optional[Any] =in_proj_bias[: config.hidden_size] UpperCamelCase_ : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase_ : Optional[int] =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase_ : Any =in_proj_weight[-config.hidden_size :, :] UpperCamelCase_ : List[str] =in_proj_bias[-config.hidden_size :] def A_ ( __lowercase ): if "backbone" in name: UpperCamelCase_ : Any =name.replace('backbone' , 'vit' ) if "cls_token" in name: UpperCamelCase_ : str =name.replace('cls_token' , 'embeddings.cls_token' ) if "det_token" in name: UpperCamelCase_ : Optional[Any] =name.replace('det_token' , 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: UpperCamelCase_ : List[Any] =name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' ) if "pos_embed" in name: UpperCamelCase_ : str =name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: UpperCamelCase_ : Dict =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "blocks" in name: UpperCamelCase_ : Optional[int] =name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: UpperCamelCase_ : Union[str, Any] =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: UpperCamelCase_ : Optional[Any] =name.replace('attn' , 'attention.self' ) if "norm1" in name: UpperCamelCase_ : Optional[Any] =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: UpperCamelCase_ : Tuple =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: UpperCamelCase_ : List[str] =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: UpperCamelCase_ : int =name.replace('mlp.fc2' , 'output.dense' ) if "class_embed" in name: UpperCamelCase_ : Any =name.replace('class_embed' , 'class_labels_classifier' ) if "bbox_embed" in name: UpperCamelCase_ : Union[str, Any] =name.replace('bbox_embed' , 'bbox_predictor' ) if "vit.norm" in name: UpperCamelCase_ : Union[str, Any] =name.replace('vit.norm' , 'vit.layernorm' ) return name def A_ ( __lowercase , __lowercase ): for key in orig_state_dict.copy().keys(): UpperCamelCase_ : List[str] =orig_state_dict.pop(__lowercase ) if "qkv" in key: UpperCamelCase_ : Any =key.split('.' ) UpperCamelCase_ : List[str] =int(key_split[2] ) UpperCamelCase_ : Union[str, Any] =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCamelCase_ : Optional[int] =val[:dim, :] UpperCamelCase_ : List[str] =val[ dim : dim * 2, : ] UpperCamelCase_ : Tuple =val[-dim:, :] else: UpperCamelCase_ : Optional[Any] =val[:dim] UpperCamelCase_ : Optional[Any] =val[dim : dim * 2] UpperCamelCase_ : Union[str, Any] =val[-dim:] else: UpperCamelCase_ : Dict =val return orig_state_dict def A_ ( ): UpperCamelCase_ : str ='http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase_ : Optional[int] =Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def A_ ( __lowercase , __lowercase , __lowercase , __lowercase = False ): UpperCamelCase_ : int =get_yolos_config(__lowercase ) # load original state_dict UpperCamelCase_ : Union[str, Any] =torch.load(__lowercase , map_location='cpu' )['model'] # load 🤗 model UpperCamelCase_ : Dict =YolosForObjectDetection(__lowercase ) model.eval() UpperCamelCase_ : Union[str, Any] =convert_state_dict(__lowercase , __lowercase ) model.load_state_dict(__lowercase ) # Check outputs on an image, prepared by YolosImageProcessor UpperCamelCase_ : Any =8_00 if yolos_name != 'yolos_ti' else 5_12 UpperCamelCase_ : List[Any] =YolosImageProcessor(format='coco_detection' , size=__lowercase ) UpperCamelCase_ : Union[str, Any] =image_processor(images=prepare_img() , return_tensors='pt' ) UpperCamelCase_ : int =model(**__lowercase ) UpperCamelCase_ , UpperCamelCase_ : Optional[Any] =outputs.logits, outputs.pred_boxes UpperCamelCase_ , UpperCamelCase_ : Optional[Any] =None, None if yolos_name == "yolos_ti": UpperCamelCase_ : List[str] =torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) UpperCamelCase_ : str =torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": UpperCamelCase_ : Tuple =torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) UpperCamelCase_ : Any =torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": UpperCamelCase_ : Optional[Any] =torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) UpperCamelCase_ : Tuple =torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": UpperCamelCase_ : Union[str, Any] =torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) UpperCamelCase_ : Union[str, Any] =torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": UpperCamelCase_ : Tuple =torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) UpperCamelCase_ : Optional[Any] =torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(F'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __lowercase , atol=1e-4 ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowercase ) if push_to_hub: UpperCamelCase_ : Tuple ={ 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) UpperCamelCase_ : Optional[int] =model_mapping[yolos_name] image_processor.push_to_hub(__lowercase , organization='hustvl' ) model.push_to_hub(__lowercase , organization='hustvl' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
395
1
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __UpperCAmelCase ( a_: Tuple, a_: Union[str, Any]="shi-labs/oneformer_demo" ): with open(hf_hub_download(a_, a_, repo_type="dataset" ), "r" ) as f: _UpperCAmelCase : List[Any] = json.load(a_ ) _UpperCAmelCase : Any = {} _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Any = [] for key, info in class_info.items(): _UpperCAmelCase : Optional[int] = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(a_ ) ) _UpperCAmelCase : Dict = thing_ids _UpperCAmelCase : Optional[int] = class_names return metadata class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : Any=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : Optional[int]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : Tuple=1_0 , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : Union[str, Any]=2_5_5 , lowerCAmelCase__ : Tuple="shi-labs/oneformer_demo" , lowerCAmelCase__ : Optional[int]="ade20k_panoptic.json" , lowerCAmelCase__ : List[str]=1_0 , ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : List[str] = num_channels _UpperCAmelCase : Tuple = min_resolution _UpperCAmelCase : Any = max_resolution _UpperCAmelCase : List[Any] = do_resize _UpperCAmelCase : str = {"shortest_edge": 3_2, "longest_edge": 1_3_3_3} if size is None else size _UpperCAmelCase : str = do_normalize _UpperCAmelCase : List[str] = image_mean _UpperCAmelCase : Any = image_std _UpperCAmelCase : Any = class_info_file _UpperCAmelCase : int = prepare_metadata(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = num_text _UpperCAmelCase : List[str] = repo_path # for the post_process_functions _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Optional[Any] = 1_0 _UpperCAmelCase : List[str] = 1_0 _UpperCAmelCase : Tuple = 3 _UpperCAmelCase : Dict = 4 _UpperCAmelCase : Optional[int] = num_labels _UpperCAmelCase : int = do_reduce_labels _UpperCAmelCase : List[str] = ignore_index def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict=False ) -> int: """simple docstring""" if not batched: _UpperCAmelCase : Dict = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): _UpperCAmelCase , _UpperCAmelCase : Any = image.size else: _UpperCAmelCase , _UpperCAmelCase : List[Any] = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase : Optional[int] = int(self.size["shortest_edge"] * h / w ) _UpperCAmelCase : Optional[int] = self.size["shortest_edge"] elif w > h: _UpperCAmelCase : List[Any] = self.size["shortest_edge"] _UpperCAmelCase : Any = int(self.size["shortest_edge"] * w / h ) else: _UpperCAmelCase : List[Any] = self.size["shortest_edge"] _UpperCAmelCase : Any = self.size["shortest_edge"] else: _UpperCAmelCase : List[Any] = [] for image in image_inputs: _UpperCAmelCase , _UpperCAmelCase : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCAmelCase : str = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] _UpperCAmelCase : Optional[int] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string UpperCamelCase_ : Any = image_processing_class def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : str = OneFormerImageProcessorTester(self ) @property def _lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" return self.image_processing_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "image_mean" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "image_std" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "ignore_index" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "class_info_file" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "num_text" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "repo_path" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "metadata" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_reduce_labels" ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values _UpperCAmelCase , _UpperCAmelCase : Tuple = self.image_processing_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase : int = self.image_processing_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) _UpperCAmelCase : Any = image_processor( lowerCAmelCase__ , ["semantic"] * len(lowerCAmelCase__ ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input _UpperCAmelCase : List[str] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values _UpperCAmelCase , _UpperCAmelCase : Any = self.image_processing_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.image_processing_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = image_processor( lowerCAmelCase__ , ["semantic"] * len(lowerCAmelCase__ ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : Tuple = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.image_processing_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase : int = self.image_processing_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = image_processor( lowerCAmelCase__ , ["semantic"] * len(lowerCAmelCase__ ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[int]="np" ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _UpperCAmelCase : Dict = self.image_processing_tester.num_labels _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : Any = None _UpperCAmelCase : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCAmelCase__ ) if with_segmentation_maps: _UpperCAmelCase : str = num_labels if is_instance_map: _UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase__ ) ) * 2 _UpperCAmelCase : Optional[Any] = dict(enumerate(lowerCAmelCase__ ) ) _UpperCAmelCase : Any = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _UpperCAmelCase : Optional[int] = [Image.fromarray(lowerCAmelCase__ ) for annotation in annotations] _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , ["semantic"] * len(lowerCAmelCase__ ) , lowerCAmelCase__ , return_tensors="pt" , instance_id_to_semantic_id=lowerCAmelCase__ , pad_and_return_pixel_mask=lowerCAmelCase__ , ) return inputs def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" pass def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" def common(lowerCAmelCase__ : str=False , lowerCAmelCase__ : Optional[Any]=None ): _UpperCAmelCase : List[Any] = self.comm_get_image_processor_inputs( with_segmentation_maps=lowerCAmelCase__ , is_instance_map=lowerCAmelCase__ , segmentation_type=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = inputs["mask_labels"] _UpperCAmelCase : int = inputs["class_labels"] _UpperCAmelCase : Dict = inputs["pixel_values"] _UpperCAmelCase : List[Any] = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(lowerCAmelCase__ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=lowerCAmelCase__ ) common(is_instance_map=lowerCAmelCase__ , segmentation_type="pil" ) common(is_instance_map=lowerCAmelCase__ , segmentation_type="pil" ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Union[str, Any] = np.zeros((2_0, 5_0) ) _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[int] = 1 _UpperCAmelCase : int = 1 _UpperCAmelCase : str = binary_mask_to_rle(lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 4 ) self.assertEqual(rle[0] , 2_1 ) self.assertEqual(rle[1] , 4_5 ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) _UpperCAmelCase : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() _UpperCAmelCase : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _UpperCAmelCase : Tuple = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _UpperCAmelCase : Optional[int] = fature_extractor.post_process_semantic_segmentation(lowerCAmelCase__ , target_sizes=lowerCAmelCase__ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" _UpperCAmelCase : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) _UpperCAmelCase : List[str] = self.image_processing_tester.get_fake_oneformer_outputs() _UpperCAmelCase : List[str] = image_processor.post_process_instance_segmentation(lowerCAmelCase__ , threshold=0 ) self.assertTrue(len(lowerCAmelCase__ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , lowerCAmelCase__ ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) _UpperCAmelCase : List[str] = self.image_processing_tester.get_fake_oneformer_outputs() _UpperCAmelCase : Optional[int] = image_processor.post_process_panoptic_segmentation(lowerCAmelCase__ , threshold=0 ) self.assertTrue(len(lowerCAmelCase__ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , lowerCAmelCase__ ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
494
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Any , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : int ) -> None: """simple docstring""" warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
494
1
"""simple docstring""" import re def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> list: """simple docstring""" return [char.split() for char in re.split(R'[^ a-z A-Z 0-9 \s]',str_ )] def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" try: _UpperCAmelCase = split_input(SCREAMING_SNAKE_CASE ) if upper: _UpperCAmelCase = ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: _UpperCAmelCase = ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return to_simple_case(SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" try: _UpperCAmelCase = to_simple_case(SCREAMING_SNAKE_CASE ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return to_complex_case(SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE,'_' ) def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return to_complex_case(SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE,'-' ) if __name__ == "__main__": __import__('''doctest''').testmod()
702
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) lowerCAmelCase__ = """CIDAS/clipseg-rd64-refined""" lowerCAmelCase__ = """image_segmenter""" lowerCAmelCase__ = CLIPSegForImageSegmentation lowerCAmelCase__ = ["""image""", """text"""] lowerCAmelCase__ = ["""image"""] def __init__( self , *a__ , **a__ ): requires_backends(self , ['vision'] ) super().__init__(*a__ , **a__ ) def __A ( self , a__ , a__ ): return self.pre_processor(text=[label] , images=[image] , padding=a__ , return_tensors='pt' ) def __A ( self , a__ ): with torch.no_grad(): _UpperCAmelCase = self.model(**a__ ).logits return logits def __A ( self , a__ ): _UpperCAmelCase = outputs.cpu().detach().numpy() _UpperCAmelCase = 0 _UpperCAmelCase = 1 return Image.fromarray((array * 2_55).astype(np.uinta ) )
494
0
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case ( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = ["""image_processor""", """tokenizer"""] UpperCAmelCase : List[str] = """FlavaImageProcessor""" UpperCAmelCase : Union[str, Any] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase_ , ) SCREAMING_SNAKE_CASE_ = kwargs.pop('''feature_extractor''' ) SCREAMING_SNAKE_CASE_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = self.image_processor def __call__( self : int , lowerCAmelCase_ : Optional[ImageInput] = None , lowerCAmelCase_ : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Optional[int] , ) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) if images is not None: SCREAMING_SNAKE_CASE_ = self.image_processor( lowerCAmelCase_ , return_image_mask=lowerCAmelCase_ , return_codebook_pixels=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) if text is not None and images is not None: encoding.update(lowerCAmelCase_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def _lowercase ( self : List[Any] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : List[Any] ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowercase ( self : List[str] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Dict ) -> str: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowercase ( self : Tuple ) -> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase_ , ) return self.image_processor_class @property def _lowercase ( self : List[Any] ) -> str: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase_ , ) return self.image_processor
393
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 A_ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") A_ = get_tests_dir("fixtures/vocab.json") A_ = get_tests_dir("fixtures") class snake_case ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : str = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] def _lowercase ( self : str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = 0 def _lowercase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowercase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = WavaVecaConfig() SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) copyfile(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , '''vocab.json''' ) ) SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) SCREAMING_SNAKE_CASE_ = WavaVecaProcessor(lowerCAmelCase_ , lowerCAmelCase_ ) # save in new folder processor.save_pretrained(lowerCAmelCase_ ) # drop `processor_class` in tokenizer with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , '''r''' ) as f: SCREAMING_SNAKE_CASE_ = json.load(lowerCAmelCase_ ) config_dict.pop('''processor_class''' ) with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , '''w''' ) as f: f.write(json.dumps(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowercase ( self : Any ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) SCREAMING_SNAKE_CASE_ = WavaVecaProcessor(lowerCAmelCase_ , lowerCAmelCase_ ) # save in new folder processor.save_pretrained(lowerCAmelCase_ ) # drop `processor_class` in feature extractor with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , '''r''' ) as f: SCREAMING_SNAKE_CASE_ = json.load(lowerCAmelCase_ ) config_dict.pop('''processor_class''' ) with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , '''w''' ) as f: f.write(json.dumps(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowercase ( self : Union[str, Any] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(lowerCAmelCase_ ) # copy relevant files copyfile(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , '''w''' ) as f: f.write('''{}''' ) SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowercase ( self : List[Any] ) -> List[str]: """simple docstring""" with self.assertRaises(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowerCAmelCase_ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) SCREAMING_SNAKE_CASE_ = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) SCREAMING_SNAKE_CASE_ = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowerCAmelCase_ , use_fast=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def _lowercase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" try: AutoConfig.register('''custom''' , lowerCAmelCase_ ) AutoFeatureExtractor.register(lowerCAmelCase_ , lowerCAmelCase_ ) AutoTokenizer.register(lowerCAmelCase_ , slow_tokenizer_class=lowerCAmelCase_ ) AutoProcessor.register(lowerCAmelCase_ , lowerCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase_ ): AutoProcessor.register(lowerCAmelCase_ , lowerCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE_ = CustomFeatureExtractor.from_pretrained(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ = os.path.join(lowerCAmelCase_ , '''vocab.txt''' ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ = CustomTokenizer(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = CustomProcessor(lowerCAmelCase_ , lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowercase ( self : Dict ) -> int: """simple docstring""" class snake_case ( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase : Dict = False class snake_case ( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase : List[Any] = False class snake_case ( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase : List[Any] = """AutoFeatureExtractor""" UpperCAmelCase : Tuple = """AutoTokenizer""" UpperCAmelCase : List[Any] = False try: AutoConfig.register('''custom''' , lowerCAmelCase_ ) AutoFeatureExtractor.register(lowerCAmelCase_ , lowerCAmelCase_ ) AutoTokenizer.register(lowerCAmelCase_ , slow_tokenizer_class=lowerCAmelCase_ ) AutoProcessor.register(lowerCAmelCase_ , lowerCAmelCase_ ) # If remote code is not set, the default is to use local classes. SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowercase ( self : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def _lowercase ( self : List[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class snake_case ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Any = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def _lowercase ( cls : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = TOKEN HfFolder.save_token(lowerCAmelCase_ ) @classmethod def _lowercase ( cls : Dict ) -> List[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def _lowercase ( self : Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ = WavaVecaProcessor.from_pretrained(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCAmelCase_ , '''test-processor''' ) , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = WavaVecaProcessor.from_pretrained(F'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(new_processor.feature_extractor , lowerCAmelCase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _lowercase ( self : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ = WavaVecaProcessor.from_pretrained(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCAmelCase_ , '''test-processor-org''' ) , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token , organization='''valid_org''' , ) SCREAMING_SNAKE_CASE_ = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(new_processor.feature_extractor , lowerCAmelCase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _lowercase ( self : Any ) -> Union[str, Any]: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE_ = CustomFeatureExtractor.from_pretrained(lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ = os.path.join(lowerCAmelCase_ , '''vocab.txt''' ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ = CustomTokenizer(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = CustomProcessor(lowerCAmelCase_ , lowerCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'''{USER}/test-dynamic-processor''' , token=self._token ) SCREAMING_SNAKE_CASE_ = Repository(lowerCAmelCase_ , clone_from=F'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(lowerCAmelCase_ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowerCAmelCase_ , '''tokenizer_config.json''' ) ) as f: SCREAMING_SNAKE_CASE_ = json.load(lowerCAmelCase_ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase_ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase_ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase_ , '''custom_processing.py''' ) ) ) repo.push_to_hub() SCREAMING_SNAKE_CASE_ = AutoProcessor.from_pretrained(F'''{USER}/test-dynamic-processor''' , trust_remote_code=lowerCAmelCase_ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
393
1
"""simple docstring""" import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _lowerCamelCase = 500000 _lowerCamelCase , _lowerCamelCase = os.path.split(__file__) _lowerCamelCase = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def __lowercase ( lowerCamelCase_ : datasets.Dataset , **lowerCamelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE__ = dataset.map(**lowerCamelCase_ ) @get_duration def __lowercase ( lowerCamelCase_ : datasets.Dataset , **lowerCamelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE__ = dataset.filter(**lowerCamelCase_ ) def __lowercase ( ): SCREAMING_SNAKE_CASE__ = {"num examples": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = datasets.Features({"text": datasets.Value("string" ), "numbers": datasets.Value("float32" )} ) SCREAMING_SNAKE_CASE__ = generate_example_dataset( os.path.join(lowerCamelCase_ , "dataset.arrow" ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = transformers.AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ : Union[str, Any] ): return tokenizer(examples["text"] ) SCREAMING_SNAKE_CASE__ = map(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type="numpy" ): SCREAMING_SNAKE_CASE__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type="pandas" ): SCREAMING_SNAKE_CASE__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type="torch" , columns="numbers" ): SCREAMING_SNAKE_CASE__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type="tensorflow" , columns="numbers" ): SCREAMING_SNAKE_CASE__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , "wb" ) as f: f.write(json.dumps(lowerCamelCase_ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
112
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __lowercase ( lowerCamelCase_ : int ): SCREAMING_SNAKE_CASE__ = prime_factors(lowerCamelCase_ ) if is_square_free(lowerCamelCase_ ): return -1 if len(lowerCamelCase_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
112
1
import math def a__ ( __UpperCamelCase , __UpperCamelCase ): return math.pow(__UpperCamelCase , 2 ) - a def a__ ( __UpperCamelCase ): return 2 * x def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = 2.0 while start <= a: SCREAMING_SNAKE_CASE_ = math.pow(__UpperCamelCase , 2 ) return start def a__ ( __UpperCamelCase , __UpperCamelCase = 9_9_9_9 , __UpperCamelCase = 0.00000000000001 ): if a < 0: raise ValueError("math domain error" ) SCREAMING_SNAKE_CASE_ = get_initial_point(__UpperCamelCase ) for _ in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = value - fx(__UpperCamelCase , __UpperCamelCase ) / fx_derivative(__UpperCamelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
140
import argparse import math import traceback import dateutil.parser as date_parser import requests def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = job["started_at"] SCREAMING_SNAKE_CASE_ = job["completed_at"] SCREAMING_SNAKE_CASE_ = date_parser.parse(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = date_parser.parse(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = round((end_datetime - start_datetime).total_seconds() / 60.0 ) SCREAMING_SNAKE_CASE_ = start SCREAMING_SNAKE_CASE_ = end SCREAMING_SNAKE_CASE_ = duration_in_min return job_info def a__ ( __UpperCamelCase , __UpperCamelCase=None ): SCREAMING_SNAKE_CASE_ = None if token is not None: SCREAMING_SNAKE_CASE_ = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} SCREAMING_SNAKE_CASE_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' SCREAMING_SNAKE_CASE_ = requests.get(__UpperCamelCase , headers=__UpperCamelCase ).json() SCREAMING_SNAKE_CASE_ = {} try: job_time.update({job["name"]: extract_time_from_single_job(__UpperCamelCase ) for job in result["jobs"]} ) SCREAMING_SNAKE_CASE_ = math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = requests.get(url + F'''&page={i + 2}''' , headers=__UpperCamelCase ).json() job_time.update({job["name"]: extract_time_from_single_job(__UpperCamelCase ) for job in result["jobs"]} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": A : str = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") A : Optional[Any] = parser.parse_args() A : Optional[int] = get_job_time(args.workflow_run_id) A : Tuple = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"{k}: {v['duration']}")
140
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case_ : Any = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys snake_case_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
253
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase = LayoutLMTokenizer lowerCamelCase = LayoutLMTokenizerFast lowerCamelCase = True lowerCamelCase = True def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: super().setUp() lowerCamelCase_ : int = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] , **__magic_name__ : Dict ) -> List[str]: return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : List[Any] ) -> Union[str, Any]: lowerCamelCase_ : str = "UNwant\u00E9d,running" lowerCamelCase_ : List[Any] = "unwanted, running" return input_text, output_text def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: lowerCamelCase_ : Dict = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ : List[Any] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__magic_name__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [7, 4, 5, 10, 8, 9] ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: pass
253
1
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __A = "bart" __A = True @st.cache(allow_output_mutation=A_ ) def lowercase__ ( ) -> List[str]: """simple docstring""" if LOAD_DENSE_INDEX: __UpperCAmelCase =AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __UpperCAmelCase =AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __UpperCAmelCase =qar_model.eval() else: __UpperCAmelCase , __UpperCAmelCase =(None, None) if MODEL_TYPE == "bart": __UpperCAmelCase =AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __UpperCAmelCase =AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __UpperCAmelCase =torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __UpperCAmelCase =sas_model.eval() else: __UpperCAmelCase , __UpperCAmelCase =make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=A_ ) def lowercase__ ( ) -> Any: """simple docstring""" if LOAD_DENSE_INDEX: __UpperCAmelCase =faiss.StandardGpuResources() __UpperCAmelCase =datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __UpperCAmelCase =np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __UpperCAmelCase =faiss.IndexFlatIP(128 ) __UpperCAmelCase =faiss.index_cpu_to_gpu(A_ , 1 , A_ ) wikiaab_gpu_index_flat.add(A_ ) # TODO fix for larger GPU else: __UpperCAmelCase , __UpperCAmelCase =(None, None) __UpperCAmelCase =Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=A_ ) def lowercase__ ( ) -> Dict: """simple docstring""" __UpperCAmelCase =datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __UpperCAmelCase =elia["""train_eli5"""] __UpperCAmelCase =np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __UpperCAmelCase =faiss.IndexFlatIP(128 ) eli5_train_q_index.add(A_ ) return (elia_train, eli5_train_q_index) __A , __A , __A = load_indexes() __A , __A , __A , __A = load_models() __A , __A = load_train_data() def lowercase__ ( A_: Optional[Any] , A_: Optional[Any]=10 ) -> Dict: """simple docstring""" __UpperCAmelCase =embed_questions_for_retrieval([question] , A_ , A_ ) __UpperCAmelCase , __UpperCAmelCase =eli5_train_q_index.search(A_ , A_ ) __UpperCAmelCase =[elia_train[int(A_ )] for i in I[0]] return nn_examples def lowercase__ ( A_: Union[str, Any] , A_: Any="wiki40b" , A_: Optional[int]="dense" , A_: Any=10 ) -> int: """simple docstring""" if source == "none": __UpperCAmelCase , __UpperCAmelCase =(""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __UpperCAmelCase , __UpperCAmelCase =query_qa_dense_index( A_ , A_ , A_ , A_ , A_ , A_ ) else: __UpperCAmelCase , __UpperCAmelCase =query_es_index( A_ , A_ , index_name="""english_wiki40b_snippets_100w""" , n_results=A_ , ) __UpperCAmelCase =[ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __UpperCAmelCase ="""question: {} context: {}""".format(A_ , A_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda A_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda A_ : None), } ) def lowercase__ ( A_: Dict , A_: List[Any] , A_: Optional[Any] , A_: Tuple=64 , A_: int=256 , A_: Dict=False , A_: Dict=2 , A_: Dict=0.9_5 , A_: Optional[int]=0.8 ) -> Optional[Any]: """simple docstring""" with torch.no_grad(): __UpperCAmelCase =qa_sas_generate( A_ , A_ , A_ , num_answers=1 , num_beams=A_ , min_len=A_ , max_len=A_ , do_sample=A_ , temp=A_ , top_p=A_ , top_k=A_ , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar __A = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" __A = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __A = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) __A = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] __A = st.sidebar.checkbox("Demo options") if demo_options: __A = st.sidebar.selectbox( "", action_list, index=3, ) __A = action_list.index(action_st) __A = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) __A = show_type == "Show full text of passages" else: __A = 3 __A = True __A = st.sidebar.checkbox("Retrieval options") if retrieval_options: __A = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) __A = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) __A = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: __A = "wiki40b" __A = "dense" __A = "beam" __A = 2 __A = 64 __A = 2_56 __A = None __A = None __A = st.sidebar.checkbox("Generation options") if generate_options: __A = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) __A = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) __A = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) __A = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": __A = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __A = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __A = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __A = None # start main text __A = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] __A = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": __A = st.text_input("Enter your question here:", "") else: __A = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": __A , __A = make_support(question, source=wiki_source, method="dense", n_results=10) __A , __A = make_support(question, source=wiki_source, method="sparse", n_results=10) __A = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __A = support_list[:10] __A = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: __A , __A = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __A , __A = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): __A = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) __A = res[1].strip() if sec_titles == "": __A = "[{}]({})".format(res[0], wiki_url) else: __A = sec_titles.split(" & ") __A = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: __A = find_nearest_training(question) __A = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) __A = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) __A = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
68
def UpperCamelCase (lowercase_: list ) -> list: A__ : Union[str, Any] = False while is_sorted is False: # Until all the indices are traversed keep looping A__ : Dict = True for i in range(0 , len(lowercase_ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: A__ , A__ : Dict = input_list[i + 1], input_list[i] # swapping if elements not in order A__ : Optional[Any] = False for i in range(1 , len(lowercase_ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: A__ , A__ : Dict = input_list[i + 1], input_list[i] # swapping if elements not in order A__ : Optional[Any] = False return input_list if __name__ == "__main__": print('Enter list to be sorted') A_ : Optional[int] = [int(x) for x in input().split()] # inputing elements of the list in one line A_ : Optional[int] = odd_even_sort(input_list) print('The sorted list is') print(sorted_list)
456
0
from __future__ import annotations def _A (UpperCamelCase : list ) ->list: '''simple docstring''' if len(UpperCamelCase ) == 0: return [] lowerCamelCase__ ,lowerCamelCase__ : List[str] = min(UpperCamelCase ), max(UpperCamelCase ) lowerCamelCase__ : Optional[Any] = int(max_value - min_value ) + 1 lowerCamelCase__ : list[list] = [[] for _ in range(UpperCamelCase )] for i in my_list: buckets[int(i - min_value )].append(UpperCamelCase ) return [v for bucket in buckets for v in sorted(UpperCamelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
96
def _A (UpperCamelCase : int , UpperCamelCase : int ) ->int: '''simple docstring''' while b: lowerCamelCase__ ,lowerCamelCase__ : int = b, a % b return a def _A (UpperCamelCase : int , UpperCamelCase : int ) ->int: '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(UpperCamelCase , a % b ) def _A () ->str: '''simple docstring''' print(f"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(f"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(f"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(f"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(f"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(f"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(f"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(f"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
96
1
'''simple docstring''' from collections.abc import Sequence def lowerCAmelCase (__A = None): """simple docstring""" if nums is None or not nums: raise ValueError('''Input sequence should not be empty''') _a = nums[0] for i in range(1 , len(__A)): _a = nums[i] _a = max(__A , ans + num , __A) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowercase_ = int(input("Enter number of elements : ").strip()) lowercase_ = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
11
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class A__ : def __init__( self : List[str] , _a : Dict , _a : Dict=13 , _a : Union[str, Any]=7 , _a : Dict=True , _a : Any=True , _a : Optional[int]=True , _a : List[Any]=True , _a : str=99 , _a : Union[str, Any]=32 , _a : List[Any]=2 , _a : Union[str, Any]=4 , _a : Dict=37 , _a : List[str]="gelu" , _a : Tuple=0.1 , _a : Optional[Any]=0.1 , _a : List[str]=512 , _a : Optional[Any]=16 , _a : List[Any]=2 , _a : int=0.02 , _a : Optional[Any]=3 , _a : Optional[Any]=4 , _a : Optional[Any]=None , ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =13 _SCREAMING_SNAKE_CASE =7 _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =99 _SCREAMING_SNAKE_CASE =32 _SCREAMING_SNAKE_CASE =2 _SCREAMING_SNAKE_CASE =4 _SCREAMING_SNAKE_CASE =37 _SCREAMING_SNAKE_CASE ='gelu' _SCREAMING_SNAKE_CASE =0.1 _SCREAMING_SNAKE_CASE =0.1 _SCREAMING_SNAKE_CASE =512 _SCREAMING_SNAKE_CASE =16 _SCREAMING_SNAKE_CASE =2 _SCREAMING_SNAKE_CASE =0.02 _SCREAMING_SNAKE_CASE =3 _SCREAMING_SNAKE_CASE =4 _SCREAMING_SNAKE_CASE =None def A ( self : int ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE =None if self.use_input_mask: _SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE =None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Optional[int] , _a : Dict , _a : Any , _a : Union[str, Any] , _a : Union[str, Any] , _a : List[str] , _a : str , _a : Tuple ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFRoFormerModel(config=_a ) _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _SCREAMING_SNAKE_CASE =[input_ids, input_mask] _SCREAMING_SNAKE_CASE =model(_a ) _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , _a : Optional[int] , _a : Tuple , _a : Any , _a : List[str] , _a : int , _a : Dict , _a : str ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =TFRoFormerForCausalLM(config=_a ) _SCREAMING_SNAKE_CASE ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _SCREAMING_SNAKE_CASE =model(_a )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A ( self : List[str] , _a : List[Any] , _a : Any , _a : List[Any] , _a : Any , _a : List[Any] , _a : Any , _a : Union[str, Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFRoFormerForMaskedLM(config=_a ) _SCREAMING_SNAKE_CASE ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[str] , _a : List[Any] , _a : Optional[Any] , _a : Union[str, Any] , _a : Dict , _a : List[Any] , _a : str , _a : Union[str, Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =TFRoFormerForSequenceClassification(config=_a ) _SCREAMING_SNAKE_CASE ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Any , _a : int , _a : str , _a : Any , _a : Tuple , _a : int , _a : List[str] , _a : Optional[int] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_choices _SCREAMING_SNAKE_CASE =TFRoFormerForMultipleChoice(config=_a ) _SCREAMING_SNAKE_CASE =tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE =tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE =tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Tuple , _a : Dict , _a : Any , _a : Optional[Any] , _a : int , _a : Optional[int] , _a : Union[str, Any] , _a : List[str] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =TFRoFormerForTokenClassification(config=_a ) _SCREAMING_SNAKE_CASE ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Optional[Any] , _a : Tuple , _a : Tuple , _a : Tuple , _a : List[Any] , _a : Any , _a : int , _a : str ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFRoFormerForQuestionAnswering(config=_a ) _SCREAMING_SNAKE_CASE ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : List[str] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) =config_and_inputs _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A__ ( A__ , A__ , unittest.TestCase ): A__ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) A__ = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) A__ = False A__ = False def A ( self : Any , _a : int , _a : str , _a : Dict , _a : Any , _a : Any ) -> Dict: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A ( self : List[str] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFRoFormerModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_a , hidden_size=37 ) def A ( self : str ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A ( self : str ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def A ( self : Optional[Any] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def A ( self : Optional[Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*_a ) def A ( self : Dict ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_a ) def A ( self : Union[str, Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) def A ( self : str ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def A ( self : Tuple ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) @slow def A ( self : str ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(_a ) @require_tf class A__ ( unittest.TestCase ): @slow def A ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) _SCREAMING_SNAKE_CASE =tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE =model(_a )[0] # TODO Replace vocab size _SCREAMING_SNAKE_CASE =5_0000 _SCREAMING_SNAKE_CASE =[1, 6, vocab_size] self.assertEqual(output.shape , _a ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _SCREAMING_SNAKE_CASE =tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1e-4 ) @require_tf class A__ ( unittest.TestCase ): A__ = 1E-4 def A ( self : Dict ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =tf.constant([[4, 10]] ) _SCREAMING_SNAKE_CASE =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) _SCREAMING_SNAKE_CASE =emba(input_ids.shape ) _SCREAMING_SNAKE_CASE =tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(_a , _a , atol=self.tolerance ) def A ( self : Any ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) _SCREAMING_SNAKE_CASE =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) _SCREAMING_SNAKE_CASE =emba.weight[:3, :5] tf.debugging.assert_near(_a , _a , atol=self.tolerance ) @require_tf class A__ ( unittest.TestCase ): A__ = 1E-4 def A ( self : Dict ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 _SCREAMING_SNAKE_CASE =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 _SCREAMING_SNAKE_CASE =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) _SCREAMING_SNAKE_CASE =embed_positions([2, 16, 768] )[None, None, :, :] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =TFRoFormerSelfAttention.apply_rotary_position_embeddings( _a , _a , _a ) _SCREAMING_SNAKE_CASE =tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) _SCREAMING_SNAKE_CASE =tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , _a , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , _a , atol=self.tolerance )
405
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __a ( A ): '''simple docstring''' lowercase__ = 3_84 lowercase__ = 7 if "tiny" in model_name: lowercase__ = 96 lowercase__ = (2, 2, 6, 2) lowercase__ = (3, 6, 12, 24) elif "small" in model_name: lowercase__ = 96 lowercase__ = (2, 2, 18, 2) lowercase__ = (3, 6, 12, 24) elif "base" in model_name: lowercase__ = 1_28 lowercase__ = (2, 2, 18, 2) lowercase__ = (4, 8, 16, 32) lowercase__ = 12 lowercase__ = 5_12 elif "large" in model_name: lowercase__ = 1_92 lowercase__ = (2, 2, 18, 2) lowercase__ = (6, 12, 24, 48) lowercase__ = 12 lowercase__ = 7_68 # set label information lowercase__ = 1_50 lowercase__ = "huggingface/label-files" lowercase__ = "ade20k-id2label.json" lowercase__ = json.load(open(hf_hub_download(A , A , repo_type="dataset" ) , "r" ) ) lowercase__ = {int(A ): v for k, v in idalabel.items()} lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = SwinConfig( embed_dim=A , depths=A , num_heads=A , window_size=A , out_features=["stage1", "stage2", "stage3", "stage4"] , ) lowercase__ = UperNetConfig( backbone_config=A , auxiliary_in_channels=A , num_labels=A , idalabel=A , labelaid=A , ) return config def __a ( A ): '''simple docstring''' lowercase__ = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def __a ( A , A , A ): '''simple docstring''' lowercase__ = dct.pop(A ) lowercase__ = val def __a ( A , A ): '''simple docstring''' lowercase__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowercase__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase__ = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) lowercase__ = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:dim, :] lowercase__ = in_proj_bias[: dim] lowercase__ = in_proj_weight[ dim : dim * 2, : ] lowercase__ = in_proj_bias[ dim : dim * 2 ] lowercase__ = in_proj_weight[ -dim :, : ] lowercase__ = in_proj_bias[-dim :] # fmt: on def __a ( A ): '''simple docstring''' lowercase__ , lowercase__ = x.shape lowercase__ = x.reshape(A , 4 , in_channel // 4 ) lowercase__ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(A , A ) return x def __a ( A ): '''simple docstring''' lowercase__ , lowercase__ = x.shape lowercase__ = x.reshape(A , in_channel // 4 , 4 ) lowercase__ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(A , A ) return x def __a ( A ): '''simple docstring''' lowercase__ = x.shape[0] lowercase__ = x.reshape(4 , in_channel // 4 ) lowercase__ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(A ) return x def __a ( A ): '''simple docstring''' lowercase__ = x.shape[0] lowercase__ = x.reshape(in_channel // 4 , 4 ) lowercase__ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(A ) return x def __a ( A , A , A ): '''simple docstring''' lowercase__ = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } lowercase__ = model_name_to_url[model_name] lowercase__ = torch.hub.load_state_dict_from_url(A , map_location="cpu" , file_name=A )[ "state_dict" ] for name, param in state_dict.items(): print(A , param.shape ) lowercase__ = get_upernet_config(A ) lowercase__ = UperNetForSemanticSegmentation(A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase__ = state_dict.pop(A ) if "bn" in key: lowercase__ = key.replace("bn" , "batch_norm" ) lowercase__ = val # rename keys lowercase__ = create_rename_keys(A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_q_k_v(A , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowercase__ = reverse_correct_unfold_reduction_order(A ) if "norm" in key: lowercase__ = reverse_correct_unfold_norm_order(A ) model.load_state_dict(A ) # verify on image lowercase__ = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" lowercase__ = Image.open(requests.get(A , stream=A ).raw ).convert("RGB" ) lowercase__ = SegformerImageProcessor() lowercase__ = processor(A , return_tensors="pt" ).pixel_values with torch.no_grad(): lowercase__ = model(A ) lowercase__ = outputs.logits print(logits.shape ) print("First values of logits:" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": lowercase__ = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": lowercase__ = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": lowercase__ = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": lowercase__ = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(A ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase_: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[F'upernet-swin-{size}' for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCAmelCase_: int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
668
"""simple docstring""" from typing import Any import numpy as np def __a ( A ): '''simple docstring''' return np.array_equal(A , matrix.conjugate().T ) def __a ( A , A ): '''simple docstring''' lowercase__ = v.conjugate().T lowercase__ = v_star.dot(A ) assert isinstance(A , np.ndarray ) return (v_star_dot.dot(A )) / (v_star.dot(A )) def __a ( ): '''simple docstring''' lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase__ = np.array([[1], [2], [3]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' print(rayleigh_quotient(A , A ) ) lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' assert rayleigh_quotient(A , A ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
668
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , lowerCamelCase : Any , lowerCamelCase : List[str]=7 , lowerCamelCase : Optional[Any]=3 , lowerCamelCase : Dict=30 , lowerCamelCase : List[Any]=400 , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : str=True , lowerCamelCase : Optional[int]=[0.5, 0.5, 0.5] , lowerCamelCase : Any=[0.5, 0.5, 0.5] , lowerCamelCase : List[Any]=True , lowerCamelCase : Tuple=1 / 255 , lowerCamelCase : str=True , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_pad def lowerCamelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCamelCase ( self : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any]=False ) -> Dict: """simple docstring""" if not batched: _UpperCAmelCase = image_inputs[0] if isinstance(snake_case__ , Image.Image ): _UpperCAmelCase = image.size else: _UpperCAmelCase = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase = int(self.size["""shortest_edge"""] * h / w ) _UpperCAmelCase = self.size['shortest_edge'] elif w > h: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: _UpperCAmelCase = self.size['shortest_edge'] _UpperCAmelCase = self.size['shortest_edge'] else: _UpperCAmelCase = [] for image in image_inputs: _UpperCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCAmelCase = max(snake_case__ , key=lambda lowerCamelCase : item[0] )[0] _UpperCAmelCase = max(snake_case__ , key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = DeformableDetrImageProcessor if is_vision_available() else None def lowerCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" _UpperCAmelCase = DeformableDetrImageProcessingTester(self ) @property def lowerCamelCase ( self : int ) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case__ , """image_std""" ) ) self.assertTrue(hasattr(snake_case__ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case__ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case__ , """do_rescale""" ) ) self.assertTrue(hasattr(snake_case__ , """do_pad""" ) ) self.assertTrue(hasattr(snake_case__ , """size""" ) ) def lowerCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , snake_case__ ) _UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case__ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , snake_case__ ) def lowerCamelCase ( self : Tuple ) -> str: """simple docstring""" pass def lowerCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _UpperCAmelCase = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) _UpperCAmelCase = image_processing(snake_case__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _UpperCAmelCase = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(snake_case__ , return_tensors="""pt""" ).pixel_values _UpperCAmelCase = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _UpperCAmelCase = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(snake_case__ , return_tensors="""pt""" ).pixel_values _UpperCAmelCase = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'image_id': 3_9769, 'annotations': target} # encode them _UpperCAmelCase = DeformableDetrImageProcessor() _UpperCAmelCase = image_processing(images=snake_case__ , annotations=snake_case__ , return_tensors="""pt""" ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , snake_case__ ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , snake_case__ , atol=1E-4 ) ) # verify area _UpperCAmelCase = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , snake_case__ ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , snake_case__ ) _UpperCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , snake_case__ , atol=1E-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , snake_case__ ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , snake_case__ ) ) # verify class_labels _UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , snake_case__ ) ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , snake_case__ ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , snake_case__ ) ) @slow def lowerCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} _UpperCAmelCase = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them _UpperCAmelCase = DeformableDetrImageProcessor(format="""coco_panoptic""" ) _UpperCAmelCase = image_processing(images=snake_case__ , annotations=snake_case__ , masks_path=snake_case__ , return_tensors="""pt""" ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , snake_case__ ) _UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , snake_case__ , atol=1E-4 ) ) # verify area _UpperCAmelCase = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , snake_case__ ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , snake_case__ ) _UpperCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , snake_case__ , atol=1E-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , snake_case__ ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , snake_case__ ) ) # verify class_labels _UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , snake_case__ ) ) # verify masks _UpperCAmelCase = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , snake_case__ ) # verify orig_size _UpperCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , snake_case__ ) ) # verify size _UpperCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , snake_case__ ) )
108
'''simple docstring''' import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets lowerCAmelCase : Optional[int] = datasets.logging.get_logger(__name__) lowerCAmelCase : List[str] = """\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } """ lowerCAmelCase : List[Any] = """\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project's README at https://github.com/google-research/bleurt#readme for more information. """ lowerCAmelCase : str = """ BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: 'scores': List of scores. Examples: >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> bleurt = datasets.load_metric(\"bleurt\") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results[\"scores\"]]) [1.03, 1.04] """ lowerCAmelCase : Optional[Any] = { """bleurt-tiny-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip""", """bleurt-tiny-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip""", """bleurt-base-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip""", """bleurt-base-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip""", """bleurt-large-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip""", """bleurt-large-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip""", """BLEURT-20-D3""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip""", """BLEURT-20-D6""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip""", """BLEURT-20-D12""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip""", """BLEURT-20""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip""", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def a ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/google-research/bleurt' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/bleurt'] , reference_urls=['https://github.com/google-research/bleurt', 'https://arxiv.org/abs/2004.04696'] , ) def a ( self , snake_case__ ): '''simple docstring''' if self.config_name == "default": logger.warning( 'Using default BLEURT-Base checkpoint for sequence maximum length 128. ' 'You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').' ) _lowerCAmelCase : Tuple = 'bleurt-base-128' if self.config_name.lower() in CHECKPOINT_URLS: _lowerCAmelCase : int = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: _lowerCAmelCase : str = self.config_name.upper() else: raise KeyError( F'{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}' ) # download the model checkpoint specified by self.config_name and set up the scorer _lowerCAmelCase : Optional[Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) _lowerCAmelCase : str = score.BleurtScorer(os.path.join(snake_case__ , snake_case__ ) ) def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = self.scorer.score(references=snake_case__ , candidates=snake_case__ ) return {"scores": scores}
444
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class a__ ( __A ): """simple docstring""" __UpperCamelCase : torch.FloatTensor class a__ ( __A , __A ): """simple docstring""" @register_to_config def __init__(self , __lowercase = 16 , __lowercase = 88 , __lowercase = None , __lowercase = None , __lowercase = 1 , __lowercase = 0.0 , __lowercase = 32 , __lowercase = None , __lowercase = False , __lowercase = None , __lowercase = "geglu" , __lowercase = True , __lowercase = True , ): super().__init__() __lowerCAmelCase = num_attention_heads __lowerCAmelCase = attention_head_dim __lowerCAmelCase = num_attention_heads * attention_head_dim __lowerCAmelCase = in_channels __lowerCAmelCase = torch.nn.GroupNorm(num_groups=__lowercase , num_channels=__lowercase , eps=1e-6 , affine=__lowercase ) __lowerCAmelCase = nn.Linear(__lowercase , __lowercase ) # 3. Define transformers blocks __lowerCAmelCase = nn.ModuleList( [ BasicTransformerBlock( __lowercase , __lowercase , __lowercase , dropout=__lowercase , cross_attention_dim=__lowercase , activation_fn=__lowercase , attention_bias=__lowercase , double_self_attention=__lowercase , norm_elementwise_affine=__lowercase , ) for d in range(__lowercase ) ] ) __lowerCAmelCase = nn.Linear(__lowercase , __lowercase ) def _snake_case (self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=1 , __lowercase=None , __lowercase = True , ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = hidden_states.shape __lowerCAmelCase = batch_frames // num_frames __lowerCAmelCase = hidden_states __lowerCAmelCase = hidden_states[None, :].reshape(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) __lowerCAmelCase = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __lowerCAmelCase = self.norm(__lowercase ) __lowerCAmelCase = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , __lowercase , __lowercase ) __lowerCAmelCase = self.proj_in(__lowercase ) # 2. Blocks for block in self.transformer_blocks: __lowerCAmelCase = block( __lowercase , encoder_hidden_states=__lowercase , timestep=__lowercase , cross_attention_kwargs=__lowercase , class_labels=__lowercase , ) # 3. Output __lowerCAmelCase = self.proj_out(__lowercase ) __lowerCAmelCase = ( hidden_states[None, None, :] .reshape(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __lowerCAmelCase = hidden_states.reshape(__lowercase , __lowercase , __lowercase , __lowercase ) __lowerCAmelCase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=__lowercase )
714
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _UpperCAmelCase : Tuple = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __magic_name__( lowerCamelCase): if isinstance(lowerCamelCase, torch.Tensor): return image elif isinstance(lowerCamelCase, PIL.Image.Image): __lowerCAmelCase = [image] __lowerCAmelCase = [trans(img.convert('''RGB''')) for img in image] __lowerCAmelCase = torch.stack(lowerCamelCase) return image class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase ): super().__init__() # make sure scheduler can always be converted to DDIM __lowerCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__lowercase , scheduler=__lowercase ) def _snake_case (self , __lowercase ): if strength < 0 or strength > 1: raise ValueError(F"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def _snake_case (self , __lowercase , __lowercase , __lowercase ): # get the original timestep using init_timestep __lowerCAmelCase = min(int(num_inference_steps * strength ) , __lowercase ) __lowerCAmelCase = max(num_inference_steps - init_timestep , 0 ) __lowerCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=None ): if not isinstance(__lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowercase )}""" ) __lowerCAmelCase = image.to(device=__lowercase , dtype=__lowercase ) if isinstance(__lowercase , __lowercase ) and len(__lowercase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__lowercase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __lowerCAmelCase = init_latents.shape __lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) # get latents print('''add noise to latents at timestep''' , __lowercase ) __lowerCAmelCase = self.scheduler.add_noise(__lowercase , __lowercase , __lowercase ) __lowerCAmelCase = init_latents return latents @torch.no_grad() def __call__(self , __lowercase = None , __lowercase = 0.8 , __lowercase = 1 , __lowercase = None , __lowercase = 0.0 , __lowercase = 50 , __lowercase = None , __lowercase = "pil" , __lowercase = True , ): self.check_inputs(__lowercase ) # 2. Preprocess image __lowerCAmelCase = preprocess(__lowercase ) # 3. set timesteps self.scheduler.set_timesteps(__lowercase , device=self.device ) __lowerCAmelCase , __lowerCAmelCase = self.get_timesteps(__lowercase , __lowercase , self.device ) __lowerCAmelCase = timesteps[:1].repeat(__lowercase ) # 4. Prepare latent variables __lowerCAmelCase = self.prepare_latents(__lowercase , __lowercase , __lowercase , self.unet.dtype , self.device , __lowercase ) __lowerCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(__lowercase ): # 1. predict noise model_output __lowerCAmelCase = self.unet(__lowercase , __lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __lowerCAmelCase = self.scheduler.step( __lowercase , __lowercase , __lowercase , eta=__lowercase , use_clipped_model_output=__lowercase , generator=__lowercase , ).prev_sample __lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCAmelCase = self.numpy_to_pil(__lowercase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=__lowercase )
474
0
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput snake_case = 8 def snake_case ( lowerCAmelCase_ , lowerCAmelCase_=BITS ) -> List[str]: _snake_case = x.device _snake_case = (x * 255).int().clamp(0 , 255 ) _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCAmelCase_ ) _snake_case = rearrange(lowerCAmelCase_ , '''d -> d 1 1''' ) _snake_case = rearrange(lowerCAmelCase_ , '''b c h w -> b c 1 h w''' ) _snake_case = ((x & mask) != 0).float() _snake_case = rearrange(lowerCAmelCase_ , '''b c d h w -> b (c d) h w''' ) _snake_case = bits * 2 - 1 return bits def snake_case ( lowerCAmelCase_ , lowerCAmelCase_=BITS ) -> Union[str, Any]: _snake_case = x.device _snake_case = (x > 0).int() _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCAmelCase_ , dtype=torch.intaa ) _snake_case = rearrange(lowerCAmelCase_ , '''d -> d 1 1''' ) _snake_case = rearrange(lowerCAmelCase_ , '''b (c d) h w -> b c d h w''' , d=8 ) _snake_case = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 255).clamp(0.0 , 1.0 ) def snake_case ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = True , lowerCAmelCase_=None , lowerCAmelCase_ = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _snake_case = self.alphas_cumprod[timestep] _snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _snake_case = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(lowerCAmelCase_ , -scale , lowerCAmelCase_ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _snake_case = self._get_variance(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _snake_case = model_output.device if torch.is_tensor(lowerCAmelCase_ ) else '''cpu''' _snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowerCAmelCase_ ).to(lowerCAmelCase_ ) _snake_case = self._get_variance(lowerCAmelCase_ , lowerCAmelCase_ ) ** 0.5 * eta * noise _snake_case = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_ ) def snake_case ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="epsilon" , lowerCAmelCase_=None , lowerCAmelCase_ = True , ) -> Union[DDPMSchedulerOutput, Tuple]: _snake_case = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _snake_case , _snake_case = torch.split(lowerCAmelCase_ , sample.shape[1] , dim=1 ) else: _snake_case = None # 1. compute alphas, betas _snake_case = self.alphas_cumprod[t] _snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one _snake_case = 1 - alpha_prod_t _snake_case = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _snake_case = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(lowerCAmelCase_ , -scale , lowerCAmelCase_ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _snake_case = 0 if t > 0: _snake_case = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowerCAmelCase_ ).to(model_output.device ) _snake_case = (self._get_variance(lowerCAmelCase_ , predicted_variance=lowerCAmelCase_ ) ** 0.5) * noise _snake_case = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_ ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Dict , __lowerCamelCase : UNetaDConditionModel , __lowerCamelCase : Union[DDIMScheduler, DDPMScheduler] , __lowerCamelCase : Optional[float] = 1.0 , ): """simple docstring""" super().__init__() _snake_case = bit_scale _snake_case = ( ddim_bit_scheduler_step if isinstance(__lowerCamelCase , __lowerCamelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) @torch.no_grad() def __call__( self : Union[str, Any] , __lowerCamelCase : Optional[int] = 2_5_6 , __lowerCamelCase : Optional[int] = 2_5_6 , __lowerCamelCase : Optional[int] = 5_0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , **__lowerCamelCase : List[str] , ): """simple docstring""" _snake_case = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=__lowerCamelCase , ) _snake_case = decimal_to_bits(__lowerCamelCase ) * self.bit_scale _snake_case = latents.to(self.device ) self.scheduler.set_timesteps(__lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _snake_case = self.unet(__lowerCamelCase , __lowerCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 _snake_case = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample _snake_case = bits_to_decimal(__lowerCamelCase ) if output_type == "pil": _snake_case = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase )
103
def lowerCamelCase_ ( lowerCAmelCase: str )-> str: _snake_case : str = 0 # if input_string is "aba" than new_input_string become "a|b|a" _snake_case : List[Any] = '' _snake_case : Dict = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(lowerCAmelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _snake_case , _snake_case : Union[str, Any] = 0, 0 # length[i] shows the length of palindromic substring with center i _snake_case : Optional[Any] = [1 for i in range(len(lowerCAmelCase ) )] # for each character in new_string find corresponding palindromic string _snake_case : Any = 0 for j in range(len(lowerCAmelCase ) ): _snake_case : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(lowerCAmelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _snake_case : str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _snake_case : List[str] = j - k + 1 # noqa: E741 _snake_case : List[Any] = j + k - 1 # update max_length and start position if max_length < length[j]: _snake_case : List[Any] = length[j] _snake_case : Optional[Any] = j # create that string _snake_case : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
411
0
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> List[str]: return abs(__a ) if a == 0 else greatest_common_divisor(b % a, __a ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = y, x % y return abs(__a ) def lowerCamelCase_ ( ) -> Tuple: try: UpperCAmelCase_ : Any = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) UpperCAmelCase_ : Optional[Any] = int(nums[0] ) UpperCAmelCase_ : List[str] = int(nums[1] ) print( F"""greatest_common_divisor({num_a}, {num_a}) = """ F"""{greatest_common_divisor(__a, __a )}""" ) print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__a, __a )}""" ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
720
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : int = "▁" snake_case_ : str = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} snake_case_ : int = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } snake_case_ : Optional[Any] = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } snake_case_ : Dict = { "ernie-m-base": 5_14, "ernie-m-large": 5_14, } snake_case_ : Any = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class __a (lowerCamelCase ): __a : List[str] = ["input_ids"] __a : Union[str, Any] = VOCAB_FILES_NAMES __a : Tuple = PRETRAINED_INIT_CONFIGURATION __a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = RESOURCE_FILES_NAMES def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : str=False , __magic_name__ : int="utf8" , __magic_name__ : Optional[int]="[UNK]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : str="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , vocab_file=__magic_name__ , encoding=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) UpperCAmelCase_ : Optional[Any] = do_lower_case UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__magic_name__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCAmelCase_ : List[Any] = self.load_vocab(filepath=__magic_name__ ) else: UpperCAmelCase_ : str = {self.sp_model.id_to_piece(__magic_name__ ): id for id in range(self.sp_model.get_piece_size() )} UpperCAmelCase_ : int = {v: k for k, v in self.vocab.items()} def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any ) -> Any: """simple docstring""" if text is None: return None UpperCAmelCase_ : str = self.tokenize(__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', [] for i, ch in enumerate(__magic_name__ ): if ch in self.SP_CHAR_MAPPING: UpperCAmelCase_ : Optional[int] = self.SP_CHAR_MAPPING.get(__magic_name__ ) else: UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFKC''' , __magic_name__ ) if self.is_whitespace(__magic_name__ ): continue normalized_text += ch char_mapping.extend([i] * len(__magic_name__ ) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = normalized_text, [], 0 if self.do_lower_case: UpperCAmelCase_ : Optional[int] = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCAmelCase_ : Tuple = token[1:] UpperCAmelCase_ : int = text[offset:].index(__magic_name__ ) + offset UpperCAmelCase_ : Optional[int] = start + len(__magic_name__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCAmelCase_ : int = end return token_mapping @property def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" return len(self.vocab ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : str ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.__dict__.copy() UpperCAmelCase_ : Optional[Any] = None return state def __setstate__( self : str , __magic_name__ : Any ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase_ : int = {} UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any ) -> List[str]: """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__magic_name__ , __magic_name__ ) for c in text) ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=False , __magic_name__ : List[str]=64 , __magic_name__ : List[str]=0.1 ) -> List[str]: """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCAmelCase_ : Dict = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCAmelCase_ : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCAmelCase_ : Any = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(__magic_name__ ) else: UpperCAmelCase_ : Dict = self.sp_model.SampleEncodeAsPieces(__magic_name__ , __magic_name__ , __magic_name__ ) UpperCAmelCase_ : List[Any] = [] for pi, piece in enumerate(__magic_name__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__magic_name__ ) and pi != 0: new_pieces.append(__magic_name__ ) continue else: continue UpperCAmelCase_ : List[str] = 0 for i, chunk in enumerate(__magic_name__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__magic_name__ ) or self.is_punct(__magic_name__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__magic_name__ ) UpperCAmelCase_ : List[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase_ : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase_ : str = i if len(__magic_name__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ ) UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.reverse_vocab.get(__magic_name__ , self.unk_token ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id] UpperCAmelCase_ : List[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=False ) -> Optional[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1] return [1] + ([0] * len(__magic_name__ )) + [1] def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(__magic_name__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__magic_name__ ) + 1) + [1] * (len(__magic_name__ ) + 3) def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> Tuple: """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> str: """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] ) -> Dict: """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__magic_name__ ) == 1: UpperCAmelCase_ : Optional[Any] = unicodedata.category(__magic_name__ ) if cat == "Zs": return True return False def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = {} with io.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__magic_name__ ): UpperCAmelCase_ : List[Any] = line.rstrip('''\n''' ) UpperCAmelCase_ : Dict = int(__magic_name__ ) return token_to_idx def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = 0 if os.path.isdir(__magic_name__ ): UpperCAmelCase_ : Any = os.path.join( __magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCAmelCase_ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __magic_name__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCAmelCase_ : Dict = token_index writer.write(token + '''\n''' ) index += 1 UpperCAmelCase_ : Union[str, Any] = os.path.join(__magic_name__ , '''sentencepiece.bpe.model''' ) with open(__magic_name__ , '''wb''' ) as fi: UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (vocab_file,)
644
0
"""simple docstring""" import os import sys __UpperCAmelCase = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __UpperCAmelCase = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def lowerCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' return AutoConfig.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowerCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' return AutoTokenizer.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModel.__doc__ ) def lowerCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' return AutoModel.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowerCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowerCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowerCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*__UpperCamelCase , **__UpperCamelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowerCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*__UpperCamelCase , **__UpperCamelCase )
65
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "fnet" def __init__(self , _lowercase=32000 , _lowercase=768 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu_new" , _lowercase=0.1 , _lowercase=512 , _lowercase=4 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=False , _lowercase=512 , _lowercase=3 , _lowercase=1 , _lowercase=2 , **_lowercase , ): '''simple docstring''' super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __a : Optional[int] = vocab_size __a : Tuple = max_position_embeddings __a : str = hidden_size __a : Tuple = num_hidden_layers __a : List[str] = intermediate_size __a : Optional[Any] = hidden_act __a : Dict = hidden_dropout_prob __a : Tuple = initializer_range __a : List[Any] = type_vocab_size __a : Optional[int] = layer_norm_eps __a : List[Any] = use_tpu_fourier_optimizations __a : int = tpu_short_seq_length
581
0
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __A : int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=5_12, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def __UpperCamelCase ( _A : int ) ->Optional[int]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(f'could not parse string as bool {string}' ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) __A : List[Any] = parser.parse_args() __A : str = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
75
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __A : Optional[Any] = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' __A : Tuple = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' __A : str = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def __UpperCamelCase ( _A : List[Any] , _A : Union[str, Any] ) ->Dict: """simple docstring""" return float((preds == labels).mean() ) def __UpperCamelCase ( _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any]="binary" ) ->List[Any]: """simple docstring""" lowerCamelCase_ =simple_accuracy(_A , _A ) lowerCamelCase_ =float(fa_score(y_true=_A , y_pred=_A , average=_A ) ) return { "accuracy": acc, "f1": fa, } def __UpperCamelCase ( _A : int , _A : Union[str, Any] ) ->int: """simple docstring""" lowerCamelCase_ ={} for id_pred, label in zip(_A , _A ): lowerCamelCase_ =f'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' lowerCamelCase_ =id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCamelCase_ =[(pred, label)] lowerCamelCase_ , lowerCamelCase_ =[], [] for question, preds_labels in question_map.items(): lowerCamelCase_ , lowerCamelCase_ =zip(*_A ) lowerCamelCase_ =fa_score(y_true=_A , y_pred=_A , average="""macro""" ) fas.append(_A ) lowerCamelCase_ =int(sum(pred == label for pred, label in preds_labels ) == len(_A ) ) ems.append(_A ) lowerCamelCase_ =float(sum(_A ) / len(_A ) ) lowerCamelCase_ =sum(_A ) / len(_A ) lowerCamelCase_ =float(fa_score(y_true=_A , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _SCREAMING_SNAKE_CASE ( datasets.Metric): def _snake_case ( self )-> Union[str, Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def _snake_case ( self )-> Optional[Any]: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[int]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="""macro""" ) elif self.config_name == "record": lowerCamelCase_ =[ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] lowerCamelCase_ ={pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
75
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCamelCase ( __a ): def A_ (self ) -> Any: UpperCamelCase_ : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCamelCase , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , """depth_multiplier""" ) ) class UpperCamelCase : def __init__(self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=3 , __UpperCamelCase=32 , __UpperCamelCase=0.25 , __UpperCamelCase=8 , __UpperCamelCase=8 , __UpperCamelCase=6 , __UpperCamelCase=32 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase="relu6" , __UpperCamelCase=1_280 , __UpperCamelCase=0.1 , __UpperCamelCase=0.02 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=10 , __UpperCamelCase=None , ) -> Optional[int]: UpperCamelCase_ : Union[str, Any] = parent UpperCamelCase_ : List[str] = batch_size UpperCamelCase_ : int = num_channels UpperCamelCase_ : Any = image_size UpperCamelCase_ : Any = depth_multiplier UpperCamelCase_ : str = depth_divisible_by UpperCamelCase_ : List[str] = min_depth UpperCamelCase_ : List[str] = expand_ratio UpperCamelCase_ : Optional[int] = tf_padding UpperCamelCase_ : int = output_stride UpperCamelCase_ : Union[str, Any] = first_layer_is_expansion UpperCamelCase_ : Any = finegrained_output UpperCamelCase_ : Tuple = hidden_act UpperCamelCase_ : Dict = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCamelCase_ : Tuple = classifier_dropout_prob UpperCamelCase_ : Union[str, Any] = use_labels UpperCamelCase_ : Union[str, Any] = is_training UpperCamelCase_ : int = num_labels UpperCamelCase_ : Tuple = initializer_range UpperCamelCase_ : List[Any] = scope def A_ (self ) -> Union[str, Any]: UpperCamelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ : Optional[Any] = None UpperCamelCase_ : Optional[Any] = None if self.use_labels: UpperCamelCase_ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase_ : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase_ : Any = self.get_config() return config, pixel_values, labels, pixel_labels def A_ (self ) -> List[str]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: UpperCamelCase_ : Optional[Any] = MobileNetVaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ : Union[str, Any] = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: UpperCamelCase_ : Tuple = self.num_labels UpperCamelCase_ : Tuple = MobileNetVaForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ : Dict = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: UpperCamelCase_ : Dict = self.num_labels UpperCamelCase_ : List[Any] = MobileNetVaForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ : Dict = model(__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCamelCase_ : List[str] = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def A_ (self ) -> Any: UpperCamelCase_ : List[Any] = self.prepare_config_and_inputs() UpperCamelCase_,UpperCamelCase_,UpperCamelCase_,UpperCamelCase_ : Optional[Any] = config_and_inputs UpperCamelCase_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( __a , __a , unittest.TestCase ): a__ :Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) a__ :Tuple = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) a__ :Union[str, Any] = False a__ :List[str] = False a__ :Dict = False a__ :List[str] = False def A_ (self ) -> List[Any]: UpperCamelCase_ : List[Any] = MobileNetVaModelTester(self ) UpperCamelCase_ : List[Any] = MobileNetVaConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def A_ (self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def A_ (self ) -> Any: pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def A_ (self ) -> int: pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def A_ (self ) -> Any: pass def A_ (self ) -> Tuple: UpperCamelCase_,UpperCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : str = model_class(__UpperCamelCase ) UpperCamelCase_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ : List[str] = [*signature.parameters.keys()] UpperCamelCase_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def A_ (self ) -> List[str]: UpperCamelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def A_ (self ) -> Dict: def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ : Dict = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_ : Optional[int] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCamelCase_ : Optional[int] = outputs.hidden_states UpperCamelCase_ : Union[str, Any] = 16 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : int = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ : Optional[int] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def A_ (self ) -> Optional[Any]: UpperCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def A_ (self ) -> Any: UpperCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) @slow def A_ (self ) -> str: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ : List[str] = MobileNetVaModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowerCAmelCase_ ( ): UpperCamelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): @cached_property def A_ (self ) -> List[str]: return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def A_ (self ) -> Optional[int]: UpperCamelCase_ : Union[str, Any] = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__UpperCamelCase ) UpperCamelCase_ : int = self.default_image_processor UpperCamelCase_ : Optional[int] = prepare_img() UpperCamelCase_ : str = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_ : str = model(**__UpperCamelCase ) # verify the logits UpperCamelCase_ : Union[str, Any] = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) UpperCamelCase_ : Union[str, Any] = torch.tensor([0.2_445, -1.1_993, 0.1_905] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def A_ (self ) -> Union[str, Any]: UpperCamelCase_ : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) UpperCamelCase_ : Union[str, Any] = model.to(__UpperCamelCase ) UpperCamelCase_ : Any = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) UpperCamelCase_ : str = prepare_img() UpperCamelCase_ : Union[str, Any] = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_ : List[str] = model(**__UpperCamelCase ) UpperCamelCase_ : Tuple = outputs.logits # verify the logits UpperCamelCase_ : Any = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __UpperCamelCase ) UpperCamelCase_ : Union[str, Any] = torch.tensor( [ [[17.5_790, 17.7_581, 18.3_355], [18.3_257, 18.4_230, 18.8_973], [18.6_169, 18.8_650, 19.2_187]], [[-2.1_595, -2.0_977, -2.3_741], [-2.4_226, -2.3_028, -2.6_835], [-2.7_819, -2.5_991, -2.7_706]], [[4.2_058, 4.8_317, 4.7_638], [4.4_136, 5.0_361, 4.9_383], [4.5_028, 4.9_644, 4.8_734]], ] , device=__UpperCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCamelCase , atol=1E-4 ) )
635
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class UpperCamelCase ( __a ): a__ :Any = '''bloom''' a__ :Optional[int] = ['''past_key_values'''] a__ :Tuple = { '''num_hidden_layers''': '''n_layer''', '''num_attention_heads''': '''n_head''', } def __init__(self , __UpperCamelCase=250_880 , __UpperCamelCase=64 , __UpperCamelCase=2 , __UpperCamelCase=8 , __UpperCamelCase=1E-5 , __UpperCamelCase=0.02 , __UpperCamelCase=True , __UpperCamelCase=1 , __UpperCamelCase=2 , __UpperCamelCase=False , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=1 , __UpperCamelCase=False , **__UpperCamelCase , ) -> List[Any]: UpperCamelCase_ : Dict = vocab_size # Backward compatibility with n_embed kwarg UpperCamelCase_ : Optional[Any] = kwargs.pop("""n_embed""" , __UpperCamelCase ) UpperCamelCase_ : List[Any] = hidden_size if n_embed is None else n_embed UpperCamelCase_ : List[Any] = n_layer UpperCamelCase_ : Optional[Any] = n_head UpperCamelCase_ : List[str] = layer_norm_epsilon UpperCamelCase_ : int = initializer_range UpperCamelCase_ : List[str] = use_cache UpperCamelCase_ : List[Any] = pretraining_tp UpperCamelCase_ : Optional[int] = apply_residual_connection_post_layernorm UpperCamelCase_ : Any = hidden_dropout UpperCamelCase_ : Optional[Any] = attention_dropout UpperCamelCase_ : List[str] = bos_token_id UpperCamelCase_ : Optional[Any] = eos_token_id UpperCamelCase_ : str = slow_but_exact super().__init__(bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) class UpperCamelCase ( __a ): a__ :Dict = version.parse('''1.12''' ) def __init__(self , __UpperCamelCase , __UpperCamelCase = "default" , __UpperCamelCase = None , __UpperCamelCase = False , ) -> List[str]: super().__init__(__UpperCamelCase , task=__UpperCamelCase , patching_specs=__UpperCamelCase , use_past=__UpperCamelCase ) if not getattr(self._config , """pad_token_id""" , __UpperCamelCase ): # TODO: how to do that better? UpperCamelCase_ : Optional[Any] = 0 @property def A_ (self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase_ : str = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__UpperCamelCase , direction="""inputs""" , inverted_values_shape=__UpperCamelCase ) UpperCamelCase_ : int = {0: """batch""", 1: """past_sequence + sequence"""} else: UpperCamelCase_ : Dict = {0: """batch""", 1: """sequence"""} return common_inputs @property def A_ (self ) -> int: return self._config.n_layer @property def A_ (self ) -> int: return self._config.n_head @property def A_ (self ) -> float: return 1E-3 def A_ (self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , ) -> Mapping[str, Any]: UpperCamelCase_ : Union[str, Any] = super(__UpperCamelCase , self ).generate_dummy_inputs( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) # We need to order the input in the way they appears in the forward() UpperCamelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCamelCase_,UpperCamelCase_ : List[str] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values UpperCamelCase_ : List[str] = seqlen + 2 UpperCamelCase_ : Tuple = self._config.hidden_size // self.num_attention_heads UpperCamelCase_ : List[Any] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) UpperCamelCase_ : str = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) UpperCamelCase_ : Any = [ (torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) for _ in range(self.num_layers ) ] UpperCamelCase_ : int = common_inputs["""attention_mask"""] if self.use_past: UpperCamelCase_ : List[str] = ordered_inputs["""attention_mask"""].dtype UpperCamelCase_ : Any = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__UpperCamelCase , __UpperCamelCase , dtype=__UpperCamelCase )] , dim=1 ) return ordered_inputs @property def A_ (self ) -> int: return 13
635
1
def _lowerCamelCase ( SCREAMING_SNAKE_CASE = 4000000 ): '''simple docstring''' A_ = [] A_ ,A_ = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(SCREAMING_SNAKE_CASE ) A_ ,A_ = b, a + b return sum(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f'{solution() = }')
563
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __lowercase = re.compile(r"""^(?P<major>\d+)""" r"""\.(?P<minor>\d+)""" r"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class _lowercase : _lowercase : str _lowercase : Optional[str] = None _lowercase : Optional[Union[str, int]] = None _lowercase : Optional[Union[str, int]] = None _lowercase : Optional[Union[str, int]] = None def UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" A_ ,A_ ,A_ = _str_to_version_tuple(self.version_str ) def __repr__( self : Optional[int] ) -> Any: """simple docstring""" return F"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def UpperCamelCase ( self : int ) -> Any: """simple docstring""" return self.major, self.minor, self.patch def UpperCamelCase ( self : Union[str, Any] , lowerCamelCase__ : Union[str, Any] ) -> List[str]: """simple docstring""" if isinstance(lowerCamelCase__ , lowerCamelCase__ ): return Version(lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): return other raise TypeError(F"{other} (type {type(lowerCamelCase__ )}) cannot be compared to version." ) def __eq__( self : List[Any] , lowerCamelCase__ : int ) -> Optional[Any]: """simple docstring""" try: A_ = self._validate_operand(lowerCamelCase__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Optional[int] , lowerCamelCase__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" A_ = self._validate_operand(lowerCamelCase__ ) return self.tuple < other.tuple def __hash__( self : List[str] ) -> List[str]: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def UpperCamelCase ( cls : List[Any] , lowerCamelCase__ : Optional[Any] ) -> Any: """simple docstring""" A_ = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def UpperCamelCase ( self : Dict ) -> str: """simple docstring""" return self.version_str def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = _VERSION_REG.match(SCREAMING_SNAKE_CASE ) if not res: raise ValueError(f"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits." ) return tuple(int(SCREAMING_SNAKE_CASE ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return ".".join(str(SCREAMING_SNAKE_CASE ) for v in version_tuple )
563
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _a = logging.get_logger(__name__) def lowerCamelCase__ ( __snake_case ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(__snake_case, (list, tuple) ) and isinstance(videos[0], (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__snake_case, (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__snake_case ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BILINEAR , __a = True , __a = None , __a = True , __a = 1 / 2_55 , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''shortest_edge''': 2_24} _UpperCamelCase = get_size_dict(__a , default_to_square=__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BILINEAR , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a , default_to_square=__a) if "shortest_edge" in size: _UpperCamelCase = get_resize_output_image_size(__a , size['''shortest_edge'''] , default_to_square=__a) elif "height" in size and "width" in size: _UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''') return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''') return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> Dict: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # All transformations expect numpy arrays. _UpperCamelCase = to_numpy_array(__a) if do_resize: _UpperCamelCase = self.resize(image=__a , size=__a , resample=__a) if do_center_crop: _UpperCamelCase = self.center_crop(__a , size=__a) if do_rescale: _UpperCamelCase = self.rescale(image=__a , scale=__a) if do_normalize: _UpperCamelCase = self.normalize(image=__a , mean=__a , std=__a) _UpperCamelCase = to_channel_dimension_format(__a , __a) return image def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> PIL.Image.Image: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a , default_to_square=__a) _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''') if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') _UpperCamelCase = make_batched(__a) _UpperCamelCase = [ [ self._preprocess_image( image=__a , do_resize=__a , size=__a , resample=__a , do_center_crop=__a , crop_size=__a , do_rescale=__a , rescale_factor=__a , do_normalize=__a , image_mean=__a , image_std=__a , data_format=__a , ) for img in video ] for video in videos ] _UpperCamelCase = {'''pixel_values''': videos} return BatchFeature(data=__a , tensor_type=__a)
19
'''simple docstring''' import argparse import hashlib # hashlib is only used inside the Test class import struct class snake_case : """simple docstring""" def __init__( self, _lowercase ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = data SCREAMING_SNAKE_CASE_ = [0x6_7_4_5_2_3_0_1, 0xe_f_c_d_a_b_8_9, 0x9_8_b_a_d_c_f_e, 0x1_0_3_2_5_4_7_6, 0xc_3_d_2_e_1_f_0] @staticmethod def a__ ( _lowercase, _lowercase ) -> List[str]: return ((n << b) | (n >> (32 - b))) & 0xf_f_f_f_f_f_f_f def a__ ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = B'\x80' + B'\x00' * (63 - (len(self.data ) + 8) % 64) SCREAMING_SNAKE_CASE_ = self.data + padding + struct.pack('>Q', 8 * len(self.data ) ) return padded_data def a__ ( self ) -> Optional[Any]: return [ self.padded_data[i : i + 64] for i in range(0, len(self.padded_data ), 64 ) ] def a__ ( self, _lowercase ) -> int: SCREAMING_SNAKE_CASE_ = list(struct.unpack('>16L', _lowercase ) ) + [0] * 64 for i in range(16, 80 ): SCREAMING_SNAKE_CASE_ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]), 1 ) return w def a__ ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.padding() SCREAMING_SNAKE_CASE_ = self.split_blocks() for block in self.blocks: SCREAMING_SNAKE_CASE_ = self.expand_block(_lowercase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.h for i in range(0, 80 ): if 0 <= i < 20: SCREAMING_SNAKE_CASE_ = (b & c) | ((~b) & d) SCREAMING_SNAKE_CASE_ = 0x5_a_8_2_7_9_9_9 elif 20 <= i < 40: SCREAMING_SNAKE_CASE_ = b ^ c ^ d SCREAMING_SNAKE_CASE_ = 0x6_e_d_9_e_b_a_1 elif 40 <= i < 60: SCREAMING_SNAKE_CASE_ = (b & c) | (b & d) | (c & d) SCREAMING_SNAKE_CASE_ = 0x8_f_1_b_b_c_d_c elif 60 <= i < 80: SCREAMING_SNAKE_CASE_ = b ^ c ^ d SCREAMING_SNAKE_CASE_ = 0xc_a_6_2_c_1_d_6 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( self.rotate(_lowercase, 5 ) + f + e + k + expanded_block[i] & 0xf_f_f_f_f_f_f_f, a, self.rotate(_lowercase, 30 ), c, d, ) SCREAMING_SNAKE_CASE_ = ( self.h[0] + a & 0xf_f_f_f_f_f_f_f, self.h[1] + b & 0xf_f_f_f_f_f_f_f, self.h[2] + c & 0xf_f_f_f_f_f_f_f, self.h[3] + d & 0xf_f_f_f_f_f_f_f, self.h[4] + e & 0xf_f_f_f_f_f_f_f, ) return ("{:08x}" * 5).format(*self.h ) def _UpperCamelCase ( ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = B'Test String' assert SHAaHash(lowerCAmelCase__ ).final_hash() == hashlib.shaa(lowerCAmelCase__ ).hexdigest() # noqa: S324 def _UpperCamelCase ( ) -> Any: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' ,dest='input_string' ,default='Hello World!! Welcome to Cryptography' ,help='Hash the string' ,) parser.add_argument('--file' ,dest='input_file' ,help='Hash contents of a file' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file ,'rb' ) as f: SCREAMING_SNAKE_CASE_ = f.read() else: SCREAMING_SNAKE_CASE_ = bytes(lowerCAmelCase__ ,'utf-8' ) print(SHAaHash(lowerCAmelCase__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
294
0
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __lowerCAmelCase : Any = False __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : str = "ybelkada/fonts" def _UpperCAmelCase ( ) -> Dict: """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ """Pix2StructImageProcessor. Please upgrade torch.""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" requires_backends(_lowerCAmelCase , ["""torch"""] ) _check_torch_version() lowerCAmelCase__ = image_tensor.unsqueeze(0 ) lowerCAmelCase__ = torch.nn.functional.unfold(_lowerCAmelCase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) lowerCAmelCase__ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , _lowerCAmelCase , _lowerCAmelCase , -1 ) lowerCAmelCase__ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 36 , lowerCamelCase__ = "black" , lowerCamelCase__ = "white" , lowerCamelCase__ = 5 , lowerCamelCase__ = 5 , lowerCamelCase__ = 5 , lowerCamelCase__ = 5 , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> int: """simple docstring""" requires_backends(_lowerCAmelCase , """vision""" ) # Add new lines so that each line is no more than 80 characters. lowerCAmelCase__ = textwrap.TextWrapper(width=80 ) lowerCAmelCase__ = wrapper.wrap(text=_lowerCAmelCase ) lowerCAmelCase__ = """\n""".join(_lowerCAmelCase ) if font_bytes is not None and font_path is None: lowerCAmelCase__ = io.BytesIO(_lowerCAmelCase ) elif font_path is not None: lowerCAmelCase__ = font_path else: lowerCAmelCase__ = hf_hub_download(_lowerCAmelCase , """Arial.TTF""" ) lowerCAmelCase__ = ImageFont.truetype(_lowerCAmelCase , encoding="""UTF-8""" , size=_lowerCAmelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. lowerCAmelCase__ = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , _lowerCAmelCase ) ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = temp_draw.textbbox((0, 0) , _lowerCAmelCase , _lowerCAmelCase ) # Create the actual image with a bit of padding around the text. lowerCAmelCase__ = text_width + left_padding + right_padding lowerCAmelCase__ = text_height + top_padding + bottom_padding lowerCAmelCase__ = Image.new("""RGB""" , (image_width, image_height) , _lowerCAmelCase ) lowerCAmelCase__ = ImageDraw.Draw(_lowerCAmelCase ) draw.text(xy=(left_padding, top_padding) , text=_lowerCAmelCase , fill=_lowerCAmelCase , font=_lowerCAmelCase ) return image def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" requires_backends(_lowerCAmelCase , """vision""" ) # Convert to PIL image if necessary lowerCAmelCase__ = to_pil_image(_lowerCAmelCase ) lowerCAmelCase__ = render_text(_lowerCAmelCase , **_lowerCAmelCase ) lowerCAmelCase__ = max(header_image.width , image.width ) lowerCAmelCase__ = int(image.height * (new_width / image.width) ) lowerCAmelCase__ = int(header_image.height * (new_width / header_image.width) ) lowerCAmelCase__ = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary lowerCAmelCase__ = to_numpy_array(_lowerCAmelCase ) if infer_channel_dimension_format(_lowerCAmelCase ) == ChannelDimension.LAST: lowerCAmelCase__ = to_channel_dimension_format(_lowerCAmelCase , ChannelDimension.LAST ) return new_image class a_ ( __UpperCAmelCase ): UpperCamelCase_ : List[Any] = ["flattened_patches"] def __init__( self : str , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : int = 2048 , snake_case__ : bool = False , **snake_case__ : int , ): super().__init__(**_lowerCamelCase ) lowerCAmelCase__ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} lowerCAmelCase__ = do_normalize lowerCAmelCase__ = do_convert_rgb lowerCAmelCase__ = max_patches lowerCAmelCase__ = is_vqa def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : np.ndarray , snake_case__ : int , snake_case__ : dict , **snake_case__ : Union[str, Any] ): requires_backends(self.extract_flattened_patches , """torch""" ) _check_torch_version() # convert to torch lowerCAmelCase__ = to_channel_dimension_format(_lowerCamelCase , ChannelDimension.FIRST ) lowerCAmelCase__ = torch.from_numpy(_lowerCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ = patch_size["""height"""], patch_size["""width"""] lowerCAmelCase__ , lowerCAmelCase__ = get_image_size(_lowerCamelCase ) # maximize scale s.t. lowerCAmelCase__ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) lowerCAmelCase__ = max(min(math.floor(scale * image_height / patch_height ) , _lowerCamelCase ) , 1 ) lowerCAmelCase__ = max(min(math.floor(scale * image_width / patch_width ) , _lowerCamelCase ) , 1 ) lowerCAmelCase__ = max(num_feasible_rows * patch_height , 1 ) lowerCAmelCase__ = max(num_feasible_cols * patch_width , 1 ) lowerCAmelCase__ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="""bilinear""" , align_corners=_lowerCamelCase , antialias=_lowerCamelCase , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] lowerCAmelCase__ = torch_extract_patches(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCAmelCase__ = patches.shape lowerCAmelCase__ = patches_shape[1] lowerCAmelCase__ = patches_shape[2] lowerCAmelCase__ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] lowerCAmelCase__ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] lowerCAmelCase__ = torch.arange(_lowerCamelCase ).reshape([rows, 1] ).repeat(1 , _lowerCamelCase ).reshape([rows * columns, 1] ) lowerCAmelCase__ = torch.arange(_lowerCamelCase ).reshape([1, columns] ).repeat(_lowerCamelCase , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] lowerCAmelCase__ = row_ids.to(torch.floataa ) lowerCAmelCase__ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] lowerCAmelCase__ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] lowerCAmelCase__ = torch.nn.functional.pad(_lowerCamelCase , [0, 0, 0, max_patches - (rows * columns)] ).float() lowerCAmelCase__ = to_numpy_array(_lowerCamelCase ) return result def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : np.ndarray , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : str ): if image.dtype == np.uinta: lowerCAmelCase__ = image.astype(np.floataa ) # take mean across the whole `image` lowerCAmelCase__ = np.mean(_lowerCamelCase ) lowerCAmelCase__ = np.std(_lowerCamelCase ) lowerCAmelCase__ = max(_lowerCamelCase , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , **_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : ImageInput , snake_case__ : Optional[str] = None , snake_case__ : bool = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[int] = None , snake_case__ : Optional[Dict[str, int]] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : ChannelDimension = ChannelDimension.FIRST , **snake_case__ : int , ): lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase__ = patch_size if patch_size is not None else self.patch_size lowerCAmelCase__ = max_patches if max_patches is not None else self.max_patches lowerCAmelCase__ = self.is_vqa if kwargs.get("""data_format""" , _lowerCamelCase ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) lowerCAmelCase__ = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase__ = [convert_to_rgb(_lowerCamelCase ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(_lowerCamelCase ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) lowerCAmelCase__ = kwargs.pop("""font_bytes""" , _lowerCamelCase ) lowerCAmelCase__ = kwargs.pop("""font_path""" , _lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): lowerCAmelCase__ = [header_text] * len(_lowerCamelCase ) lowerCAmelCase__ = [ render_header(_lowerCamelCase , header_text[i] , font_bytes=_lowerCamelCase , font_path=_lowerCamelCase ) for i, image in enumerate(_lowerCamelCase ) ] if do_normalize: lowerCAmelCase__ = [self.normalize(image=_lowerCamelCase ) for image in images] # convert to torch tensor and permute lowerCAmelCase__ = [ self.extract_flattened_patches(image=_lowerCamelCase , max_patches=_lowerCamelCase , patch_size=_lowerCamelCase ) for image in images ] # create attention mask in numpy lowerCAmelCase__ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] lowerCAmelCase__ = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks} , tensor_type=_lowerCamelCase ) return encoded_outputs
701
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case__ , ) assert hasattr(self , """env""" ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : Optional[Any] ): # configuration for running training on smdistributed Model Parallel lowerCAmelCase__ = { """enabled""": True, """processes_per_host""": 8, } lowerCAmelCase__ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowerCAmelCase__ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowerCAmelCase__ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="""py36""" , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : str ): TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : List[str] ): # create estimator lowerCAmelCase__ = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case__ )
674
0
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) class __UpperCamelCase ( enum.Enum ): __A : Optional[int] = 0 __A : Dict = 1 @add_end_docstrings(A__ ) class __UpperCamelCase ( A__ ): __A : Tuple = "generated" def __init__( self , *_UpperCamelCase , **_UpperCamelCase ): super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCamelCase( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase , ): _UpperCAmelCase = {} if truncation is not None: _UpperCAmelCase = truncation _UpperCAmelCase = generate_kwargs _UpperCAmelCase = {} if return_tensors is not None and return_type is None: _UpperCAmelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: _UpperCAmelCase = return_type if clean_up_tokenization_spaces is not None: _UpperCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: _UpperCAmelCase = self.tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) _UpperCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): return True def UpperCamelCase( self , *_UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , UpperCAmelCase__ ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) _UpperCAmelCase = ([prefix + arg for arg in args[0]],) _UpperCAmelCase = True elif isinstance(args[0] , UpperCAmelCase__ ): _UpperCAmelCase = (prefix + args[0],) _UpperCAmelCase = False else: raise ValueError( f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) _UpperCAmelCase = self.tokenizer(*UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *_UpperCamelCase , **_UpperCamelCase ): _UpperCAmelCase = super().__call__(*UpperCAmelCase__ , **UpperCAmelCase__ ) if ( isinstance(args[0] , UpperCAmelCase__ ) and all(isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for el in args[0] ) and all(len(UpperCAmelCase__ ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=TruncationStrategy.DO_NOT_TRUNCATE , **_UpperCamelCase ): _UpperCAmelCase = self._parse_and_tokenize(UpperCAmelCase__ , truncation=UpperCAmelCase__ , **UpperCAmelCase__ ) return inputs def UpperCamelCase( self , _UpperCamelCase , **_UpperCamelCase ): if self.framework == "pt": _UpperCAmelCase , _UpperCAmelCase = model_inputs['''input_ids'''].shape elif self.framework == "tf": _UpperCAmelCase , _UpperCAmelCase = tf.shape(model_inputs['''input_ids'''] ).numpy() _UpperCAmelCase = generate_kwargs.get('''min_length''' , self.model.config.min_length ) _UpperCAmelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(UpperCAmelCase__ , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) _UpperCAmelCase = self.model.generate(**UpperCAmelCase__ , **UpperCAmelCase__ ) _UpperCAmelCase = output_ids.shape[0] if self.framework == "pt": _UpperCAmelCase = output_ids.reshape(UpperCAmelCase__ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": _UpperCAmelCase = tf.reshape(UpperCAmelCase__ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=ReturnType.TEXT , _UpperCamelCase=False ): _UpperCAmelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: _UpperCAmelCase = {f'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: _UpperCAmelCase = { f'''{self.return_name}_text''': self.tokenizer.decode( UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ , ) } records.append(UpperCAmelCase__ ) return records @add_end_docstrings(A__ ) class __UpperCamelCase ( A__ ): __A : str = "summary" def __call__( self , *_UpperCamelCase , **_UpperCamelCase ): return super().__call__(*UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if max_length < min_length: logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(A__ ) class __UpperCamelCase ( A__ ): __A : str = "translation" def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if input_length > 0.9 * max_length: logger.warning( f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def UpperCamelCase( self , *_UpperCamelCase , _UpperCamelCase=TruncationStrategy.DO_NOT_TRUNCATE , _UpperCamelCase=None , _UpperCamelCase=None ): if getattr(self.tokenizer , '''_build_translation_inputs''' , UpperCAmelCase__ ): return self.tokenizer._build_translation_inputs( *UpperCAmelCase__ , return_tensors=self.framework , truncation=UpperCAmelCase__ , src_lang=UpperCAmelCase__ , tgt_lang=UpperCAmelCase__ ) else: return super()._parse_and_tokenize(*UpperCAmelCase__ , truncation=UpperCAmelCase__ ) def UpperCamelCase( self , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = super()._sanitize_parameters(**UpperCAmelCase__ ) if src_lang is not None: _UpperCAmelCase = src_lang if tgt_lang is not None: _UpperCAmelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. _UpperCAmelCase = kwargs.get('''task''' , self.task ) _UpperCAmelCase = task.split('''_''' ) if task and len(UpperCAmelCase__ ) == 4: # translation, XX, to YY _UpperCAmelCase = items[1] _UpperCAmelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *_UpperCamelCase , **_UpperCamelCase ): return super().__call__(*UpperCAmelCase__ , **UpperCAmelCase__ )
32
"""simple docstring""" import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ : """simple docstring""" def __init__( self : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any]=1_3 , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Tuple=9_9 , UpperCAmelCase__ : Dict=3_2 , UpperCAmelCase__ : int=5 , UpperCAmelCase__ : str=4 , UpperCAmelCase__ : List[Any]=3_7 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Tuple=1_2_8 , UpperCAmelCase__ : Union[str, Any]=3_2 , UpperCAmelCase__ : Any=1_6 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : str=3 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : List[str]=None , ) -> Optional[int]: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase_ ( self : str ) -> Any: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE = NezhaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , ) -> Tuple: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = NezhaModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] ) -> int: __SCREAMING_SNAKE_CASE = NezhaForMaskedLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any ) -> Tuple: __SCREAMING_SNAKE_CASE = NezhaForNextSentencePrediction(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] ) -> List[str]: __SCREAMING_SNAKE_CASE = NezhaForPreTraining(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , next_sentence_label=UpperCAmelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = NezhaForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = NezhaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = NezhaForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict ) -> str: __SCREAMING_SNAKE_CASE = self.num_choices __SCREAMING_SNAKE_CASE = NezhaForMultipleChoice(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : str = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) snake_case__ : Tuple = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : int = True def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any]=False ) -> Dict: __SCREAMING_SNAKE_CASE = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) if return_labels: if model_class in get_values(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) return inputs_dict def UpperCAmelCase_ ( self : List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE = NezhaModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def UpperCAmelCase_ ( self : int ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : List[str] ) -> Dict: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: # This regression test was failing with PyTorch < 1.3 ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __SCREAMING_SNAKE_CASE = None self.model_tester.create_and_check_model_as_decoder( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : List[Any] ) -> int: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = NezhaModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @slow @require_torch_gpu def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(config=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.jit.trace( UpperCAmelCase__ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , "bert.pt" ) ) __SCREAMING_SNAKE_CASE = torch.jit.load(os.path.join(UpperCAmelCase__ , "bert.pt" ) , map_location=UpperCAmelCase__ ) loaded(inputs_dict["input_ids"].to(UpperCAmelCase__ ) , inputs_dict["attention_mask"].to(UpperCAmelCase__ ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" @slow def UpperCAmelCase_ ( self : List[Any] ) -> str: __SCREAMING_SNAKE_CASE = NezhaModel.from_pretrained("sijunhe/nezha-cn-base" ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1E-4 ) ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base" ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1E-4 ) )
682
0
'''simple docstring''' class _lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] ) -> Any: '''simple docstring''' _lowercase : Any = {} def __lowercase ( self : Union[str, Any] ) -> None: '''simple docstring''' print(self.vertex ) for i in self.vertex: print(lowerCAmelCase__ , ''' -> ''' , ''' -> '''.join([str(lowerCAmelCase__ ) for j in self.vertex[i]] ) ) def __lowercase ( self : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Dict ) -> None: '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(lowerCAmelCase__ ) else: # else make a new vertex _lowercase : List[str] = [to_vertex] def __lowercase ( self : Union[str, Any] ) -> None: '''simple docstring''' _lowercase : List[str] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowerCAmelCase__ , lowerCAmelCase__ ) def __lowercase ( self : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Any ) -> None: '''simple docstring''' _lowercase : List[str] = True print(lowerCAmelCase__ , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase__ = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
709
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : List[Any] , *UpperCamelCase_ : str , **UpperCamelCase_ : Optional[Any] ) -> Tuple: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : Dict , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : List[Any] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Union[str, Any] , *UpperCamelCase_ : str , **UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : Optional[int] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Dict ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : str , *UpperCamelCase_ : int , **UpperCamelCase_ : int ) -> str: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Optional[Any] , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : Union[str, Any] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : List[str] , *UpperCamelCase_ : str , **UpperCamelCase_ : List[str] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Union[str, Any] , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : Any , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Tuple ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : List[Any] , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Any ) -> int: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Optional[int] , *UpperCamelCase_ : str , **UpperCamelCase_ : str ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : Optional[int] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : Any , *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : Tuple ) -> str: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Tuple , *UpperCamelCase_ : int , **UpperCamelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : Union[str, Any] , *UpperCamelCase_ : Any , **UpperCamelCase_ : Any ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : List[Any] , *UpperCamelCase_ : int , **UpperCamelCase_ : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : str , *UpperCamelCase_ : Any , **UpperCamelCase_ : List[Any] ) -> Any: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : Dict , *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : int ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : Union[str, Any] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Optional[Any] , *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : List[str] , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : Union[str, Any] , *UpperCamelCase_ : str , **UpperCamelCase_ : Union[str, Any] ) -> str: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Any , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Dict ) -> str: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : List[str] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : List[Any] ) -> Tuple: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : List[str] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Tuple ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Optional[int] , *UpperCamelCase_ : int , **UpperCamelCase_ : int ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : Optional[Any] , *UpperCamelCase_ : int , **UpperCamelCase_ : Optional[int] ) -> int: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : List[str] , *UpperCamelCase_ : Any , **UpperCamelCase_ : Dict ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : int , *UpperCamelCase_ : Any , **UpperCamelCase_ : List[Any] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : int , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : str , *UpperCamelCase_ : Dict , **UpperCamelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : List[Any] , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Tuple ) -> Any: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : int , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Union[str, Any] ) -> int: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : str , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Tuple , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : Dict , *UpperCamelCase_ : Any , **UpperCamelCase_ : Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : Dict , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : List[str] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Optional[int] , *UpperCamelCase_ : Any , **UpperCamelCase_ : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] )
411
0
def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __a = len(__UpperCamelCase ) __a = [[0] * n for i in range(__UpperCamelCase )] for i in range(__UpperCamelCase ): __a = y_points[i] for i in range(2 , __UpperCamelCase ): for j in range(__UpperCamelCase , __UpperCamelCase ): __a = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
99
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __a :Any = logging.getLogger(__name__) class _a ( snake_case_ ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=None ): super().__init__( UpperCAmelCase , question_encoder_tokenizer=UpperCAmelCase , generator_tokenizer=UpperCAmelCase , index=UpperCAmelCase , init_retrieval=UpperCAmelCase , ) A_ = None def __A ( self : Dict , UpperCAmelCase : int ): logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually A_ = self._infer_socket_ifname() # avoid clash with the NCCL port A_ = str(distributed_port + 1 ) A_ = dist.new_group(ranks=UpperCAmelCase , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def __A ( self : List[str] ): return dist.get_rank(group=self.process_group ) == 0 def __A ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict=torch.floataa ): A_ = torch.empty(UpperCAmelCase , dtype=UpperCAmelCase ) dist.scatter(UpperCAmelCase , src=0 , scatter_list=UpperCAmelCase , group=self.process_group ) return target_tensor def __A ( self : Any ): A_ = psutil.net_if_addrs() # a hacky way to deal with varying network interface names A_ = next((addr for addr in addrs if addr.startswith("e" )) , UpperCAmelCase ) return ifname def __A ( self : Tuple , UpperCAmelCase : np.ndarray , UpperCAmelCase : int ): # single GPU training if not dist.is_initialized(): A_ , A_ = self._main_retrieve(UpperCAmelCase , UpperCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCAmelCase ) # distributed training A_ = dist.get_world_size(group=self.process_group ) # gather logic A_ = None if self._is_main(): A_ = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(UpperCAmelCase )] dist.gather(torch.tensor(UpperCAmelCase ) , dst=0 , gather_list=UpperCAmelCase , group=self.process_group ) # scatter logic A_ = question_hidden_states.shape[0] A_ = [] A_ = [] if self._is_main(): assert len(UpperCAmelCase ) == world_size A_ , A_ = self._main_retrieve(torch.cat(UpperCAmelCase ).numpy() , UpperCAmelCase ) A_ , A_ = torch.tensor(UpperCAmelCase ), torch.tensor(UpperCAmelCase ) A_ = self._chunk_tensor(UpperCAmelCase , UpperCAmelCase ) A_ = self._chunk_tensor(UpperCAmelCase , UpperCAmelCase ) A_ = self._scattered(UpperCAmelCase , [n_queries, n_docs] , target_type=torch.intaa ) A_ = self._scattered(UpperCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(UpperCAmelCase )
86
0
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__UpperCAmelCase ) class _lowercase ( __UpperCAmelCase ): _lowerCamelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCamelCase = Features({'''text''': Value('''string''' )} ) _lowerCamelCase = Features({} ) _lowerCamelCase = "text" @property def lowerCAmelCase__ ( self ): return {self.text_column: "text"}
190
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class _lowercase ( __UpperCAmelCase ): _lowerCamelCase = ['''pixel_values'''] def __init__( self , UpperCamelCase_ = True , UpperCamelCase_ = 32 , UpperCamelCase_=PILImageResampling.BILINEAR , UpperCamelCase_ = True , **UpperCamelCase_ , ): __magic_name__ = do_resize __magic_name__ = do_rescale __magic_name__ = size_divisor __magic_name__ = resample super().__init__(**UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ ): __magic_name__ , __magic_name__ = get_image_size(UpperCamelCase_ ) # Rounds the height and width down to the closest multiple of size_divisor __magic_name__ = height // size_divisor * size_divisor __magic_name__ = width // size_divisor * size_divisor __magic_name__ = resize(UpperCamelCase_ , (new_h, new_w) , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) return image def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , **UpperCamelCase_ ): return rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_=None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = ChannelDimension.FIRST , **UpperCamelCase_ , ): __magic_name__ = do_resize if do_resize is not None else self.do_resize __magic_name__ = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ = size_divisor if size_divisor is not None else self.size_divisor __magic_name__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) __magic_name__ = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. __magic_name__ = [to_numpy_array(UpperCamelCase_ ) for img in images] if do_resize: __magic_name__ = [self.resize(UpperCamelCase_ , size_divisor=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_rescale: __magic_name__ = [self.rescale(UpperCamelCase_ , scale=1 / 255 ) for image in images] __magic_name__ = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __magic_name__ = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
190
1
def __UpperCAmelCase ( __a : float ,__a : list[float] ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) _a : List[str] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__a ) ) return round(__a ,ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
14
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : Tuple): A_ : str = [0] * len(lowerCamelCase) A_ : Union[str, Any] = [] A_ : Union[str, Any] = [] A_ : Tuple = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowerCamelCase)): if indegree[i] == 0: queue.append(lowerCamelCase) while queue: A_ : Any = queue.pop(0) cnt += 1 topo.append(lowerCamelCase) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(lowerCamelCase) if cnt != len(lowerCamelCase): print("""Cycle exists""") else: print(lowerCamelCase) # Adjacency List of Graph __magic_name__ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
665
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowercase__ : Any = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowercase__ : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def A_ ( snake_case : str ) -> str: '''simple docstring''' if "://" in dataset_path: __UpperCamelCase = dataset_path.split('''://''' )[1] return dataset_path def A_ ( snake_case : fsspec.AbstractFileSystem ) -> bool: '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def A_ ( snake_case : fsspec.AbstractFileSystem , snake_case : str , snake_case : str ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = not is_remote_filesystem(snake_case ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(snake_case ) , fs._strip_protocol(snake_case ) ) else: fs.mv(snake_case , snake_case , recursive=snake_case ) def A_ ( ) -> None: '''simple docstring''' if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = threading.Lock()
451
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowercase__ : int = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , **SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' return super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , **SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = {} if "candidate_labels" in kwargs: __UpperCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __UpperCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="This is a photo of {}." )-> Optional[int]: '''simple docstring''' __UpperCamelCase = load_image(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework ) __UpperCamelCase = candidate_labels __UpperCamelCase = [hypothesis_template.format(SCREAMING_SNAKE_CASE_ ) for x in candidate_labels] __UpperCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = [text_inputs] return inputs def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase = model_inputs.pop('''candidate_labels''' ) __UpperCamelCase = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = text_inputs[0] else: # Batching case. __UpperCamelCase = text_inputs[0][0] __UpperCamelCase = self.model(**SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = model_outputs.pop('''candidate_labels''' ) __UpperCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": __UpperCamelCase = logits.softmax(dim=-1 ).squeeze(-1 ) __UpperCamelCase = probs.tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [scores] elif self.framework == "tf": __UpperCamelCase = stable_softmax(SCREAMING_SNAKE_CASE_ , axis=-1 ) __UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) __UpperCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , key=lambda SCREAMING_SNAKE_CASE_ : -x[0] ) ] return result
451
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=7 , __a=3 , __a=18 , __a=30 , __a=400 , __a=True , __a=None , __a=True , __a=None , __a=True , __a=[0.5, 0.5, 0.5] , __a=[0.5, 0.5, 0.5] , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = size if size is not None else {'shortest_edge': 18} UpperCAmelCase__ = crop_size if crop_size is not None else {'height': 18, 'width': 18} UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = image_size UpperCAmelCase__ = min_resolution UpperCAmelCase__ = max_resolution UpperCAmelCase__ = do_resize UpperCAmelCase__ = size UpperCAmelCase__ = do_center_crop UpperCAmelCase__ = crop_size UpperCAmelCase__ = do_normalize UpperCAmelCase__ = image_mean UpperCAmelCase__ = image_std def UpperCamelCase__ (self ) -> int: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = LevitImageProcessor if is_vision_available() else None def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = LevitImageProcessingTester(self ) @property def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , 'image_mean' ) ) self.assertTrue(hasattr(__a , 'image_std' ) ) self.assertTrue(hasattr(__a , 'do_normalize' ) ) self.assertTrue(hasattr(__a , 'do_resize' ) ) self.assertTrue(hasattr(__a , 'do_center_crop' ) ) self.assertTrue(hasattr(__a , 'size' ) ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) UpperCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" pass def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase__ = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase__ = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase__ = image_processing(__a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
146
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase ( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase__ (self ) -> int: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.dummy_uncond_unet UpperCAmelCase__ = KarrasVeScheduler() UpperCAmelCase__ = KarrasVePipeline(unet=__a , scheduler=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe(num_inference_steps=2 , generator=__a , output_type='numpy' ).images UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe(num_inference_steps=2 , generator=__a , output_type='numpy' , return_dict=__a )[0] UpperCAmelCase__ = image[0, -3:, -3:, -1] UpperCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase__ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = 'google/ncsnpp-celebahq-256' UpperCAmelCase__ = UNetaDModel.from_pretrained(__a ) UpperCAmelCase__ = KarrasVeScheduler() UpperCAmelCase__ = KarrasVePipeline(unet=__a , scheduler=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe(num_inference_steps=20 , generator=__a , output_type='numpy' ).images UpperCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase__ = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
146
1
from scipy.stats import spearmanr import datasets lowerCamelCase__ : Union[str, Any] = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ lowerCamelCase__ : int = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ lowerCamelCase__ : str = R"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def lowercase__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float"""), """references""": datasets.Value("""float"""), }) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False): '''simple docstring''' lowercase__ : List[str] = spearmanr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
708
from __future__ import annotations from collections.abc import Iterator from typing import Any class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Any = data lowercase__ : Node | None = None class _snake_case : def __init__( self): '''simple docstring''' lowercase__ : List[Any] = None lowercase__ : int = None def __iter__( self): '''simple docstring''' lowercase__ : List[str] = self.head while self.head: yield node.data lowercase__ : str = node.next if node == self.head: break def __len__( self): '''simple docstring''' return sum(1 for _ in self) def __repr__( self): '''simple docstring''' return "->".join(str(SCREAMING_SNAKE_CASE_) for item in iter(self)) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' self.insert_nth(len(self) , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' self.insert_nth(0 , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if index < 0 or index > len(self): raise IndexError("""list index out of range.""") lowercase__ : Optional[int] = Node(SCREAMING_SNAKE_CASE_) if self.head is None: lowercase__ : Union[str, Any] = new_node # first node points itself lowercase__ : Dict = new_node elif index == 0: # insert at head lowercase__ : int = self.head lowercase__ : int = new_node else: lowercase__ : List[str] = self.head for _ in range(index - 1): lowercase__ : Union[str, Any] = temp.next lowercase__ : int = temp.next lowercase__ : Optional[Any] = new_node if index == len(self) - 1: # insert at tail lowercase__ : Union[str, Any] = new_node def lowercase__ ( self): '''simple docstring''' return self.delete_nth(0) def lowercase__ ( self): '''simple docstring''' return self.delete_nth(len(self) - 1) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ = 0): '''simple docstring''' if not 0 <= index < len(self): raise IndexError("""list index out of range.""") lowercase__ : str = self.head if self.head == self.tail: # just one node lowercase__ : List[Any] = None elif index == 0: # delete head node lowercase__ : str = self.tail.next.next lowercase__ : List[Any] = self.head.next else: lowercase__ : Optional[int] = self.head for _ in range(index - 1): lowercase__ : List[Any] = temp.next lowercase__ : Optional[Any] = temp.next lowercase__ : Dict = temp.next.next if index == len(self) - 1: # delete at tail lowercase__ : Tuple = temp return delete_node.data def lowercase__ ( self): '''simple docstring''' return len(self) == 0 def UpperCamelCase ( ) -> None: '''simple docstring''' lowercase__ : int = CircularLinkedList() assert len(lowercase_ ) == 0 assert circular_linked_list.is_empty() is True assert str(lowercase_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(lowercase_ ) == i circular_linked_list.insert_nth(lowercase_ , i + 1 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(lowercase_ ) == "->".join(str(lowercase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
495
0
"""simple docstring""" def A__ ( ): """simple docstring""" _lowerCAmelCase = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] _lowerCAmelCase = 6 _lowerCAmelCase = 1 _lowerCAmelCase = 1_9_0_1 _lowerCAmelCase = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowerCAmelCase = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 _lowerCAmelCase = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 _lowerCAmelCase = day - days_per_month[month - 2] if month > 1_2: year += 1 _lowerCAmelCase = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
589
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() a__ : List[Any] = logging.get_logger(__name__) def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = RobertaPreLayerNormConfig.from_pretrained( __lowerCamelCase, architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict _lowerCAmelCase = torch.load(hf_hub_download(repo_id=__lowerCamelCase, filename='pytorch_model.bin' ) ) _lowerCAmelCase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): _lowerCAmelCase = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue _lowerCAmelCase = tensor_value _lowerCAmelCase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__lowerCamelCase, config=__lowerCamelCase, state_dict=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) # convert tokenizer _lowerCAmelCase = AutoTokenizer.from_pretrained(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": a__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a__ : Optional[int] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
589
1
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = "▁" SCREAMING_SNAKE_CASE : int = {"vocab_file": "prophetnet.tokenizer"} SCREAMING_SNAKE_CASE : Union[str, Any] = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } SCREAMING_SNAKE_CASE : str = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } SCREAMING_SNAKE_CASE : Union[str, Any] = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def __lowerCamelCase ( lowerCAmelCase__ ): A__ = collections.OrderedDict() with open(lowerCAmelCase__ ,'r' ,encoding='utf-8' ) as reader: A__ = reader.readlines() for index, token in enumerate(lowerCAmelCase__ ): A__ = token.rstrip('\n' ) A__ = index return vocab class snake_case_ ( _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_: List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_: List[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_: Optional[int] = ["input_ids", "attention_mask"] def __init__( self , __a , __a="[SEP]" , __a="[SEP]" , __a="[SEP]" , __a="[UNK]" , __a="[PAD]" , __a="[CLS]" , __a="[MASK]" , __a = None , **__a , ): """simple docstring""" A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) A__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab A__ = {'[PAD]': 0, '[CLS]': 1, '[SEP]': 2, '[UNK]': 3, '[MASK]': 4} for i in range(10 ): A__ = f'''[unused{i}]''' A__ = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab A__ = 12 A__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(A_ ) def __getstate__( self ): """simple docstring""" A__ = self.__dict__.copy() A__ = None return state def __setstate__( self , __a ): """simple docstring""" A__ = d try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase ( self , __a , __a = None , __a = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return ([0] * len(A_ )) + [1] return ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] def _UpperCAmelCase ( self , __a , __a = None ): """simple docstring""" A__ = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCAmelCase ( self ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset def _UpperCAmelCase ( self ): """simple docstring""" A__ = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCAmelCase ( self , __a ): """simple docstring""" return self.sp_model.encode(A_ , out_type=A_ ) def _UpperCAmelCase ( self , __a ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A__ = self.sp_model.PieceToId(A_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCAmelCase ( self , __a ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCAmelCase ( self , __a ): """simple docstring""" A__ = ''.join(A_ ).replace(A_ , ' ' ).strip() return out_string def _UpperCAmelCase ( self , __a , __a = None ): """simple docstring""" if not os.path.isdir(A_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A__ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , 'wb' ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,) def _UpperCAmelCase ( self , __a , __a = None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.sep_token_id] A__ = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
703
"""simple docstring""" def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ): return 1 if input_a == input_a else 0 def __lowerCamelCase ( ): assert xnor_gate(0 ,0 ) == 1 assert xnor_gate(0 ,1 ) == 0 assert xnor_gate(1 ,0 ) == 0 assert xnor_gate(1 ,1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
554
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _a ( UpperCamelCase__ ): _lowercase : Optional[Any] = '''trocr''' _lowercase : int = ['''past_key_values'''] _lowercase : Dict = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self: int , UpperCamelCase_: Tuple=50_265 , UpperCamelCase_: List[str]=1_024 , UpperCamelCase_: Dict=12 , UpperCamelCase_: Optional[Any]=16 , UpperCamelCase_: Tuple=4_096 , UpperCamelCase_: Tuple="gelu" , UpperCamelCase_: Union[str, Any]=512 , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: Any=0.0 , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: Optional[Any]=2 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: Optional[Any]=0.0 , UpperCamelCase_: Dict=True , UpperCamelCase_: Dict=False , UpperCamelCase_: Dict=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: List[str]=1 , UpperCamelCase_: Union[str, Any]=0 , UpperCamelCase_: Tuple=2 , **UpperCamelCase_: str , ) -> Optional[int]: """simple docstring""" lowercase__ = vocab_size lowercase__ = d_model lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = activation_function lowercase__ = max_position_embeddings lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = init_std lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = scale_embedding lowercase__ = use_learned_position_embeddings lowercase__ = layernorm_embedding super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
43
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _UpperCamelCase = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def _A( lowerCAmelCase ): A__ : Any = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) _UpperCamelCase = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def _A( lowerCAmelCase ): A__ : str = list(s_dict.keys() ) for key in keys: A__ : Optional[Any] = key for k, v in WHISPER_MAPPING.items(): if k in key: A__ : Optional[Any] = new_key.replace(lowerCAmelCase , lowerCAmelCase ) print(F'''{key} -> {new_key}''' ) A__ : Any = s_dict.pop(lowerCAmelCase ) return s_dict def _A( lowerCAmelCase ): A__ , A__ : Union[str, Any] = emb.weight.shape A__ : Optional[Any] = nn.Linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase ) A__ : int = emb.weight.data return lin_layer def _A( lowerCAmelCase , lowerCAmelCase ): os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) A__ : Union[str, Any] = os.path.basename(lowerCAmelCase ) A__ : str = url.split("""/""" )[-2] A__ : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) if os.path.exists(lowerCAmelCase ) and not os.path.isfile(lowerCAmelCase ): raise RuntimeError(F'''{download_target} exists and is not a regular file''' ) if os.path.isfile(lowerCAmelCase ): A__ : Tuple = open(lowerCAmelCase , """rb""" ).read() if hashlib.shaaaa(lowerCAmelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(lowerCAmelCase ) as source, open(lowerCAmelCase , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=80 , unit="""iB""" , unit_scale=lowerCAmelCase , unit_divisor=1024 ) as loop: while True: A__ : Dict = source.read(8192 ) if not buffer: break output.write(lowerCAmelCase ) loop.update(len(lowerCAmelCase ) ) A__ : List[str] = open(lowerCAmelCase , """rb""" ).read() if hashlib.shaaaa(lowerCAmelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def _A( lowerCAmelCase , lowerCAmelCase ): if ".pt" not in checkpoint_path: A__ : str = _download(_MODELS[checkpoint_path] ) else: A__ : Optional[int] = torch.load(lowerCAmelCase , map_location="""cpu""" ) A__ : List[str] = original_checkpoint["""dims"""] A__ : List[Any] = original_checkpoint["""model_state_dict"""] A__ : Dict = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(lowerCAmelCase ) rename_keys(lowerCAmelCase ) A__ : Any = True A__ : List[str] = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] A__ : str = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=lowerCAmelCase , decoder_ffn_dim=lowerCAmelCase , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) A__ : int = WhisperForConditionalGeneration(lowerCAmelCase ) A__ , A__ : List[Any] = model.model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) if len(lowerCAmelCase ) > 0 and not set(lowerCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F''' but all the following weights are missing {missing}''' ) if tie_embeds: A__ : Tuple = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A__ : Any = proj_out_weights model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") _UpperCamelCase = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
363
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE = 100 ) -> int: snake_case_ = set() snake_case_ = 0 snake_case_ = n + 1 # maximum limit for a in range(2 , _SCREAMING_SNAKE_CASE ): for b in range(2 , _SCREAMING_SNAKE_CASE ): snake_case_ = a**b # calculates the current power collect_powers.add(_SCREAMING_SNAKE_CASE ) # adds the result to the set return len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
701
"""simple docstring""" from functools import reduce __SCREAMING_SNAKE_CASE : Tuple = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _a ( _SCREAMING_SNAKE_CASE = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str(int(_SCREAMING_SNAKE_CASE ) * int(_SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) ) for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
2
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _lowerCAmelCase : List[str] = logging.getLogger(__name__) class __magic_name__ : def __init__( self ) -> Dict: '''simple docstring''' __a =False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case ) -> Optional[int]: '''simple docstring''' if not self.initialized: __a =RagRetriever( __snake_case , question_encoder_tokenizer=__snake_case , generator_tokenizer=__snake_case , index=__snake_case , init_retrieval=__snake_case , ) __a =True def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.retriever.index.init_index() def __magic_name__ ( self , __snake_case , __snake_case ) -> Optional[Any]: '''simple docstring''' __a , __a =self.retriever._main_retrieve(__snake_case , __snake_case ) return doc_ids, retrieved_doc_embeds class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=None ) -> Optional[Any]: '''simple docstring''' if index is not None and index.is_initialized() and len(__snake_case ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( __snake_case , question_encoder_tokenizer=__snake_case , generator_tokenizer=__snake_case , index=__snake_case , init_retrieval=__snake_case , ) __a =retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__snake_case , __snake_case , __snake_case , __snake_case ) for worker in self.retrieval_workers ] ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __magic_name__ ( self , __snake_case , __snake_case ) -> Union[str, Any]: '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __a =self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __a , __a =ray.get(random_worker.retrieve.remote(__snake_case , __snake_case ) ) else: __a , __a =self._main_retrieve(__snake_case , __snake_case ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__snake_case ) @classmethod def __magic_name__ ( cls , __snake_case , __snake_case=None , **__snake_case ) -> List[str]: '''simple docstring''' return super(__snake_case , cls ).get_tokenizers(__snake_case , __snake_case , **__snake_case ) @classmethod def __magic_name__ ( cls , __snake_case , __snake_case , __snake_case=None , **__snake_case ) -> Dict: '''simple docstring''' __a =kwargs.pop('config' , __snake_case ) or RagConfig.from_pretrained(__snake_case , **__snake_case ) __a =RagTokenizer.from_pretrained(__snake_case , config=__snake_case ) __a =rag_tokenizer.question_encoder __a =rag_tokenizer.generator if indexed_dataset is not None: __a ='custom' __a =CustomHFIndex(config.retrieval_vector_size , __snake_case ) else: __a =cls._build_index(__snake_case ) return cls( __snake_case , question_encoder_tokenizer=__snake_case , generator_tokenizer=__snake_case , retrieval_workers=__snake_case , index=__snake_case , )
242
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'convbert' def __init__( self , __snake_case=3_0522 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=1 , __snake_case=0 , __snake_case=2 , __snake_case=768 , __snake_case=2 , __snake_case=9 , __snake_case=1 , __snake_case=None , **__snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case , ) __a =vocab_size __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_vocab_size __a =initializer_range __a =layer_norm_eps __a =embedding_size __a =head_ratio __a =conv_kernel_size __a =num_groups __a =classifier_dropout class __magic_name__ ( lowerCAmelCase_ ): @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __a ={0: 'batch', 1: 'choice', 2: 'sequence'} else: __a ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
242
1
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup a_ : Dict = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" def __init__(self , **__a ): '''simple docstring''' requires_backends(self , ["bs4"] ) super().__init__(**__a ) def _a (self , __a ): '''simple docstring''' lowerCamelCase = [] lowerCamelCase = [] lowerCamelCase = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag lowerCamelCase = parent.find_all(child.name , recursive=__a ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__a ) else next(i for i, s in enumerate(__a , 1 ) if s is child ) ) lowerCamelCase = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def _a (self , __a ): '''simple docstring''' lowerCamelCase = BeautifulSoup(__a , "html.parser" ) lowerCamelCase = [] lowerCamelCase = [] lowerCamelCase = [] for element in html_code.descendants: if type(__a ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue lowerCamelCase = html.unescape(__a ).strip() if not text_in_this_tag: continue all_doc_strings.append(__a ) lowerCamelCase , lowerCamelCase = self.xpath_soup(__a ) stringaxtag_seq.append(__a ) stringaxsubs_seq.append(__a ) if len(__a ) != len(__a ): raise ValueError("Number of doc strings and xtags does not correspond" ) if len(__a ) != len(__a ): raise ValueError("Number of doc strings and xsubs does not correspond" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def _a (self , __a , __a ): '''simple docstring''' lowerCamelCase = "" for tagname, subs in zip(__a , __a ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__(self , __a ): '''simple docstring''' lowerCamelCase = False # Check that strings has a valid type if isinstance(__a , __a ): lowerCamelCase = True elif isinstance(__a , (list, tuple) ): if len(__a ) == 0 or isinstance(html_strings[0] , __a ): lowerCamelCase = True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " F"""but is of type {type(__a )}.""" ) lowerCamelCase = bool(isinstance(__a , (list, tuple) ) and (isinstance(html_strings[0] , __a )) ) if not is_batched: lowerCamelCase = [html_strings] # Get nodes + xpaths lowerCamelCase = [] lowerCamelCase = [] for html_string in html_strings: lowerCamelCase , lowerCamelCase , lowerCamelCase = self.get_three_from_single(__a ) nodes.append(__a ) lowerCamelCase = [] for node, tag_list, sub_list in zip(__a , __a , __a ): lowerCamelCase = self.construct_xpath(__a , __a ) xpath_strings.append(__a ) xpaths.append(__a ) # return as Dict lowerCamelCase = {"nodes": nodes, "xpaths": xpaths} lowerCamelCase = BatchFeature(data=__a , tensor_type=__a ) return encoded_inputs
484
a_ : List[str] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' a_ : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] a_ : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
484
1
import os def __lowerCamelCase ( UpperCamelCase__ = "matrix.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(UpperCamelCase__ ) , UpperCamelCase__ ) ) as in_file: snake_case_ = in_file.read() snake_case_ = [[int(UpperCamelCase__ ) for cell in row.split(',' )] for row in data.strip().splitlines()] snake_case_ = [[0 for cell in row] for row in grid] snake_case_ = len(grid[0] ) snake_case_ = [[0 for i in range(UpperCamelCase__ )] for j in range(UpperCamelCase__ )] snake_case_ = grid[0][0] for i in range(1 , UpperCamelCase__ ): snake_case_ = grid[0][i] + dp[0][i - 1] for i in range(1 , UpperCamelCase__ ): snake_case_ = grid[i][0] + dp[i - 1][0] for i in range(1 , UpperCamelCase__ ): for j in range(1 , UpperCamelCase__ ): snake_case_ = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'''{solution() = }''')
362
import argparse import struct import unittest class lowercase : def __init__( self , snake_case ): snake_case_ = data # Initialize hash values snake_case_ = [ 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19, ] # Initialize round constants snake_case_ = [ 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, ] snake_case_ = self.preprocessing(self.data ) self.final_hash() @staticmethod def a ( snake_case ): snake_case_ = b'\x80' + (b'\x00' * (63 - (len(snake_case ) + 8) % 64)) snake_case_ = struct.pack('>Q' , (len(snake_case ) * 8) ) return data + padding + big_endian_integer def a ( self ): # Convert into blocks of 64 bytes snake_case_ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers snake_case_ = list(struct.unpack('>16L' , snake_case ) ) # add 48 0-ed integers words += [0] * 48 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array snake_case_ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) snake_case_ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) snake_case_ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100000000 # Compression snake_case_ = self.ror(snake_case , 6 ) ^ self.ror(snake_case , 11 ) ^ self.ror(snake_case , 25 ) snake_case_ = (e & f) ^ ((~e & 0xFFFFFFFF) & g) snake_case_ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100000000 snake_case_ = self.ror(snake_case , 2 ) ^ self.ror(snake_case , 13 ) ^ self.ror(snake_case , 22 ) snake_case_ = (a & b) ^ (a & c) ^ (b & c) snake_case_ = (sa + maj) % 0x100000000 snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = ( g, f, e, ((d + tempa) % 0x100000000), c, b, a, ((tempa + tempa) % 0x100000000), ) snake_case_ = [a, b, c, d, e, f, g, h] # Modify final values snake_case_ = [ ((element + mutated_hash_values[index]) % 0x100000000) for index, element in enumerate(self.hashes ) ] snake_case_ = ''.join([hex(snake_case )[2:].zfill(8 ) for value in self.hashes] ) def a ( self , snake_case , snake_case ): return 0xFFFFFFFF & (value << (32 - rotations)) | (value >> rotations) class lowercase ( unittest.TestCase ): def a ( self ): import hashlib snake_case_ = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(snake_case ).hash , hashlib.shaaaa(snake_case ).hexdigest() ) def __lowerCamelCase ( ): '''simple docstring''' import doctest doctest.testmod() snake_case_ = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) snake_case_ = parser.parse_args() snake_case_ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: snake_case_ = f.read() else: snake_case_ = bytes(UpperCamelCase__ , 'utf-8' ) print(SHAaaa(UpperCamelCase__ ).hash ) if __name__ == "__main__": main()
362
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase : int =logging.get_logger(__name__) UpperCAmelCase : Tuple ={ """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class _lowercase (a_ ): '''simple docstring''' lowercase__ = """deit""" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=True , snake_case__=16 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = qkv_bias UpperCamelCase_ = encoder_stride class _lowercase (a_ ): '''simple docstring''' lowercase__ = version.parse("""1.11""" ) @property def _lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowerCamelCase ( self ): '''simple docstring''' return 1e-4
504
import sys UpperCAmelCase : Union[str, Any] =( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def _lowerCAmelCase (_lowerCAmelCase = N): UpperCamelCase_ = -sys.maxsize - 1 for i in range(len(_lowerCAmelCase) - 12): UpperCamelCase_ = 1 for j in range(13): product *= int(n[i + j]) if product > largest_product: UpperCamelCase_ = product return largest_product if __name__ == "__main__": print(F"{solution() = }")
504
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : List[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __lowerCAmelCase : Tuple = 25_6047 __lowerCAmelCase : int = 25_6145 @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = NllbTokenizer _lowerCamelCase = NllbTokenizerFast _lowerCamelCase = True _lowerCamelCase = True _lowerCamelCase = {} def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case_ : str = NllbTokenizer(_lowercase , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Tuple = NllbTokenizer(_lowercase , keep_accents=_lowercase ) snake_case_ : Optional[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) snake_case_ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) snake_case_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) snake_case_ : List[Any] = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Tuple = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-nllb""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) snake_case_ : Optional[int] = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) snake_case_ : Any = tempfile.mkdtemp() snake_case_ : Optional[int] = tokenizer_r.save_pretrained(_lowercase ) snake_case_ : Optional[int] = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) snake_case_ : Dict = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way snake_case_ : Optional[int] = tokenizer_r.from_pretrained(_lowercase ) snake_case_ : str = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=True snake_case_ : Optional[Any] = tempfile.mkdtemp() snake_case_ : Optional[Any] = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) snake_case_ : Optional[int] = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way snake_case_ : Union[str, Any] = tokenizer_r.from_pretrained(_lowercase ) snake_case_ : str = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=False snake_case_ : str = tempfile.mkdtemp() snake_case_ : Any = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) snake_case_ : Optional[int] = tokenizer_p.save_pretrained(_lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case_ : List[str] = tokenizer_r.from_pretrained(_lowercase ) snake_case_ : Optional[int] = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) @require_torch def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' if not self.test_seqaseq: return snake_case_ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. snake_case_ : Optional[Any] = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for""" """ Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons""" """ will only worsen the violence and misery for millions of people.""", ] snake_case_ : Optional[int] = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al""" """ Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi""" """ că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] try: snake_case_ : Any = tokenizer.prepare_seqaseq_batch( src_texts=_lowercase , tgt_texts=_lowercase , max_length=3 , max_target_length=1_0 , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 1_0 ) # max_target_length will default to max_length if not specified snake_case_ : str = tokenizer.prepare_seqaseq_batch( _lowercase , tgt_texts=_lowercase , max_length=3 , return_tensors="""pt""" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) snake_case_ : Optional[int] = tokenizer.prepare_seqaseq_batch( src_texts=_lowercase , max_length=3 , max_target_length=1_0 , return_tensors="""pt""" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("""decoder_input_ids""" , _lowercase ) @unittest.skip("""Unfortunately way too slow to build a BPE with SentencePiece.""" ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case_ : List[str] = [AddedToken("""<special>""" , lstrip=_lowercase )] snake_case_ : List[Any] = self.rust_tokenizer_class.from_pretrained( _lowercase , additional_special_tokens=_lowercase , **_lowercase ) snake_case_ : Dict = tokenizer_r.encode("""Hey this is a <special> token""" ) snake_case_ : int = tokenizer_r.encode("""<special>""" , add_special_tokens=_lowercase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: snake_case_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _lowercase , additional_special_tokens=_lowercase , **_lowercase , ) snake_case_ : List[Any] = self.tokenizer_class.from_pretrained( _lowercase , additional_special_tokens=_lowercase , **_lowercase ) snake_case_ : Tuple = tokenizer_p.encode("""Hey this is a <special> token""" ) snake_case_ : int = tokenizer_cr.encode("""Hey this is a <special> token""" ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = '''facebook/nllb-200-distilled-600M''' _lowerCamelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] _lowerCamelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] _lowerCamelCase = [ 256_047, 16_297, 134_408, 8_165, 248_066, 14_734, 950, 1_135, 105_721, 3_573, 83, 27_352, 108, 49_486, 2, ] @classmethod def UpperCAmelCase__ ( cls ) -> List[str]: '''simple docstring''' snake_case_ : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" ) snake_case_ : Dict = 1 return cls def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Arab"""] , 2_5_6_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Latn"""] , 2_5_6_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""fra_Latn"""] , 2_5_6_0_5_7 ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' self.assertIn(_lowercase , self.tokenizer.all_special_ids ) # fmt: off snake_case_ : List[Any] = [RO_CODE, 4_2_5_4, 9_8_0_6_8, 1_1_2_9_2_3, 3_9_0_7_2, 3_9_0_9, 7_1_3, 1_0_2_7_6_7, 2_6, 1_7_3_1_4, 3_5_6_4_2, 1_4_6_8_3, 3_3_1_1_8, 2_0_2_2, 6_6_9_8_7, 2, 2_5_6_0_4_7] # fmt: on snake_case_ : int = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) snake_case_ : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = ["""this is gunna be a long sentence """ * 2_0] assert isinstance(src_text[0] , _lowercase ) snake_case_ : Optional[int] = 1_0 snake_case_ : Optional[int] = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , _lowercase ) self.assertEqual(len(_lowercase ) , _lowercase ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_6_2_0_3, 3] ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = tempfile.mkdtemp() snake_case_ : List[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowercase ) snake_case_ : Union[str, Any] = NllbTokenizer.from_pretrained(_lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase ) @require_torch def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) snake_case_ : Optional[Any] = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["""ron_Latn"""] ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 1_5) , batch.input_ids.shape ) self.assertEqual((2, 1_5) , batch.attention_mask.shape ) snake_case_ : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) self.assertEqual(_lowercase , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Tuple = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors="""pt""" ) snake_case_ : Optional[Any] = self.tokenizer( text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=1_0 , return_tensors="""pt""" ) snake_case_ : str = targets["""input_ids"""] snake_case_ : Optional[int] = shift_tokens_right( _lowercase , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( nested_simplify(_lowercase ) , { # A, test, EOS, en_XX """input_ids""": [[2_5_6_0_4_7, 7_0, 7_3_5_6, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 2_5_6_0_5_7, } , ) @require_torch def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = True snake_case_ : Optional[int] = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2, 2_5_6_0_4_7] ) snake_case_ : str = False snake_case_ : List[Any] = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2] )
58
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _a = size if size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std def a__ (self ) -> Union[str, Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = DPTImageProcessor if is_vision_available() else None def a__ (self ) -> Optional[Any]: """simple docstring""" _a = DPTImageProcessingTester(self ) @property def a__ (self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ) -> Dict: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
11
0
"""simple docstring""" import qiskit def lowercase (_lowerCAmelCase = 2 ): __lowerCAmelCase = qubits # Using Aer's simulator __lowerCAmelCase = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register __lowerCAmelCase = qiskit.QuantumCircuit(_lowerCAmelCase , _lowerCAmelCase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , _lowerCAmelCase ): # Adding CX (CNOT) gate circuit.cx(i - 1 , _lowerCAmelCase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(_lowerCAmelCase ) ) , list(range(_lowerCAmelCase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator __lowerCAmelCase = qiskit.execute(_lowerCAmelCase , _lowerCAmelCase , shots=1000 ) return job.result().get_counts(_lowerCAmelCase ) if __name__ == "__main__": print(F"Total count for various states are: {quantum_entanglement(3)}")
573
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = '''pegasus''' _snake_case = ['''past_key_values'''] _snake_case = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , snake_case_=50_265 , snake_case_=1_024 , snake_case_=12 , snake_case_=4_096 , snake_case_=16 , snake_case_=12 , snake_case_=4_096 , snake_case_=16 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=True , snake_case_=True , snake_case_="gelu" , snake_case_=1_024 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=0 , snake_case_=False , snake_case_=0 , snake_case_=1 , snake_case_=1 , **snake_case_ , ) -> List[str]: __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = d_model __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = use_cache __lowerCAmelCase = encoder_layers __lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , **snake_case_ , ) @property def A__ ( self ) -> int: return self.encoder_attention_heads @property def A__ ( self ) -> int: return self.d_model
573
1
import unittest import numpy as np def a_ ( _A , _A , _A , _A = None , ) -> np.ndarray: """simple docstring""" snake_case__ = np.shape(_A ) snake_case__ = np.shape(_A ) snake_case__ = np.shape(_A ) if shape_a[0] != shape_b[0]: snake_case__ = ( 'Expected the same number of rows for A and B. ' f'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(_A ) if shape_b[1] != shape_c[1]: snake_case__ = ( 'Expected the same number of columns for B and C. ' f'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(_A ) snake_case__ = pseudo_inv if a_inv is None: try: snake_case__ = np.linalg.inv(_A ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def lowerCAmelCase_ ( self: Dict ) -> None: snake_case__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) snake_case__ = np.array([[0, 3], [3, 0], [2, 3]] ) snake_case__ = np.array([[2, 1], [6, 3]] ) snake_case__ = schur_complement(UpperCamelCase , UpperCamelCase , UpperCamelCase ) snake_case__ = np.block([[a, b], [b.T, c]] ) snake_case__ = np.linalg.det(UpperCamelCase ) snake_case__ = np.linalg.det(UpperCamelCase ) snake_case__ = np.linalg.det(UpperCamelCase ) self.assertAlmostEqual(UpperCamelCase , det_a * det_s ) def lowerCAmelCase_ ( self: Any ) -> None: snake_case__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) snake_case__ = np.array([[0, 3], [3, 0], [2, 3]] ) snake_case__ = np.array([[2, 1], [6, 3]] ) with self.assertRaises(UpperCamelCase ): schur_complement(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self: int ) -> None: snake_case__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) snake_case__ = np.array([[0, 3], [3, 0], [2, 3]] ) snake_case__ = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(UpperCamelCase ): schur_complement(UpperCamelCase , UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
328
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = 42 _UpperCAmelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = 42 _UpperCAmelCase = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
328
1
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness A_ = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" A_ = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" A_ = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" A_ = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" A_ = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[1, 10, 100] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3.0 ) -> Optional[Any]: '''simple docstring''' if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=SCREAMING_SNAKE_CASE_ ) as executor: lowerCamelCase_ = [] lowerCamelCase_ = Counter() lowerCamelCase_ = 0 lowerCamelCase_ = defaultdict(SCREAMING_SNAKE_CASE_ ) for task_id, (candidates, test_case) in enumerate(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ): for candidate in candidates: lowerCamelCase_ = candidate + '\n' + test_case lowerCamelCase_ = (test_program, timeout, task_id, completion_id[task_id]) lowerCamelCase_ = executor.submit(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) futures.append(SCREAMING_SNAKE_CASE_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = future.result() results[result["task_id"]].append((result['completion_id'], result) ) lowerCamelCase_ = [], [] for result in results.values(): result.sort() lowerCamelCase_ = [r[1]['passed'] for r in result] total.append(len(SCREAMING_SNAKE_CASE_ ) ) correct.append(sum(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = np.array(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = np.array(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = k lowerCamelCase_ = {f'''pass@{k}''': estimate_pass_at_k(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Union[str, Any]: def estimator(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 ,n + 1 ) ) if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = itertools.repeat(SCREAMING_SNAKE_CASE_ ,len(SCREAMING_SNAKE_CASE_ ) ) else: assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = iter(SCREAMING_SNAKE_CASE_ ) return np.array([estimator(int(SCREAMING_SNAKE_CASE_ ) ,int(SCREAMING_SNAKE_CASE_ ) ,SCREAMING_SNAKE_CASE_ ) for n, c in zip(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ )] )
703
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase ) -> float: return 10 - x * x def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(__UpperCamelCase ) * equation(__UpperCamelCase ) >= 0: raise ValueError('Wrong space!' ) lowerCamelCase_ = a while (b - a) >= 0.01: # Find middle point lowerCamelCase_ = (a + b) / 2 # Check if middle point is root if equation(__UpperCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__UpperCamelCase ) * equation(__UpperCamelCase ) < 0: lowerCamelCase_ = c else: lowerCamelCase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
384
0
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""1.0.0a"""): raise Exception("""requires fairseq >= 1.0.0a""") logging.set_verbosity_info() _a : Optional[Any] = logging.get_logger(__name__) _a : str = """Hello world! cécé herlolip""" def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> str: __lowerCAmelCase = FairseqRobertaModel.from_pretrained(UpperCamelCase_ ) roberta.eval() # disable dropout __lowerCAmelCase = roberta.model.encoder.sentence_encoder __lowerCAmelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: __lowerCAmelCase = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" , UpperCamelCase_ ) __lowerCAmelCase = XLMRobertaXLForSequenceClassification(UpperCamelCase_ ) if classification_head else XLMRobertaXLForMaskedLM(UpperCamelCase_ ) model.eval() # Now let's copy all the weights. # Embeddings __lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight __lowerCAmelCase = roberta_sent_encoder.embed_positions.weight __lowerCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. __lowerCAmelCase = roberta_sent_encoder.layer_norm.weight __lowerCAmelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowerCAmelCase = model.roberta.encoder.layer[i] __lowerCAmelCase = roberta_sent_encoder.layers[i] __lowerCAmelCase = layer.attention __lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight __lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias # self attention __lowerCAmelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) __lowerCAmelCase = roberta_layer.self_attn.q_proj.weight __lowerCAmelCase = roberta_layer.self_attn.q_proj.bias __lowerCAmelCase = roberta_layer.self_attn.k_proj.weight __lowerCAmelCase = roberta_layer.self_attn.k_proj.bias __lowerCAmelCase = roberta_layer.self_attn.v_proj.weight __lowerCAmelCase = roberta_layer.self_attn.v_proj.bias # self-attention output __lowerCAmelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape __lowerCAmelCase = roberta_layer.self_attn.out_proj.weight __lowerCAmelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm __lowerCAmelCase = roberta_layer.final_layer_norm.weight __lowerCAmelCase = roberta_layer.final_layer_norm.bias # intermediate __lowerCAmelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape __lowerCAmelCase = roberta_layer.fca.weight __lowerCAmelCase = roberta_layer.fca.bias # output __lowerCAmelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape __lowerCAmelCase = roberta_layer.fca.weight __lowerCAmelCase = roberta_layer.fca.bias # end of layer if classification_head: __lowerCAmelCase = roberta.model.classification_heads["""mnli"""].dense.weight __lowerCAmelCase = roberta.model.classification_heads["""mnli"""].dense.bias __lowerCAmelCase = roberta.model.classification_heads["""mnli"""].out_proj.weight __lowerCAmelCase = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head __lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight __lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias __lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight __lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias __lowerCAmelCase = roberta.model.encoder.lm_head.weight __lowerCAmelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. __lowerCAmelCase = roberta.encode(UpperCamelCase_ ).unsqueeze(0 ) # batch of size 1 __lowerCAmelCase = model(UpperCamelCase_ )[0] if classification_head: __lowerCAmelCase = roberta.model.classification_heads["""mnli"""](roberta.extract_features(UpperCamelCase_ ) ) else: __lowerCAmelCase = roberta.model(UpperCamelCase_ )[0] print(our_output.shape , their_output.shape ) __lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 __lowerCAmelCase = torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(UpperCamelCase_ ).mkdir(parents=UpperCamelCase_ , exist_ok=UpperCamelCase_ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--roberta_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) _a : str = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
689
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [] create_all_state(1 , UpperCamelCase_ , UpperCamelCase_ , [] , UpperCamelCase_ ) return result def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): if level == 0: total_list.append(current_list[:] ) return for i in range(UpperCamelCase_ , total_number - level + 2 ): current_list.append(UpperCamelCase_ ) create_all_state(i + 1 , UpperCamelCase_ , level - 1 , UpperCamelCase_ , UpperCamelCase_ ) current_list.pop() def _lowerCAmelCase ( UpperCamelCase_ ): for i in total_list: print(*UpperCamelCase_ ) if __name__ == "__main__": __magic_name__ = 4 __magic_name__ = 2 __magic_name__ = generate_all_combinations(n, k) print_all_state(total_list)
155
0
import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''naver-clova-ix/donut-base-finetuned-docvqa''' SCREAMING_SNAKE_CASE__ = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) SCREAMING_SNAKE_CASE__ = '''document_qa''' SCREAMING_SNAKE_CASE__ = AutoProcessor SCREAMING_SNAKE_CASE__ = VisionEncoderDecoderModel SCREAMING_SNAKE_CASE__ = ['''image''', '''text'''] SCREAMING_SNAKE_CASE__ = ['''text'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' _lowerCAmelCase = task_prompt.replace('''{user_input}''' , _lowerCAmelCase ) _lowerCAmelCase = self.pre_processor.tokenizer( _lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_tensors='''pt''' ).input_ids _lowerCAmelCase = self.pre_processor(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __lowerCAmelCase ( self , _lowerCAmelCase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_lowerCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_lowerCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_lowerCAmelCase , ).sequences def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.pre_processor.batch_decode(_lowerCAmelCase )[0] _lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) _lowerCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) _lowerCAmelCase = re.sub(R'''<.*?>''' , '''''' , _lowerCAmelCase , count=1 ).strip() # remove first task start token _lowerCAmelCase = self.pre_processor.tokenajson(_lowerCAmelCase ) return sequence["answer"]
708
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase_ = 1_0 UpperCAmelCase_ = 2_5_6 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] )->Optional[MinHash]: if len(_SCREAMING_SNAKE_CASE ) < MIN_NUM_TOKENS: return None _lowerCAmelCase = MinHash(num_perm=_SCREAMING_SNAKE_CASE ) for token in set(_SCREAMING_SNAKE_CASE ): min_hash.update(token.encode() ) return min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Set[str]: return {t for t in NON_ALPHA.split(_SCREAMING_SNAKE_CASE ) if len(t.strip() ) > 0} class UpperCAmelCase : def __init__( self , *, _lowerCAmelCase = 0.85 , ): _lowerCAmelCase = duplication_jaccard_threshold _lowerCAmelCase = NUM_PERM _lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCAmelCase = defaultdict(_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self._index.query(_lowerCAmelCase ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_lowerCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCAmelCase = [base] + list(_lowerCAmelCase ) # reformat the cluster to be a list of dict _lowerCAmelCase = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(_lowerCAmelCase ) return duplicate_clusters def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = self.get_duplicate_clusters() with open(_lowerCAmelCase , '''w''' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str )->Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = element _lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] )->Any: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_SCREAMING_SNAKE_CASE , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float )->str: _lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=_SCREAMING_SNAKE_CASE ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_SCREAMING_SNAKE_CASE ) ) , max_queue_size=1_0_0 ) ): di.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str )->float: _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = get_tokens(_SCREAMING_SNAKE_CASE ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase_ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any )->List[Any]: _lowerCAmelCase = [] for elementa in cluster: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _lowerCAmelCase = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCAmelCase = 1 extremes.append(_SCREAMING_SNAKE_CASE ) return extremes def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str )->Tuple: global _shared_dataset _lowerCAmelCase = dataset _lowerCAmelCase = [] _lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=_SCREAMING_SNAKE_CASE ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) , total=len(_SCREAMING_SNAKE_CASE ) , ): extremes_list.append(_SCREAMING_SNAKE_CASE ) return extremes_list def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Type[Dataset] , _SCREAMING_SNAKE_CASE : float = 0.85 )->Tuple[Type[Dataset], List[List[Dict]]]: _lowerCAmelCase = make_duplicate_clusters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _lowerCAmelCase = {} _lowerCAmelCase = find_extremes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for extremes in extremes_clusters: for element in extremes: _lowerCAmelCase = element _lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() ) _lowerCAmelCase = dataset.filter(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=_SCREAMING_SNAKE_CASE ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCAmelCase = element['''base_index'''] in extreme_dict if element["is_extreme"]: _lowerCAmelCase = extreme_dict[element['''base_index''']]['''copies'''] print(f'''Original dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Number of duplicate clusters: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Unique files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}''' ) print(f'''Filtered dataset size: {len(_SCREAMING_SNAKE_CASE )}''' ) return ds_filter, duplicate_clusters
664
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=32 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=[10, 20, 30, 40] , UpperCamelCase__=[2, 2, 3, 2] , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=10 , UpperCamelCase__=0.02 , UpperCamelCase__=["stage2", "stage3", "stage4"] , UpperCamelCase__=[2, 3, 4] , UpperCamelCase__=None , ) -> str: lowerCamelCase : Tuple = parent lowerCamelCase : int = batch_size lowerCamelCase : Optional[Any] = image_size lowerCamelCase : Dict = num_channels lowerCamelCase : List[Any] = num_stages lowerCamelCase : Optional[Any] = hidden_sizes lowerCamelCase : str = depths lowerCamelCase : Tuple = is_training lowerCamelCase : Any = use_labels lowerCamelCase : Union[str, Any] = intermediate_size lowerCamelCase : Dict = hidden_act lowerCamelCase : Optional[int] = num_labels lowerCamelCase : Optional[Any] = initializer_range lowerCamelCase : Tuple = out_features lowerCamelCase : Tuple = out_indices lowerCamelCase : Dict = scope def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : List[Any] = None if self.use_labels: lowerCamelCase : Any = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def _lowercase ( self ) -> Tuple: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: lowerCamelCase : Dict = ConvNextModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : Union[str, Any] = model(UpperCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: lowerCamelCase : Any = ConvNextForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : Any = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: lowerCamelCase : Any = ConvNextBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : Optional[Any] = model(UpperCamelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase : Tuple = None lowerCamelCase : List[Any] = ConvNextBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : Any = model(UpperCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase ( self ) -> str: lowerCamelCase : Tuple = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase : Any = config_and_inputs lowerCamelCase : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ (lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) lowerCamelCase_ : Any = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) lowerCamelCase_ : Tuple = True lowerCamelCase_ : List[str] = False lowerCamelCase_ : Union[str, Any] = False lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : Tuple = False def _lowercase ( self ) -> List[str]: lowerCamelCase : int = ConvNextModelTester(self ) lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self ) -> Optional[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self ) -> Any: return @unittest.skip(reason="ConvNext does not use inputs_embeds" ) def _lowercase ( self ) -> List[str]: pass @unittest.skip(reason="ConvNext does not support input and output embeddings" ) def _lowercase ( self ) -> Optional[Any]: pass @unittest.skip(reason="ConvNext does not use feedforward chunking" ) def _lowercase ( self ) -> Any: pass def _lowercase ( self ) -> List[str]: lowerCamelCase , lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Optional[int] = model_class(UpperCamelCase__ ) lowerCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : Dict = [*signature.parameters.keys()] lowerCamelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self ) -> List[Any]: lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase__ ) def _lowercase ( self ) -> Any: def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCamelCase : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCamelCase : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase , lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Any = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : Dict = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self ) -> Dict: lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def _lowercase ( self ) -> Dict: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Optional[Any] = ConvNextModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def A ( ) -> List[Any]: lowerCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self ) -> List[str]: return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None @slow def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : int = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(UpperCamelCase__ ) lowerCamelCase : Optional[Any] = self.default_image_processor lowerCamelCase : Optional[Any] = prepare_img() lowerCamelCase : Union[str, Any] = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase : List[Any] = model(**UpperCamelCase__ ) # verify the logits lowerCamelCase : Optional[int] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @require_torch class UpperCamelCase__ (unittest.TestCase , lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = (ConvNextBackbone,) if is_torch_available() else () lowerCamelCase_ : Optional[int] = ConvNextConfig lowerCamelCase_ : Any = False def _lowercase ( self ) -> Optional[int]: lowerCamelCase : Optional[Any] = ConvNextModelTester(self )
311
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class UpperCamelCase__ : '''simple docstring''' lowerCamelCase_ : List[Any] = BlenderbotSmallConfig lowerCamelCase_ : int = {} lowerCamelCase_ : Optional[int] = """gelu""" def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=20 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=0 , ) -> List[Any]: lowerCamelCase : Any = parent lowerCamelCase : Any = batch_size lowerCamelCase : Any = seq_length lowerCamelCase : int = is_training lowerCamelCase : Tuple = use_labels lowerCamelCase : List[Any] = vocab_size lowerCamelCase : Optional[int] = hidden_size lowerCamelCase : Tuple = num_hidden_layers lowerCamelCase : Dict = num_attention_heads lowerCamelCase : Union[str, Any] = intermediate_size lowerCamelCase : Optional[Any] = hidden_dropout_prob lowerCamelCase : int = attention_probs_dropout_prob lowerCamelCase : Optional[Any] = max_position_embeddings lowerCamelCase : Optional[Any] = eos_token_id lowerCamelCase : List[Any] = pad_token_id lowerCamelCase : int = bos_token_id def _lowercase ( self ) -> int: lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase : Optional[int] = prepare_blenderbot_small_inputs_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, inputs_dict def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: lowerCamelCase : Dict = TFBlenderbotSmallModel(config=UpperCamelCase__ ).get_decoder() lowerCamelCase : str = inputs_dict["input_ids"] lowerCamelCase : List[str] = input_ids[:1, :] lowerCamelCase : str = inputs_dict["attention_mask"][:1, :] lowerCamelCase : str = inputs_dict["head_mask"] lowerCamelCase : Tuple = 1 # first forward pass lowerCamelCase : List[str] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ ) lowerCamelCase , lowerCamelCase : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase : str = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase : Dict = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase : Optional[int] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] lowerCamelCase : Dict = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase : int = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase : Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-3 ) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,) -> Optional[int]: if attention_mask is None: lowerCamelCase : Dict = tf.cast(tf.math.not_equal(_SCREAMING_SNAKE_CASE ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: lowerCamelCase : Tuple = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: lowerCamelCase : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase__ (lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : str = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) lowerCamelCase_ : List[Any] = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () lowerCamelCase_ : int = ( { """conversational""": TFBlenderbotSmallForConditionalGeneration, """feature-extraction""": TFBlenderbotSmallModel, """summarization""": TFBlenderbotSmallForConditionalGeneration, """text2text-generation""": TFBlenderbotSmallForConditionalGeneration, """translation""": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase_ : Union[str, Any] = True lowerCamelCase_ : List[Any] = False lowerCamelCase_ : str = False def _lowercase ( self ) -> Dict: lowerCamelCase : str = TFBlenderbotSmallModelTester(self ) lowerCamelCase : Any = ConfigTester(self , config_class=UpperCamelCase__ ) def _lowercase ( self ) -> Dict: self.config_tester.run_common_tests() def _lowercase ( self ) -> Tuple: lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase__ ) @require_tokenizers @require_tf class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : int = [ """Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like """ """ i'm going to throw up.\nand why is that?""" ] lowerCamelCase_ : Dict = """facebook/blenderbot_small-90M""" @cached_property def _lowercase ( self ) -> Optional[int]: # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def _lowercase ( self ) -> Tuple: lowerCamelCase : int = self.tokenizer(self.src_text , return_tensors="tf" ) lowerCamelCase : Tuple = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=UpperCamelCase__ , ) lowerCamelCase : str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase__ )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
311
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ = logging.get_logger(__name__) a_ = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase_ ): snake_case_ = """deberta-v2""" def __init__( self : Dict , __lowercase : Dict=12_81_00 , __lowercase : Any=15_36 , __lowercase : Union[str, Any]=24 , __lowercase : Optional[int]=24 , __lowercase : Any=61_44 , __lowercase : List[str]="gelu" , __lowercase : List[str]=0.1 , __lowercase : int=0.1 , __lowercase : Dict=5_12 , __lowercase : Optional[int]=0 , __lowercase : Union[str, Any]=0.02 , __lowercase : str=1e-7 , __lowercase : Union[str, Any]=False , __lowercase : str=-1 , __lowercase : str=0 , __lowercase : Optional[Any]=True , __lowercase : Union[str, Any]=None , __lowercase : Any=0 , __lowercase : Any="gelu" , **__lowercase : Optional[int] , ) -> Optional[Any]: super().__init__(**__A ) SCREAMING_SNAKE_CASE__ : Optional[int] =hidden_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[int] =num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple =intermediate_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =hidden_act SCREAMING_SNAKE_CASE__ : Any =hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple =attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple =max_position_embeddings SCREAMING_SNAKE_CASE__ : List[Any] =type_vocab_size SCREAMING_SNAKE_CASE__ : int =initializer_range SCREAMING_SNAKE_CASE__ : List[Any] =relative_attention SCREAMING_SNAKE_CASE__ : Dict =max_relative_positions SCREAMING_SNAKE_CASE__ : Any =pad_token_id SCREAMING_SNAKE_CASE__ : Any =position_biased_input # Backwards compatibility if type(__A ) == str: SCREAMING_SNAKE_CASE__ : List[Any] =[x.strip() for x in pos_att_type.lower().split('''|''' )] SCREAMING_SNAKE_CASE__ : List[str] =pos_att_type SCREAMING_SNAKE_CASE__ : Tuple =vocab_size SCREAMING_SNAKE_CASE__ : List[str] =layer_norm_eps SCREAMING_SNAKE_CASE__ : List[str] =kwargs.get('''pooler_hidden_size''' , __A ) SCREAMING_SNAKE_CASE__ : Tuple =pooler_dropout SCREAMING_SNAKE_CASE__ : str =pooler_hidden_act class __SCREAMING_SNAKE_CASE ( UpperCamelCase_ ): @property def __magic_name__ ( self : str ) -> Tuple: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ : int ={0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE__ : List[Any] ={0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def __magic_name__ ( self : Dict ) -> Dict: return 12 def __magic_name__ ( self : List[Any] , __lowercase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional["TensorType"] = None , __lowercase : int = 3 , __lowercase : int = 40 , __lowercase : int = 40 , __lowercase : "PreTrainedTokenizerBase" = None , ) -> Tuple: SCREAMING_SNAKE_CASE__ : int =super().generate_dummy_inputs(preprocessor=__A , framework=__A ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
703
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } a_ = { 'bert-base-uncased': 5_1_2, 'bert-large-uncased': 5_1_2, 'bert-base-cased': 5_1_2, 'bert-large-cased': 5_1_2, 'bert-base-multilingual-uncased': 5_1_2, 'bert-base-multilingual-cased': 5_1_2, 'bert-base-chinese': 5_1_2, 'bert-base-german-cased': 5_1_2, 'bert-large-uncased-whole-word-masking': 5_1_2, 'bert-large-cased-whole-word-masking': 5_1_2, 'bert-large-uncased-whole-word-masking-finetuned-squad': 5_1_2, 'bert-large-cased-whole-word-masking-finetuned-squad': 5_1_2, 'bert-base-cased-finetuned-mrpc': 5_1_2, 'bert-base-german-dbmdz-cased': 5_1_2, 'bert-base-german-dbmdz-uncased': 5_1_2, 'TurkuNLP/bert-base-finnish-cased-v1': 5_1_2, 'TurkuNLP/bert-base-finnish-uncased-v1': 5_1_2, 'wietsedv/bert-base-dutch-cased': 5_1_2, } a_ = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_INIT_CONFIGURATION snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = BertTokenizer def __init__( self : int , __lowercase : Union[str, Any]=None , __lowercase : Tuple=None , __lowercase : str=True , __lowercase : Optional[Any]="[UNK]" , __lowercase : Tuple="[SEP]" , __lowercase : Any="[PAD]" , __lowercase : List[Any]="[CLS]" , __lowercase : Union[str, Any]="[MASK]" , __lowercase : Tuple=True , __lowercase : str=None , **__lowercase : Any , ) -> Optional[Any]: super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) SCREAMING_SNAKE_CASE__ : str =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __lowercase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE__ : int =getattr(__lowercase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ : Any =do_lower_case SCREAMING_SNAKE_CASE__ : Any =strip_accents SCREAMING_SNAKE_CASE__ : Dict =tokenize_chinese_chars SCREAMING_SNAKE_CASE__ : Union[str, Any] =normalizer_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =do_lower_case def __magic_name__ ( self : int , __lowercase : Optional[Any] , __lowercase : Union[str, Any]=None ) -> int: SCREAMING_SNAKE_CASE__ : Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__ ( self : Union[str, Any] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ : List[str] =[self.sep_token_id] SCREAMING_SNAKE_CASE__ : Optional[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self : List[Any] , __lowercase : str , __lowercase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ : Optional[int] =self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase )
665
0